
Received 12 February 2024, accepted 10 March 2024, date of publication 25 March 2024, date of current version 29 March 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3380433

SAVector: Vectored Systolic Arrays
SANGUN CHOI 1, SEONGJUN PARK2, JAEYONG PARK1, JONGMIN KIM1,
GUNJAE KOO 3, (Member, IEEE), SEOKIN HONG 4, (Member, IEEE),
MYUNG KUK YOON 5, (Member, IEEE), AND YUNHO OH 1, (Member, IEEE)
1School of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea
2Department of Semiconductor Systems Engineering, Korea University, Seoul 02841, Republic of Korea
3Department of Computer Science and Engineering, Korea University, Seoul 02841, Republic of Korea
4Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
5Department of Computer Science and Engineering, Ewha Womans University, Seoul 03860, Republic of Korea

Corresponding authors: Yunho Oh (yunho_oh@korea.ac.kr) and Myung Kuk Yoon (myungkuk.yoon@ewha.ac.kr)

This work was supported in part by the National Research Foundation of Korea (NRF) grants funded by Korea government (Ministry of
Science and ICT, MSIT) (NRF-2021R1C1C1012172), Institute of Information & communications Technology Planning & Evaluation
(IITP) grant funded by the Korea government (MSIT) (No.2021-0-02068, Artificial Intelligence Innovation Hub), and Samsung
Electronics Co., Ltd (IO230419-05997-01).

ABSTRACT Conventional DNN inference accelerators are designed with a few (up to four) large systolic
arrays. As such a scale-up architecture often suffers from low utilization, a scale-out architecture, in which
a single accelerator has tens of pods and each pod has a small systolic array, has been proposed. While
the scale-out architecture is promising, it still incurs increasing off-chip memory access as the pods are
supposed to access the duplicate tiles of tensors. Prior work has proposed a shared buffer structure to
address the problem, but those architectures suffer from performance degradation due to shared buffer access
latency. We make an observation that all the pods access the same rows of input and weights within a short
time window. With the observation, we propose a new inference accelerator architecture, called Vectored
Systolic Arrays (SAVector). SAVector consists of a new two-level on-chip buffer architecture and a tensor tile
scheduling technique. In the new buffer architecture, global buffers are shared by all the pods and they keep
the rows shared by the pods. And each pod has a tiny dedicated buffer. SAVector monitors the memory access
behavior and timely determines to prefetch the data and flush it. In our evaluation, SAVector exhibits a very
similar off-chip memory access count to the scale-up architecture and achieves 52% energy-delay-product
(EDP) reduction. Also, SAVector achieves 27% EDP reduction over prior work by mitigating performance
degradation from global buffer access latency.

INDEX TERMS Inference accelerator, on-chip buffer, energy efficiency.

I. INTRODUCTION
Within a decade, various Deep Neural Networks (DNNs)
have been proposed, and they are being employed in a myriad
of services. Each DNNmodel has a varying number of layers,
the size of tensors in each layer, and the number of tensors.
For example, GPT-3, one of the popularly employed DNNs,
consists of 96 layers and contains 175 billion parameters [1].
Unlike GPT-3, MobileNet has 25 layers, and its total
parameters are 5.4 million [2].

The associate editor coordinating the review of this manuscript and

approving it for publication was Libo Huang .

In the post-Moore era, DNN hardware accelerators run
inference or training with less energy than conventional
CPUs or GPUs. Prior work has proposed DNN accelerators
based on a design approach: a single pod offers high peak
throughput, and a single accelerator equips a few (up to four)
pods. Prior work refers to this architecture as a ‘‘scale-up
architecture [3].’’ For example, Google TPUv4i consists of
four pods, each featuring a 128×128 systolic array [4].While
DNN accelerators based on the scale-up architecture have
been successfully employed in various systems, they still face
challenges in achieving sustainable energy efficiency. One of
the reasons for this challenge is that the size of a tensor is
often smaller than the size of a systolic array. Google has

44446

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0009-0001-5803-361X
https://orcid.org/0000-0003-1706-6850
https://orcid.org/0000-0001-7842-125X
https://orcid.org/0000-0002-9332-0251
https://orcid.org/0000-0001-6442-3705
https://orcid.org/0000-0002-8307-6742


S. Choi et al.: SAVector: Vectored Systolic Arrays

reported that TPUs often suffer from underutilization (less
than 10%) while running DNN workloads [5].

As a solution to the aforementioned challenge, prior work
has proposed a scale-out architecture for DNN accelerators
[3], [6], [7], [8], [9]. Unlike the scale-up architecture, the
scale-out architecture comprises tens or even hundreds of
pods, with each pod having small systolic arrays (e.g.,
8 × 8 or 32 × 32). A DNN accelerator based on the
scale-out architecture selectively activates pods as needed
to match the demands of a target workload and carry out
computations. With this approach, the scale-out architecture
can enhance utilization, thereby achieving superior energy
efficiency compared to the scale-up architecture.

While the scale-out architecture is promising, there still
exists a challenge to improve energy efficiency and achieve
sustainable scalability. The scale-out architecture increases
off-chip memory access as all pods in an accelerator often
access the same tiles within a short time window. As such,
the total off-chip memory access count of the scale-out
architecture is proportional to the number of active pods.
The energy consumption of an off-chip memory access is
two orders of magnitudes more significant than an on-chip
SRAM buffer access [10]. To mitigate the excessive energy
consumption caused by the off-chip memory access, existing
DNN accelerators contain SRAM buffers dedicated to a pod.
However, such an on-chip memory structure is not scalable,
as an accelerator with tens or hundreds of pods would require
hundreds of megabytes of SRAM resources for the dedicated
buffers. Prior work has also employed a shared SRAM buffer
connected with all pods [3]. Although the shared buffer
effectively filters out the duplicated off-chip memory access,
the prior work still suffers from performance degradation due
to long buffer access latency.

We make the following observations. The pods in a
scale-out accelerator access duplicate rows of input data
and weights of a DNN model within a short time window.
If an accelerator could capture and exploit such data locality
across the pods, it could significantly reduce the number
of off-chip memory accesses. A hardware buffer may be
employed in an accelerator. However, simply equipping
SRAM buffers that all pods share increases both hardware
overhead and inference time significantly. As such, a careful
microarchitecture design is required to utilize the shared
buffer efficiently.

In this paper, we propose a novel microarchitecture of a
scale-out DNN inference accelerator called Vectored Systolic
Array (SAVector). The key concept of SAVector is the design
of an on-chip buffer hierarchy. The key component of the
on-chip buffer hierarchy is SRAM buffers that all the pods
share, leveraging the dominant memory access pattern that
we have observed. We refer to this new buffer structure as the
‘‘global buffer.’’ The size of the global buffer is smaller than
the combined size of the SRAM buffers dedicated to each
pod. SAVector reduces the overall SRAM overhead by 75%
compared to prior work [3]. Furthermore, we observe that our
design is suitable for scale-out architectures with hundreds

of pods, making SAVector a promising solution for achieving
DNN accelerator scalability.

SAVector incorporates two global buffers for input and
weight data, both of which exhibit dominant access patterns
during DNN workload execution. While the global buffer
offers cost-effectiveness and scalability, it introduces a longer
buffer access latency than the SRAM buffers dedicated to
each pod. To address this latency, each pod of SAVector
includes tiny SRAM buffers. Our analysis indicates that 1KB
of dedicated buffers is sufficient to mask the latency of global
buffer access. By incorporating the tiny buffers and global
buffers, SAVector adopts a two-level on-chip buffer structure.
To manage the two-level buffer structure, SAVector employs
a software prefetching based on double buffering and a tile
scheduling technique. SAVector monitors when a row in a
global buffer is accessed by the pods that require it. Once
all pods have accessed all rows in a global buffer, SAVector
flushes the data and uses the prefetched data. Through this
two-level buffer structure and its management, SAVector
achieves superior energy efficiency compared to the scale-up
architecture and previously proposed scale-out architectures.
Also, the scheduling technique of SAVector divides tensors
into tiles and assigns the tiles to pods as many as possible.
Such a mechanism improves the utilization of the pods, thus
resulting in better energy efficiency than prior work.

In our evaluation, SAVector achieves a 52% energy-
delay-product (EDP) reduction compared to the scale-up
architecture. Also, SAVector achieves 52% speedup and 27%
EDP reduction compared to the prior work [3].

In this paper, we make the following contributions.
• We demonstrate that DNN inference workloads com-
monly exhibit a dominant memory access pattern: rows
in input and weight matrices are accessed by all pods of
the scale-out architecture within a short time window.

• We propose SAVector, a novel scale-out DNN inference
accelerator. The key concept is a two-level on-chip
buffer structure comprising global buffers and 1KB
dedicated buffers.

• SAVector achieves a 52% and 27% EDP reduction
compared to the scale-up architecture and the prior
work [3], respectively. For reproducibility, we open-
source our DNN accelerator simulator .1

The rest of this paper consists of the following sections.
Section II explains why the scale-out architecture requires
to reduce the off-chip memory access and SRAM overhead.
Section III introduces the SAVector architecture. Section IV
explains the experimental results. Section V explains related
work. Section VI concludes this paper.

II. MOTIVATION
In this section, we first introduce the concept of scale-out
Deep Neural Network (DNN) accelerators. Next, we analyze
the advantages and disadvantages of the scale-out DNN
accelerators, thus motivating to design SAVector.

1https://github.com/comsys-lab/SAVector

VOLUME 12, 2024 44447



S. Choi et al.: SAVector: Vectored Systolic Arrays

FIGURE 1. Scale-up architecture vs. scale-out architecture with systolic
arrays. The scale-up architectures (left) use a single large systolic array
pod to maximize data reuse across the array. The scale-out architectures
(right) use multiple small systolic array pods to improve array utilization
and speedup. Each pod consists of a single systolic array for computation
and three SRAM-based buffers for keeping input, weight, and output.

FIGURE 2. Pod dimension and systolic array dimension.

A. SCALE-UP AND SCALE-OUT DNN ACCELERATORS
In this paper, we focus on DNN inference accelerators that
employ single or multiple systolic arrays, aligning with the
trend seen in commercial DNN accelerators introduced by
Google [4], [5] and prior work [3], [6], [7], [8], [9], [11],
[12]. Based on those prior work, we assume that a pod of an
inference accelerator equips a single systolic array.

DNN inference accelerators may feature either a scale-up
architecture or a scale-out architecture. Figure 1 provides
a visual representation of both the scale-up and scale-out
architectures. The scale-up architecture consists of one or
a few (less than 4) pods. With a fixed silicon budget, the
scale-up architecture employs a large systolic array. For
instance, the Google TPUv1 utilizes a single pod with a
systolic array dimension of 256 × 256 [5]. This architecture
provides a high peak throughput. However, prior work has
demonstrated [4], [5], the scale-up architecture frequently
experiences low utilization because DNN models often have
smaller tensors than the systolic array size. Consequently,
the actual performance of the scale-up architecture often falls
below the peak throughput.

Unlike the scale-up architecture, the scale-out architecture
comprises multiple pods. Generally, the dimension of a
systolic array in the scale-out architecture is smaller than
that in the scale-up architecture. Once a scale-out DNN
accelerator processes a workload, it activates only the
pods engaged in computation. Prior work has proposed the
scale-out architectures that arrange pods in a two-dimensional
array [6], [13], [14], [15]. We define this two-dimensional

FIGURE 3. Operand matrix tiling in scale-out DNN accelerator with four
pods. The input and weight operand matrix are divided into two parts.
Pods in the same row read the same input (left), and pods in the same
column read the same weights (right).

arrangement of pods in the scale-out architecture as the ‘‘pod
dimension.’’ Within each pod, the systolic array also consists
of a two-dimensional array of processing elements (PE),
which we term the ‘‘systolic array dimension.’’ Figure 2
depicts an example that illustrates the pod dimension and
systolic array dimension. In this example, an accelerator
organizes pods in an array with R rows and C columns.
Inside each pod, the systolic array contains a PE array with
M rows and N columns. We represent the pod dimension
and systolic array dimension of this accelerator as R×C and
M×N, respectively.

ADNN accelerator incorporates a hardware scheduler. The
scheduler divides tensors into tiles and sends them to the
pods [6]. The number of the divided tensors may be smaller
than the number of pods. If so, some pods may not contain
operands. In that case, the scale-out architecture deactivates
the empty pods. By selectively utilizing a subset of the pods,
the scale-out architecture can achieve higher utilization, thus
improving energy efficiency. Also, the scale-out architecture
achieves parallelism bymakingmultiple pods simultaneously
execute General Matrix Multiplication (GEMM) operations.
This advantage has been a focal point in the prior work [3],
[6], [14], [16].

In both the scale-up and scale-out architectures, each pod
equips on-chip SRAM buffers. In this paper, we assume that
each pod includes three SRAM buffers, each serving distinct
purposes: an input buffer, a weight buffer (storing tensors
with parameters), and an output buffer.

B. WHY SAVECTOR?
While the scale-out architecture is promising, it incurs a
larger number of off-chip memory accesses than the scale-up
architecture. The increased number of pods in the scale-out
architecture results in a higher data movement overhead,
which is the energy consumed by fetching data from off-chip
memory to on-chip SRAM buffers. This redundant energy
consumption is commonly known as ‘‘data movement energy
overhead’’ and has been discussed in prior work [17], [18].
Figure 3 illustrates how the scale-out architecture carries

out GEMM operations with pods arranged in a 2 ×

2 configuration. We assume a system automatically creates
operand matrices, data structures tailored for systolic arrays,

44448 VOLUME 12, 2024



S. Choi et al.: SAVector: Vectored Systolic Arrays

TABLE 1. DNN Accelerator configuration.

adjusting their access order, and data allocation. DNN
accelerators typically employ either of three dataflow types:
input stationary, output stationary, or weight stationary. In this
paper, all the accelerators, including both the baseline and
our proposed design, employ the weight stationary dataflow,
which is consistent with prior work [4], [5], [7], [12], [19].

In this example, the accelerator divides input and weight
operand matrices into two tiles each. There are two groups of
pods (Pod 1&2 and Pod 3&4) that access the same tile in input
or weight. Each group independently retrieves the shared tiles
from off-chip memory. Consequently, the data movement
overhead increases compared to the scale-up architecture.
In this example, the data movement overhead is 4× higher
than in the scale-up architecture.

We conduct an analysis of the performance (inference
time) and the data movement overhead for both the scale-up
and scale-out architectures. To maintain consistency within a
given silicon budget, we set fixed values for both the number
of processing elements (PEs) and the total size of the on-chip
SRAM buffers in an accelerator. Our choice is to set the
number of PEs at 16,384, which aligns with the configuration
of a single 128×128 pod in the Google TPUv4i [4]. A single
TPUv4i core comprises four pods and offers 16MB of SRAM
resources. In this analysis, we focus onmodeling a single pod,
and thus, we configure the total size of the SRAM buffers to
be 4MB (= 16MB/4). Also, like the prior work [6], [9], [14],
[15], all the scale-out architecture configurations employ a
double buffering scheme. While a pod performs Multiply-
Accumulate (MAC) operations, the scale-out architecture
prefetches the next input or weight tile into its dedicated
buffer. Such overlapped memory access and computations
can hide off-chip memory access latency.

With the same silicon budget, we set five different
configurations for the scale-out architecture by varying the
number of pods, ranging from 1 to 1024. Table 1 describes
the detailed configurations of the scale-out architecture.
Wemodel all these configurations using SCALE-Simv2 [15].
We use the scale-up architecture as the baseline. We use
DNN models: Mobilenetv3-large [2], DenseNet-169 [20],
ResNet-50 [21], BERT-base, BERT-large [22], and Vision
Transformer (ViT) [23]. Those benchmarks include both
traditional convolution neural networks and transformer-
based workloads. The transformer-based models have gained
significant popularity in recent applications. In this paper,

TABLE 2. Experimental results. We calculate geometric means of
speedup and EDP, arithmetic means of off-chip memory access and
energy consumption. We normalize all results to those of the scale-up
configuration. For off-chip memory access and energy consumption, the
values in small brackets represent normalized values.

by using those workloads, we offer a comprehensive evalu-
ation of the performance and efficiency of various systems,
including SAVector, across a broad spectrum of workloads.

Table 2 shows the experimental results of inference time,
off-chip memory access count, energy consumption, and
Energy-Delay-Product (EDP). For the number of off-chip
memory access and energy consumption, we calculate the
arithmetic means of the results for all benchmarks. For
speedup and EDP, we calculate the geometric means of the
results for all six DNNmodels.We normalize those geometric
mean, and the arithmetic mean results to those of the scale-
up architecture. In our experiments, as the number of pods
increases from 1 to 1024, the speedup on average increases
up to 1.2×. With the scale-out architecture, the systolic array
size decreases as the number of pods increases, resulting in
a smaller peak throughput. Even if the number of pods is
increased by a factor of N , the speedup may not exhibit linear
growth.

As depicted in Table 2, the scale-out architecture expe-
riences an exponential surge in off-chip memory access.
With the scale-out architecture with 64 pods, it still exhibits
6.02× more off-chip memory access compared to the scale-
up architecture, despite its speedup being only 1.06×. The
256 and 1024 pod configurations result in 11.9× and 21.79×
more off-chip memory access compared to the scale-up
architecture, respectively. Note that the 256 and 1024 pod
configurations, with 8×8 and 4×4 systolic array dimensions,
respectively, are not realistic designs, as such small systolic
arrays do not reuse the data across the processing elements.
Also, in our initial study, even the scale-out architecture with
infinite-sized SRAM buffer reduces the off-chip memory
access only up to 10% compared to scale-out architectures
with a total 4MB SRAM buffer described in Table 1.

Given that off-chip memory access consumes two orders of
magnitude more energy than computation, the overall trends
mirror those seen in the results of off-chip memory access
count. We conduct a study regarding the energy consumption
of the scale-up and scale-out architectures. Despite the
scale-out architectures achieving higher utilization than
the scale-up architecture, energy consumption exhibits an
exponential increase. The scale-out architecture with 64 pods

VOLUME 12, 2024 44449



S. Choi et al.: SAVector: Vectored Systolic Arrays

FIGURE 4. Ratio of buffer hit caused by data duplication type 1 and
type 2.

consumes 115.2 mJ, which is 2.74 times more energy than
the scale-up architecture.

With the speedup and energy consumption results, we cal-
culate the EDP for all configurations. With an increase
in the pod dimension, energy consumption grows faster
than speedup. Therefore, scale-out architectures show up
to 6.83× higher EDP than those of scale-up architecture.
We observe that employing multiple downsized pods in the
scale-out architecture does not lead to a reduction in the
overall energy consumption and EDP of a system. With this
analysis, we find that the scale-out architecture can achieve
the same or better speedup, but incurs redundant energy
consumption due to the excessive off-chip memory access.
If an accelerator eliminates redundant memory access,
it could achieve a higher energy efficiency than the scale-up
architecture.

While accessing tiles, pods may access data in different
rows of an input matrix as they reach the end of a particular
row. Such behavior often increases off-chip memory access.
We analyze prevalent memory patterns in DNN workloads.
We use four input matrices derived from tensors in ResNet-
50 and the 4× 4 and 8× 8 scale-out architectures in Table 1.
Both architectures equip on-chip SRAM buffers capable of
storing all necessary data. We measure the number of buffer
hits and consider two types of buffer hits.We call the first type
Type 1, which occurs if pods access the same row of the input
matrix. We call the second type Type 2, which takes place if
pods access different rows of the input matrix.

Figure 4 shows the experimental results, the ratio of data
duplication types making buffer hits. Type 1 accounts for
more than 90% of the total buffer hits as the pods in the
same row exhibit the same data access pattern, resulting
in buffer hits with every access to data in the matrix tile.
Type 2 accounts for less than 10% of the total buffer hits.
For Layer 4, data duplication does not occur. Therefore, if an
accelerator effectively recognizes the memory access pattern
involving the same row and efficiently manages the data in
the buffers, there is potential for a significant reduction in
off-chip memory access.

If an accelerator equips an SRAM buffer shared by all
pods, the data movement overhead may be reduced. Ideally,
scale-out architectures with a shared buffer consume less
energy than the scale-up architecture. In our initial study,
the 4 × 4 pod configuration with a shared buffer consumes
31% less energy than the scale-up architecture. Prior work

has introduced the scale-out architecture with a shared SRAM
buffer to alleviate data movement overhead [3], [4], [6].
While shared buffers alleviate data movement overhead,

the extended latency associated with accessing these shared
buffers leads to performance degradation. The previously
proposed scale-out architectures interconnect all pods and a
shared buffer via an interconnect network, which increases
buffer access latency. Given that scale-out architectures
typically consist of hundreds or even thousands of pods [3],
[6], the latency for accessing the shared buffer can be
significantly greater.

Prior work has introduced an inference accelerator archi-
tecture designed to minimize the performance impact of
shared buffer access latency through the use of optimized
interconnection and scheduling techniques [3]. However,
these optimizations have limitations in hiding global buffer
latency during computation. It has been noted that prior work
often does not incorporate buffers in close proximity to the
systolic array [7], [19], or they utilize buffers or registers
within a pod that are too small (e.g., less than 1KB) to
be effective [3], [4]. Such buffers are primarily intended to
serve as intermediate storage for input rows over a short
duration (e.g., 8 cycles) and are not capable of employing
double-buffering strategies to mask the extensive latency
associated with accessing shared buffers. In our simulations,
we find that a scale-out architecture comprising 64 pods
experiences a 61% decrease in performance relative to the
TPUv4i when shared buffers are utilized. This increased
inference time further diminishes the energy efficiency of the
accelerator. This increased inference time further diminishes
the energy efficiency of the accelerator. The effects of shared
buffer access latency on performance are further discussed in
Section IV.
The scale-out architecture enhances utilization compared

to the scale-up architecture. However, the energy efficiency
achieved by existing scale-out architectures remains subopti-
mal. On one side, scale-out architectures utilizing dedicated
buffers in each pod outperform scale-up architectures in terms
of performance but are hampered by datamovement overhead
resulting from extensive off-chip memory access. On the
other side, scale-out architectures that employ a shared buffer
across all pods eliminate redundant off-chipmemory accesses
but are adversely affected by prolonged shared buffer access
latencies. As such, attaining scalability in DNN inference
accelerators calls for the development of a new and more
flexible buffer structure.

III. SAVECTOR: VECTORED SYSTOLIC ARRAY
In this section, we propose SAVector. We provide a detailed
explanation of the SAVector architecture.

We design SAVector to achieve two primary objectives.
First, SAVector aims to minimize data movement overhead
caused by the duplicated tensor access across pods. Second,
SAVector maintains quality-of-service during inference while
scaling an accelerator with hundreds of pods. The key
idea behind SAVector is to exploit the memory access

44450 VOLUME 12, 2024



S. Choi et al.: SAVector: Vectored Systolic Arrays

FIGURE 5. Microarchitecture overview of the existing scale-out architecture and SAVector. Existing scale-out architectures suffer from
either data movement overhead due to excessive off-chip memory access (left) or performance degradation due to long global buffer
access latency (right). SAVector addresses the challenges using a new matrix row-sharing policy with a two-level buffer system.

patterns inherent in the scale-out architecture, especially
for Type 1 discussed in Section II-B. By leveraging these
memory access patterns, SAVector contains a two-level
on-chip buffer structure consisting of global buffers and tiny
buffers. To resolve the redundant memory access, SAVector
fetches the rows of the input and weight matrices in the
global buffers and keeps them until all the corresponding
pods complete accessing them. Tiny buffers within each pod
mitigate performance degradation from global buffer access
latency with negligible SRAM overhead. To ensure efficient
inference, SAVector employs a scheduling technique that
effectively utilizes the new global buffers and pods. The
proposed scheme not only reduces data movement overhead
but surpasses the performance of the existing scale-out
architectures.

Figure 5 provides an overview of SAVector. In this paper,
SAVector comprises a 4×4 array, totaling 16 pods. Each pod
includes a systolic array and several hardware resources. All
pods are directly connected to global buffers, each of which
is equipped with a dedicated controller.

SAVector incorporates global SRAM buffers allocated
outside the pods, inherently introducing longer buffer access
latency than dedicated buffers. This increased latency may
significantly impact inference time. To address this challenge,
we design SAVector to equip each pod with tiny-sized (e.g.,
1KB) dedicated SRAM buffers. These small SRAM buffers
boast minimal latency (1 or 2 cycles) and efficiently store
data the corresponding pod will access shortly. In scale-
out architectures, including SAVector, there can be tens
or even hundreds of pods within a single accelerator.
In SAVector, each pod is furnished with 1KB SRAM
buffers for input and weights. While effectively mitigating
substantial performance degradation, the combined buffer
capacity remains less than that of existing scale-out archi-
tectures. Regarding the output buffer, we determine that
a buffer more significant than 1KB should be positioned
near the systolic array to facilitate store operations without
causing stalls. Consequently, we design a 64KB output buffer
following thorough performance measurements. The SRAM

resource requirement of SAVector in this paper is 3.02MB,
about a quarter of the SRAM needed by existing scale-out
architectures.

As mentioned in section II, scale-out architectures selec-
tively inactivate pods to reduce power consumption if a
workload generates an insufficient number of tiles. In such a
case, they cannot utilize the SRAM within inactive pods, and
SRAM capacity to prefetch data from off-chip memory may
be insufficient. SAVector addresses this concern as follows.
First, while SAVector inactivates pods, it does not turn off the
global buffer banks. Therefore, active pods can fully utilize
the global buffer to prefetch. Second, as each pod contains
only tiny buffers, inactivating these buffers does not have a
significant impact on the overall SRAM capacity in use.

SAVector requires a novel buffer management technique.
Given that the groups of pods sharing a global buffer typically
demonstrate the same memory access pattern, SAVector can
effectively manage the buffers with a straightforward policy,
a software prefetching scheme for the 1KB buffers, and
a new scheduling technique. Unlike tiny buffers dedicated
to a pod, adopting the double-buffering on global buffers
requires careful management techniques, as multiple pods
operate independently. A new global buffer management
technique monitors the memory access behavior of pods
exhibiting the same memory access pattern. Then, the global
buffer controller precisely determines when to prefetch data
and when to flush the global buffer. With those schemes,
SAVector significantly reduces the overall data movement
overhead while efficiently performing inference.

A. WORKFLOW EXAMPLE
Figure 6 provides an illustrative workflow example of
SAVector. This example comprises six phases, denoted as P
(ranging from P = 0 to P = 5). Each phase corresponds to a
specific behavior within the accelerator, such as prefetching
operand data into the buffer or flushing the buffer. In this
particular scenario, SAVector comprises a 4 × 4 array of
pods, with each pod housing a 4× 4 systolic array. SAVector
runs a straightforward DNN layer featuring input and weight

VOLUME 12, 2024 44451



S. Choi et al.: SAVector: Vectored Systolic Arrays

FIGURE 6. SAVector workflow example. In this example, SAVector
selectively uses four pods out of 16 pods. The DNN layer has a 4 × 4 input
matrix and a 4 × 4 weight matrix. Each input and weight parameter size is
1 byte, and the global buffer (GBUF) capacity is 8 bytes in total (4 bytes
for the active buffer, 4 bytes for the inactive buffer).

matrices, both sized at 4 × 4. Leveraging the advantages
of the scale-out architecture, SAVector selectively activates
only four out of the 16 pods (2 × 2), optimizing resource
utilization.

SAVector operates under a weight-stationary policy, fetch-
ing input data for each layer. In this example, we focus on
the movement of the input matrix for simplicity. We assume
that SAVector has 8-byte global buffers. The 1KB dedicated
buffers in each pod primarily aim to alleviate stalls resulting
from global buffer access. In our optimistic scenario,
we assume these dedicated buffers work automatically
and transparently. SAVector employs a double buffering
technique, similar to existing methods in prior work. Its
global buffers consist of two logical spaces: an active buffer
and an inactive buffer. The active buffer stores operands for
current computations, while SAVector prefetches data for the
next computation phase into the inactive buffer. Each half
of an SRAM buffer features a single bit that designates its
role (active or inactive). In this example, the active buffer
and the inactive buffer each have a capacity of 4 bytes.
Furthermore, we assume that the size of an input parameter
is 1 byte, allowing both buffers to hold 4 input parameters
simultaneously.

1) INITIALIZION (P=0)
As the pods commence processing, SAVector maintains a
count of active pods exclusively assigned to a global buffer.
This information is stored in two hardware components: the
SAVector scheduler and the global buffer controller. The
SAVector scheduler monitors the runtime hardware status
and allocates tiles to pods that are both activated and idle.
The global buffer controller manages the active and inactive
buffer spaces within the global buffer. Also, the global buffer
controller handles the prefetching of data into the inactive
buffer. In the example depicted in Figure 6, SAVector utilizes
a 2× 2 subset of the total 4× 4 pods. The used_row bits and
used_col bits will be set to 2 and 2, respectively. SAVector
proceeds to divide the input matrix and weight matrix into
four tiles each.

2) PREFETCHING (P=1)
With predefined sizes for active and inactive buffers (equal),
SAVector initiates the prefetch of tiles whose combined size
matches that of the inactive buffer. In our example, a matrix is
divided into four tiles, each of which has the same size (four
bytes). SAVector prefetches one tile at a time. Also, SAVector
prefetches the rows of the input operand matrix tile for pods
that share the same row index. Once SAVector completes the
initial prefetch, the SAVector scheduler allocates the first tile
to Pod 0 and 1. Figure 6 visually illustrates how SAVector
prefetches data shared by two pods (Pod 0 and Pod 1) into the
first row of the pod array (Row 0). In this figure, SAVector
prefetches four input parameters (a, b, c, and d). For this
purpose, we design a new prefetch instruction in SAVector.
This instruction is incorporated at compile time and enables
SAVector to perform software prefetching.

3) COMPUTATION (P=2)
Once the prefetch operation is complete, the pods initiate their
computations using the prefetched data. To use the prefetched
data, the global buffer controller designates an inactive buffer
as the active buffer. The pods transfer operand data from
the active global buffer to their respective dedicated 1KB
buffers. Following this transfer, the active pods proceed with
Multiply-Accumulate (MAC) operations.

4) FLUSHING (P=3)
Once all the pods that utilize the data in the active buffer
complete their computations, SAVector performs a data flush.
SAVector does not permanently erase the data from the active
buffer. Instead, in the current phase, the roles of the inactive
and active buffers are swapped by simply toggling these bits.

If a pod flushes the global buffer before other pods have
utilized all the data in the active buffer, SAVector may yield
incorrect computation results. To address this challenge,
SAVector employs a counter in the global buffer controller.
Whenever the controller receives a buffer flush signal from
a pod, SAVector increments the counter value. With each
increment, the controller compares the counter value to the
used_col field, which indicates the number of pods sharing
the global buffer. If the counter value matches the used_col
bits, SAVector designates the inactive buffer as the new
active buffer, effectively completing the flush phase. This
mechanism ensures that data is only flushed if all pods have
finished with the shared data, preventing any premature data
loss that could impact computation accuracy.

In Figure 6, pod 0 and pod 1 send buffer flush signals at
different cycles. Initially, the buffer flush signal from pod
0 arrives, causing the counter value to increase from 0 to 1.
The controller then compares the counter value to the value in
used_col, finding them to be different (1 and 2, respectively).
SAVector waits for pod 1 to send a buffer flush signal. Upon
the arrival of the buffer flush signal from pod 1, the counter
value increases from 1 to 2, matching the value in used_col.
The controller then proceeds to negate the bits in both the

44452 VOLUME 12, 2024



S. Choi et al.: SAVector: Vectored Systolic Arrays

active buffer and the inactive buffer. With the flushing phase
completed, the pods can start their computations using the
data from the newly designated active buffer. This mechanism
ensures that the transition between active and inactive buffers
only occurs once all pods have signified the end of their
data utilization phase, guaranteeing the integrity of the
computation process.

5) PROCESSING COMPLETE (P=5)
SAVector operates in iterative cycles, alternating between the
computation and flushing phases until all pods finish the
computation for a single DNN layer. Once the computation
for a layer is complete, the global buffer controller initiates
the flushing operations, following the same procedure
described in phase P=3, in preparation for processing the
subsequent layer. Upon completing the computation for a
layer, the pods become idle, allowing the SAVector scheduler
to schedule operations for the next layer. This cyclic process
ensures a seamless transition from one layer to the next,
optimizing the inference process.

B. ARCHITECTURAL DETAILS
1) POD
A pod comprises five components: a single systolic array, two
1KB SRAM buffers, a 64KB SRAM buffer, an Im2col unit,
and a local pod controller. Each 1KB buffer stores input data
and weights, respectively. The 64KB buffer stores the output
data. Inspired by prior work, we incorporate a hardware block
called Im2col unit that converts 4D convolutions into 2D
GEMM operations near the systolic array [3], [24]. In this
paper, we refer to this transformation from 4D convolution
to 2D GEMM as ‘‘Im2col conversion’’ and the resulting
2D matrix as the ‘‘lowered matrix.’’ The lowered input
matrices often display data duplication among rows, resulting
in redundantmemory access, as explained in [24]. The Im2col
unit plays a role in addressing this issue by preventing
redundant access to the global buffer and the duplication of
input data within the global buffer. The local pod controller
oversees the systolic array and the three dedicated buffers.

The main advantage of the scale-out architecture over
the scale-up architecture is its capacity to achieve higher
utilization. To maximize accelerator utilization, determining
the appropriate size for a single systolic array becomes a
critical factor. Prior work has introduced a design method-
ology for systolic arrays within the scale-out architecture,
as referenced in [3]. This methodology includes design space
exploration with varying systolic array sizes to optimize
effective throughput per watt. Inspired by the prior work,
we conduct a similar design space exploration using the
benchmarks detailed in Section II. In our initial analysis,
we observe that the 32× 32 systolic array size offers the best
effective throughput per watt, coinciding with the outcomes
presented in the prior work.

As stated earlier in this section, a pod in SAVector incor-
porates tiny dedicated buffers to alleviate the performance

FIGURE 7. Row sharing of SAVector global buffer. The global buffer keeps
and manages the rows of input or weight matrix inside the buffer. For
convolutional layers, SAVector keeps the rows of input tensor across all
channels. SAVector shares those rows with pods to mitigate duplicated
off-chip memory access.

degradation from exposed stalls. We model the global buffer
access latency, estimated at 11 cycles using Booksim2 [25]
under the assumption that four systolic array pods share a
global buffer. We also observe that 1KB dedicated buffers,
assigned to input and weights, and a 64KB buffer for
output proved sufficient for masking the global buffer access
latency. Each dedicated output buffer in SAVector features
several ports equal to the count of PEs in a row or column.
In SAVector, each dedicated output buffer is equipped with
1,024 accumulators like prior work [4], [5], [12], [26].

Like the prefetching process in the global buffer, the
local pod controller employs one-half of a 1KB buffer as
an active buffer and the other half as an inactive buffer.
The local pod controller conducts prefetching for the input
and weight data, directing them into the dedicated inactive
buffers. It proceeds to utilize this data once all the prefetched
information is accessible. Tiny buffers require more fre-
quent prefetching and flush compared to the hundreds of
KB buffers equipped by existing scale-out architectures.
SAVector typically prefetches 16 32-byte rows from the
global buffer to the tiny buffer every 16-20 cycles. Despite
this overhead, SAVector significantly reduces the expensive
off-chip memory access by utilizing the two-level buffer
system.

2) GLOBAL BUFFER AND GLOBAL BUFFER CONTROLLER
We design the global buffers using double-buffered scratch-
pad memory, a concept proposed in prior work [27].
To determine the appropriate size for the global buffers
dedicated to input and weight data, we analyze sizing
trade-offs for the best SAVector performance. Each global
buffer comprises 4 SRAM banks, each equipped with 256KB
of SRAM and a single 32-byte port. We assume that a single
parameter occupies 32 bytes. SAVector does not incorporate
a global buffer for output since the dedicated output buffers
directly facilitate the transfer of output data to off-chip
memory.

VOLUME 12, 2024 44453



S. Choi et al.: SAVector: Vectored Systolic Arrays

Figure 7 shows the structure and mechanism of the global
buffer of SAVector. As mentioned in Section II-B, pods
frequently access the same rows of input or weight matrices
within a short time window. To effectively manage the
duplicated access patterns of pods, SAVector retains and
shares these rows within the global buffer. Many DNN
layers can be simplified as the multiplication of input and
weight matrices [3]. In the process described in Section III-A,
SAVector fetches and organizes rows from these matrices.

If the global buffer preserves these rows of the lowered
input matrix, it redundantly stores duplicated input elements.
To circumvent input data duplication in the global buffer,
SAVector maintains rows of the original input tensor for
convolutional layers. Pods access these rows stored in the
global buffer, converting them into a 2Dmatrix upon retrieval
into the small buffers within the pods. Additionally, because
the global buffer of SAVector has a granularity of 32B
for access, padding can occur if the height or width of
the input tensor is less than 32 (e.g., height=7, width=7
input in ResNet-50). To mitigate this concern, SAVector
concatenates the rows of the input tensor across all channels,
ensuring that the size of each row remains consistently
greater than 32. SAVector does not explicitly concatenate
rows but instead uses a Height-Width-Channel (HWC) data
format, a concept demonstrated in previous work [28], [29].
This format guarantees continuous memory addressing for
tensor elements in the same position across all channels, thus
ensuring continuous memory addressing for rows of tensors
across all channels.

As described in the section III-A, the global buffer
controller employs used_bits to maintain information about
the currently utilized pods. Given that pods in each row share
input data, the input global buffer controller should track
how many pods are active in a row. The input global buffer
controller stores this information in used_col bits. Similarly,
the weight global buffer necessitates used_row bits to indicate
the number of active pods in a column. For a systemwith pods
of dimensions N×M, the global buffer controller mandates
logN bits for used_row and logM bits for used_col. The
counter also demands an equivalent number of bit fields as
used bits. The input global buffer controller requires 2logM
bits, while the weight global buffer controller requires 2logN
bits.

3) INTERCONNECTION NETWORK
Scale-out DNN accelerators often utilize multistage networks
to leverage their low latency and reduced hardware cost [3],
[6], [30], [31]. In our design, we employ a butterfly network
to connect pods and the global buffer, inspired by prior
work [3]. This butterfly network has O(N logN ) hardware
cost and O(logN ) latency. In the prior work, the network
interconnected N pods with the N buffers (or banks) in a
single network, as all pods shared these buffers. In contrast,
SAVector connects a global buffer to every

√
N pods. This

design, informed by the memory access patterns analyzed in
Section II-B, separately connects these pods with a global

TABLE 3. Microarchitectural configuration of SAVector.

TABLE 4. DNN models for benchmark.

buffer bank to reduce the number of nodes in the interconnect
network. The number of nodes in the network is contingent
on the stages in multistage networks, and SAVector has fewer
network stages than prior work. With this scheme, SAVector
achieves lower network latency and reduced area overhead
compared to prior work when considering a fixed number of
pods.

4) TILING AND SCHEDULING
If a workload generates an insufficient number of tiles, scale-
out architectures may suffer from throughput degradation.
Prior work has proposed finer-grained tiling techniques
to maximize the number of active pods [3], [6]. These
techniques tile the matrix to match the size of the systolic
array (e.g., 32 × 32). While the prior work could improve
throughput, it may still incur redundant off-chip memory
access caused by the Type 1 memory access pattern.
To address the above challenge, we design a new scheduling
technique that utilizes pods as many as possible and mitigates
redundant memory access. The SAVector scheduler assigns
tiles to pods based on the following policies. First, SAVector
assigns tiles from the same input matrix rows to pods in the
same row of the pod dimension. Second, SAVector assigns
tiles from the same weight matrix rows to pods in the same
column of the pod dimension. With the proposed scheduling
technique, SAVector can achieve better speedup than the prior
work on the scale-out architectures.

5) HARDWARE OVERHEAD
In the SAVector architecture, each global buffer has a
dedicated global buffer controller. With 16 pods (arranged

44454 VOLUME 12, 2024



S. Choi et al.: SAVector: Vectored Systolic Arrays

as 4 × 4), each input global buffer controller requires 4 bits
for used_col bits and counter bits (= log4 + log4 bits),
respectively. Likewise, each weight global buffer controller
also necessitates 4 bits for used_row bits along with counter
bits. The total SRAM overhead of SAVector is only 3.02MB,
which is just 25% of the overhead in prior work [3].
Consequently, the overhead for the controllers is almost
negligible. For an accelerator with 1024 pods (32 × 32), the
added overhead from these bits accounts for a mere 80 bytes,
while SAVector significantly reduces the SRAM overhead by
576MB.

IV. EVALUATION
A. EVALUATION SETUP
1) HARDWARE CONFIGURATION
Table 3 and Table 4 describe the hardware configuration
of SAVector and the benchmarks used in our evaluation,
respectively. Except for the hardware specification of SAVec-
tor, the hardware configuration is the same as described in
Section III-B. In our evaluation, given a fixed number of PEs
(16,384), SAVector has 4 × 4 pods, and each pod consists
of a 32 × 32 systolic array. Also, each pod of SAVector
contains 1 KB input and weight dedicated buffers, and a
64KB output buffer. All the pods share 1MB input andweight
global buffers. We use a memory system with two HBM2
chips whose bandwidth is 614 GB/s [32], by referring to the
off-chip memory bandwidth of TPUv4i [4].

2) SIMULATION INFRASTRUCTURE
We model SAVector and other architectures with SCALE-
Simv2 [15]. We model the memory access latency with
Booksim 2.0 [25]. Also, we model the power and energy con-
sumption of all the hardware resources with Accelergy [33].
We estimate the energy consumption for MAC operation, off-
chip memory access, and SRAM access at a clock frequency
of 1GHz. Table 3 describes estimated energy consumptions.

3) BENCHMARKS
We use widely-used DNN models as benchmarks. First,
we select three CNN models: Mobilenetv3-large [2],
DenseNet-169 [20], and Resnet-50 [21]. Second, we select
three transformer models: BERT-base, BERT-large [22], and
Vision Transformer (ViT) [23].

4) BASELINE AND OTHER ARCHITECTURES
We compare SAVector to four architectures. For a fair
comparison, we configure each architecture with the same
number of total PEs (= 214). First, Scale-Up architecture has
a single 128 × 128 systolic array. The scale-up architecture
has a 1.5MB input buffer, 1.5MB weight buffer, and 1MB
output buffer.

Second, Scale-Out Naïve architecture splits the large 128×

128 PE array into 16 32 × 32 systolic array pods. The scale-
out naïve architecture has no global buffer and each pod
has three 256KB dedicated buffers for input, weight, and

output, respectively. As shown in section II, this approach
can improve utilization and performance, but suffers from
duplicated off-chip memory access.

Third, Scale-Out Systolic Arrays (SOSA) architecture
includes an optimal systolic array size (32 × 32), inter-
connection, tiling and scheduling mechanism for scale-out
architectures [3]. As SOSA does not contain tiny buffers
inside pods to prefetch tiles, pods fetch next input tile from
the global buffer immediately after processing the current tile
is completed. For a fair comparison, we set the total global
buffer size of SOSA as 3MB, which is almost the same as
SAVector.

Our investigation into the work published after SOSA [7],
[8], [9] focuses on developing efficient scheduling tech-
niques for scale-out architectures. Based on these findings,
we model an idealized architecture called Reconfigurable
(RC) architecture for comparison. The RC architecture can
optimally reconfigure pod dimensions, functioning similarly
to scale-up architectures but with the most advantageous
dimensions. The RC architecture effectively eliminates
redundant off-chip memory accesses by facilitating data
propagation between adjacent pods via additional datapaths.
Although the RC architecture can operate in a scale-out
configuration, it encounters performance degradation due
to interconnect latency, a limitation also observed in the
SOSA architecture. Like SOSA, the RC architecture features
16 pods, each with dimensions of 32× 32, and a total SRAM
buffer capacity of 3MB.

Finally, Ideal Buf architecture contains an ideal global
buffer that has a very large capacity (256 KB/bank × 10K
banks) and infinite bandwidth. The ideal global buffer can
keep all the operand data to complete the computation, thus
minimizing off-chip memory access count. We optimistically
assume that the ideal global buffer comprises access latency
of Ideal Buf is one cycle and turns off the unused banks.
Therefore, Ideal Buf does not experience performance
degradation due to the global buffer access latency.

B. EXPERIMENTAL RESULTS
To evaluate the performance and energy efficiency of all
the architectures, we measure and compare the runtime
and energy consumption. Figure 8 shows the speedup
of all the configurations over the scale-up architecture.
We calculate the geometric mean of the results for all six
benchmarks. SAVector achieves 1.42× speedup over the
scale-up architecture. SAVector successfully conceals global
buffer access latency by utilizing tiny buffers, achieving
the ideal performance. SAVector also achieves the perfor-
mance improvement over Scale-Out naïve as the tiling and
scheduling technique described in Section III-B effectively
increases the number of active pods. Due to exposed global
buffer access latency, SOSA only exhibits 64% of its ideal
performance. SOSA suffers from performance degradation
in DenseNet and ViT as it could not provision enough tiles
to the accelerators. SOSA could achieve better performance
than the baseline in ResNet and BERT-base, however the

VOLUME 12, 2024 44455



S. Choi et al.: SAVector: Vectored Systolic Arrays

FIGURE 8. Performance comparison between SAVector and other architectures (Normalized to Scale-Up).

FIGURE 9. Energy consumption comparison between SAVector and other architectures (Normalized to
Scale-Up).

FIGURE 10. EDP comparison between SAVector and other architectures (Normalized to Scale-Up).

overall performance of SOSA is 10% lower than the scale-up
architecture in our evaluation. RC architecture achieves a
1.23× speedup over scale-up architecture by reconfiguring
the pod dimension. For two benchmarks (Mobilenetv3 and
DenseNet-169), RC architecture shows better performance
than SAVector. We observe that these models contain many
DNN layers with small tensors (e.g., 7 × 7 inputs and
3 × 3 weights), leading SAVector to inactivate most pods to
reduce energy consumption. On average (Geometric mean),
RC exhibits 19% lower performance than SAVector.

Figure 9 shows the experimental results for energy
consumption. We normalize all results to the scale-up
architecture. On average, SAVector reduces the energy
consumption by 30% compared to the scale-up architec-
ture. As SAVector eliminates Type 1 data duplication,
it achieves an energy consumption that is only 2% more
than Ideal BUF. Due to the redundant off-chip memory
access explained in Section II-B, Scale-Out naïve shows
the highest energy consumption. SOSA consumes 29% less
energy than the scale-up architecture by improving PE
utilization and eliminating the duplicated off-chip memory
access. Although SOSA experiences an increase in runtime
due to global buffer access latency, it does not consume
dynamic energy during stalls. As such, SOSA consumes
energy similar to SAVector. RC architecture exhibits higher
energy consumption compared to SAVector and SOSA.

Unlike other scale-out architectures, RC architecture cannot
selectively turn off pods due to data movement between pods,
resulting in additional on-chip energy consumption.

Figure 10 shows the EDP results of all configurations.
SAVector achieves 52% and 27% EDP reduction com-
pared to the scale-up architecture and SOSA, respectively.
As SAVector offers very similar performance and energy
consumption to Ideal Buf, it achieves almost the same
EDP results as the Ideal Buf. SOSA reduces EDP by
23% compared to the scale-up architecture but exhibits
higher EDP than SAVector due to performance degradation.
RC architecture also shows a 24% higher EDP than SAVector.
Although RC architecture does not suffer from slowdown due
to interconnect latency, it consumes extra energy in systolic
arrays. Overall, SAVector shows the best EDP among all
configurations.

C. EFFECTS OF SCALING OUT
The main purpose of scale-out architecture is to achieve
better energy efficiency at scale. We analyze how SAVector
scales well while increasing the number of pods. For
analysis, we increase the total PE budget from 214 to 216.
Then, we analyze the performance and energy efficiency
of SAVector with the 32 × 32 systolic arrays. The pod
dimension of SAVector is 8 × 8. We compare SAVector to
the following three architectures: a scale-up architecture with

44456 VOLUME 12, 2024



S. Choi et al.: SAVector: Vectored Systolic Arrays

FIGURE 11. Comparison between SAVector and other architecture with 216 processing elements (PEs). We normalize all experimental
results to Scale-Up. Values of CNN and Transformer are the means (geometric means for speedup and EDP, and arithmetic mean for energy
consumption) of the results for each category shown in Table 4.

FIGURE 12. EDP comparison of SAVector and SOSA for various TDP (log scale). We use three different systolic array sizes (16 × 16, 32 × 32,
and 64 × 64) in this study. For each TDP value, we configure the accelerators that equip PEs and other hardware resources as many as
possible, but do not exceed the TDP.

a single 256 × 256 systolic array pod, TPUv4i architecture
with four 128 × 128 systolic array pods [4], and SOSA with
64 pods.

We observe that the RC architectures may incur significant
hardware overhead at scale due to high-cost crossbar
interconnect or long hardware links between buffers and
PEs. For this reason, the prior work on the reconfigurable
architectures did not evaluate their scalability with more
than 214 PEs [7], [8], [9]. Therefore, we mainly compare
the scalability of SAVector and SOSA, excluding the RC
architecture that we model for comparison.

Figure 11 shows the experimental results of speedup,
energy consumption, and EDP. We calculate the geometric
means (speedup and EDP) and arithmetic mean (energy
consumption) of the results for all six benchmarks. Also,
we separately calculate the means of the results for CNN and
transformer models. With the 216 PE configuration, SAVector
achieves a 68% EDP reduction compared to Scale-Up,
while it achieves a 52% EDP reduction with the 214 PE
configuration. Scale-Up and TPUv4i exhibit 68% and 22%
higher EDPs than SAVector, respectively, as they often suffer
from PE underutilization. TPUv4i achieves 1.2× speedup
compared to Scale-Up, but it consumes 20% more energy
than SAVector to manage large-sized systolic arrays. SOSA
suffers from performance degradation as its global buffer
access latency becomes longer than the SOSA with 214 PEs.
As there are demands of various types of computing

systems, DNN accelerators should be designed depending
on the requirements of target systems, ranging from mobile
to large-scale supercomputers. We evaluate the effects of
various systolic array sizes at scaling out an accelerator.

FIGURE 13. Normalized performance (Baseline: buffer access latency =

1 cycle). T_MAC represents the cycles for each MAC operation.

We compare the EDP of SAVector and SOSA by increasing
the number of pods with a maximum TDP of 600 W. Like
the prior work [3], we design two scale-out accelerators
(SOSA and SAVector) that equip PEs and other hardware
resources as many as possible, but do not exceed TDP given
a configuration.

While we determine the systolic array size to 32 × 32,
a target workload running on a system may run the best
in another systolic array dimension. To analyze the effect
on the systolic array dimension of scale-out accelerators,
we evaluate three different systolic array (SA) sizes: 16×16,
32×32, and 64×64. We use a custom benchmark containing
a large 4096 × 4096 input and weight matrix to generate a
sufficient number of tile operations so that both architectures
exploit parallelism across pods at scale. As we design tiny
1KB buffers of SAVector for 16 pods, we increase the size
of the tiny buffer for each configuration to hide global buffer
access latency. Even with 256 pods, the average global buffer
access latency is 34 cycles and the aggregated size of tiny
buffers is only 2MB (4% of total SRAM capacity).

VOLUME 12, 2024 44457



S. Choi et al.: SAVector: Vectored Systolic Arrays

Figure 12 shows the experimental results. SAVector
outperforms SOSA with all three systolic array sizes. In the
64 × 64 systolic array configuration, SAVector achieves the
best (lowest) EDP, which is 2.3 µJ·s. For the target workload
with the large matrix (4096 × 4096), SAVector and SOSA
with the 64 × 64 systolic array configuration show better
EDPs than those with the 32 × 32 systolic arrays as both
architectures have enough tiles to provision to pods. SAVector
exhibits better performance than SOSA as the number of
pods increases. In particular, SAVector with 16 × 16 and
32×32 systolic array configurations show significantly better
performance than SOSA. It is because SOSA suffers from a
slowdown in these configurations. At 600WTDP, SOSAwith
16 × 16 systolic array and 32 × 32 systolic arrays exhibit
86% and 71% lower performance than SAVector, respec-
tively. Even if we exclude such extreme cases, SAVector
achieves 41% EDP reduction for 64 × 64 systolic array
at 600W TDP.

D. EFFECTS OF GLOBAL BUFFER ACCESS AND MAC
OPERATION LATENCIES
The performance of SAVector depends on two factors: the
global buffer access latency and the latency required for
a single MAC operation. We call them Tbuf and TMAC ,
respectively. For example, If Tbuf is longer than TMAC , the
exposed stall may degrade the overall performance.

We analyze the performance of SAVector by varying
these two latencies in our simulator. Figure 13 shows the
experimental results. We vary TMAC from 1 to 10 cycles and
Tbuf from 1 to 30 cycles. For each TMAC configuration, the
experimental results show the relative performance compared
to the case of Tbuf = 1. For all the cases of TMAC = 1,
SAVector suffers from slowdown as Tbuf increases. Buffer
access latency is exposed as the computation cannot hide it.
With more than nine cycles of Tbuf , performance decreases
by over 90%. If the MAC operation takes multiple cycles
(e.g., TMAC = 7, 10), the performance is less sensitive
to buffer access latency. By overlapping the buffer access
and MAC operations, TMAC can hide buffer access latency
shorter than TMAC . Even with Tbuf longer than TMAC ,
an exposed stall is short becausemost latency can be hidden in
computation.
TMAC depends on the hardware design of an accelerator.

Prior work has proposed pipelined PE architecture that
increases the parallelism in a single PE [16], [34]. Those
architectures enable 1-cycle MAC operation by using more
than three pipeline stages for memory access, multiplication,
and addition. We also assume that each MAC operation takes
one cycle (TMAC = 1), and design tiny buffers to hide global
buffer access latency. Therefore, SAVector is effective for all
hardware configurations in the design space.

The experimental results in this section show that SAVector
achieves high performance and energy efficiency over the
various scale-up and scale-out architectures. SAVector scales
efficiently by eliminating data duplication while enjoying the
advantages of scale-out architecture.

V. RELATED WORK
A. DNN ACCELERATORS
With the increase in the number of DNN applications
and the number of parameters in DNN models, many
domain-specific architectures have been proposed to achieve
a higher throughput per watt over CPUs and GPUs [5],
[35], [36], [37]. DNN accelerators often use the systolic
array [38] as their computation logic thanks to their high
energy efficiency [4], [5], [6], [7], [8], [9], [12], [19].

To design systolic array-based DNN accelerators effi-
ciently, prior work has proposed a full-stack DNN accelerator
generator called Gemmini [26]. Gemmini allows design
space exploration of DNN accelerators and evaluation of
system-level trade-offs such as OS overhead.

Also, several studies have proposed non-systolic array-
based architectures to resolve the underutilization caused
by the rigid structure of the systolic array [16], [30], [31],
[34], [39]. Those studies mainly focus on improving PE
utilization within a single pod while targeting irregular and
sparse matrices in DNN workloads. Prior work has proposed
a flexible architecture called SIGMA. SIGMA improves PE
utilization regardless of the shape of target matrices [31].
Unlike the systolic array that only allows one-directional dis-
tribution and reduction, SIGMA supports flexible mapping
through a non-blocking distribution network and an adder
tree reduction network. Also, Kwon et al. have proposed
MAERI, which is a reconfigurable architecture that supports
various dataflow in an accelerator [30]. The cost of non-
systolic array-based architectures is additional hardware and
complex routing/control algorithm to support their dataflow.

B. SCALE-UP DNN ACCELERATORS
Tensor Processing Units (TPUs) use large systolic arrays. The
first generation of TPU has a monolithic 256 × 256 systolic
array [5]. Unlike TPUv1, which targets inference tasks
only, TPUv2 is for both training and inference. TPUv2 and
TPUv3 consist of two and four 128 × 128 systolic arrays,
respectively [40]. From the second version, TPU uses HBM
as off-chip memory to mitigate the memory bottleneck.
TPUv4i targets inference, and they consist of four 128 ×

128 systolic arrays per core [4]. Such large systolic arrays
can be effective for DNN models that have large tensors.
However, as DNN models (or layers) have diverse GEMM
sizes, the scale-up architectures often suffer from severe
underutilization.

C. SCALE-OUT DNN ACCELERATORS
To address the PE underutilization problem, several studies
proposed scale-out architectures. Yüzügüler et al. have
proposed three key optimizations for array granularity,
interconnect, and tiling strategy [3]. Xu et al. have proposed
new processing elements that support multiple dataflows
to process depthwise convolution layers efficiently [7].
They also have proposed a flexible buffer structure to
reconfigure a pod dimension. Lym et al. and Samajdar et al.

44458 VOLUME 12, 2024



S. Choi et al.: SAVector: Vectored Systolic Arrays

have proposed reconfigurable architecture with additional
datapaths between systolic arrays [8], [9]. Based on the target
workload, the proposed architectures logically reconfigure
their systolic array size or pod dimension. To address the
memory bottleneck of DNN accelerators, Kung et al. and
Gao et al. have proposed their 3D-IC architectures [6], [41].
Prior work that has proposed scale-out architectures

focuses on increasing PE utilization and reducing on-chip
data movement traffic. Unlike prior work, SAVector focuses
on reducing the number of off-chip memory access. Also,
to the best of our knowledge, SAVector is the first scale-out
architecture that has a new multi-level on-chip buffer struc-
ture and its management mechanism. SAVector significantly
reduces the energy consumption in off-chip memory by
exploiting the memory access patterns of pods.

Also, prior work has proposed the scheduling and mapping
strategy for scale-out architectures [19], [42], [43]. Cai et al.
have proposed a systematic notation to enable design space
exploration of inter-layer scheduling for scale-out architec-
tures [42]. Based on the notation, Cai et al. have proposed
SET, a scheduling framework for scale-out architecture.
Zheng et al. have proposed the tile-centric notation and
analysis to explore 3D design space including computation
ordering, resource binding, and tiling [43]. The proposed
scheduling techniques are a general solution for scale-out
architecture and are orthogonal to our main contribution
through innovation in the on-chip memory system.

VI. CONCLUSION
While scale-out architecture offers better utilization of
DNN accelerators, it incurs redundant off-chip memory
access. Such duplicated off-chip memory access incurs
significant energy consumption. We observe that scale-out
DNN inference accelerators commonly exhibit a memory
access pattern in that multiple pods access the data in
the same row of input and weights within a short time
window. Based on this observation, we propose the SAVector
architecture. SAVector has a separate global buffer for each
pod dimension row and column, and pods with the same
memory access pattern share a global buffer. By exploiting
the dominant memory access patterns, SAVector eliminates
most redundant off-chip memory access. Our experimental
results show that SAVector achieves EDP reduction over
scale-up architecture and existing scale-out architecture by
52% and 27%, respectively.

REFERENCES

[1] T. Dettmers, M. Lewis, Y. Belkada, and L. Zettlemoyer, ‘‘LLM.int8(): 8-bit
matrix multiplication for transformers at scale,’’ in Proc. Adv. Neural Inf.
Process. Syst., 2022, pp. 30318–30332.

[2] A. Howard, M. Sandler, B. Chen, W. Wang, L.-C. Chen, M. Tan, G. Chu,
V. Vasudevan, Y. Zhu, R. Pang, H. Adam, and Q. Le, ‘‘Searching for
MobileNetV3,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV),
Oct. 2019, pp. 1314–1324.

[3] A. C. Yüzügüler, C. Sönmez, M. Drumond, Y. Oh, B. Falsafi, and
P. Frossard, ‘‘Scale-out systolic arrays,’’ ACM Trans. Archit. Code Optim.,
vol. 20, no. 2, pp. 1–25, Jun. 2023.

[4] N. P. Jouppi, D. Hyun Yoon, M. Ashcraft, M. Gottscho, T. B. Jablin,
G. Kurian, J. Laudon, S. Li, P. Ma, X. Ma, T. Norrie, N. Patil, S. Prasad,
C. Young, Z. Zhou, and D. Patterson, ‘‘Ten lessons from three generations
shaped Google’s TPUv4i: Industrial product,’’ in Proc. ACM/IEEE 48th
Annu. Int. Symp. Comput. Archit. (ISCA), Jun. 2021, pp. 1–14.

[5] N. P. Jouppi et al., ‘‘In-datacenter performance analysis of a tensor
processing unit,’’ in Proc. ACM/IEEE 44th Annu. Int. Symp. Comput.
Archit. (ISCA), Jun. 2017, pp. 1–12.

[6] H. T. Kung, B. McDanel, S. Q. Zhang, X. Dong, and C. C. Chen,
‘‘Maestro: A memory-on-logic architecture for coordinated parallel use
of many systolic arrays,’’ in Proc. IEEE 30th Int. Conf. Application-
Specific Syst., Architectures Processors (ASAP), vol. 2160, Jul. 2019,
pp. 42–50.

[7] R. Xu, S. Ma, Y. Wang, Y. Guo, D. Li, and Y. Qiao, ‘‘Heterogeneous
systolic array architecture for compact CNNs hardware accelerators,’’
IEEE Trans. Parallel Distrib. Syst., vol. 33, no. 11, pp. 2860–2871,
Nov. 2022.

[8] S. Lym and M. Erez, ‘‘FlexSA: Flexible systolic array architecture for
efficient pruned DNN model training,’’ 2020, arXiv:2004.13027.

[9] A. Samajdar, E. Qin, M. Pellauer, and T. Krishna, ‘‘Self adaptive
reconfigurable arrays (SARA): Learning flexible GEMM accelerator
configuration and mapping-space using ML,’’ in Proc. 59th ACM/IEEE
Design Autom. Conf., Jul. 2022, pp. 583–588.

[10] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, ‘‘Efficient processing of
deep neural networks: A tutorial and survey,’’ Proc. IEEE, vol. 105, no. 12,
pp. 2295–2329, Dec. 2017.

[11] J. Lee, J. Choi, J. Kim, J. Lee, and Y. Kim, ‘‘Dataflow mirroring:
Architectural support for highly efficient fine-grained spatial multitasking
on systolic-array NPUs,’’ in Proc. 58th ACM/IEEE Design Autom. Conf.
(DAC), Dec. 2021, pp. 247–252.

[12] S. Ghodrati, B. H. Ahn, J. K. Kim, S. Kinzer, B. R. Yatham, N. Alla,
H. Sharma, M. Alian, E. Ebrahimi, N. S. Kim, C. Young, and
H. Esmaeilzadeh, ‘‘Planaria: Dynamic architecture fission for spatial
multi-tenant acceleration of deep neural networks,’’ in Proc. 53rd
Annu. IEEE/ACM Int. Symp. Microarchitecture (MICRO), Oct. 2020,
pp. 681–697.

[13] Y. S. Shao, J. Clemons, R. Venkatesan, B. Zimmer, M. Fojtik, N.
Jiang, B. Keller, A. Klinefelter, N. Pinckney, P. Raina, S. G. Tell,
Y. Zhang, W. J. Dally, J. Emer, C. T. Gray, B. Khailany, and S.
W. Keckler, ‘‘Simba: Scaling deep-learning inference with multi-chip-
module-based architecture,’’ in Proc. 52nd Annu. IEEE/ACM Int. Symp.
Microarchitecture, Oct. 2019, pp. 14–27.

[14] M. Gao, X. Yang, J. Pu, M. Horowitz, and C. Kozyrakis, ‘‘TANGRAM:
Optimized coarse-grained dataflow for scalable NN accelerators,’’ in Proc.
24th Int. Conf. Architectural Support Program. Lang. Operating Syst.,
Apr. 2019, pp. 807–820.

[15] A. Samajdar, J. M. Joseph, Y. Zhu, P. Whatmough, M. Mattina, and
T. Krishna, ‘‘A systematic methodology for characterizing scalability of
DNN accelerators using SCALE-sim,’’ in Proc. IEEE Int. Symp. Perform.
Anal. Syst. Softw. (ISPASS), Aug. 2020, pp. 58–68.

[16] Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze, ‘‘Eyeriss v2: A flexible
accelerator for emerging deep neural networks on mobile devices,’’
IEEE J. Emerg. Sel. Topics Circuits Syst., vol. 9, no. 2, pp. 292–308,
Jun. 2019.

[17] A. Arunkumar, E. Bolotin, D. Nellans, and C.-J. Wu, ‘‘Understanding
the future of energy efficiency in multi-module GPUs,’’ in Proc.
IEEE Int. Symp. High Perform. Comput. Archit. (HPCA), Feb. 2019,
pp. 519–532.

[18] P. Gu, X. Xie, S. Li, D. Niu, H. Zheng, K. T. Malladi, and Y. Xie, ‘‘DLUX:
A LUT-based near-bank accelerator for data center deep learning training
workloads,’’ IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 40, no. 8, pp. 1586–1599, Aug. 2021.

[19] E. Baek, D. Kwon, and J. Kim, ‘‘A multi-neural network acceleration
architecture,’’ in Proc. ACM/IEEE 47th Annu. Int. Symp. Comput. Archit.
(ISCA), May 2020, pp. 940–953.

[20] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, ‘‘Densely
connected convolutional networks,’’ 2016, arXiv:1608.06993.

[21] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[22] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, ‘‘BERT: Pre-training
of deep bidirectional transformers for language understanding,’’ 2018,
arXiv:1810.04805.

VOLUME 12, 2024 44459



S. Choi et al.: SAVector: Vectored Systolic Arrays

[23] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, ‘‘An image is worth 16 × 6 words:
Transformers for image recognition at scale,’’ in Proc. Int. Conf.
Learn. Represent., 2021. [Online]. Available: https://openreview.net/
forum?id=YicbFdNTTy

[24] Z.-G. Liu, P. N.Whatmough, andM.Mattina, ‘‘Sparse systolic tensor array
for efficient CNN hardware acceleration,’’ 2020, arXiv:2009.02381.

[25] N. Jiang, D. U. Becker, G. Michelogiannakis, J. Balfour, B. Towles,
D. E. Shaw, J. Kim, and W. J. Dally, ‘‘A detailed and flexible cycle-
accurate network-on-chip simulator,’’ in Proc. IEEE Int. Symp. Perform.
Anal. Syst. Softw. (ISPASS), Apr. 2013, pp. 86–96.

[26] H. Genc, S. Kim, A. Amid, A. Haj-Ali, V. Iyer, P. Prakash, J. Zhao,
D. Grubb, H. Liew, H. Mao, A. Ou, C. Schmidt, S. Steffl, J. Wright,
I. Stoica, J. Ragan-Kelley, K. Asanovic, B. Nikolic, and Y. S. Shao,
‘‘Gemmini: Enabling systematic deep-learning architecture evaluation via
full-stack integration,’’ in Proc. 58th ACM/IEEE Design Autom. Conf.
(DAC), Dec. 2021, pp. 769–774.

[27] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and P. Marwedel,
‘‘Scratchpad memory: A design alternative for cache on-chip memory in
embedded systems,’’ in Proc. 10th Int. Symp. Hardw./Softw. Codesign.,
May 2002, pp. 73–78.

[28] L. Lai and N. Suda, ‘‘Enabling deep learning at the LoT edge,’’ in
Proc. IEEE/ACM Int. Conf. Computer-Aided Design (ICCAD), Nov. 2018,
pp. 1–6.

[29] Y. Zhou, M. Yang, C. Guo, J. Leng, Y. Liang, Q. Chen, M. Guo,
and Y. Zhu, ‘‘Characterizing and demystifying the implicit convolu-
tion algorithm on commercial matrix-multiplication accelerators,’’ in
Proc. IEEE Int. Symp. Workload Characterization (IISWC), Nov. 2021,
pp. 214–225.

[30] H. Kwon, A. Samajdar, and T. Krishna, ‘‘MAERI: Enabling flexible
dataflow mapping over DNN accelerators via reconfigurable inter-
connects,’’ ACM SIGPLAN Notices, vol. 53, no. 2, pp. 461–475,
Nov. 2018.

[31] E. Qin, A. Samajdar, H. Kwon, V. Nadella, S. Srinivasan, D. Das, B. Kaul,
and T. Krishna, ‘‘SIGMA: A sparse and irregular GEMM accelerator with
flexible interconnects for DNN training,’’ in Proc. IEEE Int. Symp. High
Perform. Comput. Archit. (HPCA), Feb. 2020, pp. 58–70.

[32] K. Sohn, W.-J. Yun, R. Oh, C.-S. Oh, S.-Y. Seo, M.-S. Park, D.-H. Shin,
W.-C. Jung, S.-H. Shin, J.-M. Ryu, H.-S. Yu, J.-H. Jung, H. Lee,
S.-Y. Kang, Y.-S. Sohn, J.-H. Choi, Y.-C. Bae, S.-J. Jang, and G. Jin,
‘‘A 1.2 V 20 nm 307 GB/s HBM DRAM with at-speed wafer-level IO test
scheme and adaptive refresh considering temperature distribution,’’ IEEE
J. Solid-State Circuits, vol. 52, no. 1, pp. 250–260, Jan. 2017.

[33] Y. N. Wu, J. S. Emer, and V. Sze, ‘‘Accelergy: An architecture-level energy
estimation methodology for accelerator designs,’’ in Proc. IEEE/ACM Int.
Conf. Comput.-Aided Design (ICCAD), Nov. 2019, pp. 1–8.

[34] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, ‘‘Eyeriss: An
energy-efficient reconfigurable accelerator for deep convolutional neural
networks,’’ IEEE J. Solid-State Circuits, vol. 52, no. 1, pp. 127–138,
Jan. 2017.

[35] M. Capra, B. Bussolino, A. Marchisio, G. Masera, M. Martina, and
M. Shafique, ‘‘Hardware and software optimizations for accelerating deep
neural networks: Survey of current trends, challenges, and the road ahead,’’
IEEE Access, vol. 8, pp. 225134–225180, 2020.

[36] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam,
‘‘DianNao: A small-footprint high-throughput accelerator for ubiquitous
machine-learning,’’ ACM SIGPLAN Notices, vol. 49, no. 4, pp. 269–284,
Apr. 2014.

[37] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen,
Z. Xu, N. Sun, and O. Temam, ‘‘DaDianNao: A machine-learning super-
computer,’’ in Proc. 47th Annu. IEEE/ACM Int. Symp. Microarchitecture,
Dec. 2014, pp. 609–622.

[38] H. T. Kung and C. E. Leiserson, ‘‘Systolic arrays (for VLSI),’’ in Proc.
Sparse Matrix, vol. 1. Philadelphia, PA, USA: Society for Industrial and
Applied Mathematics, 1979, pp. 256–282.

[39] F. Muñoz-Martínez, J. L. Abellán, M. E. Acacio, and T. Krishna, ‘‘STIFT:
A spatio-temporal integrated folding tree for efficient reductions in flexible
DNN accelerators,’’ ACM J. Emerg. Technol. Comput. Syst., vol. 19, no. 4,
pp. 1–20, Oct. 2023.

[40] T. Norrie, N. Patil, D. H. Yoon, G. Kurian, S. Li, J. Laudon, C. Young,
N. Jouppi, and D. Patterson, ‘‘The design process for Google’s training
chips: TPUv2 and TPUv3,’’ IEEE Micro, vol. 41, no. 2, pp. 56–63,
Mar. 2021.

[41] M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis, ‘‘TETRIS:
Scalable and efficient neural network acceleration with 3D memory,’’ in
Proc. 22nd Int. Conf. Archit. Support Program. Lang. Oper. Syst., 2017,
pp. 751–764.

[42] J. Cai, Y. Wei, Z. Wu, S. Peng, and K. Ma, ‘‘Inter-layer scheduling space
definition and exploration for tiled accelerators,’’ in Proc. 50th Annu. Int.
Symp. Comput. Archit., Jun. 2023, pp. 1–17.

[43] S. Zheng, S. Chen, S. Gao, L. Jia, G. Sun, R. Wang, and Y. Liang,
‘‘TileFlow: A framework for modeling fusion dataflow via tree-based
analysis,’’ in Proc. 56th Annu. IEEE/ACM Int. Symp. Microarchitecture,
Oct. 2023, pp. 1271–1288.

SANGUN CHOI received the B.S. degree in
railroad electrical and electronics engineering
from Korea National University of Transportation,
in 2021, and theM.S. degree in electrical and com-
puter engineering fromSungkyunkwanUniversity,
in 2024. He is currently pursuing the Ph.D. degree
in electrical engineering with Korea University.
His research interest includes energy-efficient
neural network accelerator architectures.

SEONGJUN PARK received the B.S. degree from
the School of Electronic and Electrical Engineer-
ing, Sungkyunkwan University, in 2023. He is
currently pursuing the M.S./Ph.D. degree with
the Department of Semiconductor System Engi-
neering, Korea University. His research interests
include neural network accelerator architectures
and processing-in-memory architectures.

JAEYONG PARK received the B.S. degree from
the School of Electronic and Electrical Engineer-
ing, Sungkyunkwan University, in 2023. He is
currently pursuing the M.S./Ph.D. degree with
the School of Electrical Engineering, Korea
University. His research interests include mem-
ory systems for energy-efficient neural network
accelerators.

JONGMIN KIM received the B.S. degree from the
School of Electronic and Electrical Engineering,
Sungkyunkwan University, in 2023. He is cur-
rently pursuing the M.S./Ph.D. degree with the
School of Electrical Engineering, Korea Univer-
sity. His research interest includes DNN training
accelerator architectures.

44460 VOLUME 12, 2024



S. Choi et al.: SAVector: Vectored Systolic Arrays

GUNJAE KOO (Member, IEEE) received the
B.S. and M.S. degrees in electrical and computer
engineering from Seoul National University, in
2001 and 2003, respectively, and the Ph.D. degree
in electrical engineering from the University of
Southern California, in 2018. He is currently
an Assistant Professor with the Department of
Computer Science and Engineering, Korea Uni-
versity. Prior to joining Korea University, he was
an Assistant Professor with Hongik University.

His industry experiences include a Senior Research Engineer with LG
Electronics and a Research Intern with Intel. His research interests include
computer system architecture and span parallel processor architecture,
storage andmemory systems, accelerators, and secure processor architecture.

SEOKIN HONG (Member, IEEE) received
the Ph.D. degree in computer science from
Korea Advanced Institute of Science and
Technology (KAIST), South Korea, in 2015.
From 2015 to 2017, he was a Senior Engi-
neer with Samsung Electronics, where he
was involved in a project that developed the
3D-stacked memory. In 2017, he moved to the
IBM Thomas J. Watson Research Center, where
he worked on secure processor architectures and

emerging memory/storage systems. He is currently an Assistant Professor
with Sungkyunkwan University, South Korea. His current research interests
include the design of low-power, reliable, and high-performance processor
architectures and memory systems. He was a recipient of the Best Paper
Awards from the International Conference on Computer Design (ICCD),
in 2010, and the Design Automation and Test in Europe (DATE), in 2013.

MYUNG KUK YOON (Member, IEEE) received
the B.S. degree in computer engineering and
computational mathematics from Washington
State University (WSU), Pullman, WA, USA,
in 2011, and the Ph.D. degree in electrical and
electronic engineering from Yonsei University,
Seoul, South Korea, in 2018. He is currently
an Assistant Professor with the Department
of Computer Science and Engineering, Ewha
Womans University. Prior to joining Ewha

Womans University, he was a Software Developer with Samsung Inc.
His research interests include GPU micro-architecture, machine learning
accelerators, and parallel programming.

YUNHO OH (Member, IEEE) received the B.S.,
M.S., and Ph.D. degrees from the School of
Electrical and Electronic Engineering, Yonsei
University, Seoul, South Korea, in 2009, 2011,
and 2018, respectively. From 2011 to 2014,
he was a Software Engineer in the mobile com-
munications business with Samsung Electronics.
From 2019 to 2021, he was a Postdoctoral
Researcher with the Parallel Systems Architecture
Laboratory (PARSA), EPFL, Switzerland. He is

currently an Assistant Professor with the School of Electrical Engineering,
Korea University. Prior to joining Korea University, he was an Assistant
Professor with Sungkyunkwan University. His research interests include
hardware and software architectures for energy-efficient data centers,
processor architectures (CPUs, GPUs, and neural network accelerators),
in-storage processing, memory systems, and high-performance computing.

VOLUME 12, 2024 44461


