
VitBit: Enhancing Embedded GPU Performance for AI Workloads
through Register Operand Packing

Jaebeom Jeon

Korea University

Seoul, South Korea

414dragon@korea.ac.kr

Minseong Gil

Korea University

Seoul, South Korea

ms7859@korea.ac.kr

Junsu Kim

Korea University

Seoul, South Korea

j0807s@korea.ac.kr

Jaeyong Park

Korea University

Seoul, South Korea

jypark9818@korea.ac.kr

Gunjae Koo

Korea University

Seoul, South Korea

gunjaekoo@korea.ac.kr

Myung Kuk Yoon
∗

Ewha Womans University

Seoul, South Korea

myungkuk.yoon@ewha.ac.kr

Yunho Oh
∗

Korea University

Seoul, South Korea

yunho_oh@korea.ac.kr

ABSTRACT
The rapid advancement of Artificial Intelligence (AI) necessitates

significant enhancements in the energy efficiency of Graphics Pro-

cessing Units (GPUs) for Deep Neural Network (DNN) workloads.

Such a challenge is particularly critical for embedded GPUs, which

operate within stringent power constraints. Traditional GPU ar-

chitectures, designed to support a limited set of numeric formats,

face challenges in meeting the diverse requirements of modern

AI applications. These applications demand support for various

numeric formats to optimize computational speed and efficiency.

This paper proposes VitBit, a novel software technique designed

to overcome these limitations by enabling efficient processing of

arbitrary integer format values, especially those 8 bits or fewer,

which are increasingly prevalent in AI workloads. VitBit introduces

two key innovations: the packing of arbitrary integer formats for

parallel computation and the simultaneous execution of Tensor

cores, INT and FP (Integer and Floating-Point) CUDA cores. This

approach leverages the architectural features of modern GPUs, such

as those based on NVIDIA Ampere architecture, which allows con-

current operation of FP32 and INT32 cores at full throughput. Our

evaluation of VitBit on NVIDIA Jetson AGX Orin demonstrates sub-

stantial improvements in arithmetic density and peak throughput,

achieving up to a 22% reduction in execution time for benchmark AI

workloads without compromising inference accuracy. VitBit effec-

tively bridges the gap between current hardware capabilities and the

computational demands of AI, offering a scalable and cost-effective

method for enhancing GPU performance in AI applications.

CCS CONCEPTS
• Computer systems organization→ Parallel architectures; •
Computing methodologies→ Parallel algorithms.

∗
Myung Kuk Yoon and Yunho Oh are the co-corresponding authors.

This work is licensed under a Creative Commons Attribution International

4.0 License.

ICPP ’24, August 12–15, 2024, Gotland, Sweden
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1793-2/24/08

https://doi.org/10.1145/3673038.3673045

KEYWORDS
GPU, Deep Neural Network

ACM Reference Format:
Jaebeom Jeon, Minseong Gil, Junsu Kim, Jaeyong Park, Gunjae Koo, Myung

Kuk Yoon, and Yunho Oh. 2024. VitBit: Enhancing Embedded GPU Per-

formance for AI Workloads through Register Operand Packing. In The
53rd International Conference on Parallel Processing (ICPP ’24), August 12–
15, 2024, Gotland, Sweden. ACM, New York, NY, USA, 10 pages. https:

//doi.org/10.1145/3673038.3673045

1 INTRODUCTION
Artificial Intelligence (AI) landscape has seen the emergence of vari-

ous numeric formats designed to boost computational and memory

efficiency [7, 12, 21, 23, 24, 29, 30, 32, 34, 40, 42, 44]. Low-bitwidth

floating point quantization such as FP4 and FP6 efficiently reduces

the size of Large Language Models (LLMs) over the traditional float-

ing point formats (e.g., FP32) while maintaining consistent model

quality across diverse applications [25, 37]. Diverse integer formats

are also employed in emerging AI algorithms to enhance inference

speed [21, 23, 24, 29, 40].

Improving the energy efficiency of Graphics Processing Units

(GPUs) in Deep Neural Network (DNN) workloads becomes a para-

mount consideration [2, 6–8, 13, 18, 21, 23, 24, 29, 31, 32, 34, 38, 40,

42, 44]. It is even more critical for embedded GPUs, which have to

perform well under strict power limits. A prominent strategy to

enhance GPU energy efficiency involves increasing the arithmetic

density (operations per second per mm
2
). Traditionally, GPUs were

built to handle a limited set of data formats, which was enough

in the past [17, 28]. AI applications demand a diverse array of

numeric formats to enhance computation speed and efficiency, a

requirement that traditional GPUs, with their fixed design, fail to

meet. While producing new GPUs capable of handling the latest

formats could mitigate this issue, it would entail substantial costs

and environmental impacts associated with manufacturing.

Building upon prior work that has leveraged register packing

[35] and register coalescing [1] for utilizing low-bitwidth values

on GPUs with limited numeric format support, our investigation

reveals insights into optimizing GPU performance for deep learn-

ing applications. While executing DNN workloads on GPUs, uti-

lizing Tensor cores for the primary computations, such as Gen-

eral Matrix-Matrix Multiplication (GEMM) has been a focal strat-

egy. Although CUDA cores offer comparatively lower performance,

1012

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3673038.3673045
https://doi.org/10.1145/3673038.3673045
https://doi.org/10.1145/3673038.3673045
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3673038.3673045&domain=pdf&date_stamp=2024-08-12

ICPP ’24, August 12–15, 2024, Gotland, Sweden Jeon et al.

harnessing register packing can significantly enhance the actual

throughput of CUDA cores. By employing both Tensor and CUDA

cores concurrently in the primary operations, performance improve-

ment can be achieved [15, 43]. The register packing technique has

shown promise in enhancing register file utilization by condensing

low-bitwidth operations. Facilitating the accommodation of more

operands within a Streaming Multiprocessor (SM) does not alter

register operands. This limitation implies that, despite the efficient

use of register files, the peak throughput of the GPU remains unaf-

fected, as the arithmetic operations executed by the arithmetic logic

units (ALUs) in GPUs continue to rely on unchanged operands. If

GPUs leverage register packing and coalescing, they can compute

arbitrary integer format values of 8 bits or fewer while achieving a

higher available throughput than a predetermined peak throughput.

We ensure that these computations can occur independently by

employing a strategy of packing multiple values, adjusted according

to their bitwidth and separated by zero-padding.

In this paper, we propose VitBit
1
, a software technique that

enhances the performance of conventional GPUs. We design VitBit

to circumvent these limitations by enabling GPUs to efficiently

process arbitrary integer format values, particularly those used

in inference, which is increasingly prevalent in AI applications.

VitBit consists of dual strategies: packing arbitrary integer formats

and facilitating the simultaneous execution of Tensor cores, INT,

and FP CUDA cores. By packing two or more integer values into a

single register for parallel computation, VitBit effectively utilizes

INT CUDA cores, thus reducing GPU execution time. Also, VitBit

converts numeric data formats and reconstructs kernels to execute

Tensor, INT, and FP CUDA cores simultaneously by fusing GPU

kernels, operating each core part at warp granularity. This method

not only optimizes the use of available hardware but also aligns

with the capabilities of modern GPU architectures, such as those

based on the Ampere architecture. Our experiments, conducted on

NVIDIA Jetson AGX Orin, reveal that this approach can lead to an

improvement in peak throughput and hardware arithmetic density.

In our evaluation, VitBit substantiates its theoretical advantages,

showcasing an improvement in GPU performance. We observed

an enhancement in arithmetic density, conducted on the NVIDIA

Jetson AGX Orin platform, using the VitBit technique, which in-

cludes packing integer formats and the simultaneous activation

of INT and FP CUDA cores. VitBit reduces the execution time for

benchmark AI workloads by 22% while maintaining computational

accuracy. Furthermore, the utilization rate of both INT and FP cores

increased dramatically, evidencing a more efficient use of the GPU

computation resources. These results not only validate the effec-

tiveness of VitBit in bridging the gap between existing hardware

limitations and the demands of modern AI applications but also

highlight its potential to serve as a scalable solution for enhancing

the computational efficiency of GPUs.

In this paper, we make the following contributions.

• We present a comprehensive analysis of the challenges posed

by the fixed architecture of conventional GPUs for process-

ing a variety of numeric formats.

1
We call our new method "VitBit," a name that blends "vitesse," the French word for

"speed," with "bit."

Figure 1: Streaming Multiprocessor (SM) architecture of Jet-
son Orin GPU

• We introduce a software-based solution, VitBit, that utilizes

register packing and harnesses Tensor, INT, and FP CUDA

cores simultaneously to enable the efficient use of arbitrary

numeric formats on existing GPUs.

• Through extensive experimentation on embedded GPUs, we

demonstrate VitBit outperforms the baseline and prior work

by 22% and 15% in inference time, respectively.

The rest of this paper consists of the following sections. Section

2 explains the key challenge of arbitrary numeric formats and their

support in GPUs. Section 3 explains the details of VitBit. Section

4 shows the experimental results. Section 5 explains related work.

Section 6 concludes this paper.

2 WHY VITBIT?
In this section, we first explain the challenges of emerging numeric

formats and GPUs and then explain our insights to address them.

2.1 Challenges of Emerging Numeric Formats
As the AI industry advances, improving the energy efficiency of

Graphics Processing Unit (GPU) in Deep Neural Network (DNN)

workloads becomes one of the most important considerations for

researchers [5, 9, 36, 39]. In particular, unlike discrete GPUs, em-

bedded GPUs that operate within constrained energy resources pri-

oritize energy efficiency as a critical factor. One solution to improve

GPU energy efficiency is to increase GPU hardware arithmetic

density.

In the recent AI industry, various customized numeric formats

have emerged to improve computational and memory efficiency.

Six-bit quantization (FP6) reduces the size of Large Language Mod-

els (LLMs) effectively while consistently preserving model quality

across varied applications [37]. Prior work has introduced 6-bit and

2-bit integer formats for inference as well [21, 24, 29, 40]. Also, mi-

croscaling data formats (MX) emerge to balance hardware efficiency,

model accuracy, and user friction [30]. Hybrid Block Floating Point

(HBFP) combines block floating point with fixed point, achieving

higher throughput with high floating point accuracy at the superior

hardware density of fixed point [12].

Conventional GPUs are limited in their ability to fully support

these emerging numeric formats. Figure 1 depicts the structure of

a Streaming Multiprocessor (SM) of an embedded GPU. We refer to

the specification of Jetson Orin AGX [19]. Conventional GPUs only

1013

VitBit: Enhancing Embedded GPU Performance for AI Workloads through Register Operand Packing ICPP ’24, August 12–15, 2024, Gotland, Sweden

Table 1: Peak throughput of NVIDIA Jetson Orin AGX. Per-
forming INT8 or INT4 within CUDA cores is possible with a
software technique such as zero-masking. In this case, the
peak throughput is equivalent to that of INT32.

Numeric Format Peak Throughput
FP32 (CUDA Core) 4 TFLOPS

FP16 (CUDA Core) 8 TFLOPS

TF32 (Tensor Core) 32 TFLOPS

FP16 (Tensor Core) 65 TFLOPS

BFloat16 (Tensor Core) 65 TFLOPS

INT32 (CUDA Core) 4 TOPS

INT8 (Tensor Core) 131 TOPS

INT4 (Tensor Core) 262 TOPS

support limited numeric formats, and utilizing these fixed formats

for computations results in significantly low arithmetic density.

Leveraging arbitrary numeric formats on existing GPUs without

any preprocessing causes two major problems. The first problem

is the mismatch between the size of registers and the arbitrary

formats. The size of registers currently used within the GPU is

fixed at 32 bits, making it impossible to store data of unsupported

numeric formats within the GPU. The second problem is that the

Arithmetic Logic Units (ALUs) within the GPU do not support

arbitrary numeric formats.

Creating a novel GPU hardware architecture suitable for emerg-

ing numeric formats not only consumes considerable time but also

incurs significant chip manufacturing and environmental effects. As

the ALUs within the GPU Streaming Multiprocessor (SM) cores can

only perform operations for fixed numeric formats, supporting ar-

bitrary numeric formats on the GPU necessitates a software-based

approach. One software method for utilizing arbitrary numeric

formats within the registers and ALUs, which only support limited

numeric formats, is the zero-masking technique. Zero-masking is a

simple software technique that enables the use of arbitrary numeric

formats on existing GPUs [3, 4, 27]. Zero-masking incorporates

arbitrary numeric format values into fixed precision by masking

all remaining bits with zeros. To evaluate the viability of the zero-

masking technique on conventional embedded GPUs, we conduct

a simple experiment.

We analyze the arithmetic density of a GPU by varying integer

bitwidths. As a GPU is built within a fixed size, we compare the

peak throughput of various numeric formats. Table 1 depicts the

analysis results. Tensor cores exhibit an increase in peak through-

put as a shorter numeric format is employed. Relatively, CUDA

cores show a lower throughput than Tensor cores. If CUDA cores

support narrow bitwidth numeric formats, they would enhance

their peak throughput. For example, CUDA cores do not support

INT8 and INT4, so they suffer from throughput saturation at the

INT32 throughput. If a GPU in Jetson ideally supports INT8 in

CUDA cores and enhances their throughput proportionally, up to

32 TOPS might be achieved. Such a throughput corresponds to 25%

of the peak throughput of Tensor cores, which is not negligible.

Also, if software could exploit the CUDA cores for floating-point

formats as well, available throughput could be improved further. As

a result, a novel software-based solution that utilizes CUDA cores

to improve their throughput is strongly required to improve the

arithmetic density of embedded GPUs.

2.2 Packing Register Operands for Enhanced
CUDA Core Utilization

CUDA cores occupy a significant portion of the GPU architecture,

highlighting a need to harness their potential more effectively to

boost DNN workload performance. The extensive real estate that

CUDA cores command on the GPU die presents a unique oppor-

tunity for optimization. Moreover, as CUDA cores are not used

for performing key computations of DNN tasks, they often be-

come idle. Leveraging this vast array of CUDA cores efficiently can

lead to substantial improvements in the processing of DNN tasks.

The challenge lies in overcoming the inherent speed limitations of

CUDA cores through innovative software and architectural strate-

gies, enabling them to contribute more significantly to the overall

computational throughput. By devising methods to enhance the

utility of CUDA cores, we can achieve higher level of performance

without underutilizing the huge computation units. This approach

not only optimizes the existing hardware but also sets a founda-

tion for future GPU designs to achieve a balanced distribution of

computational power.

Prior work has proposed register packing [35] and register coa-

lescing [1] to enable the use of low bitwidth values on hardware

supporting limited numeric formats. Register packing involves de-

tecting low bitwidth operations at the write-back stage, then pack-

ing them to store in the register file, thereby providing extra space

within register file. The additional register file space within the SM

enables hosting more thread blocks. While register packing is able

to reduce the effective size of the register file, each register read

still requires a separate physical register read. Register coalescing

aims to read multiple related registers used by the same instruc-

tion through a single register read operation in order to utilize the

register file bandwidth more efficiently.

Both register packing and register coalescing use the packed val-

ues to enable the use of low bitwidth values on hardware supporting

limited numeric formats. However, packed values that register pack-

ing and register coalescing used only exist on the register file and

operand collection pipeline stage. The operand used in the execu-

tion stage does not change. Therefore, the GPU peak throughput

remains the same because the operand used for the arithmetic unit

within the GPU execution pipeline stage is unchanged.

Unlike the register packing and register coalescing techniques,

GPUs can compute arbitrary integer format values of 8 bits or fewer

in INT cores by packing two or more register operands. Packing

register operands by spacing the values according to the bitwidth of

the arbitrary numeric format and padding the remaining bits with

zeros require a new software implementation for the computations

that ensures the accurate results.

2.3 Simultaneous Execution of Tensor Cores
and CUDA Cores

In response to the demand for high throughput computations for

DNN workloads, the industry releases Tensor cores [10]. Tensor

cores are designed specifically for deep learning that accelerates

matrix multiplication, which is the core operation in DNNs. Tensor

1014

ICPP ’24, August 12–15, 2024, Gotland, Sweden Jeon et al.

Figure 2: Conceptual overview of VitBit. The upper portion represents the preprocessing stage, which is executed on the CPU.
The lower portion involves computing on the GPU using the data obtained from the preprocessing stage.

cores exhibit a higher throughput for GEMM than CUDA cores.

For this reason, numerous AI frameworks employ Tensor cores for

processing matrix multiplication, such as General Matrix Matrix

Multiplication (GEMM), and other operations for CUDA cores [14].

However, this exclusiveness of kernel execution on heteroge-

neous cores results in low arithmetic density as CUDA cores and

Tensor cores occupy a vast area of the limited GPU hardware. To

improve arithmetic density and accelerate DNN workloads, the

simultaneous execution of both Tensor and CUDA cores during

kernel execution shows promise [15, 43]. Tacker fuses two different

kernels to enable concurrent execution of Tensor cores and CUDA

cores [43]. Based on the fact that multiple warps of a single thread

block are active at the same time, Tacker enables Tensor cores and

CUDA cores concurrently by assigning different warps to utilize

the two cores within the same thread block. Also, prior work has

proposed a technique that offloads a GEMM operation to Tensor

cores and CUDA cores simultaneously [15].

The aforementioned approaches are limited to achieving the

maximum arithmetic density. As shown in Figure 1, each Streaming

Multiprocessor (SM) consists of heterogeneous arithmetic units

that process predefined numeric formats. Considering most of the

DNN applications utilize fixed numeric formats (e.g., INT32, FP32,

etc.), the prior work exploits either INT cores or FP cores while

concurrently executing Tensor cores. Leveraging both CUDA and

Tensor cores simultaneously in DNN workloads holds the key to

unlocking significant performance gains. To fully harness the po-

tential of simultaneous execution of CUDA and Tensor cores, novel

algorithms and programming models are required to orchestrate

computational tasks across these heterogeneous cores.

3 VITBIT
To address the challenges outlined in the previous section, we

propose VitBit, a software technique designed to enhance peak

throughput and arithmetic density on GPU hardware while utiliz-

ing low-bitwidth arbitrary integer format values on conventional

GPUs. VitBit introduces two key innovations: the packing of ar-

bitrary integer formats and the simultaneous execution of Tensor

Cores, INT, and FP CUDA cores. By packing two or more integer

values into a single register and performing parallel computations,

VitBit enables the simultaneous operation of packed values within

a single instruction, significantly reducing GPU execution time.

Furthermore, VitBit executes INT CUDA cores, FP CUDA cores,

and Tensor cores simultaneously via kernel fusion.

3.1 VitBit Overview
Figure 2 illustrates a conceptual overview of VitBit. We focus on

the fact that typical DNN inference utilizes fixed-point formats.

Accordingly, we design VitBit to pack multiple integer operands

into single registers. VitBit consists of two primary components:

data preprocessing and kernel reconstruction. Data preprocessing

involves data type conversion and packing to enable simultaneous

execution occurring on the CPU. Kernel reconstruction modifies

DNN kernels to allow simultaneous execution with preprocessed

data on the GPU. The preprocessing phase comprises four steps as

shown in the top of Figure 2.

Step 1:VitBit converts the INT filtermatrix A to amatrix that can

be computed by FP CUDA cores but still contains the parameters

with the fixed-point format. This type conversion is only required

once during the initial setup for the device.

Step 2: VitBit divides an input matrix (B in Figure 2) for simul-

taneous execution: matrix B1 for INT CUDA cores, matrix B2 for

1015

VitBit: Enhancing Embedded GPU Performance for AI Workloads through Register Operand Packing ICPP ’24, August 12–15, 2024, Gotland, Sweden

(a) Bitwidth: 32∼9 bit.

(b) Bitwidth: 8∼6 bit.

(c) Bitwidth: 5 bit.

(d) Bit width: 4 bit.

Figure 3: VitBit packing policy. VitBit applies packing policy
to integer data executed on the INT cores. Integer values
with a bitwidth of 9 or more (a) utilize simple zero-masking.
Integer values with a bitwidth between 6 and 8 (b), those with
a bitwidth of 5 (c), and those with a bitwidth of 4 (d) can be
packed up to 2, 3, and 4 values, respectively.

FP CUDA cores, matrix B3 for Tensor cores. VitBit determines the

ratio for the division according to the ratio of execution time for

GEMM operations on each core.

Step 3: VitBit packs the parameters in matrix B1 following the

packing policy predetermined based on the size of an actual operand

(more details in Section 3.2).

Step 4: VitBit converts the data from matrix B2 to be compatible

with the floating point format of matrix A.

After preprocessing, VitBit reconstructs new GPU kernels con-

sidering two cases. The first case is executing kernels utilizing

Tensor cores on the GPU (eg., GEMM, etc.). For the first case, VitBit

reconstructs the kernel to execute INT, FP CUDA cores and Ten-

sor cores simultaneously. VitBit divides threads that use INT, FP

CUDA cores and Tensor cores in a unit of warp size (i.e., 32), thus

automatically synchronizing the process of all active threads via

hardware-level warp scheduling. INT, FP, and Tensor core opera-

tions within a single SM, enabling them to run in parallel. For the

second case, which executes CUDA cores only (e.g., GeLU, Dropout,

etc.), VitBit reconstructs the kernels to process the matrix B3 on

INT CUDA cores. VitBit applies the same policy for the B1 and B2

used in the first case for computation.

3.2 VitBit Data Preprocessing
VitBit duplicates matrix A in both INT and FP formats. Then, Vit-

Bit divides the data corresponding to Matrix B into portions for

processing by CUDA cores and portions for processing by Tensor

cores. To determine the processing ratio, we measure the execution

time of GEMM operation for the following five cases: only using

Tensor cores (TC), only using INT cores (IC) or FP cores within the

CUDA cores (FC), using both INT and FP cores concurrently within

the CUDA cores (IC+FC), using both INT and FP cores concurrently

within the CUDA cores with packing (IC+FC+P). In our initial study,

we observe that the execution time for IC of FC increased by ap-

proximately 7.5 times compared to TC. Also, the increase is 6.5

times for IC+FC and 4 times for IC+FC+P. Based on this analysis,

VitBit determines the assignment ratio of matrices for Tensor cores

as 4 and CUDA cores as 1. The balanced assignment prevents either

Tensor cores or CUDA cores from becoming bottlenecks in kernel

execution and achieves high throughput.

After determining the ratio of matrices to be processed by CUDA

cores and Tensor cores, VitBit determines the number of operands

to pack into a single register. To establish the packing ratio, VitBit

divides the data corresponding to the portion of Matrix B processed

by CUDA cores into ‘packing’ and ‘converting’ categories based on

the specified ratio.

𝑁𝑢𝑚𝑏𝑒𝑟
data for packing

: 𝑁𝑢𝑚𝑏𝑒𝑟
data for converting

= 𝑛 : 1 (1)

Since all packed integer values allow parallel computation during

a single operation, if VitBit packs 𝑛 integer values, the number

of integer operations is reduced by a factor of 𝑛. Thus, if VitBit

divides data according to the ratio in Equation 1, the number of INT

operations and FP operations becomes equal. The ratio in Equation

1 reflects the characteristic that the number of available INT cores

and FP cores per SM is the same during simultaneous execution.

Figure 3 illustrates the VitBit packing policy. Packing enables

integer values to fit into a single register and ensures simultane-

ous computation for multiple integer values while guaranteeing

accurate outputs.

Integer values with a bitwidth of 9 or more utilize simple zero-

masking for computation as shown in 3(a). If the bitwidth is between

6 and 8, the output varies between 12 bits and 16 bits as described in

3(b). In this case, a 32-bit register can accommodate up to 2 integer

values for computation. As demonstrated in Figure 3(c), packing

3 integers is feasible for integer values with a bitwidth of 5 as the

computation output occupies up to 10 bits. Figure 3(d) depicts that

it is possible to pack up to 4 integer values with a bitwidth of lower

than 4. The packing technique improves the bit-level utilization

of registers with low bitwidth integer values, thereby enhancing

arithmetic density.

The proposed packing technique allows CUDA cores to perform

GEMM operations with packed values without requiring additional

arithmetic operations. A single multiplication automatically com-

pletes the multiplications with packed values. There is no overhead

for handling overflows, as the proposed technique already reserves

space for resulting values that exceed the number of digits in the

input operands. Also, VitBit does not require the restoration of

packed values during the inference process, as intermediate results

from one layer are directly used as packed inputs for the next layer.

Algorithm 1 describes the pseudocode of VitBit input preprocess-

ing. The input preprocessing function receives the input matrix B,

which is 𝑁 ×𝐾 . 𝑁 demonstrates the width and 𝐾 means the height

1016

ICPP ’24, August 12–15, 2024, Gotland, Sweden Jeon et al.

Algorithm 1 Implementation of input preprocessing

Input:Matrix 𝐵, which is 𝑁 × 𝐾 ,

Tensor/CUDA core ratio𝑚, INT/FP core ratio 𝑛, 𝑏𝑖𝑡𝑤𝑖𝑑𝑡ℎ
Output:Matrix with packed integers 𝐵1, Matrix with floating points 𝐵2

Matrix with masked-integers for Tensor cores, 𝐵3
1: function Input_Preprocessing(𝐵, 𝑁 , 𝐾 ,𝑚, 𝑛, 𝑏𝑖𝑡𝑤𝑖𝑑𝑡ℎ)
2: /* Set the width of each matrix. */

3: 𝑁3 = 𝑁 ×𝑚/(1 +𝑚)
4: 𝑁1 = (𝑁 − 𝑁3) × 𝑛/(1 + 𝑛)
5: 𝑁1

′ = 𝑁1/𝑛
6: 𝑁2 = (𝑁 − 𝑁3) − 𝑁1

7: /* Divide the matrix to be processed by each cores. */

8: for 𝑗 ← 0 to (𝐾 − 1) do
9: for 𝑖 ← 0 to (𝑁1 − 1) do
10: 𝐵1𝑏𝑒𝑓 𝑜𝑟𝑒_𝑝𝑎𝑐𝑘𝑖𝑛𝑔 [𝑖] [𝑗] = 𝐵 [𝑖] [𝑗]
11: end for
12: for 𝑖 ← 𝑁1 to (𝑁1 + 𝑁2 − 1) do
13: 𝐵2𝑏𝑒𝑓 𝑜𝑟𝑒_𝑐𝑜𝑛𝑣𝑒𝑟𝑡𝑖𝑛𝑔 [𝑖 − 𝑁1] [𝑗] = 𝐵 [𝑖] [𝑗]
14: end for
15: for 𝑖 ← (𝑁1 + 𝑁2) to (𝑁 − 1) do
16: 𝐵3[𝑖 − (𝑁1 + 𝑁2)] [𝑗] = 𝐵 [𝑖] [𝑗]
17: end for
18: end for

19: for 𝑗 ← 0 to (𝐾 − 1) do
20: /* Pack integer values using bit shifting */

21: for 𝑖 ← 0 to 𝑁1

′ do
22: for 𝑝 ← 0 to 𝑛 − 1 do
23: /* To store multiple integer values in a single register through

24: bit shifting, VitBit utilizes 𝑏𝑖𝑡𝑠𝑒𝑡 to manipulate values bitwidth. */

25: 𝑏𝑖𝑡𝑠𝑒𝑡 < 𝑏𝑖𝑡𝑤𝑖𝑑𝑡ℎ > 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 (𝐵1𝑏𝑒𝑓 𝑜𝑟𝑒_𝑝𝑎𝑐𝑘𝑖𝑛𝑔 [𝑖 ∗ 𝑛 + 𝑝])
26: for 𝑙 ← 0 to 𝑏𝑖𝑡𝑤𝑖𝑑𝑡ℎ do
27: 𝐵1[𝑖] [𝑗] |= (𝑒𝑙𝑒𝑚𝑒𝑛𝑡 [𝑙] << (𝑙 + 𝑏𝑖𝑡𝑤𝑖𝑑𝑡ℎ ∗ (𝑛 − (𝑝 + 1))))
28: end for
29: end for
30: end for
31: /* Convert integer values to floating point values */

32: for 𝑖 ← 0 to 𝑁2 do
33: 𝐵2[𝑖] [𝑗] = 𝑠𝑡𝑎𝑡𝑖𝑐_𝑐𝑎𝑠𝑡 < 𝑓 𝑙𝑜𝑎𝑡 > (𝐵2𝑏𝑒𝑓 𝑜𝑟𝑒_𝑐𝑜𝑛𝑣𝑒𝑟𝑡𝑖𝑛𝑔 [𝑖] [𝑗])
34: end for
35: end for
36: return 𝐵1, 𝐵2, 𝐵3
37: end function

of the matrix B. Also, the function requires two ratios for dividing

the input matrix for Tensor and CUDA cores (𝑚), INT and FP CUDA

cores (𝑛). The preprocessing needs the bitwidth of the arbitrary

integer values. Our initial study determines the ratio𝑚, described at

the beginning of Section 3.3, and the equation 1 defines the ratio 𝑛.

The function returns three output matrices: matrix 𝐵1 with packed

integers, matrix 𝐵2 with floating points data, and matrix 𝐵3 with

masked integers for Tensor cores. After dividing a matrix for each

core, VitBit packs the integer values of the matrix 𝐵1𝑏𝑒𝑓 𝑜𝑟𝑒_𝑝𝑎𝑐𝑘𝑖𝑛𝑔
using bit shifting. VitBit utilizes the bitset library to store multiple

integer values in a single register through bit shifting. By using the

bitset library, VitBit manipulates the values bitwise. VitBit packs

the integer values stored in matrix 𝐵1𝑏𝑒𝑓 𝑜𝑟𝑒_𝑝𝑎𝑐𝑘𝑖𝑛𝑔 into groups of

𝑛 elements per register to obtain matrix 𝐵3. Also, VitBit converts

all values of matrix 𝐵2𝑏𝑒𝑓 𝑜𝑟𝑒_𝑐𝑜𝑛𝑣𝑒𝑟𝑡𝑖𝑛𝑔 to floating point format

through a simple type conversion using static_cast(). Unlike the

input matrix B, the preprocessing of the weight matrix A is simple.

VitBit creates matrix 𝐴2 by duplicating the entire matrix 𝐴 and

converting it to a floating point format.

Overhead analysis VitBit preprocesses weights and inputs to

avoid additional data type conversion during kernel execution by

retaining the same output data format with the preprocessed in-

puts. VitBit also avoids significant kernel modification by using the

converted inputs. We analyze the overhead from employing VitBit.

Algorithm 2 VitBit GEMM kernel example.

1: function VitBit_GEMM(int *𝐴1, float *𝐴2, int *𝐵1, float *𝐵2, int *𝐵3, ...)
2: // 𝑡𝑖𝑑 ← Current thread index

3: if (tid < TC_thread_num) then
4: // Using Tensor core Core

5: // GEMM operation of A1 and B3

6: TC_GEMM(𝐴1, 𝐵3)
7: else
8: if ((tid/warpSize)%2 == 0) then
9: // Using INT Core

10: // GEMM operation of A1 and B1

11: INT_GEMM(𝐴1, 𝐵1)
12: else
13: // Using FP Core

14: // GEMM operation of A2 and B2

15: FP_GEMM(𝐴2, 𝐵2)
16: end if
17: end if
18: end function

Figure 4: GEMM operation with simultaneous execution of
FP cores and INT cores. Matrix C1 is the result of the GEMM
operation using matrices A1 and B1. Matrix C2 is the result
of the GEMM operation using matrices A2 and B2.

First, VitBit converts INT weights to FP format to execute INT

and FP cores simultaneously. However, the conversion is only re-

quired at the initial setup for the embeddedGPUs for DNN inference.

Thus, the conversion overhead is negligible.

Second, VitBit converts INT inputs to packed INT and FP at the

beginning of the inference and turns the data back to INT at the

end of the inference. Nevertheless, the size of inputs is less than

1% of the weights in the case of our experiments. Also, we observe

that the conversion time is less than 1% of the inference time. Thus,

VitBit input conversion overhead is also minimal.

Lastly, VitBit reconstructs DNN kernels into VitBit kernels, en-

abling simultaneous execution of inference and preprocessing. This

kernel alternation occurs only once at the beginning of the infer-

ence. Furthermore, since VitBit kernels return the same output

format as the preprocessed input format, the sequential execution

of DNN inference kernels incurs no data type conversion during

inference. Therefore, VitBit introduces trivial software overhead

for simultaneous execution, indicating that VitBit is a simple yet

effective method for accelerating DNN kernels.

3.3 VitBit Computation
Fusing Tensor Core Kernel: VitBit allows the simultaneous

execution of Tensor cores and CUDA cores by fusing kernels. In par-

ticular, VitBit targets GEMM operation for simultaneous execution

as Tensor cores are optimized for GEMM operation.

Algorithm 2 illustrates the way that VitBit constructs the GEMM

kernel. VitBit_GEMM function receives preprocessed data as inputs;

filter matrix in INT format (A1), filter matrix in FP format (A2),

1017

VitBit: Enhancing Embedded GPU Performance for AI Workloads through Register Operand Packing ICPP ’24, August 12–15, 2024, Gotland, Sweden

Table 2: Evaluation configurations and the target DNNmodel

Platform NVIDIA Jetson Orin AGX

GPU architecture Ampere architecture

GPU cores 1792 CUDA cores, 56 Tensor cores

CPU 8-core Arm Cortex-A78AE v8.2

Memory 32GB LPDDR5, Bandwidth: 204.8GB/s

Storage 64GB eMMC 5.1

DNN model Vision Transformer Base (ViT-Base)

packed part of input matrix in INT format (B1), converted part

of input matrix in FP format (B2), and the part to be processed

by the Tensor core of input matrix in INT format (B3). We design

the simultaneous execution of Tensor cores and CUDA cores by

referring to the kernel fusion technique proposed by prior work

[33]. We implement the VitBit kernels by aggregating the threads

for Tensor cores and CUDA cores into a single thread block. This

strategy relies on the fact that Tensor cores and CUDA cores run in

parallel if different warps in a single thread block of a kernel utilize

the two units simultaneously [43]. As described in Algorithm 2,

VitBit fuses the GEMM operation kernels for B3 and A1, processed

on tensor cores, with the GEMM operation kernels for B1 and A1,

executed on INT CUDA cores, while GEMM operation kernels for

B2 and A2 process FP CUDA cores.

To implement the algorithm 2, we profile the cublas library used

in real DNN models to investigate the thread block sizes utilized

by Tensor cores [26]. We find that Tensor cores utilize a smaller

portion of thread block sizes compared to the total available thread

block size. Based on this finding, we divide the entire thread block

into two portions; one for the warps to be executed on Tensor cores

and the other for the warps to be executed on CUDA cores. Due

to the significant proportion of warps occupied by INT cores and

FP cores, we schedule them alternately at the warp level to prevent

task concentration on one core during warp scheduling.

Figure 4 illustrates GEMM operation performed by VitBit in

CUDA cores. The figure demonstrates that the use of packed data

allows for parallel computation. INT core processes Matrix A1,

in integer format, and the packed data matrix B1, while FP core

processes matrix A2, in floating point format, and the converted

data matrix B2. VitBit divides the width of the packed portion and

the converted portion of Matrix B according to the ratio defined in

Equation 1. This computation takes advantage of the parallelism

afforded by packing, thereby balancing the computational load

with that of the converted data. Consequently, VitBit maintains an

equitable workload distribution across both the INT and FP cores

during operations.

CUDA Core Kernel: VitBit reconstructs kernels to process ma-

trix B3 using the INT cores within CUDA cores for CUDA core

kernels. Then, VitBit uniformly applies packing to matrix B1 for

both types of kernels, enabling simultaneous execution of opera-

tions on matrix B1 and matrix B2. Unlike in Tensor core kernels,

VitBit enables processing matrix B3 differently, in CUDA core ker-

nels, VitBit enables executing the operations for matrix B3 and

simultaneous operations for matrix B1 and matrix B2 sequentially.

Employing both INT and FP CUDA cores for processing provides a

certain degree of performance improvement compared to simply

using INT cores for all matrices.

Table 3: Comparison group for evaluation. Methodologies
labeled with “T” are evaluated for Tensor core kernels (e.g.,
GEMM) while those labeled with “C” are evaluated for CUDA
core kernels (e.g., GeLU, Dropout, etc.). A method with “T,C”
is evaluated for both Tensor core kernels and CUDA core
kernels, indicating that VitBit serves as a universal solution
for both types of kernels.

Methods Description

TC (baseline) T

Execution of Tensor cores only

(baseline for Tensor core kernels)

IC (baseline) C

Execution of INT cores only

(baseline for CUDA core kernels)

FC C

Execution of FP cores only by converting

INT inputs to FP using type casting

IC+FC C

Simultaneous execution of

INT and FP CUDA cores

Tacker T

Simultaneous execution of

Tensor cores and INT CUDA cores

TC+IC+FC T

Simultaneous execution of

Tensor cores, INT and FP CUDA cores

VitBit (Ours) T,C

INT packing with simultaneous execution of

Tensor cores, INT and FP CUDA cores

4 EVALUATION
4.1 Methodology
Table 2 describes the system specification of the NVIDIA Jetson

Orin platform for evaluation and the target DNN workload, Vision

Transformer Base model (i.e., VIT-Base). We obtain the ViT-Base

model, pretrained with ImageNet, from Hugging Face [16, 20]. As

described in Section 2, we focus on integer-only quantized mod-

els, which are composed of integer weights and receive integer

inputs for inference. We implement the Vision Transformer Base

model (ViT-Base) and customize it to measure the performance

improvement of VitBit [11]. We reference the open-source code for

implementation of kernels similar to those used in the actual ViT-

Base model [41]. Additionally, to ensure accuracy while using the

integer-based computations, we apply the computational process

provided in the I-ViT paper [22].

We conduct experiments targeting INT8, one of the numeric

formats commonly used in DNN model inference [22, 24]. VitBit

packs two INT8 input values. It is worth noting that although VitBit

utilizes INT8 in this paper, VitBit is applicable to the lower bitwidth

integers, allowing for packing of up to 4 values as illustrated in

Figure 3. Further analysis and research on these numeric formats

will be conducted as part of future work.

Table 3 describes several evaluated methods that utilize CUDA

cores and Tensor cores. TC represents the baseline methodology,

which only executes Tensor cores for Tensor core kernels. IC exe-

cutes INT CUDA cores only, serving as a baseline for CUDA core

kernels. FC utilizes FP CUDA cores only by converting INT in-

puts to floating point data format. IC+FC enables simultaneous

execution for INT and FP CUDA cores. Tacker fuses kernels from
multiple workloads to utilize Tensor cores and CUDA cores in par-

allel [43]. As Tacker requires distinct kernels for fusion, we enable
simultaneous execution of Tensor cores and CUDA cores during a

single kernel execution for fair comparison. TC+IC+FC leverages

INT, FP CUDA cores, and Tensor cores simultaneously. Our design,

VitBit, combines TC+IC+FC technique with operand packing to

further enhance arithmetic density. For CUDA core kernels, VitBit

1018

ICPP ’24, August 12–15, 2024, Gotland, Sweden Jeon et al.

Figure 5: Inference time comparison according to the simulta-
neous execution techniques. All results are normalized to the
baseline, TC. VitBit achieves a 1.22× speedup, while Tacker
and TC+IC+FC show 1.06×, and 1.11× speedup, respectively

Figure 6: Execution time comparison of Linear kernels of
ViT-Base model. All results are normalized to the baseline,
TC. VitBit achieves the average speedup by 1.28× and the
maximum speedup of 1.35× compared to the baseline with
Linear kernels.

preprocesses inputs, and then executes INT and FP CUDA cores

simultaneously.

4.2 Experimental Results
Performance:We evaluate performance using normalized in-

ference time as the key metric. We conduct the experiments five

times and calculate the arithmetic average of speedup over the base-

line, TC. Figure 5 presents the experimental results of simultaneous

execution solutions, including TC, Tacker, TC+IC+FC, and VitBit,

compared to the baseline TC. VitBit achieves a 1.22× speedup, while
Tacker and TC+IC+FC show 1.06×, and 1.11× speedup, respectively.

The simultaneous execution of CUDA cores and Tensor cores sig-

nificantly enhances arithmetic density, resulting in the speedup.

Particularly, VitBit outperforms TC+IC+FC by 1.1×, highlighting
the effectiveness of the proposed operand packing policy.

ViT comprises repetitive attention blocks, each consisting of Lin-

ear, Softmax, Dropout, Normalization, and GeLU activation kernels

[11]. Figure 6 demonstrates the speedup of Tensor Core kernels,

which are Linear, composed of GEMM operations during ViT-Base

inference. VitBit achieves the average speedup by 1.28× and the

maximum speedup of 1.35× compared to the baseline with Linear

kernels. As compute-intensive GEMM operations primarily consti-

tute the Linear kernels, the simultaneous execution of Tensor cores

and CUDA cores effectively accelerate Linear kernels.

For CUDA core kernels described in Section 3.3, VitBit executes

INT and FP CUDA cores simultaneously with packed integers. Fig-

ure 7 depicts the speedup of CUDA core kernels for attention block.

VitBit achieves the average speedup by 1.14× compared to the IC
and FC with CUDA core kernels, while IC+FC shows an average

Figure 7: Execution time comparison of kernels excluding the
linear kernels of the ViT-Base model. All results are normal-
ized to the baseline, IC. VitBit achieves the average speedup
by 1.14× compared to the IC, while IC+FC shows an average
of 1.05× speedup.

Figure 8: Arithmetic density while inference the ViT-Base
model using VitBit. VitBit enhances arithmetic density by
1.28×, while Tacker and TC+IC+FC improve arithmetic den-
sity by 1.11× and 1.17×, respectively.

of 1.05× speedup. Particularly, VitBit achieves 1.18× speedup by

maximum, compared to IC, indicating that the operand packing is

effective for CUDA core kernels.

Figure 8 exhibits the normalized arithmetic density over the base-

line, TC. The simultaneous execution techniques consistently show

improvement in arithmetic density compared to the baseline. VitBit

enhances throughput during Vit-Base model, leading to improved

arithmetic density. While VitBit enhances arithmetic density by

1.28×, Tacker and TC+IC+FC improve arithmetic density by 1.11×
and 1.17×, respectively.

Instruction Count Comparison: Figure 9 illustrates the nor-
malized Instruction Count compared to IC+FC. VitBit reduces the
total instruction count for kernel execution by up to 1.5× compared

to IC+FC. By packing multiple integer values and processing them

simultaneously, VitBit successfully decreases the total instruction

count for kernel execution. Reduction in instruction count con-

tributes to accelerating kernel execution. Given that embedded

GPUs typically suffer from limited core performance, VitBit is an

outstanding solution for embedded GPUs.

Instructions Per Cycle: As VitBit efficiently utilizes all the

arithmetic units in a GPU and reduces the instruction count, it

eventually executes more instructions within a fixed time window

compared to the baseline. To show our argument, we measure the

average Instructions Per Cycle (IPC) while processing an inference.

1019

VitBit: Enhancing Embedded GPU Performance for AI Workloads through Register Operand Packing ICPP ’24, August 12–15, 2024, Gotland, Sweden

Figure 9: The number of instructions per layer within each
layerwhile inference theViT-Basemodel usingViTBit. VitBit
reduces the total instruction count for kernel execution by
up to 1.5× compared to IC+FC.

Figure 10: Average IPC of ViT-Base layers while inference
the ViT-Base model using ViTBit. Utilizing both INT and FP
CUDA cores results in a 1.3 × higher IPC than using either
INT cores or FP cores solely.

Figure 10 shows the experimental results. Utilizing both INT and

FP CUDA cores with VitBit achieves an 1.3 × higher IPC than using

either INT cores or FP cores. Leveraging both cores simultane-

ously enables processing more instructions within the same time,

consequently leading to an overall speedup in inference time.

5 RELATEDWORK
Various numeric formats for DNN workloads: Numerous

prior work has utilized various bitwidths to run DNN workloads

energy-efficiently [12, 21, 25, 32, 34, 37, 42, 44]. Some prior work

has derived accuracy close to using FP32 by changing the precision

within the floating point, such as FP8 or FP6 [34, 37, 42]. Similarly,

various prior work has obtained performance close to using INT8

with formats such as INT2, INT3, and INT4 in the inference process

or has obtained performance close to using FP32 with INT8 in train-

ing [21, 44]. HBFP has been proposed a new approach that uses

both BFP and FP formats [12]. Using BFP for all operations leads to

several challenges for running DNN workloads. Since DNN opera-

tions often result in tensors with wide value distributions, that can

be too wide for BFP, leading to an accuracy loss. Additionally, BFP

may increase costs due to numerous mantissa realignments and

exponent computations depending on the characteristics of opera-

tions. Therefore, HBFP has used BFP for all dot product operations

and FP for other operations.

Implementation of various numeric formats onGPU:There
has been several prior work to use low bitwidth values in GPUs

[1, 35]. X. Wang et al., has introduced a GPU register packing

scheme that dynamically exploits narrow-width operands to pack

multiple operands into a single full-width register [35]. The prior

work has utilized the key insight that most computed results ac-

tually have fewer significant bits compared to the full width of

a 32-bit register for many applications. The scheme enables high

throughput as well as memory latency hiding in GPUs by exploiting

massive thread-level parallelism. It is because the register packing

technique utilizes register file space more efficiently, enabling the

GPU to assign additional thread blocks on SMs. CORF has proposed

a novel register file architecture that performs register coalescing

by combining reads to multiple registers required by a single in-

struction into a single physical read [1]. The prior work has utilized

the register packing technique to enable register coalescing. To

increase the coalescing opportunities, the prior work has revised

the physical register file to allow coalescing reads across different

physical registers that reside in mutually exclusive sub-banks.

Simultaneous execution of CUDA cores and Tensor cores:
H. Zhao st al., has introduced Tacker, which enables the simulta-

neous execution of CUDA cores and Tensor cores by fusing the

kernels that use CUDA cores and Tensor cores, respectively [43].

Tacker has used both cores if different warps in a thread block of

a kernel need to use the cores concurrently. To ensure QoS of ap-

plications while using the technique, the prior work has proposed

accurate prediction modeling and has applied it to scheduling. K.

Ho et al., has proposed a technique that offloads part of the GEMM

operation from the Tensor core to the CUDA core to fully utilize

GPU resources [15]. The technique has novelty in that it is purely

hardware-based and does not require additional compiler or soft-

ware support. Additionally, it also avoids the resource contention

issue since only one kernel is running in one SM.

6 CONCLUSION
Traditional GPU architectures, designed to support a limited set of

numeric formats, face challenges in meeting the diverse require-

ments of modernAI applications, which demand support for various

numeric formats to optimize computational speed and efficiency.

To address this challenge, we propose a novel software technique

called VitBit, enabling efficient processing of arbitrary integer for-

mat values. The two key ideas are the packing of arbitrary integer

formats for parallel computation and the simultaneous execution

of Tensor cores, FP32 CUDA cores, and INT32 CUDA cores. Vit-

Bit achieves 1.35 × speedup for Tensor core kernels (e.g., GEMM)

compared to the baseline, which only utilizes Tensor cores. Further-

more, VitBit accelerates CUDA core kernels up to 1.18 × compared

to the kernels leveraging INT cores only. Finally, VitBit achieves

the overall 1.22× speedup and 1.28 × improvements in arithmetic

density than the vanilla kernels of the quantized ViT-Base model.

ACKNOWLEDGMENTS
This work was supported in part by the National Research Foun-

dation of Korea (NRF) funded by the Ministry of Science and ICT

(NRF-2022R1C1C1011021, and NRF-2021R1C1C1012172) and in part

by Institute of Information & communications Technology Plan-

ning & Evaluation (IITP) grant funded by the Korea government

(MSIT) (RS-2021-II212068, Artificial Intelligence Innovation Hub).

1020

ICPP ’24, August 12–15, 2024, Gotland, Sweden Jeon et al.

REFERENCES
[1] Hodjat Asghari Esfeden, Farzad Khorasani, Hyeran Jeon, Daniel Wong, and

Nael Abu-Ghazaleh. 2019. Corf: Coalescing operand register file for gpus. In

Proceedings of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems. 701–714.

[2] Cody Blakeney, Xiaomin Li, Yan Yan, and Ziliang Zong. 2020. Parallel blockwise

knowledge distillation for deep neural network compression. IEEE Transactions
on Parallel and Distributed Systems 32, 7 (2020), 1765–1776.

[3] Stéphane Burel, Adrian Evans, and Lorena Anghel. 2021. Mozart: Masking outputs

with zeros for architectural robustness and testing of dnn accelerators. In 2021
IEEE 27th International Symposium on On-Line Testing and Robust System Design
(IOLTS). IEEE, 1–6.

[4] Stephane Burel, Adrian Evans, and Lorena Anghel. 2022. Mozart+: Masking

outputs with zeros for improved architectural robustness and testing of dnn

accelerators. IEEE Transactions on Device and Materials Reliability 22, 2 (2022),

120–128.

[5] Lile Cai, Anne-Maelle Barneche, Arthur Herbout, Chuan Sheng Foo, Jie Lin,

Vijay Ramaseshan Chandrasekhar, and Mohamed M Sabry Aly. 2019. TEA-DNN:

the quest for time-energy-accuracy co-optimized deep neural networks. In 2019
IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED).
IEEE, 1–6.

[6] Zachariah Carmichael, Hamed F Langroudi, Char Khazanov, Jeffrey Lillie, John L

Gustafson, and Dhireesha Kudithipudi. 2019. Performance-efficiency trade-off of

low-precision numerical formats in deep neural networks. In Proceedings of the
conference for next generation arithmetic 2019. 1–9.

[7] Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and Christopher M De Sa. 2024.

Quip: 2-bit quantization of large language models with guarantees. Advances in
Neural Information Processing Systems 36 (2024).

[8] Tianlong Chen, Xuxi Chen, Xiaolong Ma, Yanzhi Wang, and Zhangyang Wang.

2022. Coarsening the granularity: Towards structurally sparse lottery tickets. In

International conference on machine learning. PMLR, 3025–3039.

[9] Sangjin Choi, Inhoe Koo, Jeongseob Ahn, Myeongjae Jeon, and Youngjin Kwon.

2023. {EnvPipe}: Performance-preserving {DNN} Training Framework for

Saving Energy. In 2023 USENIX Annual Technical Conference (USENIX ATC 23).
851–864.

[10] Jack Choquette, Wishwesh Gandhi, Olivier Giroux, Nick Stam, and Ronny

Krashinsky. 2021. Nvidia a100 tensor core gpu: Performance and innovation.

IEEE Micro 41, 2 (2021), 29–35.
[11] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-

aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg

Heigold, Sylvain Gelly, et al. 2020. An image is worth 16x16 words: Transformers

for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020).
[12] Mario Drumond, Tao Lin, Martin Jaggi, and Babak Falsafi. 2018. Training dnns

with hybrid block floating point. Advances in Neural Information Processing
Systems 31 (2018).

[13] Jonathan Frankle andMichael Carbin. 2018. The lottery ticket hypothesis: Finding

sparse, trainable neural networks. arXiv preprint arXiv:1803.03635 (2018).
[14] Dongho Ha, Yunho Oh, and Won Woo Ro. 2023. R2D2: Removing ReDunDancy

Utilizing Linearity of Address Generation in GPUs. In Proceedings of the 50th
Annual International Symposium on Computer Architecture (Orlando, FL, USA)
(ISCA ’23).

[15] Khoa Ho, Hui Zhao, Adwait Jog, and Saraju Mohanty. 2022. Improving gpu

throughput through parallel execution using tensor cores and cuda cores. In 2022
IEEE Computer Society Annual Symposium on VLSI (ISVLSI). IEEE, 223–228.

[16] Huggingface. 2024. Transformers. https://github.com/huggingface/transformers/

tree/main/examples/pytorch

[17] EunJin Jeong, Jangryul Kim, and Soonhoi Ha. 2022. Tensorrt-based framework

and optimization methodology for deep learning inference on jetson boards.

ACM Transactions on Embedded Computing Systems (TECS) 21, 5 (2022), 1–26.
[18] Jeff Johnson. 2018. Rethinking floating point for deep learning. arXiv preprint

arXiv:1811.01721 (2018).
[19] Leela S. Karumbunathan. 2022. NVIDIA Jetson AGX Orin Series: A Giant Leap

Forward for Robotics and Edge AI Applications. NVIDIA Corporation.

[20] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifi-

cation with deep convolutional neural networks. Advances in neural information
processing systems 25 (2012).

[21] Yanjing Li, Sheng Xu, Baochang Zhang, Xianbin Cao, Peng Gao, and Guodong

Guo. 2022. Q-vit: Accurate and fully quantized low-bit vision transformer. Ad-
vances in neural information processing systems 35 (2022), 34451–34463.

[22] Zhikai Li and Qingyi Gu. 2023. I-ViT: integer-only quantization for efficient vision

transformer inference. In Proceedings of the IEEE/CVF International Conference on
Computer Vision. 17065–17075.

[23] Zhikai Li, Xuewen Liu, Jing Zhang, and Qingyi Gu. 2024. RepQuant: Towards

Accurate Post-Training Quantization of Large Transformer Models via Scale

Reparameterization. arXiv preprint arXiv:2402.05628 (2024).
[24] Yang Lin, Tianyu Zhang, Peiqin Sun, Zheng Li, and Shuchang Zhou. 2021. Fq-vit:

Post-training quantization for fully quantized vision transformer. arXiv preprint

arXiv:2111.13824 (2021).
[25] Shih-yang Liu, Zechun Liu, Xijie Huang, Pingcheng Dong, and Kwang-Ting

Cheng. 2023. Llm-fp4: 4-bit floating-point quantized transformers. arXiv preprint
arXiv:2310.16836 (2023).

[26] NVIDIA. 2024. CUBLAS Library. https://docs.nvidia.com/cuda/pdf/CUBLAS_

Library.pdf

[27] Ahmad M Radaideh and Paul V Gratz. 2020. Exploiting zero data to reduce

register file and execution unit dynamic power consumption in GPGPUs. In 2020
57th ACM/IEEE Design Automation Conference (DAC). IEEE, 1–6.

[28] Valentin Radu, Kuba Kaszyk, Yuan Wen, Jack Turner, José Cano, Elliot J Crowley,

Björn Franke, Amos Storkey, and Michael O’Boyle. 2019. Performance aware

convolutional neural network channel pruning for embedded GPUs. In 2019 IEEE
International Symposium on Workload Characterization (IISWC). IEEE, 24–34.

[29] Navin Ranjan and Andreas Savakis. 2024. LRP-QViT: Mixed-Precision Vision

Transformer Quantization via Layer-wise Relevance Propagation. arXiv preprint
arXiv:2401.11243 (2024).

[30] Bita Darvish Rouhani, Ritchie Zhao, Ankit More, Mathew Hall, Alireza Kho-

damoradi, Summer Deng, Dhruv Choudhary, Marius Cornea, Eric Dellinger,

Kristof Denolf, et al. 2023. Microscaling data formats for deep learning. arXiv
preprint arXiv:2310.10537 (2023).

[31] Yusuke Sekikawa and Shingo Yashima. 2022. Bit-pruning: A sparse multiplication-

less dot-product. In The Eleventh International Conference on Learning Represen-
tations.

[32] Xiao Sun, Jungwook Choi, Chia-Yu Chen, Naigang Wang, Swagath Venkatara-

mani, Vijayalakshmi Viji Srinivasan, Xiaodong Cui, Wei Zhang, and Kailash

Gopalakrishnan. 2019. Hybrid 8-bit floating point (HFP8) training and inference

for deep neural networks. Advances in neural information processing systems 32
(2019).

[33] GuibinWang, YiSong Lin, andWei Yi. 2010. Kernel fusion: An effectivemethod for

better power efficiency on multithreaded GPU. In 2010 IEEE/ACM Int’l Conference
on Green Computing and Communications & Int’l Conference on Cyber, Physical
and Social Computing. IEEE, 344–350.

[34] Naigang Wang, Jungwook Choi, Daniel Brand, Chia-Yu Chen, and Kailash

Gopalakrishnan. 2018. Training deep neural networks with 8-bit floating point

numbers. Advances in neural information processing systems 31 (2018).
[35] Xin Wang and Wei Zhang. 2017. Gpu register packing: Dynamically ex-

ploiting narrow-width operands to improve performance. In 2017 IEEE Trust-
com/BigDataSE/ICESS. IEEE, 745–752.

[36] XinWang andWei Zhang. 2018. Energy-efficient dnn computing on gpus through

register file management. In 2018 IEEE High Performance extreme Computing
Conference (HPEC). IEEE, 1–7.

[37] Haojun Xia, Zhen Zheng, Xiaoxia Wu, Shiyang Chen, Zhewei Yao, Stephen

Youn, Arash Bakhtiari, Michael Wyatt, Donglin Zhuang, Zhongzhu Zhou, et al.

2024. FP6-LLM: Efficiently Serving Large Language Models Through FP6-Centric

Algorithm-System Co-Design. arXiv:2401.14112 (2024).
[38] Huanrui Yang, Wei Wen, and Hai Li. 2019. Deephoyer: Learning sparser neural

network with differentiable scale-invariant sparsity measures. arXiv preprint
arXiv:1908.09979 (2019).

[39] Jie You, Jae-Won Chung, and Mosharaf Chowdhury. 2023. Zeus: Understanding

and optimizing {GPU} energy consumption of {DNN} training. In 20th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 23). 119–139.

[40] Zhihang Yuan, Chenhao Xue, Yiqi Chen, Qiang Wu, and Guangyu Sun. 2022.

Ptq4vit: Post-training quantization for vision transformers with twin uniform

quantization. In European conference on computer vision. Springer, 191–207.
[41] Haoyang Zhang, Yirui Zhou, Yuqi Xue, Yiqi Liu, and Jian Huang. 2023. G10:

Enabling An Efficient Unified GPU Memory and Storage Architecture with Smart

Tensor Migrations. In Proceedings of the 56th Annual IEEE/ACM International
Symposium on Microarchitecture. 395–410.

[42] Jian Zhang, Jiyan Yang, and Hector Yuen. 2018. Training with low-precision em-

bedding tables. In Systems for Machine Learning Workshop at NeurIPS, Vol. 2018.
[43] Han Zhao, Weihao Cui, Quan Chen, Youtao Zhang, Yanchao Lu, Chao Li, Jingwen

Leng, and Minyi Guo. 2022. Tacker: Tensor-cuda core kernel fusion for improving

the gpu utilization while ensuring qos. In 2022 IEEE International Symposium on
High-Performance Computer Architecture (HPCA). IEEE, 800–813.

[44] Feng Zhu, Ruihao Gong, Fengwei Yu, Xianglong Liu, Yanfei Wang, Zhelong Li,

Xiuqi Yang, and Junjie Yan. 2020. Towards unified int8 training for convolutional

neural network. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 1969–1979.

1021

https://github.com/huggingface/transformers/tree/main/examples/pytorch
https://github.com/huggingface/transformers/tree/main/examples/pytorch
https://docs.nvidia.com/cuda/pdf/CUBLAS_Library.pdf
https://docs.nvidia.com/cuda/pdf/CUBLAS_Library.pdf

	Abstract
	1 Introduction
	2 Why VitBit?
	2.1 Challenges of Emerging Numeric Formats
	2.2 Packing Register Operands for Enhanced CUDA Core Utilization
	2.3 Simultaneous Execution of Tensor Cores and CUDA Cores

	3 VitBit
	3.1 VitBit Overview
	3.2 VitBit Data Preprocessing
	3.3 VitBit Computation

	4 Evaluation
	4.1 Methodology
	4.2 Experimental Results

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

