
Hierarchical Traversal Stack Design
Using Shared Memory for GPU Ray Tracing

Eunsoo Jung†, Eunbi Jeong†, Gunjae Koo‡, Yunho Oh§*, and Myung Kuk Yoon†*

†Department of Computer Science and Engineering, Ewha Womans University, Seoul, Korea
‡Department of Computer Science and Engineering, Korea University, Seoul, Korea

§School of Electrical Engineering, Korea University, Seoul, Korea
{jsoo615, eb0313, myungkuk.yoon}@ewha.ac.kr, gunjaekoo@korea.ac.kr, yunho oh@korea.ac.kr

Abstract—Ray tracing is widely used to generate photorealistic
images by tracing the paths of light rays through a scene and
their interactions with scene objects. To accelerate ray tracing,
an acceleration structure—typically a bounding volume hierar-
chy—organizes scene primitives into an efficient spatial data
structure, commonly traversed using a traversal stack. Modern
GPUs are equipped with specialized ray tracing acceleration units
to accelerate traversal and intersection tasks. With limited on-
chip storage, the traversal stack is kept short, leading to frequent
spilling and reloading operations between on-chip buffers and off-
chip memory during stack overflows. This paper reveals that such
overflows increase off-chip memory traffic, degrading overall
performance. To address this, we propose SMS, a novel GPU
architecture that leverages shared memory as a secondary traver-
sal stack. The proposed design uses the shared memory stack to
complement the primary on-chip stack, thus reducing off-chip
traffic caused by stack overflows. Additionally, two optimizations
for managing shared memory stacks are proposed: skewed bank
access and dynamic intra-warp reallocation. Through effective
management of traversal stacks, the proposed SMS architecture
achieves a 23.2% performance improvement over a baseline GPU
that uses only a primary on-chip stack.

I. INTRODUCTION

Ray tracing is a rendering method known for producing
photorealistic images by simulating the paths of light rays
within a scene and their interactions with scene objects. In
a naı̈ve approach, each ray is tested for intersections against
all scene primitives, typically triangles. However, this method
is computationally expensive, particularly for complex modern
scenes containing millions of triangles. To address this issue,
an acceleration structure is used to organize scene primitives
into a hierarchical spatial data structure, enabling efficient
pruning of the search space [11], [19], [32], [37]. The most
widely adopted structure is the bounding volume hierarchy
(BVH) [32], illustrated on the right side of Fig. 1. BVH
arranges primitives into a tree of bounding volumes, typically
axis-aligned bounding boxes (AABBs). As each ray traverses
the tree, intersections are first tested against the bounding
volumes. If a node’s bound is not intersected, its entire subtree
is skipped, reducing the number of primitive intersection
tests. BVH is commonly traversed with a depth-first search
approach, using a traversal stack for backtracking. While BVH
traversal reduces computational complexity, performance re-
mains limited by long-latency memory operations due to rays

*Yunho Oh and Myung Kuk Yoon are co-corresponding authors.

y

-z

x

21

0

Image Plane

Light Source

BVH0

1

2

Camera
❶

❷

Fig. 1: Overview of the ray tracing process utilizing a BVH

following diverse paths, causing divergent memory accesses
and frequent cache misses [7], [23].

In modern GPUs, real-time ray tracing is enabled by
integrating a specialized hardware acceleration unit for ray
tracing within each streaming multiprocessor (SM). These ray
tracing accelerators handle traversal and intersection tasks,
with each thread (representing a ray) maintaining its own
traversal stack [8], [33]. Due to limited on-chip storage,
these stacks are implemented as short stacks, with a small
number of entries stored in on-chip buffers [33]. When the
stack overflows during push operations, older entry values are
spilled into thread-local off-chip memory. Conversely, during
pop operations, the most recently spilled values are reloaded
into the on-chip stack to maintain consistency. This stack
management process introduces substantial memory traffic,
reducing overall ray tracing performance [6], [7], [40].

One straightforward approach to mitigate these traffic issues
is to increase the on-chip stack size; however, it is too costly
and may result in underutilization of the stack during traversal.
Alternatively, increasing the L1 data cache (L1D) size can help
mitigate the performance loss from stack overflows; however,
based on our initial evaluation, its effectiveness is limited by
the incoherent ray traversal paths, which may incur frequent
cache evictions. In this paper, we explore a cost-effective yet
powerful solution: reconfiguring a portion of L1D as shared
memory to manage stack overflows. Leveraging this approach,
we propose SMS architecture for ray tracing acceleration that
introduces a two-level hierarchical on-chip memory traversal
stack. We employ a shared memory stack (SH stack) as a

62

2025 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)

2766-0486/25/$31.00 ©2025 IEEE
DOI 10.1109/ISPASS64960.2025.00016

20
25

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
siu

m
 o

n
Pe

rf
or

m
an

ce
 A

na
ly

sis
 o

f S
ys

te
m

s a
nd

 S
of

tw
ar

e
(IS

PA
SS

) |
 9

79
-8

-3
31

5-
02

94
-2

/2
5/

$3
1.

00
 ©

20
25

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IS
PA

SS
64

96
0.

20
25

.0
00

16

Authorized licensed use limited to: Korea University. Downloaded on September 11,2025 at 15:44:05 UTC from IEEE Xplore. Restrictions apply.

secondary stack, complementing the primary on-chip stack.
To further enhance performance, two optimization strategies

are introduced. First, we propose a skewed access pattern in
shared memory banks. This strategy minimizes bank conflicts
by interleaving initial bank accesses across threads, thereby
effectively utilizing shared memory. Second, we propose intra-
warp reallocation of SH stacks, based on our insight that
threads require varying stack depths during ray traversal and
complete their traversals at different times. By reallocating
unused SH stacks from early finished threads to threads within
the same warp that need additional stack entries, this approach
effectively prevents stack overflows into off-chip memory.

We evaluate SMS architecture using Vulkan-Sim [33], a
cycle-level GPU simulator with ray tracing acceleration units.
The evaluation is conducted on ray tracing benchmark scenes
from Lumibench [27]. Our evaluation demonstrates that SMS
architecture delivers a significant performance improvement
of 23.2% compared to the baseline GPU, which employs an
8-entry on-chip stack per thread. Furthermore, the proposed
architecture exhibits a strong alignment with the performance
of a full per-ray stack stored in on-chip memory, which is
impractical for actual hardware implementation. By effectively
balancing the use of L1D, shared memory, and off-chip
memory, SMS efficiently manages stacks during ray traversal,
achieving significant improvements in overall performance.

Overall, this paper makes the following contributions:
• We identify off-chip memory traffic from traversal stack

management as a critical performance bottleneck in GPU-
based ray tracing.

• We propose a two-level on-chip stack architecture that
leverages shared memory to reduce off-chip stack traffic.

• We introduce two optimization techniques—skewed bank
access and intra-warp reallocation—to enhance the effi-
ciency of shared memory usage.

• We provide a quantitative evaluation demonstrating that
the proposed design achieves performance close to that
of a full on-chip stack implementation.

II. BACKGROUND

A. Ray Tracing

Ray tracing is a popular rendering technique that generates
photorealistic images. Fig. 1 illustrates a simplified ray tracing
process. A primary ray is cast from the camera through
each pixel location on the image plane (1), determining the
pixel color by tracing its interactions with objects (object
primitives). When the ray intersects a primitive, a secondary or
shadow ray is cast from the intersection point toward a light
source to check for obstructions (2). If the shadow ray is
blocked by another object, the pixel is rendered in shadow;
otherwise, it is illuminated with the intersected primitive’s
color. To achieve realistic visual effects, path tracing [21],
a fully ray-traced rendering technique, is employed. Path
tracing generates secondary rays in random directions at each
intersection point, simulating light bounces throughout the
scene. These rays are traced recursively until they either hit

Graphics Processing Unit

Shared L2 Cache

Global Memory

SM SM

Streaming Multiprocessor (SM)
Sub-Core

Warp Scheduler

Register File

SIMD Execution Unit

Load/Store Unit

L1D/Shared Memory

Sub-
Core

Sub-
Core

Sub-
Core

RT Unit

W
ar

p
Sc

he
du

le
r

M
em

or
y

Sc
he

du
le

r

Response FIFO

Ray Buffer
Ray Info Traversal Stack

Warp Buffer

St
ac

k
M

an
ag

er

Operation Units

Ray-Box Intersection

Ray-Tri Intersection

Transformation

Fig. 2: Baseline GPU architecture integrating the RT unit

a light source or reach the maximum recursion depth. To
improve accuracy and reduce noise, multiple rays are cast
per pixel, and their results are averaged to compute the final
color. While increasing the number of samples per pixel (SPP)
enhances image quality, it also raises computational costs,
creating a trade-off between quality and rendering time.

To optimize performance, ray tracing uses acceleration
structures, most commonly BVHs [32]. A BVH organizes
scene primitives into a hierarchical tree of bounding volumes,
typically AABBs (Fig. 1), and is usually traversed via depth-
first search using a stack. Each stack entry stores the memory
address of a BVH node, which is used to load the correspond-
ing node data from global memory. The algorithm begins at
the root (an internal node), where ray-AABB intersection tests
are performed for all child nodes. The closest intersected child
is visited next, while the address of the other hit child is
pushed onto the stack for later traversal. When the ray reaches
a leaf node, ray-triangle intersections are tested. Traversal
continues by popping the next node address from the stack and
repeating the process until the stack is empty. This approach
reduces computational costs by replacing costly ray-triangle
intersection tests with faster ray-AABB intersection tests [29].

B. GPU Architecture and Ray Tracing Acceleration Units

Fig. 2 shows the baseline GPU architecture integrating ray
tracing acceleration units referred to as RT units. GPUs are
highly parallel processors that execute tasks as threads, with
each thread serving as an independent unit of computation. A
GPU consists of multiple SMs, each containing several sub-
cores [2]. Each sub-core comprises a warp scheduler, a register
file, a SIMD execution unit, and a load/store unit. These sub-
cores execute threads organized into warps, which are groups
of 32 concurrent threads processed in a single instruction
multiple thread (SIMT) manner. Each SM contains on-chip
memory, such as a unified L1 cache and shared memory,
shared by its sub-cores. Beyond the SM level, all SMs share
access to an off-chip L2 cache and global memory.

Modern GPUs incorporate a dedicated RT unit within each
SM, termed the RT Core in NVIDIA GPUs [1], [2], [4]. RT
units accelerate two key tasks in ray tracing: (1) pointer chas-
ing during BVH traversal and (2) intersection tests between

63

Authorized licensed use limited to: Korea University. Downloaded on September 11,2025 at 15:44:05 UTC from IEEE Xplore. Restrictions apply.

Off-chipOn-chip

⋯

C B A ⋯

E D C B A ⋯

D C B A ⋯

Internal Node
Leaf Node

Intersected Node
Non-intersecting Node

Step (b) Traversal Stack(a) BVH

E D

C B A

0

1

2

3

❶

❸

❹ ❺
❻

❷

Fig. 3: Example of BVH6 traversal using 4-entry short stack

rays and scene geometry. The RT unit retrieves BVH node data
from memory, decodes geometry information, and performs
intersection tests. The results are then used by general-purpose
computation units (i.e., SIMD execution units), to calculate
pixel colors during the shading process. Offloading these
traversal and intersection tasks to the RT unit allows other
operations, such as shading, to execute concurrently [4].

A warp issuing a trace ray instruction is forwarded to the
RT unit during the execute stage of the pipeline. It is held
in the warp buffer until all 32 threads are processed. Each
warp maintains a ray buffer, which holds a traversal stack and
ray information—such as ray ID, ray properties, and current
ray status—for every thread, with each thread mapped to a ray.
The traversal stack is maintained as a short stack with 8 entries
per ray [33]. To manage stack overflows during traversal, the
stack manager generates global memory requests to spill or
reload stack entry values between the ray buffer and off-chip
memory, which are then issued by the memory scheduler.

The warp scheduler in the RT unit follows a greedy-then-
oldest (GTO) policy, prioritizing the same warp until a stall
occurs. For the scheduled warp, the top entry of each thread’s
stack is read to retrieve the next memory address. Memory
requests to load the corresponding node data are then collected
across all 32 threads. After the data is returned to the response
FIFO, it is forwarded to the corresponding operation unit along
with the ray properties. The operation units include: (1) ray-
box intersection units, (2) ray-triangle intersection units, and
(3) object-to-world and world-to-object transformation units.

Once the BVH operation is complete, the results update
the ray status, and the traversal stacks for the requested
rays are popped. During the stack pops, the stack manager
checks for spilled addresses and generates memory requests
to reload them. New addresses for the intersected child nodes
are then pushed onto the stack. Before pushing, the stack
manager checks for stack overflows. If no overflow occurs,
the addresses are pushed onto the stack. Otherwise, the stack
manager generates memory requests to free up space.

C. Memory Traffic in Traversal Stack Management

The traversal stack for BVH traversal is often implemented
as a short stack with a limited number of entries [25], [30],
[33]. When the stack overflows, older values are spilled to
off-chip local memory to free up space [33]. When the spilled
stack is popped, the most recently spilled entry value is
reloaded into on-chip memory to preserve stack consistency.

0
10
20
30
40
50

WK
ND CA

R

SP
RN
G

PA
RT
Y
FO
X
FR
ST

LA
ND
S

BU
NN
Y

CR
NV
L
SH
IP

SP
NZ
A
RE
F
BA
TH

CH
SN
T

RO
BO
T
PA
RK AV

G

St
ac

k
D

ep
th

MAX_DEPTH AVG_DEPTH MED_DEPTH

Fig. 4: Summary of stack depths for each workload

32.52
21.88

15.75 10.94 7.57 4.99 2.87 1.59 1.89
0
10
20
30
40
50

1~2 3~4 5~6 7~8 9~10 11~12 13~14 15~16 17~

Pe
rc

en
ta

ge
 (%

)

Stack Depth

81.1%

17.0%

Fig. 5: Average stack depth distribution across all workloads

A wide BVH (BVHk) is a variant where each internal node
can have up to k children, resulting in a higher branching
factor [15], [36], [38]. Fig. 3 shows a BVH6 traversal using a
4-entry stack. Starting from the root, ray-AABB intersections
are tested against all its six child nodes. The closest hit child
is then visited, and the addresses of the remaining intersected
children (A, B, C) are pushed onto the stack (1). At step 2,
after pushing one node address (D), the stack becomes full.
Before pushing the remaining child address E, the oldest entry
value (A) must be spilled to off-chip memory (2) via a global
memory store request, freeing space in the stack for E (3).
After visiting a leaf node, the traversal proceeds by popping
the next node address (E) from the stack (4), triggering a
global memory load request to reload the most recently spilled
address (A) from off-chip memory (5). Traversal continues
with the popped node, backtracking through the tree (6).

Although this strategy enables continuous ray traversal with
smaller on-chip stack entries, the frequent off-chip memory
accesses for stack maintenance introduce significant memory
traffic [6], [7], [40]. In off-chip memory, spilled entry values
are thread-specific, which prevents efficient coalescing of
global memory accesses during stack overflows, especially as
rays follow divergent paths. As a result, traversal stack traffic
significantly increases memory bandwidth usage, in addition to
the traffic for scene geometry loads. This issue becomes more
pronounced, particularly with smaller on-chip stack sizes [7].

III. MOTIVATION

A. Impact of On-chip Traversal Stack Size

The traversal stack traffic caused by stack overflows signifi-
cantly impacts performance. Increasing the stack size can help
mitigate this issue. To determine the optimal stack size, we
measure stack usage during ray traversal across 16 ray tracing
workloads (see §VII-A for a detailed evaluation methodol-
ogy). Fig. 4 shows the maximum, average, and median stack
depths observed during traversal. While the overall average
and median depths range between 4 and 5, the maximum
depth reaches around 30. This gap highlights the challenge of
selecting an optimal stack size. While over-allocation of stack
entries causes underutilized on-chip storage, under-allocation
leads to frequent off-chip memory accesses for rays with long
traversal lengths, thereby degrading overall performance.

64

Authorized licensed use limited to: Korea University. Downloaded on September 11,2025 at 15:44:05 UTC from IEEE Xplore. Restrictions apply.

1.60 1.611.60 1.60

0.0

0.5

1.0

1.5

WKND
CAR

SPRNG

PARTY
FOX

FRST

LANDS

BUNNY

CRNVL
SHIP

SPNZA
REF

BATH

CHSNT

ROBOT
PARK

AVG

N
or

m
al

iz
ed

 IP
C

SHORT_4 SHORT_8 SHORT_16 SHORT_32 FULL

(a) IPC with different traversal stack sizes

0.0

0.5

1.0

1.5

WKND
CAR

SPRNG

PARTY
FOX

FRST

LANDS

BUNNY

CRNVL
SHIP

SPNZA
REF

BATH

CHSNT

ROBOT
PARK

AVG

N
or

m
al

iz
ed

 IP
C

16KB 32KB 64KB 128KB 256KB

(b) IPC with different L1 data cache sizes

Fig. 6: IPC with varying stack and L1 cache configurations

We further examine the impact of traversal stack sizes on
performance. Fig.6a shows the instructions per cycle (IPC)
under varying stack configurations, normalized to a baseline
configuration using an 8-entry stack. Reducing the stack size
to 4 entries leads to an 18.4% IPC drop, while increasing it to
16 and 32 entries results in IPC improvements of 19.9% and
25.2%, respectively. However, performance gains beyond 32
entries are marginal. Based on the results, we conclude that
although the average required stack depth is only 5 entries,
overflows at higher depths significantly degrade performance
due to increased off-chip memory traffic.

To better understand stack usage throughout traversal, we
refer to Fig. 5, which presents the average distribution of stack
depths across all workloads. For each workload, the stack
depth is recorded at every push and pop operation across
all rays. Although the maximum required depth reaches 30,
increasing the stack size beyond 16 entries is not cost-effective,
as only 1.9% of traversal steps exceed this size. On the other
hand, frequent stack spills—occurring in 17.0% of traversal
steps that require 9 to 16 entries—explain the performance
gains observed when increasing the stack size to 16.

Therefore, increasing the stack size beyond the 8-entry base-
line is essential for improving overall performance. However,
expanding the on-chip stack size comes with significant hard-
ware overhead. For example, allocating an 8-entry stack per
thread requires 8KB (8B×8-entry×128-thread) of storage per
SM. Doubling the stack to 16 entries adds another 8KB, which
accounts for nearly 25% of the GPU’s register file size—
already known as one of the most power-hungry components
in modern GPUs [22], [26].

Likely due to such hardware constraints, prior works have
explored stackless traversal methods [6], [9], [12], [18], [24]
or stack-based approaches with minimal on-chip stacks [24],
[35], often at the cost of additional computational overhead.
Other works aim to reduce traffic from accessing fully off-
chip traversal stacks by utilizing on-chip memory resources.
For example, one study [7] introduces a stack-top cache in the
register file to improve access efficiency. Another work [40]
uses shared memory to store the first few entries of an

off-chip stack, designed specifically for compressed BVHs
and compact stack formats. These constraints highlight that
effective traversal stack management is crucial for reducing
latency caused by insufficient on-chip stack capacity.

B. Impact of L1 Data Cache Size

Given the challenges of limited on-chip stack capacity,
increasing the size of the L1D—the nearest storage in the
memory hierarchy—can support stack management. Although
not a direct substitute for a larger on-chip stack, a larger L1D
can help mitigate performance degradation by enabling faster
access to stack entries, as long as they remain in the cache and
are not replaced by other memory operations. Beyond aiding
stack management, a larger L1D also reduces access latency
for scene geometry data, further contributing to traversal
performance. Fig. 6b presents IPC results across varying L1D
configurations, normalized to a 64KB baseline. Expanding
the L1D to 128KB improves performance by 4.5%, while
a 256KB configuration results in a 12.6% gain. Conversely,
reducing the L1D to 32KB and 16KB leads to performance
drops of 4.5% and 9.6%, respectively.

While increasing the L1D size improves performance, its
effectiveness is relatively limited compared to expanding the
on-chip stack size. For example, doubling the stack size from
8 to 16 entries (i.e., an 8KB increase) yields a 7.3 higher
percentage points (PP) than increasing the L1D size from
64KB to 256KB (i.e., a 192KB increase). This is due to the
incoherence of rays in global illumination models [7], where
rays tend to follow different traversal paths through the BVH
and scene, leading to divergent memory access patterns. Such
divergence causes frequent cache evictions, increasing latency
when accessing both spilled stack entries and scene geometry
stored in global memory. As scene complexity continues to
grow, memory traffic often exceeds the L1D capacity [28],
further limiting its effectiveness. Thus, although increasing the
L1D size improves performance, its benefits are less significant
compared to expanding the on-chip stack size, primarily due
to the divergent traversal behavior of incoherent rays.

C. Exploring Cost-effective yet Powerful Solution for Traver-
sal Stack Management

To summarize, managing traversal stacks efficiently is a
significant challenge for achieving high ray tracing perfor-
mance. While increasing the on-chip stack size may appear
to be a straightforward solution to maximize performance, it
comes with drawbacks, such as higher energy consumption
and the risk of underutilizing stack resources [14], [16]. A
more practical alternative is to leverage the flexibility of
modern GPUs equipped with RT units, which allow the L1D
to be reconfigured as programmable or shared memory. Our
observation (Fig. 6b) further suggests that reducing the L1D
size to make room for shared memory results in only a minor
performance loss. In the following section, we demonstrate
that dedicating shared memory exclusively to stack manage-
ment can offer significant performance gains, outweighing the
small loss from reducing the L1D size.

65

Authorized licensed use limited to: Korea University. Downloaded on September 11,2025 at 15:44:05 UTC from IEEE Xplore. Restrictions apply.

Ray Buffer Global MemoryShared Memory

D C B A ⋯

E D C B A ⋯

D C B A ⋯

I H G F D C B A ⋯

J I H G F D C B A ⋯

I H G F D C B A ⋯

⋮

n
n+
1

n+
2

n+
6

n+
7

n+
8

⋮

❺

❷

❹

❶

❻
❸

Step

Fig. 7: Memory transactions for traversal stack management
in the proposed SMS architecture

IV. SMS ARCHITECTURE

In this section, we propose a novel GPU architecture for ray
tracing acceleration—named SMS—designed around Shared
Memory Stack management. SMS architecture introduces a
hierarchical traversal stack design, comprising two levels of
on-chip storage: (1) the stack within the ray buffer serves
as the primary stack, holding the most recently pushed node
addresses; (2) when the primary stack reaches its capacity,
shared memory is used as a secondary stack, storing node
addresses spilled from the primary stack. In the following
subsections, we first provide a conceptual overview of the
SMS architecture and a detailed explanation of its traversal
stack management. Then, we present the effectiveness of using
SH stacks during ray traversal.

A. Hierarchical Traversal Stack Management

Fig. 7 illustrates how traversal stacks are managed in the
proposed SMS architecture, highlighting the memory trans-
actions involved in handling stack overflows. In the base-
line architecture, stack entry values are directly spilled and
reloaded between the primary ray buffer stack (RB stack) and
global memory. However, to mitigate off-chip memory traffic,
SMS architecture introduces a two-level on-chip stack design
using shared memory. When the primary RB stack overflows,
the oldest entry value is spilled to the secondary SH stack
(1). During a stack pop, the most recently spilled address
is retrieved from the SH stack and placed back into the RB
stack (2). If the SH stack also becomes full, global memory is
accessed; the oldest node address in shared memory is moved
to global memory (3), freeing space for the spilled address
from the RB stack (4). When a pop operation involves entries
that have been spilled into global memory, the newest address
in the SH stack is transferred back to the RB stack (5),
followed by reloading the spilled address from global memory
into shared memory (6). In this manner, SMS architecture
holds recent node addresses in faster, on-chip storage, while
older addresses migrate to slower, off-chip global memory.
By significantly reducing off-chip traffic, this approach offers
a robust solution for managing ray traversal in modern GPUs.

As the RB stack is dedicated to each thread (or ray), SMS
also assigns a distinct set of stack entries in shared memory
for each thread. This SH stack is implemented as a circular
queue, with the detailed implementation presented in §VI.

1.60 1.62

0.0

0.5

1.0

1.5

WKND
CAR

SPRNG

PARTY
FOX

FRST

LANDS

BUNNY

CRNVL
SHIP

SPNZA
REF

BATH

CHSNT

ROBOT
PARK

AVG

N
or

m
al

iz
ed

 IP
C

RB_8 RB_8+SH_4 RB_8+SH_8 RB_8+SH_16 RB_FULL

Fig. 8: IPC improvements with different L1D/Shared memory
configurations

While traversal stacks are maintained at the individual thread
level, memory accesses for spilled entry values are processed
at the warp level within the RT unit. Similar to how global
memory accesses are handled in the baseline architecture, the
memory scheduler collects and issues shared memory accesses
across all 32 threads within a scheduled warp. To ensure that
the requested data is returned to the corresponding thread, the
stack manager also tracks the associated threads for shared
memory load accesses.

B. Effectiveness of Shared Memory Traversal Stack

To demonstrate the effectiveness of using the SH stack,
we measure the performance improvements of the SMS archi-
tecture. Fig. 8 presents IPC results normalized to a baseline
configuration with an 8-entry RB stack (RB_8). Here, RB_N
and SH_M denote an N -entry RB stack and an M -entry SH
stack, respectively. Note that the shared memory size is con-
figured to match the capacity of the SH stack; thus, increasing
the SH stack size proportionally reduces the available L1D
capacity within the unified memory. Using a full RB stack
(RB_FULL) results in a 25.3% performance improvement over
the baseline. In comparison, adding a 4-entry SH stack to the
baseline (RB_8+SH_4) yields an 11.0% gain, while expanding
the SH stack to 8 (RB_8+SH_8) and 16 (RB_8+SH_16) entries
achieves 17.4% and 21.2% improvements, respectively.

However, these improvements come at the cost of increased
shared memory usage. As illustrated in Fig. 5, most stack
depth requirements fall within the range of 1 to 16 entries.
Therefore, a configuration combining an 8-entry RB stack with
an 8-entry SH stack effectively covers the majority of cases.
Based on these observations, we propose using an 8-entry SH
stack per ray, along with a 56KB L1D and 8KB of shared
memory in our SMS architecture. This configuration provides
a good balance between performance and resource utilization,
delivering significant performance gains while keeping the on-
chip ray buffer relatively small.

V. OPTIMIZATION OF SMS

To further enhance the efficiency of the SMS architecture,
we propose two optimization strategies, each driven by specific
observations. First, significant shared memory bank conflicts
arise from regular access patterns across threads. To mitigate
this, we introduce a skewed access pattern to better distribute
memory usage across banks. Second, ray incoherence can lead
to underutilization of SH stacks, particularly when some rays
finish traversal earlier than others. To address this, we suggest
dynamically reallocating SH stacks to active threads within

66

Authorized licensed use limited to: Korea University. Downloaded on September 11,2025 at 15:44:05 UTC from IEEE Xplore. Restrictions apply.

⋮ ⋮

⋮ ⋮

TID 00
TID 02

TID 14

TID 30

⋮

⋮

TID 01
TID 03

TID 15

TID 31

⋮

⋮

Bank ID

Base Stack Entry (Initial Top & Bottom)One Stack Entry

00 01 02 03 ⋯ 14 15 16 17 18 19 ⋯ 30 31

Fig. 9: Shared memory bank assignment across threads for
SH_8 and base entry mapping with the skewed access strategy

the same warp. Together, these strategies leverage the unique
characteristics of ray tracing workloads to optimize shared
memory usage and improve overall performance.

A. Skewed Bank Access

Observation. Unlike the primary traversal stack in the ray
buffer, accessing entries in the SH stack follows the constraints
of shared memory architecture. Shared memory is divided into
equally sized memory banks, allowing for parallel processing
of memory load or store operations [2], [3], [5]. When threads
access addresses that map to different banks, these operations
can proceed in parallel. However, if multiple threads access
different words within the same bank, bank conflicts occur,
leading to serialized accesses. This serialization reduces the
efficiency of shared memory bandwidth and delays subsequent
memory accesses during ray traversal, further exacerbating
performance penalties. In our initial design, each thread is as-
signed a fixed number of SH stack entries and begins accessing
them from entry index 0. However, severe bank conflicts arise
as threads often access the same stack entry index that maps to
the same shared memory bank—particularly under the 8-entry
SH stack configuration.

Fig. 9 illustrates an example where each thread is assigned
an 8-entry SH stack. Each 8-byte stack entry spans two adja-
cent banks, meaning a thread with an 8-entry stack accesses 16
adjacent banks. With 32 shared memory banks, threads with
even indices (0, 2, . . . , 30) access the first 16 banks, while
threads with odd indices (1, 3, . . . , 31) access the remaining 16
banks. When all threads access their SH stacks starting from
entry 0, the likelihood of bank conflicts increases, as threads
often access their stacks in a similar circular order during
traversal. This regularity leads to unbalanced bank accesses
and severe bank conflicts, ultimately degrading performance.
Solution. To address this issue, we propose a skewed access
pattern for shared memory banks across threads within a warp.
By introducing irregularity in how threads access their stack
entries, we can balance shared memory bank utilization and
reduce conflicts. Specifically, we offset the base stack entry—
the initial entry accessed when the stack is empty—for each
thread based on its thread ID and the SH stack size. For
example, with an 8-entry SH stack per thread (Fig. 9), threads
0 and 16 start with entry 0 (bank 0–1), while threads 2 and 18
start with entry 1 (bank 2–3). Similarly, threads 1 and 17 begin
with entry 0 (bank 16–17), and threads 3 and 19 begin with
entry 1 (bank 18–19). Starting from their respective base stack
entries, subsequent entries are accessed in a circular manner.

64

48

32

16

0 25 50 75 100 125 150 175 200

St
ac

k
D

ep
th

Stack Accesses

Th
re

ad
 ID

32

24

16

8

0

Fig. 10: Traversal stack depths across threads for PARTY

This approach reduces bank conflicts by more evenly dis-
tributing bank accesses, minimizing latency in shared memory
transactions. Furthermore, it is scalable, as it ensures consistent
performance gains across different stack sizes. By implement-
ing this skewed access pattern, SH stacks are utilized more
efficiently, resulting in further performance improvements.

B. Dynamic Intra-Warp Reallocation of Shared Memory Stack
Observation. Assigning an equal number of stack entries to
each thread can be less effective due to the varying stack
depth requirements of incoherent rays during traversal. This is
illustrated in Fig. 10, where the x-axis represents the number of
stack accesses (push and pop operations) during traversal, the
y-axis corresponds to individual threads, and the color at each
point indicates the stack depth of the thread at that access.
Although the figure presents traversal stack access patterns
for two specific warps in the PARTY scene, similar trends are
observed across other warps and scenes.

One key observation is that threads complete their traversals
at different times. Threads that finish early leave their SH
stacks unused until the entire warp completes the traversal.
Another observation is that certain threads require larger
stack depths, reflecting a higher number of intersected nodes.
These threads often need global memory accesses to handle
overflows, introducing delays in subsequent stack operations.
As a result, stack accesses for these threads are delayed to
later cycles in the timing model, while threads with smaller
stack depths at the same x-axis position experience fewer
delays. This imbalance increases the likelihood that threads
with longer traversals will borrow unused SH stacks.
Solution. To address this issue, we propose dynamically
reallocating unused SH stacks from threads that terminate
early. Initially, each thread is assigned a fixed number of
entries in shared memory. However, once a thread’s dedicated
stack is fully utilized, it can access additional SH stacks
released by early-finishing threads, reducing the need to spill
entry values to global memory. This reallocation of multiple
SH stacks gives the thread the appearance of having an
extended SH stack. The strategy is effective because, while
most threads initially require a similar number of entries, their
stack requirements diverge as the traversal progresses, making
static allocation less effective. By leveraging the observed
patterns in ray tracing workloads, this approach helps reduce
off-chip memory traffic and improves overall performance.

To simplify implementation, we limit SH stack reallocation
to threads within the same warp (intra-warp), rather than

67

Authorized licensed use limited to: Korea University. Downloaded on September 11,2025 at 15:44:05 UTC from IEEE Xplore. Restrictions apply.

across different warps (inter-warp). Once all 32 threads in
a warp complete their traversal, the warp is removed from
the warp buffer, allowing the next warp to enter the RT unit.
Inter-warp reallocation would involve complex tracking and
management of stack ownerships, as threads would need to
return borrowed stacks to the newly entered warp. By limiting
reallocation to intra-warp, we minimize this overhead and
achieve performance improvements.

VI. IMPLEMENTATION

This section outlines the architectural support for SMS.
Fig. 11 illustrates the modified RT unit design in the SMS
architecture, focusing on the management of SH stacks. The
hardware components that have been modified or newly added
in our proposed architecture are highlighted in pink. To support
SH stack management, we introduce additional fields in the
ray buffer and modify the stack manager hardware unit.
Furthermore, we incorporate a response FIFO to handle shared
memory access requests. The following subsections provide a
detailed explanation of these modifications and discuss the
overhead associated with the added logic.

A. Shared Memory Stack Management

Extended Ray Buffer. As discussed in §IV-A, we extend the
ray buffer to track the state of the SH stack. For each thread,
we introduce three fields: Top, Bottom, and Overflow. The
Top field represents the index of the most recently filled entry
in the SH stack, while the Bottom field indicates the index
of the oldest entry. The Overflow field flags whether the
SH stack has overflowed, indicating that its entry values have
been spilled to global memory. Using these fields, the stack
manager unit tracks the status of traversal stacks and generates
the appropriate memory requests for spilling or reloading entry
values. These memory requests are then passed to the memory
scheduler for execution.
SMS Stack Manager. During traversal, the SMS stack man-
ager hardware unit ensures that both the traversal stacks
and the associated ray buffer fields are correctly updated.
When performing a stack pop operation, the stack manager
first checks for overflow conditions in both the RB stack
and SH stack using the Overflow field. If the RB stack
has overflowed, the most recently spilled value is reloaded
from the SH stack into the RB stack via a shared memory
load operation. The corresponding shared memory address is
computed using the Top field, which tracks the most recently
filled entry. If the SH stack has also overflowed, additional
steps are required to reload an entry value from global memory
to the SH stack. This involves a global memory load followed
by a shared memory store, where the destination address for
the store is computed using the Bottom field. Note that these
memory requests are issued sequentially, with a subsequent
request begin issued only after the prior load request has
returned to the response FIFO.

A stack push operation occurs when the operation unit
returns the address of an intersected child node (Entry Value in
Fig. 11) for each node visit. Similar to the pop operation, the

Entry Value

Shared
Response FIFO

Entry Value

Global
Response FIFO

Entry
Address

Entry
Value Memory

SchedulerTID
SMS Stack Manager

Extended Ray BufferExtended Ray BufferExtended Ray Buffer
RB Stack
8 bytes

0x0615…0313

Top
3 bits

Bottom
3 bits

Overflow
1 bit

Priority
2 bits

Idle
1 bit

Flush
2 bits

Ray Info
⎼

Next TID
5 bits

Operation
Unit

Fig. 11: Extended RT unit design in SMS architecture

stack manager first checks for overflow conditions in both the
RB and SH stacks. If the RB stack is full, the oldest pushed
address must be spilled into the SH stack before the new
address can be added. If the SH stack is also full, the oldest
address in the SH stack must be moved to global memory.
As a result, when only the RB stack is full, the stack manager
generates a shared memory store request. When both stacks are
full, the sequence of requests is as follows: a shared memory
load, a global memory store, and a shared memory store.

B. Shared Memory Address Generation

Shared memory addresses for load and store operations are
computed by the stack manager using the thread’s ID (TID)
along with the corresponding Top and Bottom fields. Since
each thread is initially allocated a specific, static region of
shared memory as its SH stack (Fig. 9), TID determines the
base address of this stack region. The Top or Bottom field
serves as the entry index within the stack: Top is used for
data transfers between the SH and RB stacks, while Bottom

is used for transfers between the SH stack and global memory.
To enable skewed bank access and intra-warp reallocation,
additional steps are required during address generation.
Skewed Bank Access. To balance bank utilization and reduce
conflicts in shared memory, threads within each warp initially
align their top entries based on their thread IDs and the SH
stack size (N). The stack manager calculates this starting entry
(Base Stack Entry in Fig. 9) for each thread’s stack using the
following formula:

Base Entry Index =

(
TID
k

)
mod N, where k =

32

N × 2

This base index is assigned to both the Top and Bottom

fields, enabling subsequent stack entries to be accessed in
a circular manner with more balanced shared memory bank
usage. By skewing the initial top entries across threads—
without requiring modifications to the memory scheduler—
shared memory banks are automatically distributed as threads
begin filling their stacks from their respective starting points.
Dynamic Intra-Warp Reallocation. When a thread exhausts
all entries in its dedicated SH stack, the stack manager assigns
an available SH stack from an early-finished thread within the

68

Authorized licensed use limited to: Korea University. Downloaded on September 11,2025 at 15:44:05 UTC from IEEE Xplore. Restrictions apply.

Next TID
D C B AH G F EK J I

Next TID
Top Bottom

Fig. 12: Access order of linked SH stacks after reallocations

same warp. To track the availability of SH stacks, the stack
manager maintains an Idle field for each thread. This field is
set to 1 when the the thread’s SH stack is available, indicating
that the thread has completed its traversal and the stack is
not currently being borrowed by another thread. Conversely,
if the thread has not completed its traversal or its stack is being
borrowed, the field is set to 0.

Our proposed reallocation scheme allows each thread to
borrow SH stacks from multiple threads within the same warp.
Fig. 12 illustrates how each thread can access its multiple
SH stacks, using a simple example with three SH stacks:
one dedicated and two borrowed. The most recently allocated
stack becomes the top stack, which is accessed during push
or pop operations until it becomes empty. To track the order
of multiple reallocations, the SMS stack manager maintains
Next TID for each SH stack. This field stores the ID of the
next borrowed stack, creating a link to the subsequent stack.
By sequentially following these Next TID links, the stack
manager can navigate through all borrowed stacks and locate
the current top stack for a given thread. When the current
top stack is emptied, it is immediately released, and the next-
most-recently allocated stack in the chain becomes the new
top stack and is accessed in the same manner.

Excessive reallocations can degrade performance due to the
latency involved in searching for the top stack. To mitigate
this, we limit the number of concurrently borrowed stacks
per thread to four, based on heuristics derived from our
observations (§III-A). This setup provides a total on-chip stack
capacity of 48 entries: 40 SH entries (8-entry×5-stack) and 8
RB entries, which covers the maximum stack depth required
across all evaluated workloads.

During dynamic reallocation, a situation may arise where a
thread attempts to push a new node address, but all borrowed
SH stacks are full and no additional stacks are available. To
maintain stack consistency—where stacks are filled from the
bottom up—the oldest address in shared memory must be
spilled to global memory to accommodate a new spill from the
RB stack. Since borrowed SH stacks are linked via a field and
may not reside contiguously in shared memory, shifting entries
across stacks (from top to bottom) is impractical. Instead, an
alternative mechanism is introduced: the entire set of entries
in the bottom SH stack is flushed to global memory, and the
emptied stack is then prompted to the top position, allowing
it to hold the most recently spilled values.

While this flushing mechanism effectively simulates access
to an additional stack, it is limited to three consecutive flushes
per allocated SH stack. In the the worst-case scenario, a thread
operates with one dedicated SH stack and one borrowed stack,
with no further stacks available. With support for three flushes
per stack, the thread can effectively operate with 8 SH stacks—
one dedicated, one borrowed, and six simulated via flushing.

Together with the RB stack, this setup provides a total stack
depth of 72 entries, which we have found sufficient to meet
the required depth (i.e., 48) across all evaluated workloads.

To track the number of stack flushes, an extra Flush field
is introduced for each SH stack or thread. Additionally, a
Priority field is maintained for each stack to track the
allocation order, ensuring correct stack access. Stack flushes
are infrequent, as dynamic reallocation is only triggered when
threads begin to finish their traversal. At this point, many
threads are likely to have completed their work, leaving their
stacks unused and reducing contention for borrowing stacks.

C. Hardware Overhead

The proposed design achieves efficient stack management
with minimal on-chip memory overhead. As mentioned earlier,
each per-thread SH stack requires several additional fields in
the ray buffer: Top, Bottom, and Overflow for independent
stack management, and Next TID, Idle, Priority, and
Flush for dynamic intra-warp reallocation. For an SH stack
with 2N entries, the Top and Bottom fields each require N
bits. For example, with a 23-entry SH stack, each thread
requires 3 bits per field, resulting in 96 bytes (2-field×3-
bit×32-thread×4-warp) across 128 threads in the RT unit.
Additionally, the Overflow and Idle fields require 1 bit each,
while the Next TID field requires 5 bits to identify one of
32 threads within the warp. The Priority and Flush fields
each require 2 bits, as the number of concurrent reallocations
is limited to four, while continuous flushes are limited to three.
These additional fields contribute a total overhead of 176 bytes
(11-bit×32-thread×4-warp) to the on-chip storage per RT unit.

In total, the traversal stack management in the SMS archi-
tecture adds 272 bytes of on-chip memory per SM. Notably,
this overhead is significantly smaller than increasing the RB
stack size by 8 entries, which would require 8KB (8-byte×8-
entry×32-thread×4-warp). Thus, we conclude that the SMS
architecture offers a cost-effective and efficient solution for
traversal stack management.

VII. EVALUATION

A. Methodology

We use Vulkan-Sim [33], a cycle-level GPU simulator
for ray tracing. The baseline GPU configuration is from the
original Vulkan-Sim work, which represents a mobile System-
on-Chip (SoC) GPU [33], as detailed in TABLE I. To optimize
resource allocation, shared memory is set to the minimum
required for SH stacks, maximizing the remaining capacity
for the L1D. As shown in TABLE II, we evaluate benchmark
scenes from Lumibench [27], rendered with the path tracing
(PT) shader. Most scenes are simulated at a resolution of
128×128 with 2 SPP, except for CHSNT, ROBOT, and PARK.
Due to their long evaluation times, these three more complex
scenes are evaluated at a 32×32 resolution with 1 SPP.
However, similar results are expected at this reduced scale, as
performance trends have been observed to remain consistent
across varying workload sizes [13], [27].

69

Authorized licensed use limited to: Korea University. Downloaded on September 11,2025 at 15:44:05 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Baseline GPU parameters

Component Parameter Description
General # SMs 8

warp size 32
warp scheduler GTO
registers per SM 32,768

RT Unit # RT units per SM 1
max # warps per RT unit 4

Memory L1D/shared memory 64KB, fully associative,
LRU, 20 cycles

L2 unified cache 3MB, 16-way associative,
LRU, 160 cycles

TABLE II: Benchmark scenes

Scene # Triangles BVH (MB) Scene # Triangles BVH (MB)
WKND 0 0.2 CAR 12.7M 1,328.2
SPRNG 1.9M 178.0 PARTY 1.7M 156.1
FOX 1.6M 648.5 FRST 4.2M 380.5
LANDS 3.3M 303.5 BUNNY 144.1K 13.2
CRNVL 449.6K 60.7 SHIP 6.3K 0.5
SPNZA 262.3K 22.8 REF 448.9K 40.4
BATH 423.6K 112.8 CHSNT 313.2K 28.3
ROBOT 20.6M 1,869.0 PARK 6.0M 542.5

Note that our proposed architecture is evaluated under a
mobile GPU configuration, reflecting the growing adoption of
hardware-accelerated ray tracing in mobile devices for real-
time applications. Nonetheless, the architecture is scalable to
larger GPUs, as ray tracing workloads typically assign a single
ray traversal to each thread. Thus, the per-ray on-chip stack
pressure remains a persistent issue across GPU configurations,
leading to performance degradation—even on high-end GPUs
like the RTX 2060 used in the original Vulkan-Sim work [33].
Consistent with prior work [27], applying our architecture to
larger GPUs exhibits similar performance trends.

B. Performance

Fig. 13 shows the IPC improvements achieved by the SMS
architecture, normalized to the baseline configuration (RB_8).
By default, SMS employs an 8-entry SH stack (SH_8) and
integrates two optimization strategies: skewed bank access
(SK) and dynamic intra-warp reallocation (RA). Introducing
the SH stack (+SH_8) delivers an average IPC improvement
of 15.1% over the baseline. Adding skewed bank access (+SK)
further enhances performance by 4.3 PP, effectively reducing
bank conflicts and distributing accesses more evenly across
threads. Finally, incorporating intra-warp reallocation (+RA)
increases the IPC improvement to 23.2% over the baseline.
This performance is comparable to that of the full stack, which
achieves an IPC gain of 25.3% over the baseline.

The benefits of SMS vary with scene complexity. Scene
complexity—which affects ray traversal length and simulation
time—is not determined by a single factor. While scenes with
more primitives and larger, deeper BVHs tend to require longer
traversals, well-structured BVHs can efficiently prune large
portions of the tree [27]. More complex scenes, such as ROBOT
and PARK, typically involve longer traversals and exhibit sig-
nificant IPC improvements. These gains arise from increased

1.60 1.621.55

0.0

0.5

1.0

1.5

WKND
CAR

SPRNG

PARTY
FOX

FRST

LANDS

BUNNY

CRNVL
SHIP

SPNZA
REF

BATH

CHSNT

ROBOT
PARK

AVG

N
or

m
al

iz
ed

 IP
C

RB_8 +SH_8 +SK +RA RB_FULL

Fig. 13: IPC improvements of SMS architecture

7.31

0.0
1.0
2.0
3.0
4.0
5.0

WKND
CAR

SPRNG

PARTY
FOX

FRST

LANDS

BUNNY

CRNVL
SHIP

SPNZA
REF

BATH

CHSNT

ROBOT
PARK

AVGA
ve

ra
ge

 D
el

ay
 C

yc
le RB_8+SH_8 RB_8+SH_8+SK

Fig. 14: Effect of skewed bank access

0.0

0.5

1.0

1.5

RB_2 RB_4 RB_8 RB_16

N
or

m
al

iz
ed

 IP
C

RB_N +SH_8 +SK +RA

(a) IPC improvements

1.62

0.0

0.5

1.0

1.5

RB_2 RB_4 RB_8 RB_16

N
or

m
al

iz
ed

D
RA

M
 A

cc
es

s

RB_N +SH_8 +SK +RA

(b) Normalized DRAM accesses

Fig. 15: Impact of primary RB stack sizes

stack depth demands, which allow SMS to effectively utilize
the secondary SH stack. In contrast, simpler scenes like REF

and BATH show smaller improvements, as the 8-entry primary
stack is generally sufficient to handle most traversal needs.
Notably, scenes with unique characteristics—such as SHIP,
which features long, thin primitives that result in a high ratio of
leaf node accesses to total node accesses—achieve substantial
performance gains, despite having relatively few primitives
and a compact BVH.

C. Effect of Skewed Bank Access

To evaluate the impact of the skewed bank access strategy
in SMS, we analyze the average delay cycles caused by bank
conflicts during shared memory access scheduling. As shown
in Fig. 14, we compare the delay cycles before (RB_8+SH_8)
and after applying the strategy (RB_8+SH_8+SK) across all
workloads. On average, the strategy reduces delay cycles by
27.3% compared to using the SH stack alone. This improve-
ment highlights that the strategy more evenly distributes bank
accesses across threads, effectively utilizing shared memory
bandwidth and thereby enhancing overall performance.

D. Impact of Primary Traversal Stack Sizes

We further evaluate the impact of primary traversal stack
(RB stack) sizes on SMS performance, as shown in Fig. 15a.
All results are normalized to the baseline configuration with
an 8-entry RB stack (RB_8). Additionally, off-chip memory
access counts are presented in Fig. 15b. As discussed in §III,
reducing the RB stack size leads to performance degradation
due to increased off-chip traffic. For example, with a 2-
entry RB stack (RB_2), performance drops by 28.3%, while
off-chip memory accesses rise by 62.3% compared to the

70

Authorized licensed use limited to: Korea University. Downloaded on September 11,2025 at 15:44:05 UTC from IEEE Xplore. Restrictions apply.

baseline (RB_8). By introducing SMS—which incorporates a
secondary stack in shared memory along with two optimiza-
tion strategies—this performance loss is effectively mitigated.
Compared to using only the primary stack (RB_2), SMS im-
proves performance by 39.7 PP and reduces off-chip memory
accesses by 79.2 PP. A similar improvement is observed with
the 4-entry RB stack (RB_4) when combined with SMS.
Remarkably, even with reduced RB stack sizes (2 or 4 entries),
SMS outperforms the baseline configuration featuring an 8-
entry RB stack. This highlights that integrating the proposed
SMS architecture enables the use of smaller RB stacks, offer-
ing an alternative for hardware implementation that reduces
on-chip storage—one of the most power-hungry components
in GPUs, as widely recognized in prior studies [22], [26].
In contrast, with a larger 16-entry RB stack (RB_16), the
performance gain from SMS is more modest, at 3.5 PP. This
limited improvement is primarily due to the already low off-
chip memory traffic achieved with a larger primary stack. Note
that increasing the RB stack is not a practical solution, as
it incurs substantial hardware cost and energy consumption
associated with scaling on-chip storage [14], [16], [22], [26].

VIII. RELATED WORK

A. Short Stack or Stackless BVH Traversal

Prior works have explored short stack and stackless ap-
proaches to BVH traversal. Laine [24] introduced the restart
trail for binary BVHs, enabling both stackless and short
stack traversal via restarts by storing a single bit of data
per hierarchy level. Vaidyanathan et al. [35] extended this
method to wide BVHs by using a short stack along with
an array of counters—one for each tree level—to track the
number of previously traversed children. Hapala et al. [18]
proposed a stackless traversal method that uses parent pointers
for backtracking with simple state logic to determine the next
node to traverse. Barringer and Akenine-Möller [9] built upon
this idea by introducing two stackless traversal algorithms
for binary BVHs that eliminate the need to reevaluate the
child traversal order. Áfra and SzirmayKalos [6] further ex-
tended this stackless approach to wide BVHs. Binder and
Keller [12] introduced efficient stackless traversal method with
constant-time backtracking, designed specifically for GPUs.
These approaches handle traversal while removing off-chip
memory traffic for stack management, replacing them with
additional traversal steps as some nodes may be revisited.
Such methods can be applied orthogonally to our work. By
providing additional stack entries in shared memory, restarts
or backtracking can be minimized, occurring only when the
secondary stack overflows. This reduction in computational
overhead can lead to further performance improvements.

B. Ray Grouping with Group-Local Traversal Stack

Ray grouping involves clustering rays with similar paths,
allowing them to follow a common traversal path through
the BVH using a single traversal stack per group. Wald et

al. [39] proposed a packet-frustum BVH traversal scheme that
supports both static and deformable scenes. Günther et al. [17]
introduced a parallel packet traversal algorithm for GPU ray
tracing. Benthin and Wald [10] proposed the simultaneous
tracing of multiple frusta using SIMD units, enabling real-time
soft shadow rendering. These approaches effectively reduce
the total number of traversal stack entries and minimize stack
traffic by sharing a common stack among rays within each
group. Although effective for coherent primary rays, these
methods often struggle with incoherent ray types, which take
divergent paths and may result in unnecessary node visits.
Such methods can be applied orthogonally to our work. Since
shared memory is accessible by threads within a warp, a per-
group traversal stack can be allocated in shared memory and
efficiently utilized with our optimization strategies.

C. Shared Memory Utilization in GPGPU

Prior works have explored various methods to improve
GPU performance and occupancy by utilizing shared memory.
Hayes and Zhang [20] proposed a technique that leverages
shared memory for register spilling, significantly reducing the
reliance on off-chip memory. Sakdhnagool et al. [34] improved
upon this by addressing inefficiencies caused by overly con-
servative register allocation. Yoon et al. [41] introduced a
technique that exploits underutilized portions of the register
file and shared memory to enable fast context switching,
thereby increasing thread-level parallelism. Building on this
idea, Oh et al. [31] proposed a method employing fine-grained
memory management to further enhance the efficiency of
resource utilization. While these methods aim to optimize the
performance of general-purpose GPU applications, our work
focuses specifically on shared memory management for ray
tracing workloads. This involves addressing the unique mem-
ory access patterns associated with traversal stack management
in modern GPU-based ray tracing.

IX. CONCLUSION

This paper proposes SMS, a powerful and cost-effective
GPU architecture that efficiently manages traversal stack for
ray tracing acceleration. SMS incorporates a secondary SH
stack as an alternative solution to enlarging the primary stack
in the ray buffer, effectively mitigating off-chip memory traffic
caused by stack overflows. To further optimize SH stack
utilization, we present skewed bank access and dynamic intra-
warp reallocation strategies. Based on our evaluation, SMS
improves performance by 23.2% over the baseline that relies
solely on the primary stack. This performance is comparable to
a design that maintains a full per-ray stack in on-chip memory,
demonstrating that the proposed architecture achieves substan-
tial performance gains with minimal hardware overhead.

ACKNOWLEDGEMENTS

This work was supported in part by the National Research
Foundation of Korea (NRF) funded by the Ministry of Science
and ICT (MSIT) of the Government of South Korea (NRF-
2021R1C1C1012172), by the Ministry of Education of the

71

Authorized licensed use limited to: Korea University. Downloaded on September 11,2025 at 15:44:05 UTC from IEEE Xplore. Restrictions apply.

Republic of Korea and the National Research Foundation
of Korea under Grant NRF-2022R1C1C1011021, by Institute
of Information & communications Technology Planning &
Evaluation (IITP) grant funded by the Korea government
(MSIT) (RS-2024-00404972, Development of 5G-A vRAN
Research Platform), and by the NRF grant funded by the Korea
government (MSIT) (RS-2025-00553645).

REFERENCES

[1] “Nvidia ada gpu architecture,” https://images.nvidia.com/aem-dam/
Solutions/Data-Center/l4/nvidia-ada-gpu-architecture-whitepaper-v2.1.
pdf, (Accessed on 11/18/2024).

[2] “Nvidia ampere ga102 gpu architecture,” https://www.nvidia.com/
content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.
pdf, (Accessed on 11/18/2024).

[3] “Nvidia hopper tuning guide,” https://docs.
nvidia.com/cuda/hopper-tuning-guide/index.html#
unified-shared-memory-l1-texture-cache, (Accessed on 11/30/2024).

[4] “Nvidia turing gpu architecture,” https://images.nvidia.com/aem-dam/
en-zz/Solutions/design-visualization/technologies/turing-architecture/
NVIDIA-Turing-Architecture-Whitepaper.pdf, (Accessed on
11/18/2024).

[5] “Nvidia volta tuninig guide,” https://docs.
nvidia.com/cuda/volta-tuning-guide/index.html#
unified-shared-memory-l1-texture-cache, (Accessed on 11/30/2024).

[6] A. T. Áfra and L. Szirmay-Kalos, “Stackless multi-bvh traversal for cpu,
mic and gpu ray tracing,” in Computer Graphics Forum, vol. 33, no. 1.
Wiley Online Library, 2014, pp. 129–140.

[7] T. Aila and T. Karras, “Architecture considerations for tracing incoherent
rays,” in Proceedings of the Conference on High Performance Graphics,
2010, pp. 113–122.

[8] T. Aila and S. Laine, “Understanding the efficiency of ray traversal on
gpus,” in Proceedings of the conference on high performance graphics
2009, 2009, pp. 145–149.

[9] R. Barringer and T. Akenine-Möller, “Dynamic stackless binary tree
traversal,” Journal of Computer Graphics Techniques, vol. 2, no. 1, pp.
38–49, 2013.

[10] C. Benthin and I. Wald, “Efficient ray traced soft shadows using multi-
frusta tracing,” in Proceedings of the Conference on High Performance
Graphics 2009, 2009, pp. 135–144.

[11] J. L. Bentley, “Multidimensional binary search trees used for associative
searching,” Communications of the ACM, vol. 18, no. 9, pp. 509–517,
1975.

[12] N. Binder and A. Keller, “Efficient stackless hierarchy traversal on gpus
with backtracking in constant time.” in High Performance Graphics,
2016, pp. 41–50.

[13] Y. H. Chou, T. Nowicki, and T. M. Aamodt, “Treelet prefetching for ray
tracing,” in Proceedings of the 56th Annual IEEE/ACM International
Symposium on Microarchitecture, 2023, pp. 742–755.

[14] C. Duan, A. J. Gotterba, M. E. Sinangil, and A. P. Chandrakasan,
“Energy-efficient reconfigurable sram: Reducing read power through
data statistics,” IEEE Journal of Solid-State Circuits, vol. 52, no. 10,
pp. 2703–2711, 2017.

[15] M. Ernst and G. Greiner, “Multi bounding volume hierarchies,” in 2008
IEEE Symposium on Interactive Ray Tracing. IEEE, 2008, pp. 35–40.

[16] A. Garg and T. T.-H. Kim, “Sram array structures for energy efficiency
enhancement,” IEEE Transactions on Circuits and Systems II: Express
Briefs, vol. 60, no. 6, pp. 351–355, 2013.

[17] J. Günther, S. Popov, H.-P. Seidel, and P. Slusallek, “Realtime ray tracing
on gpu with bvh-based packet traversal,” in 2007 IEEE Symposium on
Interactive Ray Tracing. IEEE, 2007, pp. 113–118.

[18] M. Hapala, T. Davidovič, I. Wald, V. Havran, and P. Slusallek, “Efficient
stack-less bvh traversal for ray tracing,” in Proceedings of the 27th
Spring Conference on Computer Graphics, 2011, pp. 7–12.

[19] V. Havran, R. Herzog, and H.-P. Seidel, “On the fast construction
of spatial hierarchies for ray tracing,” in 2006 IEEE Symposium on
Interactive Ray Tracing. IEEE, 2006, pp. 71–80.

[20] A. B. Hayes and E. Z. Zhang, “Unified on-chip memory allocation
for simt architecture,” in Proceedings of the 28th ACM international
conference on Supercomputing, 2014, pp. 293–302.

[21] J. T. Kajiya, “The rendering equation,” in Proceedings of the 13th annual
conference on Computer graphics and interactive techniques, 1986, pp.
143–150.

[22] V. Kandiah, S. Peverelle, M. Khairy, J. Pan, A. Manjunath, T. G. Rogers,
T. M. Aamodt, and N. Hardavellas, “Accelwattch: A power modeling
framework for modern gpus,” in MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture, 2021.

[23] D. Kopta, K. Shkurko, J. Spjut, E. Brunvand, and A. Davis, “Memory
considerations for low energy ray tracing,” in Computer Graphics
Forum, vol. 34, no. 1. Wiley Online Library, 2015, pp. 47–59.

[24] S. Laine, “Restart trail for stackless bvh traversal,” in Proceedings of
the Conference on High Performance Graphics. Citeseer, 2010, pp.
107–111.

[25] W.-J. Lee, Y. Shin, J. Lee, J.-W. Kim, J.-H. Nah, S. Jung, S. Lee,
H.-S. Park, and T.-D. Han, “Sgrt: A mobile gpu architecture for real-
time ray tracing,” in Proceedings of the 5th high-performance graphics
conference, 2013, pp. 109–119.

[26] J. Lim, N. B. Lakshminarayana, H. Kim, W. Song, S. Yalamanchili, and
W. Sung, “Power modeling for gpu architectures using mcpat,” ACM
Transactions on Design Automation of Electronic Systems (TODAES),
2014.

[27] L. Liu, M. Saed, Y. H. Chou, D. Grigoryan, T. Nowicki, and T. M.
Aamodt, “Lumibench: A benchmark suite for hardware ray tracing,”
in 2023 IEEE International Symposium on Workload Characterization
(IISWC). IEEE, 2023, pp. 1–14.

[28] D. Meister, J. Boksansky, M. Guthe, and J. Bittner, “On ray reordering
techniques for faster gpu ray tracing,” in Symposium on Interactive 3D
Graphics and Games, 2020, pp. 1–9.

[29] D. Meister, S. Ogaki, C. Benthin, M. J. Doyle, M. Guthe, and J. Bittner,
“A survey on bounding volume hierarchies for ray tracing,” in Computer
Graphics Forum, vol. 40, no. 2. Wiley Online Library, 2021, pp. 683–
712.

[30] J.-H. Nah, J.-S. Park, C. Park, J.-W. Kim, Y.-H. Jung, W.-C. Park, and
T.-D. Han, “T&i engine: Traversal and intersection engine for hardware
accelerated ray tracing,” in Proceedings of the 2011 SIGGRAPH Asia
Conference, 2011, pp. 1–10.

[31] Y. Oh, M. K. Yoon, W. J. Song, and W. W. Ro, “Finereg: Fine-grained
register file management for augmenting gpu throughput,” in 2018
51st Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 2018, pp. 364–376.

[32] S. M. Rubin and T. Whitted, “A 3-dimensional representation for
fast rendering of complex scenes,” in Proceedings of the 7th annual
conference on Computer graphics and interactive techniques, 1980, pp.
110–116.

[33] M. Saed, Y. H. Chou, L. Liu, T. Nowicki, and T. M. Aamodt, “Vulkan-
sim: A gpu architecture simulator for ray tracing,” in 2022 55th
IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE, 2022, pp. 263–281.

[34] P. Sakdhnagool, A. Sabne, and R. Eigenmann, “Regdem: Increasing
gpu performance via shared memory register spilling,” arXiv preprint
arXiv:1907.02894, 2019.

[35] K. Vaidyanathan, S. Woop, and C. Benthin, “Wide bvh traversal with
a short stack,” in Proceedings of the Conference on High-Performance
Graphics, 2019, pp. 15–19.

[36] T. Viitanen, M. Koskela, P. Jääskeläinen, and J. Takala, “Multi bounding
volume hierarchies for ray tracing pipelines,” in SIGGRAPH ASIA 2016
Technical Briefs, 2016, pp. 1–4.

[37] C. Wächter and A. Keller, “Instant ray tracing: The bounding interval
hierarchy.” Rendering Techniques, vol. 2006, no. 139-149, p. 130, 2006.

[38] I. Wald, C. Benthin, and S. Boulos, “Getting rid of packets-efficient
simd single-ray traversal using multi-branching bvhs,” in 2008 IEEE
Symposium on Interactive Ray Tracing. IEEE, 2008, pp. 49–57.

[39] I. Wald, S. Boulos, and P. Shirley, “Ray tracing deformable scenes using
dynamic bounding volume hierarchies,” ACM Transactions on Graphics
(TOG), vol. 26, no. 1, pp. 6–es, 2007.

[40] H. Ylitie, T. Karras, and S. Laine, “Efficient incoherent ray traversal
on gpus through compressed wide bvhs,” in Proceedings of High
Performance Graphics. Association for Computing Machinery, 2017,
pp. 1–13.

[41] M. K. Yoon, K. Kim, S. Lee, W. W. Ro, and M. Annavaram, “Virtual
thread: Maximizing thread-level parallelism beyond gpu scheduling
limit,” ACM SIGARCH Computer Architecture News, vol. 44, no. 3,
pp. 609–621, 2016.

72

Authorized licensed use limited to: Korea University. Downloaded on September 11,2025 at 15:44:05 UTC from IEEE Xplore. Restrictions apply.

