# Warped-MC:

# An Efficient Memory Controller Scheme for Massively Parallel Processors

Jong Hyun Jeong<sup>\*</sup>, Myung Kuk Yoon<sup>†</sup>, Yunho Oh<sup>\*</sup>, Gunjae Koo<sup>\*</sup>

\*Korea University †Ewha Womans University





EWHA WOMANS UNIVERSITY

# Outline

- Background & Motivation
- Warped-MC
- Evaluation
- Conclusion

Warp Execution



# **Memory Latency Divergence**





# **Ex-controller**

- Failure in cache reservation
- Congestion in interconnection network

# In-controller

- Timing behavior of memory
- Diverged memory scheduling

Over 80% of latency divergence is provoked by memory controllers

# **Conventional GPU memory controller**

- First-ready scheduling for maximizing memory bandwidth
- Does not consider architectural features of GPU
- Cannot prevent diverged requests

GPU needs a warp-aware memory controller scheme

### Warp-aware memory scheduling

- Defines an urgent request (the *slowest* request of a warp)
- Identifies an urgent request
- Prioritizes an urgent request
- Maintains high memory throughput

# Warp-Aware Memory Scheduling Scheme: Request



# Warp-Aware Memory Scheduling Scheme: Command



Service time

# Warp-Aware Memory Scheduling Scheme: Command



Service time

### Warped-MC Architecture



# Warped-MC Architecture



### Warped-MC Architecture



# **Evaluation**

- GPGPU-Sim v4.2, CUDA 10.1
- Configuration: NVIDIA RTX2060 Super
- Baseline: FR-FCFS request scheduling + round-robin command scheduling
- 14 GPGPU applications, 3 types by the number of off-chip requests per a warp

| Parameter      | Configuration                                       |
|----------------|-----------------------------------------------------|
| Core           | 32 SMs, 64 CUDA cores / SM @ 1905 MHz               |
| Warp           | 32 Warps / SM                                       |
| Warp scheduler | LRR, 4 schedulers / SM                              |
| СТА            | 32 CTAs / SM                                        |
| Register file  | 256 KB / SM                                         |
| L1 data cache  | 64 KB / SM, 128B line, 4 sector / line, LRU, 16 way |
| L2 cache       | 4 MB, 128B line, LRU, 16 way                        |
| Dram           | GDDR6, 384 bit bus @3500 MHz, 16 channels, 16 banks |
| GDDR timing    | tRP=20, tRC=62, tRAS=50, tRCD=20, tRRD=10, tCCD=4   |



### **Result: Load Warp Execution Time**



• Decrease execution time of load warp **19.3%** on average with a maximum **39.7%** 

# Conclusion

# Latency divergence

- Critical to warp executions
- Mainly provoked by memory controllers

#### Warped-MC

- Warp-aware memory controller scheme
- Identify and prioritize urgent requests of warp

#### Key results

- **8.9%** performance improvement for applications with many off-chip accesses
- Decrease 19.3% of load warp execution time and mitigate long-tail of load warp execution



#### Warped-MC: An Efficient Memory Controller Scheme for Massively Parallel Processors

Jong Hyun Jeong, Myung Kuk Yoon, Yunho Oh, Gunjae Koo

🖂 dida1245@korea.ac.kr