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Abstract—Solid-state drives (SSDs) include flash translation
layer (FTL) functions to manage the inherent characteristics of
NAND flash memory. One critical aspect of the flash management
functions is garbage collection which reclaims NAND flash blocks
that include many invalid pages provoked by page data updates.
The garbage collection function can degrade the performance
and lifespan of an SSD since the garbage collection creates
redundant page reads/writes and block erases in an SSD. In order
to tackle the performance and cost issues of garbage collection,
we propose Coldmap, an efficient garbage collection mechanism
based on the multi-page mapping information for duplicated
flash pages. We reveal that the duplicated pages mapped by
multiple logical pages exhibit a longer lifespan compared to the
non-duplicated pages. Coldmap groups the duplicated pages into
new flash blocks while garbage collection is performed. Since the
duplicated pages grouped in the cold zone blocks exhibit a longer
lifetime, the corresponding blocks are erased less frequently, thus
Coldmap can minimize the block erase counts. Our evaluation
results using FEMU exhibit that Coldmap can effectively improve
the performance and lifetime of an SSD by 15.4% and 84.3%,
respectively, compared to the existing remapping-based SSD
firmware.

Index Terms—SSD, Garbage Collection, FTL

I. INTRODUCTION

Solid-state drives (SSDs) have become mainstream storage
devices that can provide high-performance data input/output
(I/O) for accommodating a large amount of data. SSDs employ
NAND flash memory as the main data storage media, thus an
SSD includes firmware functions that can manage the native
characteristics of NAND flash memory. For instance, the SSD
firmware includes a page translation mechanism that associates
logical pages with physical flash pages since page writes in
NAND flash memory can be allowed only for erased (or
initialized) pages. The SSD firmware also provides a garbage
collection function that erases flash memory blocks to provide
available empty pages for future page writes. Since NAND
flash memory only allows block-level erasure, the garbage
collection provokes redundant page reads/writes in an SSD.
Namely, the blocks to be erased by the garbage collection
function include valid pages apparently, thus such valid pages
have to be copied (i.e. read and written) to other empty
pages. Hence, the performance of an SSD can be significantly
degraded if garbage collection is performed frequently. More-
over, the lifetime of an SSD can be significantly influenced by

the garbage collection mechanism since NAND flash memory
allows a limited erasure count per block.

Contemporary storage data often contains a significant
proportion of duplicated data segments. Therefore, effective
management of duplicate data is crucial for optimizing perfor-
mance and cost in computer systems. Several studies present
storage firmware-based approaches to handle duplicated data
pages within an SSD. These approaches enable many-to-
one mapping in flash translation, associating multiple logical
data sectors with a single physical flash page for duplicate
data. If data duplication is detected during writes to an SSD,
the proposed flash translation firmware associates the logical
pages of the duplicated data with existing physical pages.
Since writes to NAND flash memory are not performed for
the duplicated sectors, the flash firmware with the proposed
remapping mechanisms can enhance the performance of an
SSD by minimizing effective flash memory transactions.

In this paper, we propose an efficient garbage collection
mechanism called Coldmap, based on the remapping mecha-
nism for duplicated data in an SSD. We analyze the lifetime
of flash pages to reveal that the flash pages associated with
multiple logical sectors stay longer without updates. Based
on the analysis results, Coldmap groups the physical flash
pages associated with multiple logical pages in a cold zone
block while garbage collection is performed. Since the pages
in the cold zone exhibit a longer lifetime before invalidation,
the garbage collection function selects the blocks in the cold
zone less frequently for block erasure. Therefore, Coldmap can
effectively reduce garbage collection and block erase counts.
We implement the Coldmap mechanism using FEMU which
employs the remapping approach for duplicated flash pages.
Our evaluation results with various SSD workloads reveal that
Coldmap can effectively reduce garbage collection counts thus
Coldmap can improve the performance by 15.4% and the
lifetime of an SSD by 84.3%, compared to the existing remap-
based SSD.

The remainder of this paper is organized as follows. We
introduce garbage collection and the remapping mechanisms
for duplicated data in Section II. We exhibit the lifetime
analysis of flash pages in Section III. We present the proposed
Coldmap mechanism in Section IV. We exhibit the evaluation
results in Section V. We conclude the paper in Section VI.
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II. BACKGROUND

A. Garbage Collection in SSD

NAND flash memory employed as the main storage media
of SSDs does not support in-place writes, thus flash memory
cells have to be erased before data writes or updates. In
order to achieve high-performance flash page writes, the flash
translation layer (FTL) firmware in an SSD writes modified
page data to new empty pages (i.e. erased pages) instead of
performing cumbersome erase-and-write processes. After the
modified pages are written to empty pages, the firmware just
marks the existing old pages as invalid pages. The invalid
pages need to be erased later to maintain the available storage
space in an SSD. Moreover, NAND flash memory allows
block-level erases only to avoid data corruption by high
erasure voltage levels. Hence, the FTL firmware performs
garbage collection to prepare NAND flash blocks available
for instant writes. For this process, FTL monitors the number
of invalid pages per block. Then, FTL performs block-level
erasure for the flash blocks where the number of invalid pages
exceeds the threshold. Note that the garbage collection causes
many additional writes in an SSD since the flash blocks to be
erased can include valid pages also. Furthermore, the block
erasure of flash memory is extremely slow, thus frequent
garbage collection can degrade the performance of an SSD.

The garbage collection process significantly influences the
lifetime of an SSD. NAND flash blocks support limited
erasure counts since the erase process can wear out flash
memory cells with high-voltage drives. For instance, modern
quad-level cell (QLC) flash that is deployed in high-density
SSDs supports up to approximately 1000 program/erase (P/E)
cycles per block [1], [2]. The FTL firmware prohibits any
accesses to worn-out flash blocks if the reliability levels of
the blocks become lower than the permitted threshold. Hence,
the available space of an SSD can shrink as more blocks are
marked as unavailable. Since garbage collection increases the
erase counts of the target flash blocks, the lifetime of an SSD
can decrease due to frequent garbage collection processes.

B. Remapping Duplicated Pages in SSD

In modern storage data, we can frequently observe du-
plicated data sectors especially for multi-tenant systems [3].
Namely, these duplicated data sectors in a file system occupy
multiple pages in an SSD even though the data in the flash
pages are identical. Furthermore, the SSD firmware needs to
handle multiple I/O requests for the duplicated data. Hence,
the storage space and hardware resources in an SSD can
be significantly wasted by such duplicated data sectors. In
order to tackle such inefficiency for duplicated data sectors,
several researchers proposed approaches that can handle du-
plicated flash pages in an SSD [4]–[14]. Such approaches,
called remap-based SSDs, exploit the flash page translation
mechanism in the FTL layer of an SSD to handle duplicated
sectors. Note that in a traditional FTL one logical page number
(LPN) is mapped to one physical page number (PPN) only.
On the other hand, remap-based SSDs allow a single physical
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Fig. 1: Flash translation updates by remapping mechanisms

page to be associated with multiple logical pages that contain
identical data. Namely, the FTL firmware of the remap-based
SSDs allows many-to-one mapping in the flash transition
table if the multiple logical sectors contain the same data.
In order to identify the duplicated data in multiple logical
sectors, the remap-based SSDs exploit the hash values of the
data in logical sectors. Namely, the remap-based SSDs link
multiple logical pages that exhibit the same hash values to a
single physical page. By doing so, the remap-based SSDs can
minimize the flash write transactions since flash writes are not
performed for the duplicated pages.

III. MOTIVATION

As described in the previous section, the remap-based SSDs
can improve the performance of an SSD by minimizing
flash writes for duplicated data. Moreover, the remap-based
mechanisms can reduce the number of physical pages occupied
by duplicated data. In this section, we investigate the lifetime
of single-mapping pages (i.e. non-duplicated data pages) and
multi-mapping pages (i.e. duplicated data pages) in the remap-
based SSDs.

Figure 1 illustrates how the remap-based SSD firmware
manages flash translation for singe-mapping and multi-
mapping pages. Note that the remap-based SSD associates
a single logical page with a single physical page for non-
duplicated data as shown in Figure 1a. If the data in the
single-mapping page (L1 in the figure) is updated, the physical
page (P2) is invalidated and a new empty physical page is
associated. Note that invalidated pages need to be retrieved by
the garbage collection function. On the other hand, the remap-
based SSD associates multiple logical pages (L2, L3, and L4)
with a single physical page (P1) for duplicated pages as shown
in Figure 1b. In this case, the physical page P1 remains in a
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Fig. 2: Lifespan of single-mapping and multi-mapping pages

valid state even though one of the logical pages is updated.
P1 will be finally invalidated after all three associated logical
pages are updated. Hence, it is probable that multi-mapping
pages remain valid for a longer duration compared to single-
mapping pages.

In order to analyze the lifetime of single-mapping and multi-
mapping pages in the remap-based SSDs, we measure the
survival time (i.e. the time interval from a page write to a page
invalidation) of a page. For this experiment, we use FEMU,
an NVMe SSD emulator based on QEMU/KVM [15]. We
configure 16 GB of a remap-based SSD model using FEMU.
We use FIO as a workload for this analysis [16]. FIO is
configured for random writes with a data duplication rate of
30%. Note that the data duplication rate we configured for this
study is similar to the fraction of the duplicated data collected
from smartphone file systems [3].

In Figure 2 we compare the lifespan of single-mapping
and multi-mapping pages in the remap-based SSD. The y-
axis of the graph represents the average survival time of
physical pages. Note that the survival time refers to the time
interval between a page write and its subsequent invalidation.
The survival time is normalized to the survival time of
single-mapping pages. Our analysis reveals that multi-mapping
pages exhibit 53% longer survival time compared to single-
mapping pages. Consequently, our experiment discloses we
can categorize short-living and long-living pages in remap-
based SSDs based on the different page mapping classes (i.e.
single-mapping and multi-mapping).

IV. COLDMAP

A. Proposed Garbage Collection

We can develop more efficient garbage collection mecha-
nisms if we accurately estimate the lifetime of physical pages
in NAND flash memory. Note that the efficiency of garbage
collection deteriorates if short-living and long-living pages
are mixed within a NAND flash block. Namely, long-living
pages probably remain valid but many short-living pages are
invalidated in a flash block after data updates. If garbage
collection is executed for this block, valid pages, which are
likely long-living pages, need to be copied to other empty
pages. In this case, the garbage collection provokes additional
flash reads and writes. Moreover, the block space is wasted by
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Fig. 3: Garbage collection by Coldmap

many invalidated short-living pages, thus NAND flash memory
space can be utilized inefficiently.

In this work, we propose Coldmap, an efficient garbage
collection mechanism based on the different page-mapping
classes in remap-based SSDs. Figure 3 depicts the base idea
of the proposed Coldmap garbage collection scheme. As
mentioned, the performance overhead by garbage collection
becomes higher if long-living and short-living pages are mixed
within a flash block. As described in Section III, we can accu-
rately categorize long-living and short-living pages based on
the different logical-to-physical mapping classes in the remap-
based SSDs. Namely, we can expect multi-mapping pages can
be categorized as long-living pages since our analysis reveals
multi-level mapping pages can survive longer compared to
single-mapping pages. Coldmap exploits such characteristics
to classify long-living and short-living pages during garbage
collection.

As shown in Figure 3, Coldmap copies multi-mapping pages
to a block marked as a cold zone before the target block
undergoes block erasure by the garbage collection function. On
the other hand, the single-mapping pages are copied to flash
blocks in a normal zone. Note that we expect the blocks in a
cold zone can be erased less frequently since the long-living
pages (i.e. multi-mapping pages) remain valid for a longer
time. Since the cold zone blocks can be erased less frequently,
Coldmap assigns the flash blocks that exhibit higher erase
counts to a cold zone to increase the lifetime of NAND flash
blocks. The flash blocks in a normal zone can be erased
more frequently compared to the cold zone blocks. However,
the pages in a normal zone block exhibit similar lifespans
(i.e. short-living) thus we can find fewer valid blocks when
these normal zone blocks are erased by garbage collection.
Consequently, Coldmap can increase the lifetime of flash
blocks by assigning multi-mapping pages to cold zone blocks.
Coldmap can also reduce additional flash reads and writes by
grouping flash pages expected to have similar lifespans.

B. Proposed Coldmap Architecture

Figure 4 illustrates the overall architecture and data flows
of Coldmap. Coldmap is implemented on the remap-based
SSD that supports multiple logical-to-physical mapping for
duplicated pages. In the figure, the orange lines represent
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the page mapping mechanism of the remap-based SSD for
supporting many-to-one flash page mapping. The blue lines
describe Coldmap’s garbage collection scheme that exploits
the mapping information of the remap-based SSD.

When the host system requests sector writes, the NVMe
write command encapsulates the logical page number (200 in
this example) and page data ( 1⃝). Coldmap generates the hash
value (V1) of the page data to generate the hash ID based
on the page data ( 2⃝). Coldmap exploits MurmurHash3 to
implement a faster hash generation function with fewer hash
collisions [17]. In order to support many-to-one page mapping
for duplicated data, the remap-based SSD incorporates the
hash table that includes mapping information of a hash ID
to logical page numbers ( 3⃝). In this example, the hash ID V1
is mapped to two logical page numbers 100 and 200. Base
on the information of the hash table, Coldmap generates the
logical-to-physical mapping table ( 4⃝). Since the logical page
numbers 100 and 200 are mapped to the same hash ID V1,
these logical pages are associated with the same physical page
number 10. In order to manage and reconstruct the mapping
information, the remap-based SSD stores the reverse-mapping
(i.e. physical-to-logical mapping) information in the spare area
of a page ( 6⃝).

While garbage collection is performed, Coldmap refers to
the reverse-mapping information to identify single-mapping
and multi-mapping ( 7⃝). As described in the previous section,
Coldmap assigns the multi-mapping pages to cold zone blocks
( 8⃝). The zone manager determines which flash blocks are
allocated to a cold zone. Coldmap marks worn-out blocks that
exhibit high erase counts as cold zone blocks. After pages are
migrated to new empty pages, Coldmap updates the mapping
table ( 8⃝).

V. EVALUATION

We evaluate Coldmap using FEMU which implements the
remap-based SSD firmware [15]. We configure 16 GB of
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Fig. 5: Garbage collection count

NVMe SSD and 12 GB of garbage collection threshold using
FEMU. In order to activate the garbage collection function,
we set up the steady-state condition by performing 12 GB of
sequential writes using FIO without data duplication. Then, we
run various workloads that include duplicated page writes to
evaluate the garbage collection performance by Coldmap. We
compare Coldmap with the baseline SSD without the remap-
ping scheme (baseline) and the remap-based SSD (Remap).
All performance metrics are normalized to the baseline con-
figuration.

We evaluate popular storage workloads to evaluate
Coldmap. FIO is configured to write 2GB of random data
with a data duplication rate of 30% [16]. TPC-C handles 5
warehouse databases using MySQL [18]. Sysbench accesses
60 tables with MySQL with Pareto distributions [19]. YCSB
is configured with 500K record counts using RocksDB with
20% of reads and 80% of writes [20].

A. Garbage Collection Performance

Figure 5 exhibits the garbage collection counts normalized
by the baseline configuration. Note that frequent garbage col-
lection decreases the performance of an SSD since the garbage
collection causes additional block erasure and page migrations.
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Fig. 7: Write amplification factor

Remap decreases the garbage collection counts compared to
the baseline since Remap can reduce the flash memory space
occupied by stored data. Our evaluation reveals that Coldmap
can reduce the garbage collection counts dramatically since
Coldmap can classify pages based on expected lifespans. Our
evaluation results exhibit Coldmap’s garbage collection count
is 23.0% of the baseline SSD on average. Coldmap also
reduces the garbage collection counts by 45.8% on average
compared to Remap.

B. Performance

Figure 6 exhibits the performance by Remap and Coldmap.
In order to evaluate the performance of Coldmap, we measure
input/output performance per second (IOPS), and the measured
IOPS values are normalized to the baseline. Remap can
improve the performance of an SSD by 35.0% since Remap
can reduce the number of writes for duplicated data. Coldmap
can improve the performance of an SSD further. Compared
to the baseline and Remap, Coldmap uplifts the performance
of an SSD by 55.8% and 15.4% on average, respectively.
As described in Section V-A, Coldmap can reduce garbage
collection counts dramatically compared to Remap. Since
garbage collection requires extremely slow block erasure, the
performance overhead by garbage collection is significantly
increased as garbage collection counts get larger. Coldmap can
improve the performance of an SSD effectively by optimizing
the garbage collection mechanism based on the expected
lifespans of flash pages.
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Fig. 8: SSD Lifetime

C. Write Amplification Factor

A write amplification factor (WAF) presents the flash writes
overhead by garbage collection. WAF can be calculated as
shown in the equation below. A high WAF represents that an
SSD performs more flash writes than the requests from a host
system. Thus an SSD that exhibits a high WAF suffers from
degraded performance and lifetime. WAF can be affected by
the proportion of page updates and the number of garbage
collection operations.

WAF =
Amount of data written to the flash
Amount of data written by the host

Figure 7 exhibits the WAF by Remap and Coldmap. Com-
pared to the baseline Remap can reduce WAF since Remap
nullifies flash writes when duplicate pages are written to the
SSD. Since Coldmap is also implemented on the remap-based
SSD, it can decrease flash writes when the host requests writes
for duplicated page data. Furthermore, Coldmap can decrease
the write amplification factor by the garbage collection. Com-
pared to the baseline and Remap, Coldmap decrease the write
amplification factor by 60.1% and 31.1%, respectively.

D. SSD Lifetime

Since flash memory cells have limited erase counts, the
number of block erases triggered by garbage collection de-
termines the lifetime of an SSD. As described in Section IV,
Coldmap employs several approaches that can increase the
lifetime of flash memory. Our evaluation reveals Coldmap can
increase the lifetime of an SSD by 4.34 times on average,
compared to the baseline. Since Coldmap decrease the number
of garbage collection, Coldmap can also increase the lifetime
of an SSD by 84.3% compared to Remap.

VI. CONCLUSION

In this paper, we propose Coldmap, an efficient garbage
collection mechanism based on the page remapping approach
for duplicated flash pages. Our observation data reveal the flash
pages that store duplicated data exhibit longer lifespan before
data updates. Coldmap identifies physical pages associated
with multiple logical pages to group the corresponding pages
into new flash blocks during garbage collection. Our evaluation
results using various SSD workloads exhibit Coldmap can
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improve the performance and lifetime of an SSD by min-
imizing garbage collection counts. Coldmap exhibits 15.4%
performance uplifts and 84.3% longer SSD lifetime compared
to the existing remapping-based SSD solution.
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