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Warp Execution
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Memory Latency Divergence
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Diverged Load Warp Execution Time
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: 25%-75%

x

Long-tail

Long-tail of load warps execution time causes the 
pipeline stalls for many cycles



Source of Latency Divergence
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Ex-controller

• Failure in cache reservation
• Congestion in 

interconnection network

In-controller

• Timing behavior of memory
• Diverged memory 

scheduling

Over 80% of latency divergence is provoked by 
memory controllers



Diverged Memory Scheduling

7

Conventional GPU memory controller

• First-ready scheduling for maximizing memory bandwidth
• Does not consider architectural features of GPU
• Cannot prevent diverged requests

GPU needs a warp-aware memory controller 
scheme



Solution: Warp-Aware Memory Scheduling
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Warp-aware memory scheduling

• Defines an urgent request (the slowest request of a warp)
• Identifies an urgent request
• Prioritizes an urgent request
• Maintains high memory throughput



Warp-Aware Memory Scheduling Scheme: Request
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Warp-Aware Memory Scheduling Scheme: Command
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Warp-Aware Memory Scheduling Scheme: Command
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Requests to Row 0
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Warped-MC Architecture
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Warped-MC Architecture
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Generate 
warp ID Record warp ID and 

# of pending requests

Memory 
request If (n_pendings == 1 && row_hit)

    priority = High

If (n_pendings == 1 && row_miss)
    row_scoreboard[row_id]++

Row-miss case
• Pick the row with highest score (the 

most numbers of urgent requests)

Row-hit case
• Pick the request with “High” priority

Two-level scheduler
• Pick the bank with high-priority requests
• Round-robin in the same priority
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Warped-MC can identify and prioritize the urgent 
request of a warp



Evaluation

15

• GPGPU-Sim v4.2, CUDA 10.1
• Configuration: NVIDIA RTX2060 Super
• Baseline: FR-FCFS request scheduling + round-robin command scheduling
• 14 GPGPU applications, 3 types by the number of off-chip requests per a warp

Parameter Configuration

Core 32 SMs, 64 CUDA cores / SM @ 1905 MHz

Warp 32 Warps / SM

Warp scheduler LRR, 4 schedulers / SM

CTA 32 CTAs / SM

Register file 256 KB / SM

L1 data cache 64 KB / SM, 128B line, 4 sector / line, LRU, 16 way

L2 cache 4 MB, 128B line, LRU, 16 way

Dram GDDR6, 384 bit bus @3500 MHz, 16 channels, 16 banks

GDDR timing tRP=20, tRC=62, tRAS=50, tRCD=20, tRRD=10, tCCD=4
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Result: Performance
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• No performance degradation
• Improve performance by 8.9% on average

1.46



Result: Load Warp Execution Time
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: 25%-75%

• Decrease execution time of load warp 19.3% on average with a maximum 39.7%



Conclusion
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Warped-MC

• Warp-aware memory controller scheme
• Identify and prioritize urgent requests of warp

Key results

• 8.9% performance improvement for applications with many off-chip 
accesses

• Decrease 19.3% of load warp execution time and mitigate long-tail of 
load warp execution

Latency divergence

• Critical to warp executions
• Mainly provoked by memory controllers
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