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A B S T R A C T

Modern graphics processing units (GPUs) leverage a high degree of thread-level parallelism, necessitating large-
sized register files for storing numerous thread contexts. To reduce the energy consumption in traditional static
random access memory (SRAM)-based register files, recent research has explored non-volatile memory (NVM)
for implementing register files. The hierarchical register file (HI-RF) combines SRAM-based register caches with
NVM-based register files. In HI-RF, the register cache acts as a write buffer, indexed using both register IDs and
warp IDs. HI-RF uses a direct-mapped register cache with two indexing schemes: a concatenating scheme and
a thread context-aware scheme. Compiler-assigned register IDs significantly impact cache conflicts, particularly
among registers sharing the same LSBs. To address this, we introduce a conflict-aware compiler (CAC) for
GPUs equipped with HI-RF. CAC optimizes register assignments based on approximated register write counts.
Our evaluation demonstrates that CAC improves performance by 11.1% and 5.9% with the concatenating and
thread context-aware index schemes, respectively when compared to a conventional compiler. Simultaneously,
it reduces the energy consumption by approximately 73.0 percentage points compared to SRAM for both
indexing schemes.
1. Introduction

In modern computing systems, graphics processing units (GPUs)
have evolved into indispensable components due to their remarkable
capacity to handle high-throughput applications, including video pro-
cessing, scientific simulations, and deep learning tasks [1–3]. GPUs
demonstrate exceptional proficiency by exploiting thread-level paral-
lelism (TLP), facilitating the concurrent execution of numerous threads.
To manage the extensive contexts associated with this high degree of
TLP, GPUs require significantly large-sized register files. Several prior
studies revealed that these register files are the most energy-consuming
components within GPUs [4,5].

To overcome this limitation, the replacement of static random ac-
cess memory (SRAM)-based register files with energy-efficient non-
volatile memory (NVM)-based register files has garnered significant
attention in prior studies [6–9]. However, due to critical issues such
as high energy consumption for writes, high write latency, and limited
write counts of NVM, it is impractical to use NVM-based register files
as the sole register files on GPUs. As a result, a recent study proposes
adopting a hierarchical register file (HI-RF) structure that combines
an SRAM-based register cache and an NVM-based register file [10].
Considering that GPU applications often exhibit substantial temporal
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locality, incorporating the fast register cache effectively alleviates the
challenges posed by the NVM [11].

Within HI-RF, the register cache serves as a write buffer, storing
computed data from execution units. The data stored in the cache
is only written back to the NVM if there is a cache conflict, which
is commonly observed in the register cache due to its typical direct-
mapped cache design. Based on the prior work, there are two schemes
of cache indexing for the direct-mapped register cache, a concatenating
scheme and a thread context-aware scheme [10,12]. Both indexing
schemes utilize warp IDs and register IDs to calculate register cache
indices. The warp ID is determined by the number of scheduled threads,
while the register ID is assigned by compilers. Therefore, the cache
conflicts within the register cache can be influenced by the compiler’s
register assignment.

Regardless of the indexing scheme used for the HI-RF, specific bits
from the register ID are used for computing the register cache index
without any modifications. These bits are crucial in determining cache
conflicts in the HI-RF that employs a direct-mapped policy for the
register cache. In this work, we introduce the concept of a critical
set, which consists of registers sharing the same portion of bits from
the register ID for computing the register cache index. If registers
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within the same critical set have a similar number of write operations
performed on them, it will increase cache conflicts. On the other hand,
if the write operations are distributed well across different critical sets,
widening the write count gap between registers in each critical set, the
number of cache conflicts will effectively decrease.

Based on this assumption, in our initial evaluation, we assess per-
formance under two scenarios: an ideally best case and an ideally worst
case. In the ideally best case, we minimize cache conflicts by maximiz-
ing the write count gap of registers in the same critical set, using regis-
ter write access information obtained from the post-execution analysis.
Conversely, in the ideally worst case, we intentionally maximize cache
conflicts by grouping registers with similar write counts into the same
critical set based on register write count information. Our evaluation
results demonstrate that the ideally best case improves performance by
13.8% and 5.7%, while the ideally worst case shows 19.7% and 11.9%
of performance degradation compared to the baseline configuration,
with the concatenating scheme and the thread context-aware scheme,
respectively. Our results reveal the crucial role of register assignment
in compilers for HI-RF.

Both ideal cases are implemented using register write counts from
post-execution information, which compilers cannot obtain during
the compilation. Since write operations are performed on destination
operand registers in instructions, it is possible to approximate write
counts by tracking how often registers are used as destination operands.
Therefore, we leverage the destination operand count of registers as a
substitute for the actual write count information. This paper introduces
a conflict-aware compiler (CAC) that performs the register assignment
with register destination count analysis to reduce cache conflicts in the
HI-RF. By utilizing this approximated write count information, CAC can
identify optimal register set combinations to assign register IDs. The
proposed compiler optimization scheme can be easily integrated with
conventional compilers without requiring extensive modifications.

The proposed CAC is evaluated using a cycle-driven simulator,
GPGPU-Sim 4.0 [13] and a circuit-level simulator, NVSim [14], with 12
applications. To implement CAC’s register assignment, we first modify
the simulator to have similar register assignments as SASS [15] and
apply the proposed register assignment to the modified version for a de-
tailed analysis of our compiler technique. Benchmark applications are
categorized into two groups: a compiler-sensitive group and a compiler-
insensitive group, based on their register usage, which determines the
sensitivity to their compiler’s register assignment. In our evaluation,
CAC shows a performance improvement of 11.1% and 5.9% with the
concatenating scheme and the thread context-aware scheme, respec-
tively. Additionally, we analyze occurrences of cache conflicts in the
register cache. The proposed compiler optimization scheme effectively
reduces cache conflicts by 6.2% and 2.5% with the concatenating
scheme and the thread context-aware scheme, respectively. Addition-
ally, CAC shows 73.1 percentage points and 72.9 percentage points
lower energy consumption than SRAM with the concatenating scheme
and the thread context-aware scheme, respectively.

The remainder of this paper is organized as follows. Section 2
presents the baseline GPU architecture with the HI-RF structure and
two register cache indexing schemes. In Section 3, the limitation of
the current compiler for HI-RF is presented. In Section 4, we propose
CAC for HI-RF, which addresses the problem of conventional compiler.
Section 5 shows the performance evaluation of the proposed CAC. In
Section 6, we present several related works, and finally, we conclude
our paper in Section 7.

2. Background

In this section, we present the baseline GPUs featuring a HI-RF,
which includes both an SRAM-based register cache and an NVM-based
register file [10]. Additionally, we introduce two previously proposed
cache indexing schemes [10,12].
2

2.1. Graphics processing units

Fig. 1 illustrates the baseline GPU architecture with HI-RF [10].
When a kernel is executed, thread blocks (TBs) are launched on GPUs.
A TB scheduler assigns those TBs to streaming multiprocessors (SMs),
distributing them based on the available resources. The scheduled TBs
are divided into groups called warps or wavefronts, each comprising
a fixed number of threads (e.g., 32 threads in NVIDIA GPUs and 64
threads in AMD GPUs). SMs serve as basic computational units within
GPU, which are responsible for executing instructions in parallel. The
SM comprises four sub-cores (or processing blocks), each of which
contains its own resources (e.g., a warp scheduler, a register file, and
streaming processors (SPs)). In each sub-core, tens of warps can be
executed concurrently, and the execution of these scheduled warps
is managed by the warp scheduler, issuing warps to SPs. Finally, all
the threads within the same warp are executed simultaneously in
lockstep, which is known as the single instruction multiple threads
(SIMT) execution model.

To support the concurrent execution of such a large number of
threads (usually thousands of threads are concurrently executed on
each SM), SMs are equipped with large-sized register files. These regis-
ter files are essential in enabling quick access to the required data for
threads, facilitating efficient parallel processing. As GPU generations
have evolved, the size of the register files has grown to meet the
increasing demand of modern parallel workloads [3,16]. However,
prior research indicates that the register files significantly contribute to
the GPU energy consumption, accounting for approximately 20% of the
total energy usage [5,17]. Consequently, several research studies have
suggested a range of energy-efficient register file designs [6,8,18,19].

In addition to the register files, each SM has an L1 cache and
shared memory (also known as scratchpad memory), which are shared
by sub-cores. Programmers possess complete control over the shared
memory space, while the L1 cache operates transparently without their
direct intervention. The size of both the L1 cache and shared memory
can be adjusted by programmers according to their specific needs and
preferences. Furthermore, GPUs have an L2 cache and global memory
that are shared by all threads scheduled on the SMs. These memory
components have progressively expanded in size as a response to the
growing demands of machine learning applications and their extensive
data prerequisites [3,20].

2.2. NVM-based register file

Traditional GPUs employ SRAM-based register files, known for their
high energy consumption due to the high leakage power of SRAM.
Thus, several prior studies have explored the integration of NVM-based
register files on GPUs, taking advantage of their significantly low static
energy consumption with low leakage power, which has been observed
to be much lower than that of the SRAM-based register files [6,7].
In addition to such low leakage power consumption, NVM provides
high density and good scalability [22–24]. The detailed parameters
used to evaluate SRAM and NVM-based register files are provided in
Table 3 in Section 5.1. Among the various NVM technologies such as
phase change memory (PCM), resistive memory (ReRAM), and spin
transfer torque magnetic random access memory (STT-MRAM), STT-
MRAM has emerged as the most promising candidate that can replace
SRAM, due to its relatively lower read/write latency, and higher write
endurance than other types. Thus, several previous studies suggest STT-
MRAM-based register files on GPUs to address the issues associated
with SRAM-based register files [21,25,26].

Fig. 2 shows the STT-MRAM-based register file architecture and the
detailed cell design of STT-MRAM [21], which is employed for our
evaluation. Within each register bank, the cell array consists of 4096
rows of 64 bits, with each row comprising STT-MRAM cells. The STT-
MRAM cell utilizes a magnetic tunneling junction (MTJ) pillar to store
a bit in a resistive state, with an accessibility controlled by an access
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Fig. 1. Overview of baseline GPU architecture with hierarchical register file.
Fig. 2. STT-MRAM-based register file architecture and cell design of STT-MRAM [21].
ransistor. STT-MRAM uses spin-polarized current which is passed via
he MTJ to manipulate the magnetic alignment of its two layers — the
ree layer and the reference layer. When these layers are parallel, the
TJ exhibits low resistance (i.e., the logic value of 0). Conversely, if the

ayers are anti-parallel, the MTJ exhibits high resistance (i.e., the logic
value of 1). To further optimize the cell area and minimize the static
power consumption of STT-MRAM-based register file, prior research
proposed the register file design with multi-level cell (MLC) STT-
MRAM technology that can double the density of STT-MRAM [21,26].
Additionally, another study proposed STT-MRAM-based register files
to address the read disturbance issue inherent in STT-MRAM due to
the scaling technology [25]. In conclusion, considering its advantages
and its compatibility with CMOS, STT-MRAM could be an attractive
solution for the integration as the register files on GPUs [22,24,27,28].

2.3. Hierarchical register file

NVM has proven effective in reducing energy consumption when
compared to SRAM. However, the adoption of NVM-based register file
on GPUs still introduces challenges, particularly concerning its long
write latency, leading to a performance degradation. Even with STT-
MRAM, known for its minimal write latency among NVMs, NVM-based
register file suffers from a write latency four times longer than SRAM-
based register file [7,28,29]. To address this issue, Li et al. proposed a
hybrid register file that incorporates an SRAM write buffer for the NVM-
3

based register file [7]. In this structure, data is first written to the fast
SRAM and then stored in NVM while executing the next instructions.
While this approach can mitigate the long latency problem associated
with NVM, it does not address the write endurance issue, which is also
recognized as a critical problem with NVM. In a hybrid design of this
nature, all data written to the SRAM write buffer must eventually be
written back to NVM.

To tackle these issues, researchers have shown considerable interest
in HI-RF [10]. This approach leverages the benefits of both SRAM-based
register cache and NVM-based register file to mitigate the limitations
associated with using solely NVM-based register file. The apricot color
of Fig. 1 illustrates the detailed structure of the HI-RF. For read oper-
ations of the HI-RF, the corresponding values can be loaded from both
the SRAM-based cache and the NVM-based registers. Meanwhile, all
the computed results are first written only to the SRAM-based cache.
In contrast to the hybrid register file, data is written back to the
NVM only if there is no available cache line remaining for storing the
value (i.e., when cached data must be evicted). However, the choice of
the direct-mapped cache of the HI-RF brings attention to the issue of
cache conflicts. Because with the direct-mapped policy, data associated
with a specific cache index can exclusively reside in a single-mapped
entry within the cache. Nevertheless, by leveraging the data locality
commonly observed in GPU applications [11], write-back operations
are minimized with the HI-RF, thereby mitigating the write endurance
problem of hybrid register files.

The HI-RF structure demonstrates a comparable area overhead
when contrasted with the conventional SRAM-based register file, at-

tributed to the higher density of NVM. Table 1 illustrates the relative
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Fig. 3. Two register cache indexing schemes.
Table 1
Normalized area overhead of three different register file designs: SRAM-based,
NVM-based, and hierarchical.

Register file SRAM-based NVM-based Hierarchical

Area Overhead 1.0× 0.499× 0.945×

area overhead of both NVM-based (STT-MRAM-based) register file and
HI-RF, encompassing an NVM-based register file and an SRAM-based
register cache, in comparison to an SRAM-based register file. Area mea-
surements are performed using a circuit-level simulator, NVSim [14],
with a 22-nm process node. Due to the higher density of NVM compared
to SRAM, an NVM-based register file can be constructed at 49.9% of the
size of an SRAM-based register file. Conversely, for the HI-RF, the area
complexity is similar in size (94.5%) to the conventional SRAM-based
register file.

2.4. Register cache indexing schemes

The choice of a cache indexing scheme is a crucial factor in de-
termining the overall performance of GPUs since the HI-RF employs
a direct-mapped register cache design. In this section, we explain
two previously proposed register cache indexing schemes, which are
depicted in Fig. 3. The first scheme is referred to as a concatenating
scheme, where the register ID and warp ID are simply concatenated to
form the cache index [10]. The second scheme is known as a thread
context-aware scheme, which computes the register cache index by
taking into account a correlation between a number of scheduled warps
and a number of registers utilized by threads [12].

Note that in the baseline architecture, each SM can concurrently
execute up to 64 warps, requiring six bits to represent their respective
warp ID within each SM. These 64 warps are then assigned to one
of the four sub-cores within the SM based on their warp IDs. To
evenly distribute the 64 warps among the four sub-cores, the two least
significant bits (LSBs) of the warp ID are employed for choosing the
sub-core. Consequently, these two bits are unused when calculating the
register cache index within each sub-core. In other words, four bits from
the most significant bits (MSBs) of the warp ID are used to compute the
4

register cache index. Furthermore, it is important to note that threads
in GPUs can have up to 256 registers, necessitating an 8-bit register ID
to represent all available IDs. For the computation of the register cache
index, six bits of the register ID are utilized, starting from the LSB.

Concatenating scheme: Fig. 3(a) illustrates an example of the con-
catenating scheme. As shown in the figure, the first scheme involves
concatenating partial bits of the warp ID and partial bits of the register
ID to compute the register cache index. Initially, the cache index
computation entails extracting the lower three bits starting from the
third LSB of the warp ID and the lower three bits of the register ID
from its LSB. These two selectively chosen bits are then combined
through the concatenation to generate the index for the register cache.
For example, considering a warp ID of 011100 and a register ID of
00010110, three bits from the warp ID (111) and the lower three bits
from the register ID (110) are concatenated to form the cache index of
111110.

Thread context-aware scheme: Differing from the approach of con-
catenating bits from the warp ID and the register ID, the thread
context-aware scheme considers the correlation between the number
of scheduled warps and the number of registers employed by each
thread [12]. Fig. 3(b) shows an example of the thread context-aware
scheme. In GPUs, the number of scheduled warps decreases as the
number of registers used by threads increases, and vice versa. Conse-
quently, when computing the register cache index, this scheme initiates
by reversing the bits of the warp ID and subsequently applying XOR
operations using the six bits of the register ID and the four bits of the
warp ID. It is worth noting that only six bits of the register ID are used,
as the cache index bit length is six. Additionally, the two LSBs of the
warp ID are excluded from the index computation, as they are used to
determine the sub-core for the execution. As an example, considering
a warp ID of 011100 and a register ID of 00010110, the first four bits
from the warp ID (0111) are reversed, resulting in 1110. This is then
followed by XOR operations with the lower six bits of the register ID.
Given that the number of sampled bits from the warp ID is fewer than
that of the register ID, XOR operations are conducted on the four bits
from the MSB of each ID. After completing these steps, the computed
cache index with the thread context-aware scheme becomes 101110.
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3. Motivation

The SRAM-based register cache within the HI-RF is relatively
smaller than the NVM-based register file. Therefore, effectively utilizing
the register cache is a critical factor for minimizing register write-back
operations that arise from conflicts within the register cache. These
operations can lead to the performance degradation due to an extended
duration of NVM write operations. Additionally, reducing cache con-
flicts holds significance as the NVM has limitations on the total number
of write operations, known as the write endurance problem [10].

In Section 2.4, we present two indexing schemes for the register
cache in the HI-RF. In both indexing schemes, the warp ID and the
register ID serve as base bits for calculating the index. The methods for
assigning these two distinct IDs differ significantly. The warp IDs are
established based on the number of threads generated by applications,
with a determination typically made by software developers. On the
other hand, the register IDs are determined by compilers. However,
current compilers do not consider the structure of the HI-RF and its
associated cache indexing schemes, thus cache conflicts can fluctuate
depending on how the compiler assigns register IDs.

As illustrated in Fig. 3, whether the concatenating or thread context-
aware scheme is employed, several bits extracted from the register
ID are used without any modifications as a part of the register cache
index. In the concatenating scheme, as shown in Fig. 3(a), these bits
correspond to the three LSBs of the register ID. Similarly, in the thread
context-aware scheme, shown in Fig. 3(b), the two LSBs of the register
ID are utilized without modifications. Thus, cache conflicts can occur
when multiple distinct warps share the same two or three LSBs in their
register IDs, since HI-RF relies on a direct-mapped cache design. Con-
sequently, these sampled bits, used without alterations, can influence
register cache conflicts. In this paper, we group registers that share the
same two or three LSBs of their IDs and name the set of registers as a
critical set. For example, when an application utilizes 27 registers with
the concatenating scheme for the register cache indexing, registers with
IDs of 1 (00000001), 9 (00001001), 17 (00011001), and 25 (00111001)
re combined into one critical set, as they share the same three LSBs
f 001. Similarly, other registers also belong to critical sets determined
y specific LSBs of their register IDs.

The cache conflicts can arise when warps use registers within such
ritical sets. The frequency of cache conflicts strongly correlates with
he write count of individual registers because the HI-RF initiates write-
ack operations exclusively when the data is written to a cache line
ontaining valid data. Thus, if registers with high write counts are
rouped into the same critical set, it can increase conflicts within the
egister cache. Alternatively, if the registers with high write counts
re distributed among various critical sets and registers within the
ame critical set exhibit substantial differences in write counts, this can
otentially reduce conflicts among the registers within those critical
ets.

The assignment of register IDs is performed by compilers. If the
ompilers frequently assign registers that are used as destination regis-
ers to the same critical set, it can result in intensive cache conflicts
ithin the same cache entry, leading to performance degradation.
iven this assumption, we create two register assignment policies: an
deally best policy (referred to as a Best policy) and an ideally worst
olicy (referred to as a Worst policy). In both policies, we initiate the
rocess by counting the occurrences of writes for all register IDs using
Baseline policy. For example, Fig. 4 shows the normalized register
rite count results of the NN application under the concatenating

cheme with these two different register assignment policies. The write
ount for each register is normalized to the total register write counts.

The figure shows the maximum and minimum conflicts possible
ithin each critical set, considering the worst scenario where two

egisters repeatedly attempt to write alternately to the same cache line.
s the concatenating scheme is utilized, registers sharing the same

hree LSBs are grouped into one critical set, resulting in eight sets.
5

a

The Worst policy is designed to maximize register cache conflicts
y intending to assemble registers with similar write counts into the
ame critical set. This involves altering register IDs to achieve a similar
umber of write accesses between registers within each critical set. As
hown in the figure, the registers within each critical set exhibit write
ounts with small gaps between themselves. Due to this assignment,
egisters with high write counts are also mapped to the same critical set,
hich exacerbates cache conflicts in some cache entries. In contrast,

he Best policy is implemented to minimize register cache conflicts.
o reduce the conflicts, registers that are written frequently should
e distributed well across different critical sets. Thus, adjustments are
ade to the register IDs to maximize the gap of write accesses between

egisters within the same critical set. As illustrated in Fig. 4(b), the
ssignment of register IDs with the Best policy enlarges the gap
etween the write accesses of registers mapped to a single cache entry.
or instance, R8 of Set #0 in the Worst policy corresponds to R1 of
et #1 in the Best policy, as they have the same write count. Under
he Worst policy, conflicts within R8 and R16 can potentially result
n a maximum of 8.5% of the total write counts being attributed to
rite-back operations. In contrast, in the Best policy, the maximum
umber of write-back operations within Set #1, involving R1 and R9,
s approximately 3.3% of the total write counts when they attempt to
rite values into the same register cache line repeatedly. Consequently,

he Best policy effectively reduces conflicts in the register cache by
istributing registers with high write count across critical sets.

To verify a performance gap between these policies, we measure the
erformance under three distinct register assignment policies: Base-
ine, Best, and Worst. In Fig. 5, the performance results are normal-

zed to that of Baseline, which employs a default compiler register
ssignment policy. Detailed simulation methodology is provided in Sec-
ion 5. As shown in the figure, we divide benchmark applications into
wo groups: a compiler-sensitive group and a compiler-insensitive group.
pplications within the compiler-sensitive group, positioned on the left
ide of the graph, exhibit a notable performance gap between the Best
nd Worst policies. Conversely, applications within the compiler-
nsensitive group, positioned on the right side of the graph, demonstrate
early identical performance under both the Best and Worst policies,
ith a maximum gap of 2.0 percentage points. For the concatenating

cheme, on average, the Best policy enhances performance by 13.8%
ompared to Baseline, whereas the Worst policy leads to the per-
ormance decrease of 19.7% over Baseline. Overall, the performance
ifference between the Best and Worst policies is 33.5 percentage
oints. Notably, the MM application shows 69.5 percentage points
ap between the Best and Worst policies. Similarly, for the thread
ontext-aware scheme, the Best policy increases the performance by
.7%, while the Worst policy decreases the performance by 11.9%
ompared to Baseline, resulting in an average performance gap of
7.6 percentage points.

The applications in the compiler-insensitive group show little per-
ormance variations across different register assignment policies. In
ssence, the performance of these applications is hardly affected by
ow register IDs are assigned, regardless of the chosen cache indexing
chemes. Based on our analysis, the minimal performance gap observed
n some applications is due to the limited utilization of registers;
n other words, when only a small number of registers are utilized,
he register cache index is more likely to be mapped to a single
nique entry, mitigating the occurrences of the cache conflicts. Con-
equently, the performance does not fluctuate depending on different
egister assignment policies. The applications in the compiler-sensitive
roup show a high utilization of registers compared to the compiler-
nsensitive applications. As these applications utilize more registers,
hey become more sensitive to different register assignments, resulting
n performance variations. Therefore, we establish a threshold of 15
egisters to concretely define compiler-sensitive (15 registers or more)

nd compiler-insensitive (less than 15 registers) applications.
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Fig. 4. Register write counts for the NN application with two different register assignment policies: Worst and Best.
Fig. 5. Normalized performance of two cache indexing schemes using three different register assignment policies: Baseline, Best, and Worst.
Based on our observations, the performance of GPUs with HI-RF
is greatly influenced by the register assignment policy performed by
compilers. Particularly, the applications in the compiler-sensitive group
can undergo a significant performance degradation due to an inap-
propriate register assignment, as we observe with the Worst policy.
To minimize register cache conflicts, compilers should assign registers
by considering the distribution of write operations on registers across
critical sets, similar to the strategy employed in the Best policy. In this
paper, we propose a compiler optimization scheme aimed at efficiently
utilizing the HI-RF on GPUs, with a specific focus on reducing cache
conflicts in the register cache while considering critical sets of registers.
6

4. Conflict-aware compiler

In Section 3, we introduce two register assignment policies: Best
and Worst. Both of these policies are designed based on post-execution
information, primarily relying on register write counts, as register write
operations introduce conflicts in the register cache. Therefore, it is
practically unfeasible for compilers to implement the Best policy since
the actual number of register writes cannot be determined until an
application completes its operations.

To address this challenge, we propose an alternative approach that
approximates the register write counts by measuring how frequently



Journal of Systems Architecture 149 (2024) 103099E. Jeong et al.

r
w
e
w
c

1

1

1
1

m
i
r
a

registers are used as destination operands within instructions. Com-
pilers can easily obtain this destination operand count (destination
count) information by parsing the instructions. While this approach
does not provide the exact write counts due to some instructions being
repeatedly executed, it offers a practical means to approximate the
number of write operations performed on registers during an exe-
cution. Leveraging this information, we introduce a Conflict-Aware
Compiler (CAC) for HI-RF, which optimizes register assignment to
alleviate register cache conflicts. CAC utilizes destination counts as
approximated values for the write counts on registers and performs
register assignment similar to the Best policy. This involves sorting the
egister IDs using destination counts as key values. Then, the number of
rite operations performed on each register within the same critical set
xhibits differences. Consequently, similar to the Best policy, registers
ithin the same critical set should exhibit significant gaps in their write

ounts.

Algorithm 1 Register Assignment Optimization
Input: a list of register IDs and a list of destination counts for each

register
Output: a new list of register structs that contain mappings of original

register ID and new register ID
1: procedure assignRegId(𝑟𝑒𝑔𝐼𝑑𝐿𝑖𝑠𝑡, 𝑑𝑠𝑡𝐶𝑜𝑢𝑛𝑡𝐿𝑖𝑠𝑡)
2: Combine the 𝑟𝑒𝑔𝐼𝑑𝐿𝑖𝑠𝑡 and 𝑑𝑠𝑡𝐶𝑜𝑢𝑛𝑡𝐿𝑖𝑠𝑡 into a list of register

structs
3: 𝑟𝑒𝑔𝐿𝑖𝑠𝑡 ← zip(𝑟𝑒𝑔𝐼𝑑𝐿𝑖𝑠𝑡, 𝑑𝑠𝑡𝐶𝑜𝑢𝑛𝑡𝐿𝑖𝑠𝑡)
4: Sort register IDs based on their destination counts
5: 𝑠𝑜𝑟𝑡𝑒𝑑𝑅𝑒𝑔𝑠 ← 𝑆𝑜𝑟𝑡𝐵𝑦𝐷𝑠𝑡𝐶𝑜𝑢𝑛𝑡(𝑟𝑒𝑔𝐿𝑖𝑠𝑡)
6: Create the new register ID list based on the sorted register IDs
7: for each 𝑟𝑒𝑔 in 𝑠𝑜𝑟𝑡𝑒𝑑𝑅𝑒𝑔𝑠 do
8: 𝑛𝑒𝑤𝑅𝑒𝑔𝐿𝑖𝑠𝑡.append(𝑠𝑜𝑟𝑡𝑒𝑑𝑅𝑒𝑔𝑠[i])
9: end for

10: return 𝑛𝑒𝑤𝑅𝑒𝑔𝐿𝑖𝑠𝑡
11: end procedure
12:
13: function 𝑆𝑜𝑟𝑡𝐵𝑦𝐷𝑠𝑡𝐶𝑜𝑢𝑛𝑡(𝑟𝑒𝑔𝐼𝑑𝐿𝑖𝑠𝑡, 𝑑𝑠𝑡𝐶𝑜𝑢𝑛𝑡𝐿𝑖𝑠𝑡)
4: Sort a list of register structs by the destination counts in

descending order
5: 𝑠𝑜𝑟𝑡𝑒𝑑𝑅𝑒𝑔𝑠 ← 𝑟𝑒𝑔𝐼𝑑𝐿𝑖𝑠𝑡.sort(key=lambda 𝑟𝑒𝑔:𝑟𝑒𝑔.𝑑𝑠𝑡𝐶𝑜𝑢𝑛𝑡,

reverse = True)
6: return 𝑠𝑜𝑟𝑡𝑒𝑑𝑅𝑒𝑔𝑠
7: end function

Algorithm 1 provides a detailed description of the register assign-
ent process employed by CAC. To initiate the process, CAC takes two

nput lists: a list of register IDs used by an application (referred to as a
egIdList) and a list of destination counts for each register (referred to
s a dstCountList). It is important to note that the dstCountList contains

approximated write counts sampled from register destination counts
within instructions. These destination counts serve as the keys for
adjusting the register IDs. The primary goal of this procedure is to
distribute write operations evenly across different critical sets while
increasing the gap of writes between registers that belong to the same
critical set. To achieve this, CAC sorts the register IDs based on their
destination counts. The procedure starts by creating a list of register
structures, with each structure containing a mapping between the orig-
inal register ID and its associated destination count. Subsequently, CAC
utilizes the SortByDstCount function to sort these register structures in
descending order according to their destination counts. The result of
the sorting is then stored in the sortedRegs list. Once the sortedRegs
list is obtained, CAC generates a new register ID list by incorporating
the sorted values. This new list reflects the adjustments made to the
original register IDs based on their destination counts. Finally, the
information of the mapping between the new and original register IDs,
is returned as newRegList. Consequently, these new register IDs can
7

Table 2
Parameters of baseline GPU.

Parameters Value

# of SMs 80 SMs
Warp size 32 threads
Maximum # of threads per SM 2,048 threads
# of warp schedulers per SM 4 schedulers
Warp scheduling policy GTO
L1 cache size per SM 32 KB
L2 cache size per SM 4.5 MB
# of SRAM register cache entries 256 entries
SRAM register cache entry size 1,024 bits
# of NVM register banks 8 banks
NVM register bank width 64 bits
Maximum # of NVM registers 65,536 registers

Table 3
Parameters of SRAM and NVM [10,12,14,29].

Parameters SRAM NVM

Read latency (cycle) 1 1
Write latency (cycle) 1 4
Read energy (pJ/bit) 0.203 0.239
Write energy (pJ/bit) 0.191 0.300
Leakage power (mW) 248.7 16.2

be employed to assign new register IDs using the original register IDs
as references. This process aims to reduce register cache conflicts by
effectively distributing write operations across different critical sets,
ultimately improving the performance of GPUs with HI-RF.

Our proposed compiler optimization scheme can be integrated into
compilers without requiring significant modifications. CAC can be
implemented as an extension of compilers such as NVCC, which is
NVIDIA’s commercial compiler for compiling CUDA applications [30].
When an application is targeted to run on GPUs equipped with HI-
RF (e.g., when an option for using HI-RF is provided), CAC could
be activated. The compiler then parses the SASS instructions of the
application, gathers the necessary information for the proposed register
assignment, and assigns the register IDs as explained previously. It
is important to note that the adjustments by compilers are made to
SASS, not to the PTX, as the SASS is the final assembly executed on
GPUs. Moreover, this optimization does not interfere with or impact
the original compiler optimization process; instead, it functions as an
additional step that complements the existing compilers.

In summary, CAC optimizes register assignment to effectively re-
duce cache conflicts in HI-RF, functioning in a manner similar to the
Best policy by utilizing destination count information. This reduction
in cache conflicts and subsequent reduction in write-back operations
improve the performance of GPUs equipped with HI-RF. Addition-
ally, this optimization can help alleviate the write endurance problem
associated with the NVM-based register file of HI-RF.

5. Methodology and evaluation

In this section, we present our simulation methodology and conduct
a performance analysis of the proposed CAC. Additionally, to validate
the effectiveness of CAC, we assess the number of conflicts within
the register cache and the energy consumption of registers. Lastly, we
conduct various sensitivity studies.

5.1. Methodology

For the performance evaluation of GPUs employing HI-RF, we uti-
lize a cycle-driven simulator, GPGPU-Sim 4.0 [13]. It is important to
note that PTX assembly is not directly executed on GPUs; instead, it
needs to be translated into SASS representation, determining register
ID assignments [15]. The GPGPU-Sim simulator, responsible for trans-

lating PTX assembly into PTXPlus for GPU architecture evaluation, has
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Table 4
Benchmark applications.

Application name Abb. Application name Abb.

Convolution Separable [36] CS 2D Convolution [34] 2D
LavaMD [33] LMD Fast Walsh Transform [36] FWT
Neural Network [35] NN Symmetric Rank-2k [34] SY
Scan [32] SC Naive Matrix Trans. [36] TN
Matrix Multiply [36] MM Trans. Simple Copy [36] TS
3D Convolution [34] 3D Vector Add [36] VA

been modified in the PTXPlus translation for our simulation. These
modifications align with SASS translation and incorporate insights from
SASS translation analysis, particularly focusing on register ID assign-
ment. Our analysis indicates that the modified PTXPlus translation
demonstrates similar register usages after undergoing SASS translation.
On top of that, we propose a CAC implementation that adjusts the
register assignment to effectively utilize HI-RF.

Our baseline GPU architecture is similar to the NVIDIA Volta ar-
chitecture [31], and the HI-RF structure is implemented in the same
manner as in the prior work [7,10,29]. The detailed GPU parameters
are listed in Table 2. Additionally, to measure the energy consumption
of SRAM-based register file, NVM-based register file, and HI-RF, we
use a circuit-level simulator, NVSim [14]. The parameters for SRAM
and NVM are listed in Table 3. We select 12 benchmark applications
from SHOC [32], Rodinia [33], PolyBench [34], ISPASS2009 [35], and
NVIDIA SDK [36], as shown in Table 4.

For our comparative analysis of performance, we use seven different
configurations: SRAM, NVM, HI, HI_CAC, HI_Best, HI_Worst, and
HI_Full. SRAM and NVM represent the register file implementations
with SRAM and NVM, respectively. Other configurations with names
including HI are based on the HI-RF architecture but differ in register
assignment policies. HI is the default register assignment policy and
HI_CAC is the proposed register assignment policy. HI_Best and
HI_Worst policies are identical to those explained in Section 3,
which are implemented with the post-execution information. Lastly,
HI_Full means that HI-RF has a fully-associative register cache. This
approach addresses the limitations of HI-RF by implementing a register
cache as a fully-associative cache structure instead of using the direct-
mapped cache. However, due to the complexity of the hardware, the
adoption of a fully-associative register cache poses significant chal-
lenges [12]. Therefore, the results of HI_Full can be interpreted as
outliers in our analysis.

As mentioned in Section 3, we categorize benchmark applications
into two groups: a compiler-sensitive group and a compiler-insensitive
group, employing a threshold of 15 registers. In our evaluation, we
primarily deal with compiler-sensitive applications since the regis-
ter assignment has a more significant impact on their performance.
Compiler-insensitive applications, characterized by a small number of
registers, are minimally influenced by register assignment policies.
Throughout evaluation figures, the average value of each group is
located in the rightmost bars of the respective group.

5.2. Performance analysis

Fig. 6 shows the normalized performance of the benchmark appli-
cations under seven different configurations (SRAM, NVM, HI, HI_CAC,
HI_Best, HI_Worst, and HI_Full). The performance is measured
in instructions per cycle (IPC), and each performance value is normal-
ized to that of SRAM.

Our proposed compiler, denoted as HI_CAC, shows performance
improvements for the compiler-sensitive applications with both the
concatenating and thread context-aware schemes. On average, with the
concatenating scheme, HI_CAC improves the performance of compiler-
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sensitive applications by 11.1% compared to HI. In contrast, the
compiler-insensitive applications exhibit minimal performance differ-
ences across various assignment policies. Note that the overall per-
formance improvement achieved through HI_CAC is slightly lower
than that of HI_Best; the improvement with HI_CAC is 1.5 per-
centage points lower than that with Best. This gap arises because
the HI_Best policy benefits from post-execution information obtained
from each benchmark application, as discussed in Section 3. Addition-
ally, the HI_Full policy demonstrates the most notable performance
improvements across all applications. Unlike the direct-mapped cache
design, in the fully-associative cache design, register write operations
can be performed in any entry within the register cache using the least
recently used replacement policy. Thus, with any register assignment
techniques, HI_Full exhibits the most performance improvements.
However, as presented in prior work, implementing such a cache is
challenging due to its inherent complexity and associated hardware
requirements [37]. Overall, our proposed scheme with HI-RF shows
performance results similar to SRAM and 44.4 percentage points better
than NVM.

Fig. 6(b) presents the performance results for the thread context-
aware scheme, which exhibit similar patterns to those of the con-
catenating scheme. HI_CAC improves the performance of compiler-
sensitive applications by 5.9% over HI. The average performance
improvement with the HI_Best policy is 5.4% over HI, and the
HI_Full policy exhibits the most substantial performance improve-
ment of 9.7% over HI. Overall, HI_CAC exhibits 1.9% lower perfor-
mance than SRAM and 44.5 percentage points higher performance over
NVM.

Note that while both schemes show performance improvements
with HI_CAC for the compiler-sensitive applications, the performance
improvement in the thread context-aware scheme is smaller than that
in the concatenating scheme. This is because the concatenating scheme
simply concatenates bits from the register ID and warp ID, making
its performance more sensitive to the compiler’s register assignment.
Conversely, the thread context-aware scheme computes the cache index
considering the correlation between the number of scheduled threads
and the number of used registers. Thus, the impact of register assign-
ment is reduced under the thread context-aware scheme compared
to the concatenating scheme. To summarize, our proposed scheme
demonstrates effective performance improvement under any register
cache indexing scheme, achieving a performance level similar to SRAM.

Moreover, specific applications such as MM, NN, and VA exhibit
enhanced performance when HI-RF is employed compared to SRAM.
The key factor contributing to this improved performance is the register
cache design, which decreases register access cycles by mitigating reg-
ister bank conflicts that can substantially degrade overall performance.
Similar results are observed in several prior works [38,39].

5.3. Cache conflict analysis

To evaluate the correlation between the cache conflicts and perfor-
mance, we measure the occurrences of register cache conflicts in each
application. The number of cache conflicts is determined by analyzing
the total write-back operations to the NVM register file of HI-RF. Given
that the compiler-insensitive applications are unaffected by different
register assignment policies, our cache conflict analysis focuses on the
benchmark applications that are sensitive to the compiler’s register
assignment.

As we explain in Section 3, register cache conflicts degrade the per-
formance of GPUs equipped with HI-RF. Fig. 7 shows the register cache
conflict results for the compiler-sensitive applications using two cache
indexing schemes under five distinct register assignment policies. For
the concatenating scheme, the HI_Worst policy exhibits significantly
large cache conflicts, which is overall 36.5% higher than the HI policy.
Considering the long write latency issue of the NVM-based register
file within the HI-RF structure, these frequent conflicts could poten-

tially prolong an execution duration and degrade the performance,
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Fig. 6. Normalized performance of two cache indexing schemes using seven different configurations: SRAM, NVM, HI, HI_CAC, HI_Best, HI_Worst, and HI_Full.
Fig. 7. Normalized register cache conflicts of two cache indexing schemes using five different register assignment policies: HI, HI_CAC, HI_Best, HI_Worst, and HI_Full.
as observed in Fig. 6. Conversely, the proposed compiler, HI_CAC,
shows an average reduction of 6.2% in cache conflicts compared to HI.
Similarly, the HI_Best policy reduces cache conflicts by 8.6%, which
outperforms HI_CAC by 2.4 percentage points. This gap arises because
the HI_Best policy leverages a precise knowledge of the exact register
write counts for the ideal scenario instead of using the approximated
counts. Finally, HI_Full shows the smallest cache conflict results,
with an average reduction of 9.4% compared to HI.
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For the thread context-aware scheme, the HI_CAC and the
HI_Best policies decrease cache conflicts by 2.5% and 1.8% over HI.
Similar to the concatenating scheme, HI_FULL exhibits an average of
5.5% fewer cache conflicts than HI. Note that the HI_Worst policy
only increases the cache conflicts by 7.4% compared to HI, contrasting
with the 36.5% increase observed in the concatenating scheme. This
is because under the thread context-aware scheme, considering the
relation between the number of scheduled threads and the number of
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Fig. 8. Normalized register energy consumption of two cache indexing schemes using six different configurations: SRAM, NVM, HI, HI_CAC, HI_Best, and HI_Worst.
1

registers, the cache index computation involves XOR operations instead
of simply concatenating partially chosen bits. Consequently, the impact
of the register assignment on cache conflicts under the thread context-
aware scheme decreases compared to the concatenating scheme. Based
on our evaluation results, the policies that demonstrate performance
improvements also show a reduction in the number of cache conflicts.
In summary, the proposed CAC effectively decreases cache conflicts
with its register assignment optimization, followed by the observed
performance improvements.

5.4. Energy consumption

Fig. 8 shows the normalized register energy consumption of six
configurations (SRAM, NVM, HI, HI_CAC, HI_Best, and HI_Worst)
under the two register indexing schemes. The data is normalized to
the energy value of SRAM, and each includes the values for both the
register cache and register file. Since SRAM and NVM configurations do
not utilize the register cache, they only exhibit the energy consumption
of the register file.

Overall, NVM and HI configurations show significantly lower energy
consumption than SRAM, with 63.3% and 70.6% of decrease, respec-
tively. This low energy consumption is attributed to NVM’s substantially
lower leakage power consumption in comparison to SRAM. By effec-
tively reducing cache conflicts in the register cache, CAC can further
reduce the energy consumption of HI-RF. Our proposed compiler re-
duces overall energy consumption by 73.1 percentage points and 2.5
percentage points over SRAM and HI with the concatenating scheme,
respectively. Similarly, HI_CAC reduces energy consumption by 72.9
percentage points and 1.2 percentage points over SRAM and HI with
the thread context-aware scheme. Note that the average energy con-
sumption of HI_Worst is 28.3 percentage points and 21.6 percentage
points higher than NVM, with the concatenating scheme and the thread
context-aware scheme, respectively. Such high energy consumption is
due to the HI_Worst policy designed to maximize register cache
10

conflicts, leading to redundant write-back operations in the register file.
5.5. Sensitivity study

In the concatenating scheme, the performance of HI-RF is influenced
by the number of bits used from a register ID since it directly affects
a number of critical sets. We evaluate performance by varying con-
figurations of the concatenating scheme: W4R2, W3R3, and W2R4. W#
represents the number of bits used for a warp ID, and R# represents the
number of bits used for a register ID in cache indexing. Fig. 9 shows
performance results of the concatenating scheme with three different
configurations under four different register assignment policies: HI,
HI_CAC, HI_Best, and HI_Worst.

Our results show that HI_CAC improves performance over HI by
1.8%, 11.9%, and 6.8% for W4R2, W3R3, and W2R4, respectively. As

the number of bits selected from the register ID increases, the perfor-
mance improvement decreases. This lower performance improvement
is attributed to the reduction in the number of critical sets. When more
bits from the register ID are utilized, the number of registers sharing
the same LSBs will increase, leading to a large size of the critical set.
Consequently, with a smaller number of large critical sets, the impact
of enlarging the write operation gaps within each critical set becomes
less effective. In contrast, with a larger number of small critical sets,
the impact of the proposed optimization will increase. Overall, W4R2
exhibits the most significant performance improvement with HI_CAC,
as it uses only two bits for grouping critical sets, resulting in more
numerous, smaller critical sets.

In our baseline GPU architecture, each register cache is equipped
with 256 entries. The performance of GPUs is significantly influenced
by the number of cache entries in each register cache, as a larger cache
size can reduce cache conflicts. Therefore, we evaluate performance by
varying the register cache size to assess the effectiveness of our pro-
posed compiler optimization scheme. Fig. 10 shows performance results
for the concatenating scheme, represented as CS_Base (concatenating
scheme with HI), and CS_CAC (concatenating scheme with HI_CAC).
Similarly, TEA_Base and TEA_CAC represent the thread context-

aware scheme with HI and the thread context-aware scheme with
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Fig. 9. Normalized performance of concatenating scheme varying the number of register ID bits used for computing a cache index.
Fig. 10. Normalized performance of four different configurations varying the number of cache entries.
HI_CAC, respectively. The performance of each assignment scheme
is normalized to that of CS_Base scheme, with the baseline cache
entry size configuration (i.e., 256 entries). As shown in the figure, the
performance is best with the largest cache size, which is attributed to
the reduction of cache conflicts. With different sizes of register cache
(64, 128, 256, and 512 entries), CS_CAC shows performance improve-
ments of 7.8%, 9.5%, 9.6%, and 14.3% over CS_Base, respectively.
Also, TEA_CAC enhances performance by 5.7%, 5.4%, 5.9%, and 9.1%
with different sizes of register cache (64, 128, 256, and 512 entries),
respectively. In summary, the HI_CAC policy effectively improves
performance compared to the HI for register caches of any different
size. This demonstrates that our proposed compiler optimization can
effectively reduce cache conflicts and improve the performance of
HI-RF across various register cache sizes.

6. Related work

This paper introduces a compiler optimization scheme for HI-RF to
reduce cache conflicts. To the best of our knowledge, this is the first
work that uncovers the impact of register assignment on the HI-RF
architecture and proposes the optimized register assignment scheme
of a compiler for HI-RF. In this section, we discuss prior work related
to NVM-based register files and GPU register file design with compiler
optimization.

6.1. NVM-based register files

Register files on GPUs have traditionally been designed using SRAM.
However, SRAM-based register files have some inherent limitations, in-
cluding low density and high leakage power consumption [6,40,41]. In
response to these challenges, researchers explored various novel mem-
ory technologies to design more energy-efficient register files for GPUs.
In this section, we introduce some approaches that utilize NVM tech-
nologies for architecting GPU register files. Goswami et al. introduced
STT-MRAM (spin-torque-transfer RAM) based register files [40]. Since
STT-MRAM performs write operations with less power than SRAM, it
can reduce the power consumption of the original SRAM-based register
files. Mittal et al. proposed a novel design for GPU register files that uti-
lizes SOT-RAM (Spin-Orbit Torque RAM) [41]. SOT-RAM based register
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files improve energy efficiency compared to SRAM-based register files.
A hybrid register file design has been proposed to further reduce the
energy consumption of these NVM-based register files and mitigate the
long write latency of them [7]. In this approach, STT-MRAM serves as
the main register file, with an NVM-based write buffer. This integration
of fast memory as a write buffer significantly reduces the write latency
associated with previously suggested NVM-based register files, thus
enhancing their performance and efficiency. Jeon et al. introduced
the HI-RF design, which combines an SRAM-based register cache with
an STT-MRAM register file [10]. This architecture aims to reduce the
number of write operations to the STT-MRAM registers, resulting in
significant improvements in energy efficiency and mitigating issues
related to the write endurance of STT-MRAM. CAC’s primary goal is
to reduce cache conflicts within the register cache of HI-RF, ultimately
resulting in reduced energy consumption.

6.2. Compiler-driven register file optimization

Several prior work leverages compiler optimization techniques to
design energy-efficient GPU register files. Esfeden et al. proposed
breathing operand windows (BOW) architecture, which exploits a high
locality of register accesses [39]. This paper revealed that the same
registers are repeatedly accessed within a short instruction window.
Based on this observation, BOW forwards data that can be reused
in subsequent instructions and bypasses unnecessary register writes
with the liveness analysis of the compiler. Jeon et al. proposed GPU
register file virtualization [18]. This paper revealed that the number
of live registers is much less than the total number of registers for
kernel execution. With register lifetime analysis of the compiler, the
proposed method manages registers by releasing dead registers, which
consequently minimizes unnecessary demand for physical registers.
Oh et al. proposed the compiler-assisted HI-RF (CASH-RF) architecture.
CASH-RF uses the compiler analysis to detect unnecessary write oper-
ations [42]. With this information, CASH-RF eliminates unnecessary
write-back operations to the NVM register files, which reduces the
energy consumption of HI-RF. Sadrosadati et al. proposed the latency-
tolerant register file (LTRF) architecture for HI-RF [43]. LTRF leverages
compiler analysis to prefetch registers from the register file to the reg-
ister cache. With this approach, the register file capacity can increase
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while reducing the energy consumption of HI-RF. Our proposed CAC
suggests a novel register assignment scheme of the compiler for HI-RF
architecture. As such, these introduced approaches are orthogonal to
our technique, and they can be combined with CAC to further optimize
register file energy consumption.

7. Conclusion

This paper presents a novel compiler optimization scheme for HI-RF
aimed at reducing cache conflicts within the register cache. Based on
our observation, the performance of GPUs equipped with HI-RF varies
depending on how the register IDs are assigned by compilers. We in-
troduce the concept of critical sets, denoting sets of registers that share
identical LSBs in their register IDs. Our proposed compiler, CAC, takes
these critical sets into consideration when assigning register IDs to alle-
viate cache conflicts resulting from the grouping of write operations on
specific register sets. To achieve this, CAC employs destination counts
as an approximation of the number of write operations on registers. Our
experimental results demonstrate that the proposed compiler shows
performance improvement of 11.1% and 5.9% while reducing cache
conflicts by 6.2% and 2.5% over the baseline, with the concatenating
scheme and the thread context-aware scheme, respectively. Also, CAC
shows 73.1 percentage points and 72.9 percentage points lower energy
consumption than SRAM with the concatenating scheme and the thread
context-aware scheme, respectively.
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