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ABSTRACT
The performance of GPU’s external memories is becoming more
critical since a modern GPU runs thousands of concurrent threads
that demand a huge volume of data. In order to utilize resources in
the memory hierarchy more efficiently, GPU employs a memory
coalescing scheme to reduce the number of demand requests cre-
ated from a group of threads (i.e. a warp). However, GPU’s memory
coalescing does not work well for applications that exhibit irregular
memory access patterns, thus a single warp can generate multi-
ple memory transactions. Since memory requests are serviced by
different hierarchy levels and/or memory partitions, multiple out-
standing requests from a single warp exhibit diverged fetch latency.
Considering the execution time of a load warp is decided by the
slowest memory transaction, the diverged memory latency within
a warp is a critical performance factor for load warps.

In this paper, we propose a warp-aware memory controller
scheme, called Warped-MC, to mitigate the memory latency di-
vergence issues. Based on the in-depth analysis, we reveal the mem-
ory latency divergence within a warp is mainly caused by GPU
memory controllers. While the conventional FR-FCFS memory con-
troller can maximize the effective bandwidth of DRAM channels,
the scheduling scheme of the conventional memory controller can
exacerbate the memory latency divergence of a warp. Warped-MC
employs a warp-aware scheduling scheme to alleviate the memory
latency divergence, thus Warped-MC can tackle the long tail of the
load warp execution time to improve the performance of memory-
intensive applications. We implement Warped-MC on GPGPU-Sim
configured with the modern GPU architecture, and our evalua-
tion results exhibit Warped-MC can improve the performance of
memory-intensive applications by 8.9% on average with amaximum
of 45.8%.
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1 INTRODUCTION
Graphics processing units (GPUs) exploit massive thread-level par-
allelism (TLP) to achieve high computation capability for parallel
applications. GPUs have evolved to include more compute cores
over generations to run more threads concurrently. Modern GPU
systems demand high-performance memory subsystems since a
modern GPU can run thousands of concurrent threads. In order
to handle a huge number of demand requests created from many
concurrent threads, GPU employs a memory coalescing scheme.
Namely, a coalescing engine in a load/store (LDST) unit merges
dozens of memory transactions created from a single warp (a group
of 32 threads) into one or two wide memory transactions if de-
manded address spaces can be grouped into a single large block.
However, modern applications such as machine learning appli-
cations and big data analytics exhibit irregular memory access
patterns. For these applications the coalescing unit cannot merge
memory transactions well, thus a single warp can create manymem-
ory transactions [5, 8, 21, 35]. Furthermore, GPU’s on-chip memory
size is small compared to the number of concurrent threads, thus
many demand requests cannot be efficiently serviced by GPU’s
cache hierarchy. Hence, GPU kernels that exhibit irregular memory
access patterns can create lots of off-chip memory accesses.

When a warp issues load instructions, the execution of the warp
stalls until all the demand requests from the warp are serviced by
GPU’s memory hierarchy. Even though GPU can issue other avail-
able warps if a current warp is not available for execution, the long
latency of off-chip accesses cannot be hidden by GPU’s quick con-
text switch among warps. Thus GPU pipelines frequently stall for
long cycles if warps create many off-chip memory accesses [10, 34].
The latency of off-chip memory accesses can be elongated further
due to severe congestion in memory systems. Off-chip accesses
created from concurrent warps are aggregated in target memory
partitions, then the memory controller associated with the tar-
get memory channel handles the aggregated pending transactions.
Since off-chip accesses created from hundreds of concurrent warps
are distributed to several memory partitions, resources in memory
partitions can be fully occupied if warps create multiple off-chip ac-
cesses per warp. Moreover, GPU’s memory controller first services
the transactions that can minimize DRAM service time. Such mem-
ory controller schemes applied to many pending requests provoke
long-tail in the latency of off-chip accesses. Note that the slowest
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memory transactions determine the performance of load warps
since the execution of a load warp stalls until all demanded data
are fetched from the memory hierarchy. Hence, the execution time
of load warps increases as the timing gap between the fastest and
the slowest transactions within a single warp (called latency diver-
gence in this work) is elongated. Consequently, memory latency
divergence within a warp can be critical for the performance of
memory-intensive applications [10, 21, 24, 30, 34].

In this paper, we propose an efficient memory controller scheme
for GPU, called Warped-MC. We extensively analyze memory trans-
action latency in GPUmemory hierarchy levels to reveal the sources
that provoke latency divergence. Our analysis exhibits the memory
latency divergence within a warp is mainly caused by the schedul-
ing scheme of the conventional memory controllers which prioritize
the pending requests that can access buffered rows in DRAM. In
order to tackle the memory divergence issues and long-tail in off-
chip memory accesses, Warped-MC prioritizes critical transactions
by monitoring the number of pending requests per warp. Warped-
MC can effectively improve the performance of memory-intensive
applications that exhibit irregular memory access patterns by miti-
gating the memory latency divergence issues. We summarize the
contributions of this work as follows.

• We disclose memory latency divergence issues are mainly
caused by memory controllers. Especially we reveal the row-
hit/miss scheduling and bank scheduling schemes of the
conventional memory controller provoke latency divergence
severely.
• Based on the in-depth analysis, we propose an efficient warp-
aware memory controller scheme that can mitigate memory
latency issues and long-tail in off-chip memory accesses.
• In order to evaluate our proposed memory controller scheme,
we implement Warped-MC on the cycle-accurate GPGPU
simulator [19]. Our evaluation exhibits Warped-MC can ef-
fectively improve the performance of memory-intensive ap-
plications by mitigating memory latency divergence.

The remainder of this paper is organized as follows. Section 2
describes conventional GPU architecture and memory controller
schemes. We analyze the latency divergence issues in off-chip mem-
ory transactions in Section 3. We describe the scheduling algorithm
and the hardware architecture of Warped-MC in Section 4. Evalua-
tion details are exhibited in Section 5. Section 6 discusses related
work. We conclude in Section 7.

2 BACKGROUND
2.1 GPU Architecture
As shown in Figure 1, a single GPU chip equips tens of streaming
multiprocessors (SMs) and several memory partitions associated
with external device memories. GPU employs a single-instruction
multiple-thread (SIMT) execution model to run multiple concur-
rent threads generated from the same kernel. GPU groups multiple
threads (32 threads usually) to form a warp, and a single SM can
run dozens of concurrent warps. In order to hide the latency of
execution units, GPU employs fine-grained multithreading among
concurrent warps. Namely, an SM can issue any available warps
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Figure 1: GPU architecture

if a current warp cannot be executed. However, off-chip mem-
ory accesses usually take hundreds of cycles, thus such long la-
tency cannot be hidden by quick context switches among dozens
of warps [22].

GPU’s memory hierarchy is designed to efficiently handle a large
number of memory transactions generated from many concurrent
threads. A load/store (LDST) unit in an SM employs memory coa-
lescing to reduce the number of memory transactions created from
a single warp. Namely, the coalescing unit merges multiple mem-
ory transactions created from a warp into a single request if the
addresses of the transactions can be allocated in a large memory
block. Thus, a single warp can create one or two memory requests
with memory coalescing if the warp accesses regularly allocated
data. However, the memory coalescing does not work well if the
treads within a warp exhibit irregular access patterns. In this case,
a single warp creates many memory transactions to provoke severe
congestion in the memory hierarchy. An SM equips a private L1
data cache shared by the concurrent threads in the SM. Modern
GPU architectures employ a sector cache structure and a streaming
cache structure for the L1 data cache to handle multiple irregular
outstanding requests more efficiently [9, 18, 31]. Multiple memory
partitions and tens of SMs are connected via an interconnection
network as shown in Figure 1. Each memory partition includes one
or more L2 cache blocks and memory channels to external mem-
ories. Note that L2 caches can be shared by multiple SMs via the
interconnection network. In order to exploit memory-level paral-
lelism (MLP), address space is interleaved across multiple memory
partitions.

As a modern GPU equips more SMs to increase the number
of concurrent threads, GPU’s performance can be significantly
restricted by the performance of the GPU memory hierarchy [11,
14]. Especially, memory-intensive kernels can create a large amount
of off-chip accesses since GPU’s cache hierarchy is not efficiently
utilized due to cache pollution and severe congestion by excessive
memory transactions. Note that off-chip accesses take longer as
data traffic is heavy on memory channels. In this case, SM pipelines
stall more frequently since the execution of load warps is blocked
until the demand requests are serviced by external device memories.

2.2 GPU Memory Controller
GPU deploys GDDR [32] or high-bandwidth memory (HBM) [16] as
a main device memory in order to provide high bandwidth for heavy
data transactions demanded by thousands of concurrent threads.
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Figure 2: GPU memory controller scheme

Each main memory chip includes multiple banks that can operate
independently to exploit bank-level parallelism (BLP). GPU usually
employs an XOR-based bank address indexing policy to distribute
memory requests from a single warp to multiple banks [13]. As
shown in Figure 1 a single GPU chip is connected with multiple
external DRAM chips via multiple memory channels associated
with the corresponding L2 partitions. Amemory controller manages
the data transactions between the L2 partitions and the associated
DRAM chips. Hence, GPU can provide high data bandwidth to
the external DRAM by exploiting memory-level parallelism via
multi-bank and multi-channel topology.

GPU’s memory controller associated with each memory channel
is designed to provide high bandwidth to the connected DRAM
chips. Figure 2 depicts the first-ready, first-come-first-service (FR-
FCFS) [29] memory scheduler scheme employed to GPUs. The
FR-FCFS scheduling can provide higher bandwidth compared to a
simple first-come-first-service (FCFS) scheme since FR-FCFS sched-
ules the requests that will access the same row of a target bank with
higher priority. Note that a memory controller can save activate
and precharge commands since the requested data can be provided
from a row buffer (i.e. sense amplifiers) quickly.

An FR-FCFS memory controller works as follows. When the
memory controller receives a memory request from an L2 partition,
the request is enqueued in the one of pending queues (❶). Then,
the controller identifies the bank ID and the row address of the
request in the pending queue to sort the request by bank IDs (❷).
The controller schedules the request with higher priority if the row
address of the request is equal to the address of the open row (i.e.
row data in a row buffer). If the controller cannot find any requests
that can access the data in the row buffer, the controller schedules
the oldest request to the target bank (❸). This is a row conflict case,
and the controller needs to issue additional DRAM commands to
close the current row and fetch another row [26]. When a request
is scheduled, the controller creates DRAM commands based on
required operations (❹), then the controller issues the commands
to a target bank (❺). Normally the controller selects a target bank
from an available bank pool in a round-robin fashion in order to
guarantee fairness among multiple banks. To summarize, an FR-
FCFS memory controller tends to issue the requests to the open
row with higher priority regardless of the waiting time and the
urgency of the pending requests.

3 MOTIVATION
3.1 Latency Divergence in Memory Requests
Since GPU runs hundreds of warps concurrently, the memory trans-
actions created by many concurrent wraps are jumbled in GPU’s
memory hierarchy. If requested data is not found in the target L2

partition, the missed transactions need to be serviced by the mem-
ory controllers associated with the L2 partition. As described in
Section 2.2, GPU’s memory controllers adjust the issuance order of
pending requests to maximize the throughput of external memories.
Namely, the memory controllers do not consider any information
regarding warp executions for scheduling memory requests. Note
that the latency of a load warp is decided by the slowest memory
transaction. In the worst-case scenario, a load warp cannot com-
plete for an extremely long cycle even if only one memory request
is not serviced due to the first-ready scheme of the memory con-
troller. In this paper, we define memory latency divergence as a
gap between the shortest and the longest turnaround times of the
off-chip memory requests generated from a single warp. Obviously,
a load warp can be committed after the last memory request is
serviced, thus the memory latency divergence of a load warp is
critical for the performance of warp execution [20, 21, 30].

We analyze the memory latency divergence observed in GPU
applications using 14 benchmarks selected from the popular GPGPU
benchmark suites [7, 12, 23, 33]. Based on the amount of off-chip
memory accesses created from a single load warp, we classify the
GPU applications as low off-chip access (LOA), medium off-chip
access (MOA), and high off-chip access (HOA) applications. For
LOA applications, less than one off-chip access is generated from a
load warp on average. We can observe more than 8 off-chip accesses
per warp on average for HOA applications, thus such applications
provoke extremely heavy traffic on the memory hierarchy that
GPU performance is restricted by the limited bandwidth of memory
channels [10]. MOA applications create 2–8 off-chip accesses per
load warp on average.

Table 1: Benchmarks

Abbr. Description Type
2MM 2 Matrix Multiplications [12] LOA
3MM 3 Matrix Multiplications [12] LOA
GAS Gaussian Elimination [7] LOA
DIT Multiresolution Analysis kernel [12] LOA
NSP Survey Propagation [23] LOA
MRQ Magnetic Resonance Imaging-Q [33] LOA
BFS Breadth-First Search [7] MOA
FDT 2D Finite Difference Time Domain Kernel [12] MOA
GMV Vector Multiplication and Matrix Addition [12] MOA
SMP Stream Priorities [27] MOA
SSP Single-Source Shortest Path [23] MOA
SY2 Symmetric Rank-2K Operation [12] HOA
KMN K-means [7] HOA
MRG Magnetic Resonance Imaging-Gridding [33] HOA

We investigate the characteristics of off-chip accesses per warp
for MOA and HOA applications as shown in Figure 3. Note that
memory latency divergence is not critical for LOA applications
since load warps are well-coalesced and less than one request per
warp is serviced by DRAM. We can observe several warps create
more than 10 off-chip accesses for BFS and GMV. For HOA appli-
cations, a large fraction of warps creates many off-chip accesses
since threads in a warp exhibit irregular access patterns and many
memory transactions from uncoalesced warps miss in the cache
hierarchy.
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Figure 3: Off-chip access characteristics
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Figure 4: Latency divergence and warp execution time
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Figure 5: Distribution of load warp execution cycles

Figure 4 exhibits the average memory latency divergence and
the execution time of the load warps that generate multiple off-
chip accesses. We observe HOA applications exhibit extremely
high memory latency divergence. For KMN the average latency
divergence is 1570 cycles, which means a load warp needs to wait
for additional 1570 cycles on average since the fastest request is
serviced. Our observation reveals the GPU applications that create
more off-chip accesses exhibit severe memory latency divergence.
As shown in Figure 4b the load warps of such applications also
exhibit longer execution time.

The box plot in Figure 5 exhibits the distribution of load warp
execution cycles for MOA and HOA applications. The execution
cycle of each load warp is normalized to the average execution
cycle of entire load warps for each application. The upper and lower
horizontal lines of a black-colored box represent the lower quartile
(25th percentile) and the upper quartile (75th percentile) of warp
execution time. As shown in the figure we observe a wide range of
distribution in the execution cycles of load warps. Especially we
can observe severe long-tail [1] (upper 25% range) of load warp
execution time. If a load warp exhibits extremely long execution
cycles, a warp scheduler cannot find any available warps thus the
pipelines in an SM can stall for many cycles. We can say such long-
tail of a load warp execution time is mainly caused by the latency
divergence in off-chip memory accesses. We now investigate the
sources of memory latency divergence in the next section.
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Figure 6: Fraction of memory latency divergence by Ex-MC
and In-MC

3.2 Sources of Memory Latency Divergence
As explained in Section 2.1, memory requests from a warp first
access the private L1 cache in an SM and then missed requests are
transferred to the shared L2 partitions. The transactions missed in
the L2 cache are delivered to the associated memory controller to
access external DRAM. Since memory requests pass through several
hardware components in multiple memory hierarchy levels, these
hardware resources can lead to latency divergence observed in mul-
tiple memory requests from a warp. In this section, we analyze the
sources of memory latency divergence in GPU memory hierarchy.
We classify the sources of the memory latency divergence into two
parts: external parts of a memory controller (Ex-MC) and internal
parts of a memory controller (In-MC).

Ex-MC: Multiple memory requests from a warp access L1 cache,
interconnection network, and L2 cache partitions before the re-
quests are serviced by memory controllers. The hardware compo-
nents within this path can cause latency divergence among multiple
requests. For instance, outstanding requests registered in L1 miss
status holding registers (MSHRs) are sent to the injection queue
of the interconnection network sequentially, however, the later re-
quests can be injected after many cycles due to the queuing delays
and the scheduling policy of the interconnection network. Fur-
thermore, an additional cycle gap can be exhibited between earlier
and later transactions since the memory request from an SM can
be mixed with many requests from other SMs in a destination L2
partition [36]. Latency divergence can be also caused by differ-
ent congestion levels (i.e. different counts of waiting transactions)
across multiple L2 partitions.

In-MC: Memory latency divergence can be provoked by a mem-
ory controller since GPU memory controllers usually employ out-
of-order schemes to increase effective bandwidth to external DRAM.
As described in Section 3.3 the FR-FCFS DRAM controller sched-
ules the requests that access the open-row with the highest priority,
thus the pending requests that need to change the buffered row
may not be serviced for many cycles. Such requests can exhibit a
longer turnaround time. Moreover, DRAM timing constraints and
bank scheduling can increase the timing gap between consecutive
memory requests [25]. In the following section, we will describe
the detailed scheduling schemes that can aggravate the memory
latency divergence in the memory controller.

Figure 6 exhibits the fraction of memory latency divergence pro-
voked by Ex-MC and In-MC. For memory transactions created from
a warp that accesses DRAM, we measure the latency of hardware
components in GPU memory hierarchy to compare the latency
between the fastest and the slowest memory requests. For instance,
In-MC represents the latency difference between the fastest and
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the slowest requests in a memory controller. Our evaluation reveals
that latency differences in memory controllers occupy the most part
of the memory latency divergence for MOA and HOA applications.
On average 82.6% of memory latency divergence is provoked by the
memory controllers. Our analysis results exhibit the out-of-order
scheduling of the FR-FCFS controllers is the most critical factor
that results in the memory latency divergence.

3.3 Analysis of Memory Controller Scheduling
In this section, we analyze the detailed scheduling mechanisms of
the FR-FCFS memory controller, which schedules the pending re-
quests that will hit the open-row first and then apply conventional
FCFS scheduling. Note that latency divergence is caused by the tim-
ing gap between consecutive requests. We cannot avoid the timing
differences by DRAM timing constraints since such timing proper-
ties are native characteristics of DRAM circuits. On the other hand,
we can adjust the conventional scheduling algorithms to alleviate
memory latency divergence. We investigate three scheduling parts
that can be modified for mitigating divergent turnaround times of
memory requests within a warp.

Request scheduling for row-hit cases: If the FR-FCFS con-
troller finds the pending requests that hit the open-row of the target
bank, the controller schedules these requests first. In order to access
column data in the row buffer of the target bank, the memory con-
troller issues a column address strobe (CAS) command to DRAM.
Since a CAS command consumes 5.71 ns for GDDR6 [32], a request
needs to wait for long cycles in the pending queues if there are
many earlier requests that will hit the buffered row. Note that the
FR-FCFS controller employs an FCFS scheme for the requests that
will access open-row. Figure 7a exhibits the average number of
pending requests that can hit a buffered row when a row buffer size
is 1 KB. For MOA and HOA applications the memory controller
can find several pending requests that will access the open-row of
a target DRAM bank. The maximum number of ready requests is
over 60 for many applications when we configure large pending
queues. Our results represent we can set higher priority for more
urgent requests if the controller finds multiple pending requests
that will hit the open-row.

Row scheduling for row-miss cases: The FR-FCFS controller
schedules first-arrived requests for generating DRAM commands if
the controller cannot find any requests that will hit an open-row.
In this case, the controller needs to issue additional DRAM com-
mands such as a precharge command for closing the open-row and
an activate command for transferring the target row to the row
buffer. Moreover, modern DRAM devices require additional timing

constraints such as row-to-row delay (RRD) and read-to-precharge
(RTP) delay [32]. Thus DRAM controllers consume more cycles for
row-miss cases compared to row-hit cases. Hence, late requests
can be delayed longer if the controller handles row-miss cases. The
conventional controller employs an FCFS scheme for selecting a
request that replaces an open-row. However, this scheme can aggra-
vate memory latency divergence since lately-arrived requests wait
longer while former requests are scheduled for a row-miss case. Fig-
ure 7b exhibits the average number of requests that can be selected
for row-miss cases. Our analysis reveals there are multiple pending
requests that can replace an open-row of a target bank, thus later
requests wait for many cycles due to multiple row replacements.

Bank scheduling: As described in Section 2.2, a conventional
memory controller selects a target bank from an available bank
pool in a round-robin fashion. Even though the round-robin scheme
can guarantee fairness across multiple banks, this scheme cannot
expedite the bank that includes urgent requests since the conven-
tional controller does not consider the architectural features of
processor cores. For instance, in a round-robin fashion, the mem-
ory controller set the lowest priority for the bank that performed
DRAM commands most recently, thus the memory requests that
target this bank can be serviced after all other banks receive DRAM
commands even if the request needs to be serviced quickly.

To summarize, the conventional FR-FCFS memory scheduler is
designed for maximizing the effective bandwidth of DRAM chan-
nels since the throughput of memory systems is critical for the
performance of GPU. However, the conventional controller does
not consider the architectural features of GPU, thus the scheduling
schemes of the current DRAM controllers can exacerbate the mem-
ory latency divergence within a warp to slow down the execution
of load warps. Based on an in-depth analysis of the conventional
memory controller schemes on GPU, we disclose several scheduling
parts that can be modified for mitigating latency divergence caused
by the memory controller.

4 WARPED-MC
Albeit memory latency divergence within a warp can be one of
the critical factors that increase the latency of load warps, a con-
ventional memory controller scheme does not consider the SIMT
execution model of GPUs. Namely, the GPU memory controller
cannot expedite the slowest memory requests within a warp even
though the slowest transaction decides the execution latency of a
load warp. In order to tackle the latency divergence issues caused
by the conventional memory controller, we propose a warp-aware
memory controller scheme, called Warped-MC. In order to alleviate
the memory latency divergence of a warp, Warped-MC adjusts
the priorities of slower requests among multiple memory requests
generated from a single warp. Warped-MC does not sacrifice the
bandwidth of memory channels since DRAM bandwidth is one
of the critical performance factors of modern GPU architectures.
Warped-MC receives minimum warp information from SMs to fine-
tune the priority of pending memory requests. In this section we
first describe the scheduling algorithm of Warped-MC, then we
explain the hardware architecture of Warped-MC.
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4.1 Warped-MC Scheduling Algorithm
As discussed in Section 3.3, the memory latency divergence of a
warp can result from the scheduling policies of the conventional
memory controller. The first-ready scheme can lead to memory
latency divergence since the memory controller first schedules
the requests that will hit an open-row without considering GPU’s
warp structures. However, the first-ready scheme of the FR-FCFS
controller is an essential feature that can improve the effective
bandwidth of memory channels, thus Warped-MC tackles the FCFS
scheduling schemes of a memory controller to mitigate the memory
latency divergence of a warp. Algorithm 1 represents the request
scheduling for row-hit cases, row scheduling for row-miss cases,
and bank scheduling schemes of Warped-MC.

Algorithm 1Warped-MC scheduling
1: warp ID of warp A← 𝑤𝑖𝑑

2: bank ID of request← 𝑏𝑖𝑑

3: row ID of request← 𝑟𝑖𝑑

4: procedure reqest priority
5: if schedule request then
6: warp_entry[𝑤𝑖𝑑].n_pending−−
7: if warp_entry[𝑤𝑖𝑑].n_pending == 1 then
8: last request← 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝐻

9: if warp_entry[𝑤𝑖𝑑].n_pending ≥ 2 then
10: pending requests of warp A← 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝑀

11: procedure row priority
12: if schedule request then
13: if warp_entry[𝑤𝑖𝑑].n_pending == 1 then
14: row_scoreboard[𝑏𝑖𝑑][𝑟𝑖𝑑]++
15: procedure bank priority
16: if bank is idle then
17: 𝑏𝑎𝑛𝑘_𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 ← 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑_𝑟𝑒𝑞𝑢𝑒𝑠𝑡 .𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦

Request priority: Even though a row-hit case is the best situa-
tion that can reduce the number of DRAM commands, consecutive
CAS commands consume several DRAM cycles thus later requests
need to wait for dozens of cycles. Note that a memory controller
has to expedite the slowest request from a warp in order to alleviate
memory latency divergence. Hence, if Warped-MC finds multiple
pending requests that will hit an open-row and one of the requests
is the slowest request of a warp, Warped-MC schedules the slowest
request with higher priority. If Warped-MC finds multiple pend-
ing requests left in the warp after scheduling a request and those
requests hit the open-row, Warped-MC schedules the pending re-
quests with second priority. Since the pending requests have to
be scheduled consecutively to finish the warp quickly. The request
priority procedure in Algorithm 1 represents theWarped-MC sched-
uling scheme for this case. In order to detect the slowest request
of a warp, Warped-MC monitors the number of pending requests
identified by warp IDs. If a request in the pending queues is the
last pending request of a warp (i.e. the number of pending requests
of a warp is one), Warped-MC increases the priority of the slowest
request. If a request of the warp that has multiple pending requests
in the pending queue hits the open-row, Warped-MC elevates the
priority of the request to the second level. Thus, Warped-MC can
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Figure 8: Hardware architecture of Warped-MC

schedule the urgent request of a warp with higher priority when
ready pending requests are scheduled.

Row priority: Whereas the conventional memory controller
employs a simple FCFS scheme, Warped-MC schedules the row that
includes the slowest request of a warp with higher priority in case of
row-misses. For this purpose, Warped-MC groups pending requests
by row IDs (i.e. a pending row) to record scores for pending rows
based on the urgency of requests. Warped-MC increases the score
of a pending row if the row includes the slowest requests of a warp
as shown in the row priority procedure of Algorithm 1. When row
replacement is needed in case of a row-miss, Warped-MC selects
the pending row that exhibits the highest score as a new open-row.
Once a buffered row is replaced, Warped-MC schedules the requests
in the selected pending row based on the request priority procedure.
Then the score of the selected row becomes zero.

Bank priority: Warped-MC set higher priority for the banks
that will schedule more urgent requests rather than a conventional
round-robin fashion. Note that the request scheduler sets the higher
priority for the slowest request that will hit the row buffer of the
target bank. The command scheduler of Warped-MC first selects an
available bank that can receive DRAM commands from the higher-
priority bank pool in a round-robin fashion, then the command
scheduler scans the lower-priority bank pool to pick an available
bank. This two-level scheduling mechanism of Warped-MC is help-
ful for mitigating the memory latency divergence in a warp since
the command scheduler checks a smaller number of high-priority
banks whereas the conventional memory controller scans entire
banks (16 banks for GDDR6) in a round-robin fashion [32].

4.2 Warped-MC Architecture
Figure 8 depicts the hardware architecture of Warped-MC. Warped-
MC also relies on the first-ready scheme like the conventional FR-
FCFS controller in order to maximize the effective bandwidth of
DRAM channels (see the request priority part in Section 4.1). In
order to implement the warp-aware scheduling schemes, Warped-
MC includes the additional hardware components as follows. A
warp alias table (WAT) creates a global warp ID for memory con-
trollers by combining a hashed PC of a load, a warp ID in an SM,
and an SM ID. Note that Warped-MC identifies the load warps that
create multiple off-chip memory accesses to apply warp-level con-
trol schemes. A warp entry table (WET) stores the status of load
warps managed by Warped-MC. The status information such as the
number of pending requests (n_pendings) is indexed by the global
warp ID created by WAT, thus Warped-MC can access the status
information using the global warp ID. WAT and WET are global
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hardware components shared by memory controllers in L2 memory
partitions. Each memory controller of Warped-MC includes private
components such as a row scoreboard (RS) and a priority table
(PT). Warped-MC stores the scores of pending rows per table in RS.
Warped-MC makes use of PT for identifying the priority of each
bank, thus each entry of PT is associated with the corresponding
bank.

We represent the data and control flows of Warped-MC using ar-
rows and circled numbers. When the memory controller of Warped-
MC receives a memory request from an associated L2 cache, the re-
quest is enqueued in the one of pending queues (❶). Simultaneously,
WAT creates a global warp ID to register the status information of
the warp in WET (❷). If a memory request is firstly registered to
WET using a new global warp ID, the request status information
of the warp is initialized with n_pendings=1 (❸). If WET already
has an entry of a warp, only the n_pendings field is incremented.
When a new memory request is enqueued in a pending queue, the
row ID and the bank ID of the request are decoded and then such
information is given to the per-bank scheduler of Warped-MC (❹).
As described in the previous section, for row-hit cases Warped-MC
first schedules the requests that will hit an open-row based on the
request scheduling scheme (see request priority of Algorithm 1).

Warped-MC manages the private tables (RS and PT) in each
memory controller using the warp status information in WET. If
the n_pendings field of a warp is one, which means the received
request is the last (i.e. slowest) request of the corresponding warp
or the warp creates only one off-chip request. As explained in the
previous section, Warped-MC expedites such requests to alleviate
the memory latency divergence of a warp. When a pending request
is decoded by the row sorter, Warped-MC references WET using a
global warp ID and then updates RS indexed by the decoded row
ID. When a memory controller replaces an open-row of a target
bank (i.e. a row-miss case), Warped-MC picks the request in the
pending row that exhibits the highest row score as the next request
to be serviced by the target bank (❺). Warped-MC selects the target
bank of DRAM commands based on the two-level bank scheduling
scheme as explained in the previous section. In order to classify
high-priority and low-priority banks, Warped-MC records the pri-
ority data of the requests per bank in each entry of PT. Warped-MC
picks a target bank based on the two-level bank scheduling scheme
and then injects generated DRAM commands to the associated
DRAM channel (❻). Once a request is serviced from DRAM, the
request is evicted from the pending queue and WET entry of the
corresponding warp is updated (❼)

5 EVALUATION
5.1 Experiment Setup
We implement Warped-MC on the cycle-accurate GPU simulator,
GPGPU-Sim v4.2 [4, 19]. We estimate the power consumption of
GPU using AccelWattch [17]. We configure the GPGPU-Sim using
the configuration parameters listed in Table 2. The baseline GPU
architecture used for the evaluations in this work is similar to
the configurations of NVIDIA RTX 2060 Super [28]. The timing
parameters of GDDR6 are scaled based on the memory clock rates
listed in Table 2 [32]. We compare the performance of Warped-MC
with the baseline memory controller scheme that employs FR-FCFS

Table 2: GPU configurations

Parameter Configuration
Core 32 SMs, 64 CUDA cores / SM @1905MHz
Warp 32 Warps / SM
Warp scheduler LRR, 4 schedulers / SM
CTA 32 CTAs / SM
Register file 256KB / SM

L1 data cache 64KB / SM, 128B line, 4 sector / line,
512 way, LRU, 256 MSHRs

L2 cache 128KB × 32 partitions, 128B line
16 way, LRU, 192 MSHRs / partition

DRAM
384bit bus @3500Hz, 16 channels,
1 controller / channel
16 banks / chip, 1KB row size

GDDR timing tRP=20, tRC=62, tRAS=50, tRCD=20,
tRRD=10,tWR=20, tCL=20, tCCD=4

scheduling. We evaluate Warped-MC using the GPU benchmarks
listed in Table 1. All target applications are simulated until the end
of execution or until the number of committed instructions reaches
1 billion.

5.2 Performance
Figure 9 exhibits the performance of Warped-MC. We measure the
instruction per cycle (IPC) of each application by applying different
memory controller schemes. IPCs by other memory controllers are
normalized to the IPC of the baseline (i.e. FR-FCFS controllers).
FCFS controllers guarantee fairness among pending requests, how-
ever, the FCFS controllers cannot achieve high bandwidth on mem-
ory channels since buffered rows are replaced more frequently
in DRAM banks. Div-First implements a scheduling scheme that
prioritizes urgent transactions first without considering row-hit
cases. Our evaluation exhibits Warped-MC improves the perfor-
mance of all types of applications by 5.1% on average. For MOA
and HOA applications, Warped-MC uplifts the performance by 8.9%
on average with a maximum of 45.8% (KMN). FCFS controllers de-
grade GPU performance by 28.3% for all types of applications and
43.2% for MOA and HOA applications compared to FR-FCFS con-
trollers. These evaluation results present that effective bandwidth in
memory channels is a critical performance factor for modern GPU
architectures. As such, Div-First exhibits 6.0% lower performance
on average compared to the baseline since Div-First focuses on
mitigating latency divergence without considering row-hit cases.
On the other hand, Warped-MC can improve the performance of
modern GPU architectures by tackling latency divergence issues
without downgrading the effective bandwidth of memory channels.

We further analyze how Warped-MC adjusts the scheduling of
pending requests compared to the baseline controllers. Figure 10
exhibits the breakdown of the scheduling operations adjusted by
Warped-MC. As described in Section 4.1, Warped-MC adjusts the
priorities of pending requests for row-hit cases, row scheduling
for row-miss cases, and bank scheduling to alleviate memory la-
tency divergence. For MOA and HOA applications, Warped-MC
changes the bank scheduling frequently by setting higher priorities
for the banks that include urgent requests. For HOA applications,
Warped-MC adjusts the row scheduling more frequently since these
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Figure 12: Distribution of load warp execution cycles

applications generate many off-chip transactions that access multi-
ple rows in the same bank. The request rescheduling by Warpe-MC
is relatively small since Warped-MC finds a small number of re-
quests that will hit an open-row.

5.3 Warp Execution Time
Warped-MC curtails the execution cycles of load warps by alle-
viating memory latency divergence. Figure 11 shows the average
execution time of load warps by Warped-MC for MOA and HOA
applications. The measured warp execution cycles are normalized
to the average execution cycles of load warps on the baseline sys-
tem. Since Warped-MC expedites the services for urgent off-chip
accesses, Warped-MC can effectively reduce the turnaround time
of the slowest memory transaction within a load warp. Hence, the
overall execution cycles of load warps can be reduced by Warped-
MC. Our evaluation results exhibit that Warped-MC decreases the
execution cycles of loadwarps by 19.3% on averagewith amaximum
of 39.7% for MOA and HOA applications.
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Figure 13: Energy consumption normalized to the baseline

Moreover, Warped-MC improves the overall performance of load
warps by reducing the long-tail of load warp executions signifi-
cantly. Figure 12 exhibits the distribution of load warp execution
cycles for MOA and HOA applications. For each application, the
execution cycles of load warps are normalized to the average exe-
cution cycle of load warps by the baseline FR-FCFS controller. The
upper and lower horizontal lines of a box represent the lower quar-
tile and the upper quartile of the distribution of execution cycles.
The black-colored box plot and the grey-colored box plot repre-
sent the distributions by the FR-FCFS controller and Warped-MC
respectively. Our evaluation reveals that Warped-MC reduces the
long-tail of load warp executions significantly. Especially the upper
25% range of the distributions by Warped-MC is in the range of
25% to 75% of distributions (i.e. inside of a box) by the baseline for
SMP, SSP, SY2, and KMN. Consequently, Warped-MC significantly
improves the performance of load warps by tackling the memory
latency divergence provoked by memory controllers.

5.4 Energy Efficiency
Figure 13 shows the energy consumption by Warped-MC. The en-
ergy consumption of each application is normalized to the energy
consumption by the baseline machine that employs FR-FCFS mem-
ory controllers. Our evaluation results exhibit Warped-MC reduces
the energy consumption of GPU by 4.0% for all types of applica-
tions and 6.7% for MOA and HOA applications. The reduction of
energy consumption by Warped-MC benefits from the reduced
execution cycles. Since Warped-MC minimizes the row exchanges
by scheduling requests to an open-row first, Warped-MC does not
increase the power consumption in DRAM. Our evaluation results
reveal Warped-MC can improve energy efficiency in modern GPU
architectures.

5.5 Hardware Overhead
In order to implement a warp-aware memory controller scheme,
Warped-MC includes additional hardware components such as
WAT, RS, and PT as shown in Figure 8. Table 3 lists the size of
the additional hardware components for implementing Warped-
MC on the baseline GPU configurations (similar to NVIDIA RTX
2060 Super) exhibited in Table 2.
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Table 3: Hardware overhead by Warped-MC

Component Entry size No. of entries
WET 6 bits 1024 entries
RS 256 bits 16 entries
PT 64 bits 16 entries

Warped-MC exploits the information of warp-level pending re-
quests to set different priority levels to the pending requests creased
from the corresponding warp. WAT generates a warp ID that is
used for accessing WET by combining an SM ID and a warp ID per
SM. Since the baseline GPU equips 32 SMs and each SM runs up
to 32 concurrent warps, WAT creates a 10-bit warp ID. Then, the
number of pending requests is logged in WET entries indexed by
the warp ID. A single warp can create a maximum of 32 off-chip
accesses if each thread within the warp creates a separate outstand-
ing request (i.e. fully-uncoalesced). Hence, the size of a single WET
entry is 6 bits. Each entry of RS accommodates scores for rows in
the corresponding bank. We set the size of a per-row score as 4 bits.
Thus, the size of a single RS entry is 256 bits since a single bank
includes 64 rows with the baseline GPU configurations [32]. Note
that the number of RS entries is equivalent to the number of banks
per memory channel. The size of a single PT entry is determined by
the maximum number of consecutive requests for an open-row. If a
single row size is 1 KB, the size of a PT entry is 64 bits. Each entry
of PT is associated with the corresponding bank. The size of the
additional hardware components per memory controller is listed
in Table 3. For the baseline configurations, Warped-MC requires
1,408B of additional storage space per memory controller.

6 RELATEDWORKS
AsGPU relies onmassive TLP, the limited capacity and performance
of the GPU memory hierarchy is one of the critical performance
hurdles of GPU. As such, researchers have presented research out-
puts for improving the performance and efficiency of GPU memory
systems.

6.1 Memory Controller
Since the GPU performance can be significantly restricted by the ef-
fective bandwidth of memory channels, researchers have presented
efficient memory controller schemes that can handle many off-chip
requests efficiently. Jog et al. presented a memory controller sched-
uling scheme that adjusts the priorities of off-chip accesses based
on the latency tolerance of SMs [15]. Namely, the proposed memory
controller set lower priorities if the pending requests are originated
from the latency-tolerant SMs. On the other hand, our approach
focuses on the latency divergence and the long-tail within a warp,
thus Warped-MC prioritizes the urgent transactions based on the
remaining pending requests per warp. Chatterjee et al. proposed a
memory controller that gathers warp-based information globally
to issue DRAM commands consecutively for the requests from the
same warp [6]. This approach may alleviate the latency divergence
issue, however DRAM commands can be issued inefficiently since
the first-ready scheduling policy is underrated. Warped-MC can op-
erate more efficiently because it tackles memory latency divergence
while maintaining the high effective bandwidth of conventional
controllers. Mu et al. represented prioritizing memory requests

based on fixed DRAM turnaround time since the average memory
latency varies by applications [25]. Warped-MC can be effective for
any types of applications since Warped-MC monitors the informa-
tion of pending requests from warps in runtime to prioritize urgent
requests for mitigating memory latency divergence.

6.2 Cache Management
There are studies that are priority-based cachemanagement schemes
for mitigating latency divergence. Arunkumar et al. [2] proposed a
cache bypassingmechanism based on reuse distance and cacheman-
agement policy with adaptive cache granularity. However, in mod-
ern GPUs with architectural changes such as sectored cache, the
tendency of reuse distance may be not dissimilar from before. Our
work targets state-of-the-art GPUs and designs effective solutions
for latency distribution based on in-depth analysis. Ausavarung-
nirun et al. [3] proposed a cachemanagementmechanism to prevent
to evict data of warp with a high cache hit rate (hit warp) and a
memory scheduler to prioritize the pending requests of hit warps. In
applications with irregular memory access patterns, the proportion
of hit warps is low, making it difficult for this mechanism to apply.
Because Warped-MC algorithm is based on the number of pending
requests from the warp, it can be applied to irregular applications
as well as regular applications. However, our work can be extended
to combine with appropriate cache management policies.

6.3 Warp Scheduling
Meng et al. [24] proposed a dynamic warp subdivision (DWS),
which allows a single warp to occupy more than one slot in the
warp scheduler. DWS improves memory level parallelism and la-
tency hiding by allowing hit threads in a warp to run in advance.
Poise [11] by Dublish et al. is the mechanism that derives optimal
warp scheduling with machine learning from profiled kernels to
balance TLP and memory system performance. These approaches
improve MLP by limiting TLP, making it difficult to use the GPU’s
computing resources fully. Warped-MC is a solution that does not
sacrifice TLP but also increases active threads by reducing warps
that are stalled due to long latency.

7 CONCLUSION
As a modern GPU accommodates thousands of concurrent threads,
GPU performance can be significantly restricted by the limited
resources in memory channels and external device memories. Since
thread executions within a warp are explicitly synchronized, the
performance of load warps is determined by memory transactions
that exhibit the longest turnaround cycles in a warp. We observe
services for such critical memory requests are even delayed due to
the scheduling schemes of the conventional memory controller as
well as queuing delays in the GPU memory hierarchy. For memory-
intensive kernels that create excessive off-chip accesses, memory
latency divergence within a warp downgrades the performance of
load warps significantly. In this paper, we propose a warp-aware
memory controller scheme, called Warped-MC, to tackle the mem-
ory latency divergence provoked by off-chip memory accesses.
Based on the number of pending requests from a warp, Warped-
MC set higher priorities for urgent memory transactions to make
critical requests serviced from DRAM quickly. Warped-MC can
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mitigate memory latency divergence effectively without sacrific-
ing the throughput of memory channels. Our evaluation reveals
Warped-MC uplifts the performance of memory-intensive appli-
cations by 8.9% on average by improving the distributions of load
warp execution cycles.
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