
Warped-MC:
An Efficient Memory Controller Scheme for

Massively Parallel Processors

Jong Hyun Jeong*, Myung Kuk Yoon†, Yunho Oh*, Gunjae Koo*

*Korea University
†Ewha Womans University

Outline

2

• Background & Motivation

• Warped-MC

• Evaluation

• Conclusion

Warp Execution

3

Thread block

32 threads

32 threads

32 threads

32 threads

Warps
Synchronized

x

Memory Latency Divergence

4

Warp 0

Warp 1

Warp 2

Warp 3

Turnaround time (cycle)

r0

Issue requests

r0

r0

r0

r1

r1

r1

r1 r3

r2

1000 ~

Diverged
requests

Latency divergence within a warp
• GPU can not hide long memory latency
• Disturb the lock-step executions of warps

Limit of latency
hiding

Latency divergenceLatency hiding

Diverged Load Warp Execution Time

5

: 25%-75%

x

Long-tail

Long-tail of load warps execution time causes the
pipeline stalls for many cycles

Source of Latency Divergence

6

Ex-controller

• Failure in cache reservation
• Congestion in

interconnection network

In-controller

• Timing behavior of memory
• Diverged memory

scheduling

Over 80% of latency divergence is provoked by
memory controllers

Diverged Memory Scheduling

7

Conventional GPU memory controller

• First-ready scheduling for maximizing memory bandwidth
• Does not consider architectural features of GPU
• Cannot prevent diverged requests

GPU needs a warp-aware memory controller
scheme

Solution: Warp-Aware Memory Scheduling

8

Warp-aware memory scheduling

• Defines an urgent request (the slowest request of a warp)
• Identifies an urgent request
• Prioritizes an urgent request
• Maintains high memory throughput

Warp-Aware Memory Scheduling Scheme: Request

9

Alleviated divergence
Warp-aware

Service time

Bank 0 R0 R1 R2

Baseline

Service time

Bank 0 R0 R1 R18 R19 R31R2

R10R8 R9

Warp A

Warp B

Warp CLatency divergence

Urgent requests

Warp-Aware Memory Scheduling Scheme: Command

10

Bank 0

Bank 1

Bank 2

Bank 15

Service time

C0

C1

C2

C16

C17

C18

Baseline
Latency divergence

Warp A

Warp B

Warp C

Warp-Aware Memory Scheduling Scheme: Command

11

Bank 0

Bank 1

Bank 2

Bank 15

C0

C1

C2

Warp-aware

Service time

Urgent commands

C3

C4

C5

Alleviated divergence

Requests to Row 0

Requests to Row 1

Requests to Row 2

...
 Requests to Row N

Bank Request
Memory Controller

R
o

w
 S

o
rt

e
r

Read Pending

Queue

Write Pending

Queue

Memory Queue

R
e
q

u
e

s
t

S
c

h
e

d
u

le
r

C
o

m
m

a
n

d

G
e

n
e

ra
to

r

C
o

m
m

a
n

d

S
c

h
e

d
u

le
r

C
o

m
m

a
n

d

B
u

s

D
a

ta

B
u

s

Warped-MC Architecture

12

Requests to Row 0

Requests to Row 1

Requests to Row 2

...
 Requests to Row N

Bank Request
Memory Controller

R
o

w
 S

o
rt

e
r

PC Warp ID Warp Entry Table

Warp Alias Table (WAT)

Row Scoreboard

Warp ID (10) n_Pendings (6)

Warp N Entry

Read Pending

Queue

Write Pending

Queue

Memory Queue

R
e
q

u
e

s
t

S
c

h
e

d
u

le
r

C
o

m
m

a
n

d

G
e

n
e

ra
to

r

S0 S1 S2 S3 ...

C
o

m
m

a
n

d

S
c

h
e

d
u

le
r

C
o

m
m

a
n

d

B
u

s

D
a

ta

B
u

s

Priority Table

P0 P1 P2 P3 ...

Warped-MC Architecture

13

Generate
warp ID Record warp ID and

of pending requests

Memory
request If (n_pendings == 1 && row_hit)

 priority = High

If (n_pendings == 1 && row_miss)
 row_scoreboard[row_id]++

Row-miss case
• Pick the row with highest score (the

most numbers of urgent requests)

Row-hit case
• Pick the request with “High” priority

Two-level scheduler
• Pick the bank with high-priority requests
• Round-robin in the same priority

Requests to Row 0

Requests to Row 1

Requests to Row 2

...
 Requests to Row N

Bank Request
Memory Controller

R
o

w
 S

o
rt

e
r

PC Warp ID Warp Entry Table

Warp Alias Table (WAT)

Row Scoreboard

Warp ID (10) n_Pendings (6)

Warp N Entry

Read Pending

Queue

Write Pending

Queue

Memory Queue

R
e
q

u
e

s
t

S
c

h
e

d
u

le
r

C
o

m
m

a
n

d

G
e

n
e

ra
to

r

S0 S1 S2 S3 ...

C
o

m
m

a
n

d

S
c

h
e

d
u

le
r

C
o

m
m

a
n

d

B
u

s

D
a

ta

B
u

s

Priority Table

P0 P1 P2 P3 ...

Warped-MC Architecture

14

Warped-MC can identify and prioritize the urgent
request of a warp

Evaluation

15

• GPGPU-Sim v4.2, CUDA 10.1
• Configuration: NVIDIA RTX2060 Super
• Baseline: FR-FCFS request scheduling + round-robin command scheduling
• 14 GPGPU applications, 3 types by the number of off-chip requests per a warp

Parameter Configuration

Core 32 SMs, 64 CUDA cores / SM @ 1905 MHz

Warp 32 Warps / SM

Warp scheduler LRR, 4 schedulers / SM

CTA 32 CTAs / SM

Register file 256 KB / SM

L1 data cache 64 KB / SM, 128B line, 4 sector / line, LRU, 16 way

L2 cache 4 MB, 128B line, LRU, 16 way

Dram GDDR6, 384 bit bus @3500 MHz, 16 channels, 16 banks

GDDR timing tRP=20, tRC=62, tRAS=50, tRCD=20, tRRD=10, tCCD=4

1.05
1.09

0.25

0.50

0.75

1.00

1.25

2
M

M

3
M

M

G
A

S

D
IT

N
S

P

M
R

Q

B
F

S

F
D

T

G
M

V

S
M

P

S
S

P

S
Y

2

K
M

N

M
R

G

G
m

e
a

n

G
m

e
a

n

LOA MOA HOA All MOA
+HOA

N
o

rm
a

li
z
e
d

 I
P

C

Baseline FCFS Div-First Warped-MC

Result: Performance

16

• No performance degradation
• Improve performance by 8.9% on average

1.46

Result: Load Warp Execution Time

17

: 25%-75%

• Decrease execution time of load warp 19.3% on average with a maximum 39.7%

Conclusion

18

Warped-MC

• Warp-aware memory controller scheme
• Identify and prioritize urgent requests of warp

Key results

• 8.9% performance improvement for applications with many off-chip
accesses

• Decrease 19.3% of load warp execution time and mitigate long-tail of
load warp execution

Latency divergence

• Critical to warp executions
• Mainly provoked by memory controllers

Thank you

Warped-MC: An Efficient Memory Controller Scheme for
Massively Parallel Processors

Jong Hyun Jeong, Myung Kuk Yoon, Yunho Oh, Gunjae Koo

 dida1245@korea.ac.kr

	Slide 1: Warped-MC: An Efficient Memory Controller Scheme for Massively Parallel Processors
	Slide 2: Outline
	Slide 3: Warp Execution
	Slide 4: Memory Latency Divergence
	Slide 5: Diverged Load Warp Execution Time
	Slide 6: Source of Latency Divergence
	Slide 7: Diverged Memory Scheduling
	Slide 8: Solution: Warp-Aware Memory Scheduling
	Slide 9: Warp-Aware Memory Scheduling Scheme: Request
	Slide 10: Warp-Aware Memory Scheduling Scheme: Command
	Slide 11: Warp-Aware Memory Scheduling Scheme: Command
	Slide 12: Warped-MC Architecture
	Slide 13: Warped-MC Architecture
	Slide 14: Warped-MC Architecture
	Slide 15: Evaluation
	Slide 16: Result: Performance
	Slide 17: Result: Load Warp Execution Time
	Slide 18: Conclusion
	Slide 19: Thank you

