
IEEE EMBEDDED SYSTEMS LETTERS, VOL. XX, NO. X, XXXX 2023 1

Adaptive Kernel Merge and Fusion
for Multi-Tenant Inference in Embedded GPUs

Jaebeom Jeon, Gunjae Koo, Member, IEEE, Myung Kuk Yoon*, Member, IEEE, Yunho Oh*, Member, IEEE,

Abstract—This paper proposes a new scheme that improves
throughput and reduces queuing delay while running multiple
inferences in embedded GPU-based systems. We observe that
an embedded system runs inference with a fixed number of
deep learning models and that inference requests often use the
same model. Unlike prior work that proposed kernel fusion
or scheduling techniques, this paper proposes a new software
technique that merges and fuses kernels by monitoring the
requests in a queue. The proposed technique first monitors a
fixed number of requests and groups the requests running the
same model. Then, it creates the kernels that iteratively process
the grouped requests. We call such a technique kernel merging.
After that, the proposed technique performs kernel fusion with
merged kernels. Eventually, our idea minimizes the number of
concurrent kernels, thus mitigating stalls caused by frequent
context switching in a GPU. In our evaluation, the proposed
kernel merge and fusion achieve 2.7× better throughput, 47%
shorter average kernel execution time, and 63% shorter tail
latency than prior work.

Index Terms—Embedded GPU, inference, multi-tenancy.

I. INTRODUCTION

EMBEDDED systems run Artificial Intelligence (AI) in-
ference for various purposes. For example, automotive

vehicles are supposed to perform real-time car and pedestrian
detection for safety [1]. Embedded systems should deal with
numerous inference requests given stringent requirements on
Quality-of-Service (QoS). To satisfy QoS, a system should
mitigate queuing delay and improve throughput.

Recent embedded systems equip Graphics Processing Units
(GPUs) to offer high throughput. Embedded GPUs should be
able to run multiple tasks efficiently. Conventional discrete
GPUs support parallel execution of multiple kernels, such as
multi-instance GPUs and multi-process service [2]. Unlike
discrete GPUs, embedded GPUs do not support such func-
tionalities. Both discrete GPUs and embedded GPUs support
multi-stream executions. However, multi-stream executions
still cannot overlap the executions of multiple kernels in

Jaebeom Jeon and Yunho Oh are with the School of Electrical Engineering,
Korea University, Seoul, Republic of Korea (e-mail: 414dragon@korea.ac.kr
and yunho oh@korea.ac.kr).

Gunjae Koo is with the Department of Computer Science and Engineering,
Korea University, Seoul, Republic of Korea (e-mail: gunjaekoo@korea.ac.kr).

Myung Kuk Yoon is the Department of Computer Science and En-
gineering, Ewha Womans University, Seoul, Republic of Korea (e-mail:
myungkuk.yoon@ewha.ac.kr).

*Myung Kuk Yoon and Yunho Oh are the co-corresponding authors.
This work was supported in part by the National Research Founda-

tion of Korea (NRF) funded by the Ministry of Science and ICT (NRF-
2022R1C1C1011021, and NRF-2021R1C1C1012172) and in part by Institute
of Information & communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government (MSIT) (No.2021-0-02068, Artificial
Intelligence Innovation Hub).

embedded GPUs. So, if an embedded GPU launches multiple
kernels simultaneously, it runs them concurrently (i.e., a GPU
runs a single kernel in a time-sharing manner). Such a mech-
anism does not improve throughput as the number of active
kernels given a fixed time window becomes the same as the
sequential execution of the kernels. Also, concurrent kernel
execution incurs frequent context switching, thus suffering
from stalls due to context switching overhead. As such, it
increases the average kernel execution time. Prior work has
proposed a technique that schedules operators (or kernels)
of concurrent tasks with a breadth-first issuing [3]. Such a
scheme could reduce queuing delays. However, prior work
eventually runs a single task in a period, so it still suffers
from underutilization of the GPU hardware resources. Also, if
thousands of inference requests are congested in an embedded
system, the prior work still suffers from stalls due to frequent
context switching and a long queuing delay.

To address the challenge above, we propose a new software
technique that improves throughput and reduces queuing delay,
called automatic kernel merge and fusion. The key idea is to
minimize the number of concurrent kernels with the following
two techniques: kernel merge and fusion. We define ‘kernel
merge’ as a new technique that iterates a single kernel with
the inputs from multiple requests or the results from previ-
ously executed kernels. Unlike concurrent kernel execution,
the kernel merge scheme reduces off-chip memory access
as it fetches filters of a deep learning layer only once, thus
reducing the average execution time of a layer. For the requests
running different models, we proposed to fuse the kernels. In
inference, depending on the number of parameters, a single
task execution time varies. With this insight, we propose a
new software technique that determines kernels to be fused.
Among the requests in a queue, our technique monitors a
fixed number of requests from the queue head. Based on a
predetermined number, the proposed software distinguishes
target models into large models and small models. After the
kernel merge, the software fuses kernels running the small
and large models, respectively. We implement a software
framework that performs kernel merge and fusion before the
system starts processing inference.

In our evaluation, the proposed technique achieves 2.7×
throughput improvement, a 50% reduction in tail latency
compared to prior work.

II. MOTIVATION AND PROPOSED IDEA

A. Why Merge and Fusion?
Embedded systems often run inference based on a concept

of server-client systems that serve and respond to requests

This article has been accepted for publication in IEEE Embedded Systems Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LES.2024.3351753

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Korea University. Downloaded on April 05,2024 at 11:21:01 UTC from IEEE Xplore. Restrictions apply.

IEEE EMBEDDED SYSTEMS LETTERS, VOL. XX, NO. X, XXXX 2023 2

Fig. 1. Sequential execution, concurrent execution, and the proposed kernel
merge and fusion on embedded GPU. GPUs perform context switching once
they detect a stall.

TABLE I
EXPERIMENT CONFIGURATIONS

Platform NVIDIA Jetson Orin AGX
GPU architecture Ampere architecture

GPU Cores 1792 CUDA cores, 56 Tensor cores
CPU 8-core Arm Cortex-A78AE v8.2

Memory 32GB LPDDR5, Bandwidth: 204.8GB/s
Storage 64GB eMMC 5.1

Total number of request 1,000
Request generation scenario Poisson distribution

DNN models AlexNet ResNet18 VGG16
Number of Layers 8 18 16

Number of Parameters 61M 11M 138M

given a stringent QoS requirement. Recent embedded systems
equip GPUs and offer a higher peak throughput than embedded
CPUs [4]. In the NIVIDA Jetson Orin AGX platform, a GPU
exhibits 6.5× higher peak throughput (INT8) than a CPU in
our initial analysis. While discrete GPUs support parallel ker-
nel execution, such as multi-instance GPU and multi-process
service [2], [5], embedded GPUs cannot run multiple kernels
efficiently. Prior work has proposed a multi-stream kernel
execution technique for embedded systems [6]. The prior work
could reduce the response time by scheduling kernels towards
better hardware utilization. While such a scheme can reduce
queuing delay, it does not improve throughput compared to the
sequential kernel execution. Figure 1 shows how an embedded
GPU runs multiple kernels. Embedded GPUs run kernels
concurrently, so active kernels share a GPU in a time-sharing
manner. Also, the concurrent kernel execution incurs frequent
context switching. GPUs contain all the register values of
thousands of threads in the hardware register file [7]. To
perform context switching, a GPU should copy all the register
values of active/inactive kernels from/to the register file. As a
result, the context switching of GPUs requires a long latency,
so it incurs an increase in queuing delay and inference time.

We run 1,000 inference requests and measure throughput
(requests/second), average inference time, and tail latency
(99%tile queuing delay + inference time, we call the sum of
queuing delay and inference time ‘service latency’). For the
experiments, we employ three models: AlexNet [8], ResNet-
18 [9], and VGG16 [10]. Table I describes the specification of
the NVIDIA Jetson Orin system that we use. We assume that
each request runs inference with either of the pre-deployed
deep learning models. We implement a request generation
scenario that receives an inference request based on the
Poisson distribution [11].

Figure 2 shows the experimental results. The concurrent

(a) Throughput. (b) Inference time. (c) Queuing delay.

Fig. 2. Comparison with sequential execution and concurrent execution. All
the results are normalized to sequential execution.

(a) Merge kernels of requests for the same
model.

(b) After merge kernels, fuse kernels running
small model.

Fig. 3. Merge and fusion design policy.

kernel execution exhibits the same throughput as the sequential
execution as mentioned above. While the concurrent kernel
execution is not effective in throughput, its average inference
time is 50% longer than the sequential execution. Also, the
concurrent kernel execution also exhibits 10% longer tail
latency than the sequential execution.

Prior work has proposed a software kernel scheduling
technique that runs kernels from different tasks in a breadth-
first order [3]. Once the software technique schedules a kernel
from a task, it prioritizes another task and runs a kernel of the
prioritized task. While the prior work could reduce queuing
delay, it eventually runs kernels in sequential order. So the
prior work could not improve throughput compared to the
sequential kernel execution.

B. Merge and Fusion

We propose a new software technique called automatic
kernel merge and fusion. Unlike the prior work on kernel
scheduling and kernel fusion, we propose a new idea of kernel
merging and adaptively apply it along with kernel fusion. With
the proposed idea, embedded systems can run multiple tasks
with a minimized number of kernels. So a system can serve
requests with shorter queuing latency and kernel execution
time than existing mechanisms in an embedded GPU. Ten-
sorRT includes a technique that vertically/horizontally fuses
the layers within a single model [12]. In contrast to TensorRT,
the proposed technique merges and fuses layers across models.
Therefore, TensorRT and our proposal are orthogonal. We be-
lieve that combining the proposed technique with TensorRT’s
fusion technique can further improve performance.

Figure 3 shows the scheme of kernel merging and fusion.
Kernel merge (Figure 3a) is a technique that runs a single
kernel to process multiple requests that run the same model.
Concurrent kernel execution and the prior work (the breadth-
first operator scheduling explained in the previous section
[3]) eventually run the kernels as many as the number of

This article has been accepted for publication in IEEE Embedded Systems Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LES.2024.3351753

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Korea University. Downloaded on April 05,2024 at 11:21:01 UTC from IEEE Xplore. Restrictions apply.

IEEE EMBEDDED SYSTEMS LETTERS, VOL. XX, NO. X, XXXX 2023 3

(a) Merged kernel generator algorithm.

(b) Fused kernel generator algorithm.

Fig. 4. Merge and fusion algorithm.

the requests. Unlike them, the kernel merge iterates the same
code as many as the number of requests running the same
model for each kernel of a model. While iterating the code,
the proposed idea uses input from each request. The input may
be either input data (image or voice) or intermediate results
from a previous kernel. Such an idea improves throughput by
eliminating context switching overhead and memory access to
fetch the same filters for multiple requests.

We also propose to employ a kernel fusion technique
inspired by prior work [13]. The proposed technique performs
kernel fusion with the kernels created by the kernel merging.
Unlike the prior work, the kernel fusion used in our idea
reduces the number of concurrent kernels to one or two.

We implement the automatic kernel merge and fusion as
shown in Figure 3b. The proposed idea consists of three
key parts in software: Request analyzer, kernel merger, and
kernel fuser. Like servers, we implement a software queue
that keeps inference requests. After creating the merged and
fused kernels, the request analyzer monitors a fixed number
of requests from the queue head (also called in the request
window in this paper). The request analyzer first finds the
requests that can be merged for each deep learning model.
In our implementation, the request analyzer monitors five
requests from the queue head as a request window. The
request analyzer finds that two requests run model M3, another
two requests run model M2, and one remaining request runs
model M1. We assume that model C contains more than 2×
parameters than models A and B. After analyzing the requests,
the kernel merger creates new kernels with the kernels of all
the layers in the three models.

Both the kernel merger and kernel fuser create new ker-
nels with existing kernels before the system actually serves
incoming inference requests. Figure 4 depicts the detailed
algorithms of the kernel merger and the kernel fuser. The
kernel merger creates a kernel that can run multiple requests
with the same models by inserting the codes that run a loop
to each kernel of a model. The kernel merger adds the codes

that perform loops to kernels of the layers in deep learning
models. Our technique analyzes the existing kernel codes at
the intermediate representation level (e.g., PTX or SASS) and
adds the codes for looping as described in Figure 4a.

After the kernel merger runs for all the models, the kernel
fuser classifies the deep learning models and creates merged
kernels with all possible combinations as we explain above.
The criteria of the task execution time in our design is the
total number of parameters of a deep learning model as the
inference time depends on it. The kernel fuser analyzes all
the parameter counts of the models in a system and calculates
their arithmetic mean. After that, the kernel fuser performs the
fusion with the models whose parameter counts are below the
average and those whose counts are above the average. In our
example in Figure 3b, the kernel fuser creates new kernels
with the merged kernels from models M1 and M2. It does
not perform kernel fusion with the kernels from model M3 as
it has an exceeding number of parameters than the average.
The kernel fuser creates new kernels with every nth merged
kernel from models M1 and M2. If either model M1 or M2
has more kernels than another model, the kernel fuser creates
fused kernels as many as the least number of kernels between
the two models and leaves the remaining kernels as they are.
The kernel fuser creates a new kernel with the merged kernels
by modifying them at the PTX level.

III. EVALUATION

We evaluate throughput (requests per second), average infer-
ence time, average queuing delay, and 99%tile queuing delay
under the following environments. As explained in Section
II, we model a request generation with a Poisson distribution
and generate 1,000 requests (333 requests for AlexNet, 333
requests for ResNet-18, and 334 requests for VGG16) in a
random order. Second, we generate only a single request for
AlexNet, ResNet-18, and VGG16, respectively. We compare
the performance of the proposed technique to that of the
sequential execution, concurrent execution, and the prior work
that schedules operators of multiple DNN models [3]. We
implement the proposed software framework on top of the
NVIDIA Jetson Orin platform [14].
Figure 5 shows the experimental results with 1,000 random

requests. The automatic kernel merge and fusion achieves
2.7× better throughput than the sequential kernel execution
and prior work. The proposed technique runs multiple tasks
only with two kernels within a short time window. Also,
for each group of tasks merged and fused by the proposed
technique, it reduces the number of global load instructions
by 27% to 40% compared to the sequential execution. The
more kernels are merged by the proposed technique, the more
load instruction count is reduced at runtime. Due to such an
advantage, the proposed technique achieve a better throughput
than the prior work. We also observe that applying only
the kernel merge achieves 2.1× better throughput than the
baseline, but it is 23% lower than the merge and fuse. The
merge only often executes multiple kernels if the grouped five
requests run multiple models, thus exhibiting lower hardware
utilization. The concurrent execution and the prior work

This article has been accepted for publication in IEEE Embedded Systems Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LES.2024.3351753

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Korea University. Downloaded on April 05,2024 at 11:21:01 UTC from IEEE Xplore. Restrictions apply.

IEEE EMBEDDED SYSTEMS LETTERS, VOL. XX, NO. X, XXXX 2023 4

(a) Throughput. (b) Inference time. (c) Average queuing delay. (d) 99%tile queuing delay.

Fig. 5. Experimental results with 1,000 requests. All the results are normalized to the results of sequential execution. BFS Scheduling is the technique that
schedules operators in a breadth-first manner [3]. For throughput, higher is better. For other metrics, lower is better.

(a) Inference time. (b) Average queuing delay.

Fig. 6. Experimental results with 3 requests. All the results are normalized
to the results of sequential execution.

exhibit the same throughput as the baseline because both run
a single kernel concurrently.

The proposed technique achieves the shortest average in-
ference time (time taken from an inference start to end)
among all the techniques. The proposed technique mitigates
context switching overhead with kernel merge and fusion, thus
resulting in a 47% shorter inference time than the prior work
and the kernel merge only. The prior work and the kernel
merge only show only a 3% shorter inference time than the
baseline. We observe that concurrent execution, even with
advanced operator scheduling, cannot contribute to improving
throughput and reducing inference time.

The proposed technique achieves the shortest average and
99%tile queuing delay, which are 50% (average) and 63%
(99%tile) shorter than the prior work. By significantly reducing
the average inference latency and running multiple tasks in
parallel, the proposed technique achieves such results. The
prior work can reduce the queuing delay if the request comes
sparsely. However, embedded systems often receive numerous
requests given a short time window. As such, rather than
scheduling operators, running them in parallel by reducing
redundant memory operations is more effective.

Figure 6 shows the experimental results of the sequential
execution, the concurrent execution, prior work, and the pro-
posed technique only with three requests. As those experi-
ments run only three requests, we do not measure 99%tile
queuing delay in these experiments. The proposed technique
and all other techniques achieve almost the same throughput,
so we do not show the results. The proposed technique
achieves only a 5% better throughput than the baseline. The
concurrent execution and the prior work eventually run a single
kernel at once, thus resulting in the same throughput.

The proposed kernel merge and fusion shows 25% longer
inference time than the prior work. However, our technique
still achieves a 70% shorter queuing delay than the prior
work. The prior work shows better average inference time and
average queuing delay than the baseline in these experiments.
However, the effect of context switching is not critical as only
three requests run. We believe that such results are not critical

as the experiment environment is not a realistic situation.

IV. CONCLUSION

For inference, embedded GPUs are not running multiple
kernels in an efficient way, thus suffering from throughput
degradation and long inference latencies. Addressing those
challenges, we propose a new software framework that adap-
tively minimizes the number of concurrent kernels while
running a greater number of tasks simultaneously. The key
idea is monitoring a fixed number of incoming requests,
classifying the requests running the same model, and running
the models whose inference latency is expected to be similar.
The proposed technique achieves 2.7× better throughput, 47%
shorter inference time, 50% shorter average queuing delay, and
63% shorter tail latency than prior work.

REFERENCES

[1] Z. Kim, “Robust lane detection and tracking in challenging scenarios,”
IEEE Transactions on intelligent transportation systems, vol. 9, no. 1,
2008.

[2] N. Corporation. (2023) Nvidia multi-instance gpu user guide.
[3] F. Yu, S. Bray, D. Wang, L. Shangguan, X. Tang, C. Liu, and X. Chen,

“Automated runtime-aware scheduling for multi-tenant dnn inference on
gpu,” in 2021 IEEE/ACM International Conference On Computer Aided
Design (ICCAD). IEEE, 2021.

[4] M. Kim, “Guaranteeing that multilevel prioritized dnn models on an
embedded gpu have inference performance proportional to respective
priorities,” IEEE Embedded Systems Letters, vol. 14, no. 2, 2022.

[5] N. Corporation. (2023) Nvidia multi-process service.
[6] W. Pang, X. Luo, K. Chen, D. Ji, L. Qiao, and W. Yi, “Efficient

cuda stream management for multi-dnn real-time inference on embedded
gpus,” Journal of Systems Architecture, vol. 139, 2023.

[7] M. Gebhart, S. W. Keckler, B. Khailany, R. Krashinsky, and W. J.
Dally, “Unifying primary cache, scratch, and register file memories in
a throughput processor,” in 2012 45th Annual IEEE/ACM International
Symposium on Microarchitecture, 2012.

[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Advances in neural informa-
tion processing systems, vol. 25, 2012.

[9] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016.

[10] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[11] S.-D. Poisson, Recherches sur la probabilité des jugements en matière
criminelle et en matière civile: précédées des règles générales du calcul
des probabilités. Bachelier, 1837.

[12] N. Corporation. (2023) Nvidia tensorrt.
[13] G. Wang, Y. Lin, and W. Yi, “Kernel fusion: An effective method for

better power efficiency on multithreaded gpu,” in 2010 IEEE/ACM Int’l
Conference on Green Computing and Communications, 2010.

[14] N. Corporation. (2022) Nvidia jetson agx orin series: A giant leap
forward for robotics and edge ai applications.

This article has been accepted for publication in IEEE Embedded Systems Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LES.2024.3351753

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Korea University. Downloaded on April 05,2024 at 11:21:01 UTC from IEEE Xplore. Restrictions apply.

