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ABSTRACT:

This paper describes new results from a land survey of the Alas Mertajati in Central Bali based on multi-spectral data collected from
a new class of commercially available satellites. We use these assets to create the first representations of sustainable small-scale
farming, agroforestry, in the study area. We describe the process of producing the results, specifically establishing ground truth for
complex land cover and land use classes, and discuss how input from stakeholders can be included in the creation of these
representations. Furthermore, we describe an open-source software environment developed to create our classification pipeline with a
focus on shallow learners, collaborative workflows and intuitive visualization results. The text ends with a discussion of bad maps;
maps that contain outdated data, and why such maps are now problematic, particularly in resource constrained contexts.

1. INTRODUCTION

Bali, east of Java and west of Lombok, is part of the vast
Indonesian archipelago covering some 2 million km2 and
encompassing over 17’000 individual islands, of which only
about a third are inhabited (Ministry of Environment and
Forestry Indonesia, 2020). In the center of Bali one finds the
Bedugul area and the Alas Mertajati, spanning elevations from
1,200 m to over 2,100 m (Figure 1). While Bali is a tropical
island, the climate in the highlands of the Mertajati is cooler and
wetter than areas at sea level. The Alas Mertajati is noteworthy
because it functions as a source of freshwater for the island of
Bali, as a site of traditional sustainable agriculture practices and
as home to the Tamblingan, an indigenous group with ancestral
bonds to the lands established at least since the 10th century AD
(Utami, 2021).

Figure 1. Overview of the study area in Central Bali.

This text extends prior research efforts. It responds to the
availability of new remote sensing assets with planet-wide
coverage, and to the impacts of this condition on the majority
world.

2. EXPANDING ON PRIOR RESEARCH

As we described previously in detail (Böhlen, Liu & Iryadi,
2022a), our project is focused on the Alas Mertajati in Central
Bali. The territory is currently claimed as ancestral lands by the
Tamblingan community (Suryawan, 2021). At the same time,
the lands have been designated as a state forest by the
Indonesian government. While both entities claim to protect the
forest along sustainable principles (Strauss, 2015), each entity
interprets the responsibilities and benefits of sustainable actions
in different ways.

Figure 2. Planet Labs SuperDove (S-Dove) RGB image of the
study area, January 23rd, 2023, hue and saturation modified.

Our goal is to describe how, and under which conditions, GeoAI
based on newly available remote sensing assets can assist in
representing the complexities of sustainable food production
and land use in the Alas Mertajati. Furthermore, we consider the
value of this opportunity for the Tamblingan in their ongoing
effort to document established sustainable land use practices
and monitor protected and sacred forest areas. Building on our



prior inquiry, we apply the new remote sensing assets with an
open-source GIS analysis framework to include the
representation of agroforestry, an important land cover category
that has to date not been addressed in machine learning
generated land cover analysis of the study area.

We also discuss our collaborations with the Non-Governmental
Organizations WISNU (WISNU, 2023); a trusted partner of the
Tamblingan community as well as the Baga Raksa Alas
Mertajati (BRASTI, 2023), an organization dedicated to
conservation, documentation, education, and networking of the
Catur Desa, the four villages Gobleg, Munduk, Gesing and
Umajero that constitute the Dalem Tamblingan.

3. DATA SOURCES

Our previous research utilized 4-band (R-G-B-NIR) satellite
assets provided by Planet Labs (PlanetScope, PS). With these
4-band spectral, 3.7m/pixel spatial, and 24-hour temporal
resolution assets, we produced the first detailed land cover map
of the Alas Mertajati that included mixed forests, clove forests
and old growth homogenous forests (Böhlen, Liu & Iryadi,
2022b).

In 2022, Planet Labs introduced a new satellite configuration,
SuperDove (S-Dove), with major additions to the spectral
resolution while maintaining the existing spatial and temporal
quality of the precursor Dove constellation. The S-Dove
constellation delivers 8-band imagery (Coastal Blue (431-452
nm), Blue (465-515 nm), Green I (513-549 nm), Green
(547-583 nm), Yellow (600-620 nm), Red (650-680 nm), Red
Edge (697-713 nm), Near-infrared (845-885 nm)) at 3.7 meter
spatial resolution for field level detail (Superdove, 2022).

Figure 3. S-Dove versus Dove and Sentinel-2.
Top: Spatial resolution of satellite assets. False colour and true
colour rendering, illustrating differences in spatial resolution.
Focus area (yellow oval) is an agroforestry site.
GPS location: -8° 16' 48.346" S,115° 5' 10.750" E.

Figures 3 and 4 illustrate the differences between the previous
generation Dove, the current S-Dove and the Sentinel-2
satellites in regard to spatial and spectral resolution. Sentinel-2
offers a spatial resolution of at best 10 m/pixel, depending on
the specific band, rendering it unsuitable for studying
small-scale agroforestry. While the spatial resolution remains
unchanged, the spectral resolution of S-Dove is higher than that
of Dove in spectra of relevance for agricultural land cover
conditions at large, including agroforestry.

Figure 4. Comparative overview of spectral responses of
S-Dove, Dove and Sentinel-2.
Spectral reflectance of individual bands from Dove satellites
(bands 1-4), S-Dove satellites (bands: 2,3,6 &8) and Sentinel-2
(bands 1-4), where: Am = Mean of agroforestry spectral
response (with coffee arabica as dominant species); Ay =
Agroforestry spectral minimum range (Am - standard
deviation); Az = Agroforestry spectral maximum range (Am +
standard deviation).

4. DATA COLLECTION AND VALIDATION

We augment our remotely sensed S-Dove satellite data with
field level data collected by the research team and verified in
exchanges with our local partners, WISNU and BRASTI. These
ground truth data verification steps are an integral part of our
analysis pipeline and an important part of our project
philosophy. The iterative consultation with our local partners
generates significant opportunities for insights and
contextualization. The nuances of land cover categories and
their relationship to land use practices are captured in
discussions with the local experts in video meetings. These
exchanges sensitize the research team to the lived conditions on
the ground, and facilitate the translation of debate into the
crafting of GIS conform reference data in the form of labelled
regions of interest (ROIs). This is a time-consuming process
that unfolds over several months.

This collaborative process informs the data verification process,
as well as the evaluation of analytical results. Specifically, it
supports a differentiated process of establishing the ‘best’
results. For example, while the research team seeks to optimize
the outcome of the resultant land cover maps in terms of
statistical metrics, the selection of the final land cover map is
left to the local land use experts from WISNU and BRASTI.
Details on the reasons why this makes sense even from the
perspective of optimization are offered below. Finally, we use
insights gained from interactions with our local partners to
devise a visualization regime that allows non-GIS experts to
more easily read the results of the machine learning analysis.

5. SOFTWARE FOR COLLABORATION

In order to support our inquiry, we created an open source data
collection and analysis pipeline based on QGIS, ORFEO and
GDAL libraries called COCKTAIL (Cocktail, 2022). This
repository allows one to automate the collection of Sentinel-2
and PS satellite assets, and to perform machine learning analysis
procedures on the ingested data.



COCKTAIL contains modules to quickly determine GIS
features of interest to our research, including the Normalised
Difference Built-up Index (NDBI) as well as the Normalised
Difference Vegetation Index (NDVI), and to apply these
features directly onto raster imagery collected from Planet Labs
servers (Planet Labs, 2023) and the European Space Agency
repositories (ESA, 2022). COCKTAIL can be used for
object-based classification via Random Forest, Support Vector
Machine and Neural Networks through the ORFEO machine
learning library (ORFEO, 2023). Moreover, textural information
can be added as an additional layer of information to the
classifiers. Our cloud-based classification pipeline allows us to
perform permutations of hyperparameter combinations, and to
keep track of the results in a sharable environment.

COCKTAIL is designed to facilitate collaboration in multiple
ways. First, the code is open source, runs on Linux OS
(currently Ubuntu 20.04LTS) and can easily be deployed to a
remote computing environment. Second, COCKTAIL is
designed to facilitate sharing. It keeps track of all pertinent
settings and parameters used in the various analysis steps, such
that a given result can be more easily and reliably replicated. It
also manages the storage space and moves results out of the
development environment to low-cost storage space. This later
step can significantly reduce project costs, as data storage on
machine learning enabled cloud environments is much higher
than generic data storage. Together, these elements make
COCKTAIL a useful enabler of collaborative GIS inquiry and
GeoAI analysis.

6. CONCEPTUAL CHALLENGES

The challenges emerging from complex land cover categories
requiring detailed scrutiny due to various kinds of
heterogeneous land use scenarios (Zen, 2019) outlined in our
previous work remain significant. Informed by the first round of
experiments, we defined together with our local partners a
revised set of land cover categories. It was essential to the
project to base our technical inquiry on concepts of land cover
and land use relevant to our partners and their concerns.

Table 1. Land cover classes used to describe the landscape of
the Alas Mertajati. This selection adds to our previous selection,
the categories agroforestry and clouds, and combines multiple
agriculture variations to a single category.

In the tropics, satellites in orbit perceive agricultural plots in
lush greens, or barren browns in short succession. Moreover,
heavy cloud cover that accompanies hot and humid climates
significantly reduces the opportunity for a cloudless view of the
lands.

The next sections describe the significance of the prime target
of this current investigation, agroforestry, and how we
proceeded to represent this category within the previously
described collection of land cover categories of significance to
tropical environments, and the highlands of Bali in particular.

Figure 5. S-Dove satellite images of rice paddies (left) and
agroforestry (right) displayed in true colour (RGB 321).

6.1 Agroforestry

Agroforestry refers to land use systems that combine woody
perennials such as trees, shrubs, palms, and bamboos with
agricultural crops and animals in unique temporal and special
arrangements (Lundren, 1982). Agroforestry systems are
3-dimensional arrangements with more species than other
agroecosystems (Poffenberger, 1990) arranged in a time-varying
spatial structure. Agroforestry does not rely on a single crop,
and farmers can respond to changes in water and soil conditions
with altered plantings. Diverse plantings in agroforestry plots
produce a complex root system that allows the soil to absorb
and hold water at higher rates. This condition reduces runoff
and acts as an erosion barrier (Yuniti, 2022).

While an agroforestry plot may appear unorganized and
haphazard, it is in fact designed to maintain permanently a high
level of productivity across a variety of plants, even under
environmental stress. A well-maintained agroforestry plot
constitutes a robust, sustainable and efficient use of arable land.
Because agroforestry plots are adaptive and less sensitive to
fluctuations in rainfall, they increase the resilience of rural
farmers and improve food security. And agroforestry systems
are typically smaller scale operations managed by a limited
number of farmers with family and personal connections to the
lands. Moreover, the selection of species in an agroforestry
system are often informed directly by established,
cross-generational local ecological knowledge. The
configuration of plant species in agroforestry sites also reduces
the need for fertilizers and pesticides. Nothing more than
manure from small-scale animal husbandry is typically applied
to clove trees in agroforestry plots of the Alas Mertajati, for
example.

Bali has developed a variety of agroforestry configurations,
including the abian, a field located at some distance to a
residential area; the kebon, a garden located close to a residence
and the telajakan, a green space directly adjacent to a residence.
Accessibility is important, specifically along the steep slopes of
the hills and valleys surrounding the volcanic landscape. For
that reason, plots are typically located in proximity to footpaths
and small roads, facilitating the transport of produce from the
fields to market. The sizes of agroforestry plots range from a
fraction of a hectare to five and more hectares, small on all
accounts compared to industrial agriculture farms. In the areas
of concern to the Tamblingan, agroforestry plots often combine
banana trees, coffee plants, avocado, jackfruit, guava, clove,
palm trees and taro plants. Usually the plots have a subset of
these species as dominant plantings, and some areas remain
semi-wild.



There is a fluid boundary between agroforestry and mixed
tropical gardens. In some cases, the same plants occur in either
configuration. Typically, the mixed garden condition is more
structured, more intensely managed and closer to larger
roadways while agroforestry sites, often surrounded by forested
territory, tend to be less intensely managed.

Despite the significance of agroforestry as a form of sustainable
land use practice, agroforestry is not an official land cover
classification category recognized by BIG, the Indonesian
agency charged with cartographing the archipelago and its
resources. In 2018, the Peta Kita initiative was launched with
the goal of bringing together land use, land tenure and “other
spatial data” into a singular database for Indonesia (Jon, 2018),
(Gokkon, 2018). Given that Indonesia has a plethora of
officially sanctioned maps, some for mining, others for oil and
gas exploration, and yet another set for forestry, the initiative is
an attempt not only to unify these disparate representations but
to exert control of the resources mapped across all of these
categories.

As opposed to monoculture plots, agroforestry sites are difficult
to detect in satellite imagery. They are difficult to detect due to
the variability of plantings, the 3-D spatial arrangements, plot
irregularity and the small plot sizes. In a climate that knows no
interruption to plant growth, and where plants can flower in
weekly intervals, change is a constant and agroforestry sites
produce and display more change than monoculture plots.

Figure 6. Agroforestry plot typology in the Alas Mertajati.
There is significant variation in the types of plants in
agroforestry plots, as well as in the intensity of intervention into
the landscape.
Left: Low-level intervention on a semi-wild site on a steep hill
with sugarplum, banana, coffee, taro, clove, and jackfruit.
Middle: Mid-level intervention with coffee, banana, mandarin,
and avocado. Right: Mid to high-level intervention with coffee,
banana, flowers, and clove.

Our analysis approach relies on a combination of supervised
machine learning classification, fine-tuned and balanced data
samples across all categories, and human feedback.
Specifically, we expand the generic human feedback loop to
include feedback from stakeholders who will be impacted by
the information we produce. In this case, our feedback includes
concerns from WISNU and BRASTI. This feedback itself is the
product of an iterative process, as described above.

One lesson from our study is the insight that tropical land cover
classes with complex and varying use cases, such as mixed
forests, rice paddies and agroforestry, are difficult to reliably
detect. Moreover, when such complex land cover classes are
included as a single classification task, confusion across

categories can be amplified. There are two main reasons for this
condition. First, these categories can be challenging to detect in
the field, even with the presence of local experts. We
experienced this condition in January 2023 as the field team
collected close to 100 ground truth samples of forest, rice
paddies, gardens, agriculture, and agroforestry plots with a local
expert. On several occasions, plots previously considered as
agroforestry were re-assigned to either mixed forests or mixed
garden plots. Even local experts can in some cases disagree on
whether a particular plot is a wild-mixed garden or a well-kept
agroforestry site. Moreover, upon inspection from members of
WISNU and our research team, some plots were yet again
reassigned to a different category. Second, the overlap of
surface features outlined above generates an overlap in spectral
responses that pose significant challenges to the classification
pipeline, as Table 2 makes manifest. Unbalancing the ground
truth reference data with additional samples to better represent
one class can easily lead to reduced classifier performance in
other categories, as described in the following section.

7. ANALYTICAL RESULTS

Tuning the selection of ROIs is time-consuming and difficult to
control. Additional data does not always result in better
outcomes. Improvement of one category can result in
deterioration in another category. Through trial and error, we
eventually settled on between 15 and 20 ground truth samples
per category.

# ROI file CL # ROI,
f1 score

agroforestry

#ROI,
f1 score

mixed forest

#ROI,
mean f1 score
rice paddies

1 v_01.shp SVM 20; 0.4963 12; 0.8934 12; 0.7738

2 v_02.shp SVM 20; 0.4412 12; 0.8861 12; 0.7861

3 v_03.shp SVM 20; 0.4390 12; 0.9264 12; 0.8096

4 v_04.shp SVM 20; 0.5025 12; 0.9197 12; 0.8135

5 v_05.shp SVM 20; 0.5521 12; 0.9152 12; 0.7799

6 v_06.shp SVM 20; 0.5795 12; 0.9309 12; 0.7868

7 v_07.shp SVM 15; 0.5957 12; 0.9387 15; 0.8267

8 v_08.shp SVM 15; 0.5913 12; 0.9108 15; 0.8306

9 v_09.shp SVM 15;0.5826 12; 0.9213 15; 0.8031

10 v_10.shp SVM 15;0.5891 12; 0.9271 15; 0.8195

11 v_11.shp SVM 15; 0.6025 12; 0.9353 15; 0.7962

11b v_11.shp RF 15; 0.2240 12; 0.9070 15; 0.6263

12 v_12.shp SVM 15; 0.5087 12; 0.9075 15; 0.7895

13 v_13.shp SVM 15; 0.6188 12; 0.9458 15; 0.7709

Table 2. SVM and RF classification with varying shape file
configurations, operating on the baseline PS asset from May 30,
2022.

Some categories fared better with slightly lower sample sizes,
and some better with slightly large sample sizes (rice paddies).
The best result we could achieve in the detection of agroforestry
was 0.6188, and in the cases of mixed forests and rice paddies
the best f1-scores were 0.9458 and 0.8306, respectively. We
purposely refrained from increasing the number of ROIs beyond
20 to prevent overfitting.

Given that agroforestry plots are small, and our spatial
resolution only 3.7 m/pixel, identification of suitable ground



truth for agroforestry pushes our endeavour to its limits.
Agroforestry detection must be seen here as an edge condition,
a condition that is only now starting to be detectable given the
current state of remote sensing assets at hand. While ground
sample collection is always an important part of land cover
analysis, the data collection step takes on more significance
where categories have overlapping and varying spectral
characteristics, the selection of which can lead to different
analytical results, as is the case with agroforestry.

Given the variance of the analytical results and the impossibility
of generating one solution with f1-scores above a desirable 90%
threshold for all land cover categories in our target collection, it
appears logical to include additional criteria in the selection
process. Specifically, we include concerns particular to our local
partners in determining which kind of errors should be avoided,
and which set of ground truth samples best supports the goal of
adequately representing the lands. One example of the outcome
of this consultation process is illustrated in Figures 7 and 8. A
variety of grasses extend from the border of lake Tamblingan
into the shallow waters and render the edges of the lake into
swamp land with a spectral signature similar to that of rice
paddies; a condition observed with the 4-band Dove, and
replicated in the new 8-band S-Dove imagery. The production
of food stands in opposition to the cultural significance of lake
Tamblingan and the adjacent Ulun Danu Beratan temple,
protected sites venerated since the 10th century. For that reason,
any land cover representation that suggests commercial
activities on these sacred lands would be considered by the
Tamblingan to be a particularly undesirable classification error.

Figure 7. Detail of Lake Tamblingan. Left: S-Dove source.
Right: SVM classification with ground truth version 11.
Sections of the southern and eastern shoreline are
miss-classified as rice paddy fields.

Figure 8. Detail of Lake Tamblingan. Left: S-Dove source.
Right: SVM classification with ground truth version 13.

With these concerns in mind, we changed the previous “best”
solution (#11 in Table 2) to include additional data samples,
resulting in the 13th version of the ROI sample collection, with
the corresponding analytical results shown in Figure 8. We
unbalanced the dataset to include more samples around Lake
Tamblingan to address this particular case. The number of false
positive instances of rice paddies at the edges of the lake has
been noticeably reduced.

7.1 Data visualization

The following section offers a visual overview of the three top
performing ROI sets and the corresponding SVM classification.
The source for all experiments was a crisp and cloud-fee
S-Dove image from May 30th, 2022.

v_7.shp

v_11.shp

v_13.shp

Table 2. Visual overview of the land cover analysis results.

The subsequent three images show the performance of three
different classification schemes operating on the final ‘best’
ROI collection candidate.

Overall, we observe that the Support Vector Machine (libsvm)
classifier delivers the best performance across all categories,
requiring the least amount of training data. The Random Forest
classifier is not able to capture agroforestry and underrepresents
the extent of settlements. The Neural Network classifier
overestimates the extent of agroforestry, finding instances of
this category where forests have more recently been cleared for
high voltage transmission lines (south of Lake Buyan), for
example. However, our experiments with the Neural Network
model were rather limited. We used only two hidden layers, one
type of activation function (sigmoid) and a single fixed
momentum rate of 0.1. More sophisticated models might result
in different outcomes.



SVM + v_13.shp

RF + v_13.shp

NN + v_13.shp

Table 3. Results from Support Vector Machine (top), Random
Forest (middle) and Neural Network (bottom) classifiers
operating on the optimal set of ROIs. In the case of the Neural
Network, the polygons were converted to a points-based
shapefile, based on the raster ROIs. Each ROI contains 1 to 3
distinct points (557 points in total).

During discussions with our local partners, we realized that the
mapping of hue to category created some confusion when
applied to all categories simultaneously. The distinction

between photographic representation and analysis-based
mapping was obscured by the detailed pixel level visual colour
mapping, specifically where the hue selection coincided or
overlapped with human perception; i.e., ‘blue’ for water and
‘green’ for forest. As a consequence, we decided to clarify the
results by representing a single category per image in an
arbitrary colour, and setting all others to null. The output from
this operation is then filtered with a morphological operator
(erosion) to remove noisy pixels. That result is in turn linearly
blended with the near-infrared (or alternately green) band of the
corresponding satellite image and contrast enhanced. The visual
results of this conceptual focusing are shown below.

Figure 8. Visual representation of agroforestry, 2022. Two main
areas of agroforestry are visible. One north of Lake Tamblingan
and one west of the Nature Preserve.

Figure 9. Visual representation of settlements, 2022. There are
two main areas of settlements, one west of Lake Tamblingan
and one adjacent to and south of lake Buyan.

8. UN-MAPPINGWATER RESOURCES

As outlined in our previous work, water resources are likely the
most significant natural assets within our study area. The
observations we made regarding the limitation of satellite
imagery to adequately capture information on water resources in
the tropics also applies to the newest S-Dove configuration,
unfortunately. Hydrography of small streams in the tropics
requires laborious field work that is difficult to automate. This



fact makes maintenance and quality control of existing maps a
challenge.

Figure 10. Detail of the official hydrology map of the Alas
Mertajati, 2000 data.
GPS location: -8° 15’ 42.1” S, 115° 4’ 6.6” E.

Figure 11. No water flow at the site from Figure 10 recorded
during the rain season on Jan 4th, 2023.

Figure 10 shows a detail from the official hydrology map of the
Alas Mertajati, produced in 2000. The hydrology map was
produced by the Geospatial Information Agency Indonesia
(Ina-Geoportal, 2022). In our previous work, we described the
significance of water resources for the island at large as well as
for the indigenous groups in particular. Here we add
observations on the validity of this official hydrology map.

An informal survey of a part of the Alas Mertajati in January
2023 showed that the map does not adequately represent the
water streams of the area. 10 sample sites were visited, and of
those 10, 2 sites were found to contain no water. Several others
appeared to have reduced water flows. This informal survey
occurred during the rain season, during the wet month January
when the highlands of the Alas Mertajati receive up to 2000 mm
of rain (Bali Besar Meteorologi, 2022). Figure 11 shows the dry

streambed of one of these small rivers identified in Figure 10.
This informal survey demonstrates the need to update the
existing reference hydrology map. Not only is the map simply
incorrect, it suggests an abundance of water that no longer
exists. An update is particularly called for given the informal
and formal observations and experiences of acute water
shortages across the island (Cole, 2015), (Cole, 2021) over the
last few years. Limited and critical resources are under stress
not only due to effects of climate change but also due to the
demands of an ever-increasing tourist industry, a topic fraught
with baggage for the Balinese, especially as the impacts and
costs of over-tourism are assessed (Sperling, 2020).

9. DISCUSSION

The iterative process of collecting and evaluating ROI datasets
for shallow machine learners we outlined earlier, shifts here
from an operation focused on optimization to one that includes
the potential cultural impact produced by classification outputs.

Given that our process was only able to capture the distribution
of agroforestry with a f1-score of 62%, one might dismiss the
results due to inadequate statistical significance. While the
numerical results are in fact of rather low confidence, we
believe that establishing a precedent in mapping difficult and
important sustainable land cover categories takes precedence
over numerical accuracy. To be clear, we are not advocating for
abandoning established quantitative metrics in the evaluation of
classifier performance. Yet particularly where numerical results
fail to deliver a convincing and crisp outcome, additional
criteria can – and should, we argue – be included. Given that the
8-band imagery central to our operation has only been available
for one year, we were not able to explore synergies from
state-of-the-art deep learning in GeoAI. If ongoing advances in
GeoAI for terrain analysis and agriculture can serve as an
indicator (Tong 2020), (Wang, 2021), (Linaza, 2021), better
solutions for the detection of agroforestry will become available
in the near future. Yet even with large collections of high quality
spectral and spatial data, GeoAI will be charged to consider the
impacts of its operations against the interests of those most
impacted by the operations. And while the performance of
future classification operations will lead to more crisp and
precise outcomes, errors will always occur, and it will remain
critical to devise methods by which one can observe the
potential impacts of these errors on stakeholders and make the
impacts topics for discussion.

While the informal stream survey demonstrates the need for an
updated hydrology map of this particular study site, it also
points to a wider issue that accompanies the new big data
regime in remote sensing. Outdated datasets not only formalize
erroneous conditions, their very existence can prevent change
from occurring, simply because they exist and occupy the
position of an official reference. While some datasets can be
easily updated, others – such as this hydrology map – require
expensive field surveys and ‘resist’ change as they are
expensive to replace. Such datasets are only recognized as the
flotsam they in fact are when actively queried. The need for
continuous updates, system upgrades, and the inertia that
opposes change will place additional stress on under-resourced
remote sensing operations in the majority world.

ACKNOWLEDGEMENTS

This project is supported in part by research grants from
Google’s Climate Innovation Challenge program, Planet Labs
and the United States National Endowment for the Humanities.



REFERENCES

Balai Besar Meteorologi, Klimatologi, dan Geofisika Wilayah
III Denpasar, 2022.
https://balai3.denpasar.bmkg.go.id/normal-ch-tahunan. Last
visited April 19, 2923.

Böhlen, M., Liu, J., & Iryadi, R., 2022a. Who speaks for the
forest? Local knowledge, participatory mapping and
collaborative evaluation for GIS analysis in the tropics of
central Bali, Indonesia. The International Archives of
Photogrammetry, Remote Sensing and Spatial Information
Sciences, 48, 73-80.

Böhlen, M., Liu, J., & Iryadi, R., 2022b. Combining Landsat,
Sentinel2 and Planet Lab satellite assets for resource
constrained land cover analysis in the tropics.
Abstr. Int. Cartogr. Assoc., 5, 44.
https://doi.org/10.5194/ica-abs-5-44-2022

Baga Raksa Alas Mertajati (BRASTI), 2023.
https://brastitamblingan.com/. Last visited April 19th, 2023.

Cole, S., & Browne, M., 2015. Tourism and Water Inequity in
Bali: A Social-Ecological Systems Analysis. Human Ecology.
43, No. 3, June, pp. 439-450.

Cole, S., Wardana, A., Dharmiasih, W., 2021. Making an impact
on Bali's water crisis: Research to mobilise NGOs, the tourism
industry and policymakers, Annals of Tourism Research,
Volume 87, 2021, 103119.

COCKTAIL, 2022. Integrating QGIS, GDAL and OTB on a
virtual computer for collaborative geospatial analysis and
visualisation. https://github.com/realtechsupport/cocktail

ESA, 2022. European Space Agency Copernicus Open Access
Hub. https://scihub.copernicus.eu/. Last accessed May 12, 2022.

Gokkon, B, 2018. One map to rule them all: Indonesia launches
unified land-use chart, Mongabay, 13. December 2018.
https://news.mongabay.com/2018/12/one-map-to-rule-them-all-i
ndonesia-launches-unified-land-use-chart/

Ina-Geoportal, 2022. The Geospatial Information Agency
Indonesia: Digital topographic (Rupabumi) map of Indonesia.
http://tanahair.indonesia.go.id/portal-web/. Last accessed May
12, 2022.

Jon, HN, 2018. Indonesia’s ‘one-map’ database blasted for
excluding indigenous lands. Mongabay, 10th August.

Linaza, M., Posada, J., Bund, J., Eisert, P., Quartulli, M.,
Döllner, J., Pagani, A., Olaizola, I., Barriguinha, A., Moysiadis,
T., Lucat, L. 2021. Data-Driven Artificial Intelligence
Applications for Sustainable Precision Agriculture. Agronomy
11, 1227.

Lundgren BO and Raintree JB, 1982. Sustained agroforestry. In:
Nestel B. (ed). Agricultural Research for Development:
Potentials and Challenges in Asia, pp 37-49. ISNAR, The
Hague.

Ministry of Environment and Forestry Indonesia, 2020. Basis
data geospasial lingkungan hidup dan kehutanan tahun. Jakarta:
Ministry of Environment and Forestry Indonesia.

ORFEO, 2023. Open source remote sensing toolbox Orfeo.
https://www.orfeo-toolbox.org/. Last access March 19, 2023.

Planet Labs, 2023. https://www.planet.com/explorer/. Last
accessed April 20, 2023.

Poffenberger, Mark. 1990. Keepers of the Forest: Land
Management Alternatives in Southeast Asia. Ateneo De Manila
University Press.

Planet Labs, 2022. Planet Imagery product specifications.
https://assets.planet.com/docs/Planet_Combined_Imagery_Prod
uct_Specs_letter_screen.pdf. Last accessed May 9, 2022.

Sperling, E., 2020. Over-Exposure to Tourism in Bali,
Indonesia. Investigating issues of over-tourism and sustainable
recovery on the island of Bali. December 4, 2020.
https://storymaps.arcgis.com/stories/eb1f5fbd18fc4c53bbde071
3e06ab111. Last visited April 19th, 2023.

Strauss, S., 2015. Alliances Across Ideologies: Networking with
NGOs in a Tourism Dispute in Northern Bali, The Asia Pacific
Journal of Anthropology, 16:2, pp. 123-140.

Superdove, 2022. Superdove (PSB.SD) instrumentation.
https://developers.planet.com/docs/apis/data/sensors/. Last
accessed May 11, 2022.

Suryawan, N., 2021. Fighting for the Real Source of Life:
Indigenous Peoples of Dalem Tamblingan and Sovereignty over
Alas Merta Jati in Buleleng, Bali (Memperjuangkan Sumber
Kehidupan Sesungguhnya: Masyarakat Adat Dalem Tamblingan
dan Kedaulatan atas Alas Merta Jati di Kabupaten Buleleng,
Bali). BHUMI: Jurnal Agraria dan Pertanahan, 7(1), pp. 79-95.

Tong, Y., Xia, S., Lu, Q., Shen, H., Li, S., You, S., Zhang, L.,
2020. Land-cover classification with high-resolution remote
sensing images using transferable deep models. Remote Sensing
of Environment, 237, 111322.

Utami, L. S., Ardika, I. W., & Suastika, I. M., 2021. Power
Relations in the Tamblingan Inscription in the X-XIV Century
AD. E-Journal of Cultural Studies, May, Vol. 14, Number 2, pp.
43-63.

Wang, S. & Li, W. 2021. GeoAI in terrain analysis: Enabling
multi-source deep learning and data fusion for natural feature
detection. Comput. Environ. Urban Syst. 90, 101715.

WISNU, 2023. The Wisnu foundation.
https://www.wisnu.or.id/. Last accessed April 19, 2023.

Yuniti, I Gusti Diah Ayu, Jhon Hardy Purba, Nanang Sasmita,
Liris Lis Komara, Tomycho Olviana, and I Made Kartika. 2022.
“Balinese Traditional Agroforestry As Base of Watershed
Conservation”. Journal of Applied Agricultural Science and
Technology 6 (1):49-60.

APPENDIX

Software to train the classifiers and create the visual results is
available here: https://github.com/realtechsupport/cocktail.

Datasets (geoTIFF and shapefiles) are available here:
https://filedn.com/lqzjnYhpY3yQ7BdfTulG1yY/FOSS4G_2023/

https://balai3.denpasar.bmkg.go.id/normal-ch-tahunan
https://doi.org/10.5194/ica-abs-5-44-2022
https://brastitamblingan.com/
https://github.com/realtechsupport/cocktail
https://scihub.copernicus.eu/
http://tanahair.indonesia.go.id/portal-web/
http://paperpile.com/b/lHMbSD/mF99
http://paperpile.com/b/lHMbSD/mF99
http://paperpile.com/b/lHMbSD/mF99
https://www.orfeo-toolbox.org/
https://www.planet.com/explorer/
https://assets.planet.com/docs/Planet_Combined_Imagery_Product_Specs_letter_screen.pdf
https://assets.planet.com/docs/Planet_Combined_Imagery_Product_Specs_letter_screen.pdf
https://storymaps.arcgis.com/stories/eb1f5fbd18fc4c53bbde0713e06ab111
https://storymaps.arcgis.com/stories/eb1f5fbd18fc4c53bbde0713e06ab111
https://developers.planet.com/docs/apis/data/sensors/
https://www.wisnu.or.id/
https://github.com/realtechsupport/cocktail
https://filedn.com/lqzjnYhpY3yQ7BdfTulG1yY/FOSS4G_2023/

