Höghastighetsbanor
– ett samhällsbygge för stärkt utveckling och konkurrenskraft

Betänkande av Utredningen om höghastighetsbanor

Stockholm 2009
SOU och Ds kan köpas från Fritzes kundtjänst. För remissutsändningar av SOU och Ds svarar Fritzes Öffentliga Publikationer på uppdrag av Regeringskansliets förvaltningsavdelning.

Beställningsadress:
Fritzes kundtjänst
106 47 Stockholm
Orderfax: 08-598 191 91
Ordertel: 08-598 191 90
E-post: order.fritzes@nj.se
Internet: www.fritzes.se

– En liten broschyr som underlättar arbetet för den som ska svara på remiss.
Broschyren är gratis och kan laddas ner eller beställas på
http://www.regeringen.se/remiss

Textbearbetning och layout har utförts av Regeringskansliet, FA/kommittéservice

Tryckt av Edita Sverige AB
Stockholm 2009

ISSN 0375-250X

Med stöd av bemyndigandet förordnades från och med den 18 december 2008 verkställande direktören Gunnar Malm som särskild utredare.

Som sekreterare i utredningen anställdes från och med den 18 februari 2009 Nina Andersson och från och med den 6 april 2009 Sara Sundgren.

Som sakkunniga i utredningen förordnades från och med den 3 mars 2009 ämnesrådet Peter Andersson, departementssekreteraren Anna Blomdahl, marknadschefen Agneta Ericsson, handläggaren Kristina Feldhusen, handläggaren Reigun Thune Hedström, regionala direktören Birgitta Hellgren, professorn Lars Hultkrantz, konsulterna Sven Landelius, departementssekreteraren Ola Nordlander, direktören Hans Rode och konsulterna Jan Sundling.

Lena Enstam har varit utredningens assistent och den som svarat för textredigering och layout.

Stockholm den 14 september 2009

Gunnar Malm

/Nina Andersson
Sara Sundgren
Innehåll

Förkortningar och termer ... 13

Sammanfattning .. 21

Summary .. 27

1 Uppdraget .. 33
 1.1 Direktiven ... 33
 1.2 Mitt arbetssätt ... 34
 1.2.1 Sakkunniga .. 34
 1.2.2 Studiebesök och möten .. 34
 1.2.3 Genomförda kartläggningar och utredningar 35
 1.3 Betänkandets disposition... 40

2 Utgångspunkter ... 41
 2.1 Det svenska järnvägssystemet och höghastighetsbanor 41
 2.2 Transportpolitiska mål .. 43
 2.3 Finansieringsprinciper .. 47
 2.3.1 Anslagsfinansiering som huvudprincip 47
 2.3.2 Medfinansiering ... 47
 2.3.3 Ansvarsfördelning mellan nationella, regionala och lokala aktörer för finansiering av infrastrukturatsningar 48
 2.3.4 Bidrag från EU eftersträvas .. 49
2.4	Samhällsekonomiska kalkyler och nyttöberäkningar	49
2.4.1	Samhällsekonomiska bedömningar och samhällsekonomiska kalkyler	50
2.4.2	Samlade effektbedömningar	51
2.5	Rätten till marknadstillträde	52
2.6	Banavgifter	54
2.6.1	Principer för banavgifter	54
2.6.2	Banavgifter i Europa	55
2.7	Transeuropeiska transportnätverk (TEN-T)	56
2.7.1	För ekonomisk sammanhållning och hållbar utveckling	56
2.7.2	Riktlinjer för EU-finansiering	59
2.8	Det europeiska höghastighetsnätet	62
2.8.1	Höghastighetsnät i världen	62
2.8.2	Utbyggnaden av det europeiska höghastighetsnätet	63
2.8.3	Trafikutveckling	65
2.8.4	Höghastighetsnätet i de olika länderna	67
2.8.5	Gränsöverskridande trafik	70

3 Genomförda svenska utredningar och projekt samt aktuella intresseorganisationer

3.1	Genomförda svenska utredningar	73
3.1.1	Höghastighetståg i Sverige – Statens Järnvägar 1995	73
3.1.2	Idéstudie om höghastighetsjärnvägar i Sverige – Banverket 2003	74
3.1.3	Svenska höghastighetsbanor – Banverket 2008	76
3.1.4	Nya tåg i Sverige – SJ med flera 2008	80

3.2	Beskrivningar av och erfarenheter från tidigare genomförda stora nationella infrastrukturprojekt	83
3.2.1	Öresundsförbindelsen	84
3.2.2	Botniabanan	85
3.3 Aktuella intresseorganisationer... 87
 3.3.1 Europakorridoren – intresseförening för
 Götalandsbanan och Europabanan 87
 3.3.2 Stambanan.com.. 87
 3.3.3 Internationella intresseorganisationer......................... 88

4 Nulägesbeskrivning .. 91
 4.1 Utvecklingen av persontransportmarknaden och dagens
 trafikvolymer... 91
 4.1.1 Utvecklingen av den totala
 persontrafikmarknaden 1950–2008 91
 4.1.2 Utvecklingen av persontrafiken med järnväg 92
 4.1.3 Utvecklingen av persontrafiken med järnväg
 kring storstäderna.. 93
 4.1.4 Beskrivning av den regionala persontrafiken med
 järnväg i övriga delar av landet......................... 99
 4.2 Utvecklingen av godstransportmarknaden och dagens
 trafikvolymer... 100
 4.2.1 Utvecklingen av den totala
 godstransportmarknaden 1950–2008 100
 4.2.2 Utvecklingen av godstransporter med järnväg 102
 4.3 Befintligt bansystem... 104
 4.4 Befintliga operatörer... 105
 4.5 Kapacitetsutnyttjande... 106
 4.5.1 Begreppet kapacitet och kapacitetsutnyttjande av
 det svenska järnvägsnätet..................................... 106
 4.5.2 Dagens trafik och kapacitetsutnyttjande på
 Västra stambanan och Södra stambanan 110
 4.5.3 Möjligheten att öka kapacitetsutnyttjandet på
 kort och lång sikt.. 111
 4.6 Banverkets åtgärdsplanering.. 114
 4.7 Befintliga planer för järnvägsnät i Danmark och norra
 Tyskland ... 116
 4.7.1 Danmark... 116
 4.7.2 Norra Tyskland.. 117
5 Internationella erfarenheter .. 119

5.1 Frankrike ... 119
5.1.1 Kostnader och finansiering .. 120
5.1.2 Pågående utbyggnader ... 122
5.1.3 Effekter för flygresandet .. 125

5.2 Spanien .. 127

5.3 Portugal ... 129

5.4 Nederländerna .. 130

5.5 Italien .. 132

5.6 Storbritannien .. 134

5.7 Norge .. 135

5.8 Ryssland .. 136

5.9 USA .. 136

5.10 Kina ... 137

5.11 Sammanfattning internationella erfarenheter 138

6 Beskrivning och värdering av olika handlingsalternativ.. 141

6.1 Utgångspunkter för värdering av de olika
handlingsalternativen ... 142

6.2 Geografisk avgränsning och uppsatta restidsmål –
samtliga alternativ .. 143

6.3 Jämförelsealternativ ... 145
6.3.1 Beskrivning av jämförelsealternativet 145
6.3.2 Värdering av jämförelsealternativet 146

6.4 Uppgradering och utbyggnad av Södra stambanan och
Västra stambanan för snabbtågstrafik 147
6.4.1 Beskrivning av en uppgradering och utbyggnad av
de båda stambananerna för snabbtågstrafik 147
6.4.2 Värdering av en uppgradering och utbyggnad av
de båda stambananerna för snabbtågstrafik 150
6.5 Höghastighetsbanor ... 155
 6.5.1 Beskrivning av höghastighetsbanorna 155
 6.5.2 Värdering av höghastighetsbanorna 161

6.6 Sammanfattande värdering av de olika
 handlingsalternativen .. 170

7 Analyser av höghastighetsalternativ 173

7.1 Bantyp, marknadsförutsättningar och linjesträckning 174
 7.1.1 Nya spår parallellt med de befintliga stambanorna .. 174
 7.1.2 Banor enbart för persontrafik 176
 7.1.3 Marknadsförutsättningar för persontrafik och val
 av linjesträckning .. 177

7.2 Fordon ... 182

7.3 Depåer och fordonsunderhåll 183
 7.3.1 Ansvar och organisation 184
 7.3.2 Möjlig depåstruktur för höghastighetsfordon 187

7.4 Utveckling av stationer och mötesplatser 188
 7.4.1 Stationer utmed höghastighetsbanan 188
 7.4.2 Stationernas funktion ... 191
 7.4.3 Stadsutveckling ... 191
 7.4.4 Huvudmannaskap och finansiering 193

7.5 Tekniska aspekter ... 198
 7.5.1 Klimatförhållanden ... 198
 7.5.2 Undergrund, underbyggnad och tunnel 199
 7.5.3 Överbyggnad ... 200
 7.5.4 Övriga tekniska frågor ... 200

7.6 Linjeföring och landskapsanpassning 201
 7.6.1 Avgränsning och metodik 201
 7.6.2 Tekniska och geometriska krav för
 höghastighetsbanor som påverkar
 landskapsanpassningen .. 203
 7.6.3 Beskrivning av landskapet i aktuella områden 205
 7.6.4 Exempel på anpassningsåtgärder 207
 7.6.5 Fortsatt planering .. 211
Innehåll

7.7 Miljöbedömningar och miljöeffekter.................................211
 7.7.1 Miljöpolitiska mål ...212
 7.7.2 Miljöbedömningens syfte ...216
 7.7.3 Avgränsning av miljöbedömningen217
 7.7.4 Klimatpåverkan och energianvändning......................219
 7.7.5 Landskap och bebyggelse ...226
 7.7.6 Hälsa och befolkning ..229

7.8 Koppling till det europeiska höghastighetsnätet..............235
 7.8.1 Kopplingen via Danmark..235
 7.8.2 Kopplingen till Tyskland ..237
 7.8.3 Godstrafiken..238
 7.8.4 Slutsatser kopplingen till det europeiska
 höghastighetsnätet ..239

8 Förslag till modell för genomförande och finansiering ...241
 8.1 Organisatorisk modell ...241
 8.2 Ekonomi och finansiering ..248
 8.2.1 Generella antaganden för beräkningar.......................249
 8.2.2 Projektbolaget ...250
 8.2.3 Infrastrukturbolagen ...252
 8.2.4 Operatörer ..256
 8.2.5 Sammanfattning av finansieringen av hela
 projektet ..261
 8.3 Risker och riskhantering ..265
 8.3.1 Tågoperatörer ..265
 8.3.2 Infrastrukturbolag ...266
 8.3.3 Staten ...267
 8.3.4 Sammanfattning av riskfördelning268
 8.4 Kapacitetstilldelning på banorna ..269
9 Förslag kring planering, projektering och byggnation 273

9.1 Planeringsprocesserna ... 274
 9.1.1 Den fysiska planeringsprocessen 275
 9.1.2 Möjligheter att effektivisera planeringsprocesserna 277
 9.1.3 Markåtkomst .. 286
 9.1.4 Blockindelning för genomförande 289
 9.1.5 Projektorgination ... 290

9.2 Projekteringsprocess ... 293
 9.2.1 Projektledning ... 293
 9.2.2 Genomförande ... 294

9.3 Byggprocess ... 296
 9.3.1 Entreprenadformer .. 296
 9.3.2 Tidplan .. 297

10 Förslagens konsekvenser ... 301

10.1 Höghastighetsbanornas bidrag till transportpolitisk måluppfyllelse ... 301
 10.1.1 Funktionsmålet tillgänglighet ... 301
 10.1.2 Hänsynsmålet – säkerhet, miljö och hälsa 308

10.2 Påverkan på transportsystemet ... 309
 10.2.1 Påverkan på kapaciteten och trafiken inom järnvägssektorn ... 309
 10.2.2 Påverkan på övriga trafikslag ... 309

10.3 Ekonomiska konsekvenser ... 310
 10.3.1 Påverkan på statens utgifter och på statsbudgeten 310
 10.3.2 Påverkan på kommunernas ekonomi 311
 10.3.3 Påverkan på sysselsättning i olika delar av landet 312

10.4 Miljökonsekvenser ... 316
 10.4.1 Klimateffekter ... 317
 10.4.2 Påverkan på biologisk mångfald 318
 10.4.3 Påverkan på hälsa och befolkning 319

10.5 Övriga konsekvenser .. 321
 10.5.1 Påverkan på natur- och kulturmiljöer 321
 10.5.2 Påverkan på andra faktorer enligt kommittéförordningen 321
Särskilda yttranden ..323

Referenser ...329

Bilagor

Bilaga 1 Kommittédirektiv (Dir. 2008:156)335
Bilaga 2 Genomförda möten och samråd341
Bilaga 3 Föreslagna åtgärder i stambanealternativ345
Bilaga 4 Åtgärdsbehov, planeringsläge och förutsättningar
 för stationer ...347
Bilaga 5 Särskilt känsliga landskapsområden355
Förkortningar och termer

Förkortningar

ADIF El Administrador de Infraestructuras Ferroviarias
AGV Automotrice à Grande Vitesse
AVE Alta Velocidad Española
BEST ban-, el-, signal- och tele-
BNP Bruttonationalprodukt
BVH Banverkets handbok
DB Deutsche Bahn
EES Europeiska ekonomiska samarbetsområdet
EIB Europeiska investeringsbanken
ERTMS European Railway Traffic Management System
ERUF Europeiska regionala utvecklingsfonden
EU Europeiska unionen
ETCS European Train Control System
FS Ferrovie dello Stato
HSA High Speed Alliance
HSL Hogesnelheidslijn
ICE InterCity Express
IPCC Intergovernmental Panel on Climate Change (FN:s klimatpanel)
ICRP International Commission on Radiological Protection (Internationella strålskyddskommissionen)
ISPA Infrastrutture SpA
KTH Kungliga Tekniska högskolan
LGV Ligne à Grande Vitesse
LTF Lyon Turin Ferroviaire
LBJ Lagen (1995:1649) om byggande av järnväg
MKB Miljökonsekvensbeskrivning
NIB Nordiska investeringsbanken
NS Nederlandse Spoorwegen
NTV Nuovo Transporto Viaggiatori
OPS Offentlig–privat samverkan
PBL Plan- och bygglagen (1987:10)
Rave Rede de Alta Velocidade
Renfe Red Nacional de Ferrocarriles Españoles
RFF Réseau Ferré de France
RFI Rete Ferroviaria Italiana
SIKA Statens institut för kommunikationsanalys
SKL Sveriges Kommuner och Landsting
SNCF Société Nationale des Chemins de fer Français
TAV Treno Alta Velocità
TEN-T Trans-European Transport Network
TGV Train à Grande Vitesse
TSD Tekniska specifikationer för driftskompatibilitet
UIC Union Internationale des Chemins de fer (Internationella järnvägsunionen)
VTI Statens väg- och transportforskningsinstitut

Termer

Här följer en lista över ett antal centrala termer och hur de definieras i detta betänkande.

Bankkapacitet: Möjligheten att framföra ett antal tåg med önskad hastighet på ett banavsnitt.

Banunderbyggnad: Byggnadsverk i banan (broar, vägportar, tunnlar) och banvall.

Banöverbyggnad: Spår, elförsörjning och signal-system.

Beläggningsgrad: Förhållandet mellan personkilometer och platskilometer, dvs. andelen sittplatser i ett resandetåg som är upptagna av resenärer.
Cabotage: Inrikestrafik som bedrivs av ett företag som har sitt säte i ett annat land än där trafiken bedrivs.

Dubbelspår: Sträcka med två huvudspår mellan två platser.

Europakorridoren: Gemensam benämning på Götalandsbanan och Europabanan.

European Railway Agency: Europeiska järnvägsbyrån. Utvecklar, föreslår och beslutar om säkerhetsmål, säkerhetsmetoder och tekniska standarder som ska gälla i hela Europa.

European Rail Traffic Management System (ERTMS): Nyutvecklat europeiskt tågledningssystem i syfte att få interoperabilitet över nationsgränser.
Förstudie: Utredning i ett tidigt skede för baninvesteringar enligt LBJ. Föregås av idéstudie och följs av järnvägsutredning och järnvägsplan.

Green Cargo AB: Järnvägsföretag som bedriver godstrafik i Sverige. Green Cargo AB ägs av svenska staten.

Höghastighetståg: Tåg med högsta tillåtna hastighet över 250 kilometer per timme.

Idéstudie: Utredning för att studera idéer till investeringar i järnvägsnätet i ett tidigt skede av planeringsprocessen.

Interoperabilitet: Möjlighet att framföra tåg över nations- och systemgränser utan lokbyte eller andra tekniska eller organisatoriska hinder.
Jernhusen AB: Bolag som förvaltar statens kommersiella järnvägsfastigheter, dvs. mark och byggnader med järnvägsanknytning som kan inbringa hyresintäkter eller exploateringsvinster. Övriga järnvägsfastigheter förvaltas av Banverket. Jernhusen AB ägs av staten.

Kommersiell trafik: Trafik som bär sina kostnader genom biljettintäkter och utan inslag av subventioner från samhället.

Normalspår: Spår med en spårvidd på 1 435 mm.

Operatör: Se järnvägsföretag.

Personkilometer (pkm): Se transportarbete.

Planskild korsning: Två banor (spår eller vägar) som korsar varandra i skilda plan.
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plattform:</td>
<td>Upphöjt område vid spår att användas för resenärernas av- och påstigning i tågen.</td>
</tr>
<tr>
<td>Punktlighet:</td>
<td>Kvalitetsmått på hur väl tågen följer tidtabellen.</td>
</tr>
<tr>
<td>Regionaltåg:</td>
<td>Resandetåg för trafik mellan tätorter i en region. Det finns även långväga regionaltåg som binder ihop flera regioner.</td>
</tr>
<tr>
<td>Restid:</td>
<td>Den tid ett tåg behöver för att framföras en viss linjesträcka inklusive tillägg för uppehåll.</td>
</tr>
<tr>
<td>Sampers:</td>
<td>Prognosystem för efterfrågeberäkningar i persontrafik utvecklat av Transek AB (numera WSP) på uppdrag av SIKA.</td>
</tr>
<tr>
<td>Samvips:</td>
<td>Prognosystem för efterfrågeberäkningar i persontrafik, utvecklat av ÅF Infrateknik. Samvips består av Sampers regenerering och Vips nätfordelning.</td>
</tr>
</tbody>
</table>
Spår: I järnvägstekniska sammanhang en enhet bestående av räler, rälsbefästningar, sliprar och ballast, spårväxlar och andra komponenter som t.ex. banöverbyggnad.

Spårvädd: Standardiserat mått mellan rälernas insidor. Normalspår är 1 435 mm.

Station: Särskilt avgränsat område av banan där tågklarerare närmare kan övervaka tågrörelser. Utrustad med signalsäkerhetsanläggning.

Stambana: Historisk benämning på bana av nationell betydelse och med relativt mycket trafik.

Systemanalys: En transportslagsövergripande analys av transportsystemets funktion och brister utifrån mål och behov.

Tekniska specifikationer för driftskompatibilitet (TSD): Tekniska föreskrifter som gäller för höghastighetsbanor och -tåg respektive konventionella banor och tåg i Europa.

Tonkilometer: Se transportarbete.
<table>
<thead>
<tr>
<th>Förkortningar och termer</th>
<th>SOU 2009:74</th>
</tr>
</thead>
</table>
| Trafikhuvudman: | Det organ som handhar de läns-
 | trafikansvarigas uppgifter enligt
 | lagen (1997:734) om ansvar för
 | viss kollektiv persontrafik. |
| Transportarbete: | Transporterad enhet x sträcka,
 | t.ex. 1 person som reser 1 km
 | har genererat ett transportarbete
 | på 1 personkilometer. Motsva-
 | rande för godstrafik är tonki-
 | lometer. |
| Tågplan: | Plan för trafikeringen av järn-
 | vägsnätet. Innehåller tidtabeller,
 | spåranvändningsplaner etc.
 | Nationellt tågplanskifte i juni,
 | internationellt i december varje
 | år. |
| Tågslag: | Resandetåg, godståg eller tjänste-
 | tåg. |
| Tågsätt: | Ett eller flera ihopkopplade
 | spårfordon för järnvägstrafik. |
| Union Internationale des | Internationella järnvägsunion-
 | Chemins de fer (UIC): | en. UIC arbetar för främjande
 | av järnvägstransporter genom
 | bl.a. standardiseringar och
 | samverkan mellan järnvägsför-
 | valtare. |
| Yield Management: | Ekonomisk term för
 | intäktsstyrning där transport-
 | företaget försöker öka vinsten
 | av försäljningen genom statisti-
 | ska analyser av efterfrågan som
 | sedan ligger till grund för en
 | differentierad prissättning. |
Sammanfattning

Uppdraget

Mitt uppdrag har varit att utreda förutsättningarna för en utbyggnad av höghastighetsbanor för järnväg i Sverige. Jag har i enlighet med mitt direktiv analyserat om en eventuell utbyggnad av höghastighetsbanor kan bidra till att uppnå samhällsekonomiskt effektiva och hållbara transportlösningar för ett utvecklat transportsystem med förbättrad kapacitet, framkomlighet och tillgänglighet.

Utgångspunkter

Mina förslag utgår, i enlighet med direktivet, från de transportpolitiska målen, gällande finansieringsprinciper för infrastrukturinvesteringar och formerna för uttag av banavgifter. I utredningsarbetet har även det pågående införandet av nya regler för marknadstillträde för järnvägstrafik beaktats. Vad gäller möjligheten till medfinansiering har jag följt arbetet med revideringen av regelverket kring det transeuropeiska transportnätverket (TEN-T).

Med höghastighetsbanor avses i detta betänkande en bana dimensionerad för trafik i hastigheter över 250 kilometer i timmen.

Höghastighetsbanor – ett samhällsbygge för stärkt utveckling och konkurranse

Det nuvarande svenska järnvägsnätet och dess stambanor planerades och började byggas i mitten av 1800-talet. Under stora delar av 1900-talet har en mycket omfattande befolkningskoncentration ägt rum, framför allt till storstadsområdena. Storstädernas tillväxt i kombination med förbättrade kommunikationer har lett till att arbetsmarknadsregionerna har vidgats och att det har blivit möjligt
att bosätta sig allt längre från arbetsplatsen. Detta har i sin tur inneburit ökad trafik och nya trafiksyste. Befolkningstillväxten till och med 2030 beräknas till 80 procent ske inom de nuvarande storstadsområdena. Även Linköping och Norrköping förväntas på sikt komma att utgöra en storstadsregion.

För att möta framtidens efterfrågan på transporter och de utmaningar som samhället står inför är det min uppfattning att vi står inför ett vägval där en ökad satsning på infrastrukturen och inte minst på järnvägen i Sverige är en mycket viktig faktor. Det gäller att vi kan möta morgondagens behov av transporter vad gäller kostnadseffektivitet, kapacitet och utveckling.

Samtidigt bör man vara medveten om att höghastighetsbanor innebär en mycket stor investering och att de negativa effekterna av projektet samt dess risker inte är försvarbara.
Samhällsekonomiska kalkyler och bedömning av de olika handlingsalternativen

I enlighet med direktiven har jag jämfört en utbyggnad av separata höghastighetsbanor med en uppradering och utbyggnad av befintliga banor. Ett förslag till åtgärder för uppradering av Södra stambanan och Västa stambanan har tagits fram. Det har dock, inom ramen för utredningens tidsplan, inte varit möjligt att genomföra en samhällsekonomisk kalkyl för detta alternativ. Min utvärdering av de båda alternativen baseras därför på i vilken utsträckning de bidrar till den transportpolitiska måluppfyllelsen.

De positiva effekterna som inte kan kvantifieras i den samhällsekonomiska kalkylen är enligt min uppfattning viktiga att beakta vid en samlad bedömning av projektet. Den företagsekonomiska lönsamheten i trafiken bedöms bli god vilket innebär att trafiken kan bidra till att bekosta baninvesteringarna.

Val av linjesträckning och bedömningar av miljöaspekter

En höghastighetsbana mellan Stockholm och Göteborg kommer att bestå av 44 mil nya dubbelspår mellan Järna i Stockholm och Almedal i Göteborg.

En ny järnväg innebär betydande påverkan på miljö, landskap och bebyggelse. I detta skede av planeringen för en utbyggnad av höghastighetsbanor är det dock inte möjligt att peka på exakt vilka konsekvenser banan kommer att få för miljön. Den miljöbedömning som genomförts inom ramen för utredningen har syftat till att beskriva den typiska påverkan och effekter som höghastighetsbanor skulle kunna ha på miljön samt att lämna rekommendationer inför den fortsatta planeringen.

Vad gäller hälsa och befolkning bedöms höghastighetsbanorna sammantaget ha en positiv inverkan, bland annat genom ökad tillgänglighet och minskade utsläpp från transportsektorn.

Kopplingen till det europeiska höghastighetsnätet

Det finns möjlighet att koppla samma ett svenskt höghastighetsnät med det europeiska höghastighetsnätet, under förutsättning att befintliga banor i Danmark och norra Tyskland uppraderas och förstärks genom kapacitetshöjande åtgärder. Utsikterna att köra tåg i hastigheter över 250 kilometer i timmen bedöms dock som små. Däremot kan tåg i upp till 160 kilometer i timmen trafikera banorna i Danmark och norra Tyskland om planerade och beslutade
uppgraderingar och kapacitetsförstärkningar av befintliga banor genomförs.

Modell för genomförande och finansiering

Staten bör bilda ett projektbolag som samordnar de statliga insatserna och svarar för planering, projektering, upphandling och framtida förvaltning av avtal som avser höghastighetsbanorna. Bolaget bär statens risker i projektet och hanterar bidrag från EU, regioner och kommuner.

Fordon för persontrafik på banorna anskaffas och bekostas av respektive operatör. Stationerna längs med banan ägs och förvaltas av Jernhusen AB, andra fastighetsbolag eller av lokala aktörer som exempelvis kommuner. Stationerna bör organisatoriskt ligga utanför projektet.

En betydande andel av projektet kan privatfinansieras samt bekostas av trafikintäkter. Medfinansieringen från operatörerna bör utgå från banavgifter som dessa kan bära. Medfinansieringen från berörda kommuner och regioner baseras på nytta, främst i form av kortare restider. Min bedömning är att medfinansieringen från berörda kommuner och regioner kan uppgå till 19 miljarder kronor. Medfinansieringen från EU har bedömts uppgå till 4 miljarder kronor.

Sammantaget bedöms den privata finansieringen och medfinansieringen från EU, kommuner och regioner uppgå till 53 procent av den totala investeringskostnaden. Den statliga finansieringen, via anslag till Banverket, bedöms uppgå till 59 miljarder kronor vilket motsvarar 47 procent av den totala investeringen.

Jag presenterar också en modell för genomförande där staten finansierar projektet utan inblandning av privat kapital men där betalningsförmågan från operatörerna tillvaratas.

Planering, projektering och byggnation

Utbyggnaderna bör delas upp i ett antal block om 100–160 kilometer nya dubbelspår för höghastighetstrafik enligt nedanstående preliminära uppdelning:

Etapp 1
- Järna–Linköping
- Almedal–Borås

Etapp 2
- Linköping–Jönköping
- Jönköping–Markaryd
- Markaryd–Åkarp

Etapp 3
- Jönköping–Borås

Planeringsprocessen samordnas och genomförs av projektbolaget där samtliga inblandade aktörer, även kommunerna, från början bör delta i planeringsprocessen. Varje block har sin egen projektledning. En övergripande projektledningsorganisation samordnar arbetet.
Summary

Remit

My remit in the Inquiry on High-Speed Railways has been to investigate the conditions for the development of high-speed railway tracks in Sweden. In accordance with my terms of reference I have analysed whether a future development of high-speed railway tracks can help to achieve socially efficient and sustainable transport solutions for an enhanced transport system with better capacity, mobility and accessibility.

Starting points

In line with the Inquiry’s terms of reference, my proposals start from the transport policy objectives, current principles for financing infrastructure investments and the forms for levying track access charges. The ongoing introduction of new rules for market access for rail traffic has also been taken into account in the work of the Inquiry. With regard to the possibility of cofinancing, I have followed work on the revision of the regulatory framework concerning the Trans-European Transport Network (TEN-T).

In this report the term high-speed railways means railways dimensioned for speeds of over 250 kilometers per hour.

High-speed railways – social infrastructure for stronger development and competitiveness

The present Swedish railway network and its main lines were planned and began to be built in the middle of the 19th century. Large parts of the 20th century saw a very substantial concentration of population, especially in the metropolitan areas. The
growth of the metropolitan cities in combination with better communications has led to the expansion of labour market regions and made it possible for people to settle further and further from their workplaces. This has, in turn, led to more traffic and new traffic systems. The present metropolitan areas are expected to account for 80 per cent of population growth up until 2030. In the longer term Linköping and Norrköping are also expected to make up a metropolitan region.

To meet the future demand for transport and the challenges facing society, it is my view that we are standing at a crossroad where more investment in infrastructure, and not least in railways, in Sweden is a very important factor. We have to meet tomorrow’s needs for transport in terms of cost-efficiency, capacity and development.

In my view, building high-speed railways in Sweden would create the conditions for a completely new transport system with better potential for effective goods and passenger transport that will make a crucial contribution to the development of the country. This applies not least to goods transport, since the capacity released in the present railway system will be of very great importance for the possibility of increasing the share of goods transport taken by rail. My assessment is that competitive travel times can be achieved on many routes with traffic using both high-speed railways and conventional tracks. The traffic alternatives I outline will lead to marked improvements in the accessibility of a large number of communities, even beyond the high-speed network itself.

As a result of the shorter travel times, labour market regions will expand, thus creating conditions for growth and development. The role of the metropolitan cities as communications centres with links to Arlanda, Skavsta, Landvetter and Kastrup will be strengthened. I see an introduction of high-speed railways as a social infrastructure project that will also influence society and its structures as a whole, over and above its direct effects in the form of a very efficient system of passenger transport and a more efficient system of goods transport.

At the same time, we should be aware that high-speed railways involve a very substantial investment and that the negative impacts of the project and its risks are not negligible.
Cost-benefit analyses and assessment of the various alternatives

In accordance with my terms of reference, I have compared the development of separate high-speed railways with upgrading and expanding existing railways. A proposal for action to upgrade the southern and western main lines has been prepared. However, it has not been possible, within the time limit for the Inquiry, to carry out a cost-benefit analysis for this alternative. My evaluation of both the alternatives is therefore based on the extent to which they contribute to the fulfilment of the objectives of transport policy.

I have had cost-benefit analyses done for the construction of separate high-speed railways between Stockholm and Malmö and Stockholm and Göteborg. In accordance with my terms of reference, the analyses have been carried out using generally accepted calculation methods, which means, in practice, the same methods as are used by the traffic agencies as part of their ongoing planning of measures.

The Swedish Rail Administration has calculated the cost of the construction of the two railways in line with my proposals at SEK 125 billion.

The result of the cost benefit analysis shows a positive net benefit-cost ratio of 0.15. This means that the social benefits of the project are somewhat larger than the social costs. However, in view of the size of the project and the risks associated with this, I consider that further study should be made of the cost-benefit analysis presented here.

In my view, the positive effects that cannot be quantified in the cost-benefit analysis are important to consider. The private profitability of the traffic is assessed as good, which means that the traffic can help to pay for the railway investments.

My conclusion from the result of the cost-benefit assessment and an evaluation of the achievement of transport policy objectives is that high-speed railways are a better alternative than upgrading and expanding the main rail lines. My proposal is that separate high-speed railways for passenger traffic should be built between Stockholm-Malmö and between Stockholm-Göteborg.
Choice of routes and assessments of environmental aspects

A high-speed railway between Stockholm and Göteborg will consist of 440 kilometres of new double track railway between Järna in Stockholm and Almedal in Göteborg.

Up to Jönköping the track to Malmö will be the same as to Göteborg. A total of around 300 kilometres of new double track railway will be built on the route between Jönköping and Malmö. I have investigated four alternative routes for the railway south of Jönköping. My conclusion is that the route that should be chosen is Jönköping-Värnamo-Helsingborg/Hässleholm-Malmö.

A new railway will have a considerable impact on the environment, the landscape and the built environment. However, in this phase of planning for a development of high-speed railways it is not possible to identify exactly what impacts the railway will have on the environment. The environmental assessment conducted as part of the Inquiry has been intended to describe the typical impact and effects that high-speed railways could have on the environment and to make recommendations for further planning.

It is inevitable that high-speed railways will encroach on the landscape. The tracks are somewhat harder to adapt to the landscape on account of their larger curve radius; however, the tracks can cope with a larger gradient which reduces the encroachment on the landscape. The environmental assessment indicates that no crucial differences are involved compared with the development of conventional railways. The risk of negative impacts can be reduced by the choice of locations and various adaptive measures. These measures may result in higher costs.

With regard to health and the population, the overall impact of the high-speed railways is assessed as positive, in part as a result of higher accessibility and lower emissions from the transport sector.

The link to the European high-speed rail network

It will be possible to link a Swedish high-speed network with the European high-speed network, on condition that existing track in Denmark and northern Germany is upgraded and reinforced through measures to increase capacity. However, the prospects of driving trains at more than 250 kilometres per hour are judged to be small. Trains can operate at up to 160 kilometres per hour on...
the tracks in Denmark and northern Germany if planned and approved upgrades and capacity reinforcements are implemented.

Model for implementation and financing

The state should set up a project company to coordinate state action and be responsible for planning, design and procurement and for the future management of agreements relating to high-speed railways. The company would bear the state’s risks in the project and deal with grants from the EU, regions and municipalities.

Vehicles for passenger traffic on these railways will be acquired and paid for by the operators themselves. The stations along the railway will be owned and managed by Jernhusen AB, other property companies or local actors, such as municipalities. In organisational terms the stations should be outside the project.

A significant proportion of the project can be financed privately and be paid for by traffic revenue. Cofinancing from operators should be based on the track access charges they can bear. Cofinancing from the municipalities and regions affected should be based on the benefits, chiefly in the form of shorter travel times. My assessment is that cofinancing from the municipalities and regions affected can total SEK 19 billion. Cofinancing from the EU has been estimated at SEK 4 billion.

In all, private financing and cofinancing from the EU, municipalities and regions is estimated to amount to 53 per cent of the total investment cost. State financing, via appropriations to the Swedish Rail Administration, is estimated to amount to SEK 59 billion, corresponding to 47 per cent of the total investment.

I also present an implementation model in which the state finances the project without the involvement of private capital but where the operators’ capacity to pay is mobilised.

Planning, design and construction

In my view, the Government and Riksdag should take a single unified decision covering financing and the construction of high-speed railways on the Stockholm–Malmö and Stockholm–Göteborg routes. This development should be implemented as a coordi-
nated project with one principal – the project company – to optimise planning, construction and the start of traffic.

Development of the railways should be divided up into a number of blocks of 100–160 kilometres of new double tracks for high-speed traffic according to the following preliminary grouping:

Stage 1
- Järna–Linköping
- Almedal–Borås

Stage 2
- Linköping–Jönköping
- Jönköping–Markaryd
- Markaryd–Åkarp

Stage 3
- Jönköping–Borås

This grouping permits the gradual start of traffic in 2023–2025. The proposed timetable will only be realistic if all the proposals are considered as a single package.

The planning process will be coordinated and implemented by the project company, in which all the actors involved, including the municipalities, should take part in the planning process from the outset. Each block will have its own project management. A project-wide management organisation will coordinate the work.
1 Uppdraget

1.1 Direktiven

Mitt uppdrag är enligt direktivet 2008:156 (bilaga 1) att utreda förutsättningarna för en utbyggnad av höghastighetsbanor för järnväg i Sverige. Uppdraget innebär att analysera om en eventuell utbyggnad av höghastighetsbanor kan bidra till att uppnå samhällsekonomiskt effektiva och hållbara transportlösningar för ett utvecklat transportsystem med förbättrat kapacitet, framkomlighet och tillgänglighet.

I uppdraget ingår att utreda effekter, kostnader och finansiering av en eventuell utbyggnad och att föreslå en översiktlig sträckning samt eventuell etappindelning och tidsordning för byggnation av etapperna. I uppdraget ingår även att genomföra samhällsekonomiska bedömningar och kalkyler. Det ingår också i uppdraget att, utifrån min analys och med särskilt beaktande av det övergripande transportpolitiska målet, föreslå olika handlingsalternativ i frågan. För respektive handlingsalternativ ska redovisas kostnader, finansieringsförslag och hur transportsystemet som helhet påverkas av alternativen. Vidare ska de samhällsekonomiska och transportpolitiska effekterna av en utbyggnad av höghastighetsbanor jämföras med en uppradning och utbyggnad av befintliga banor.

Utgångspunkten för förslagen ska vara de principer för finansiering som regeringen fastslagit i propositionen Framtidens resor och transporter (prop. 2008/09:35).

Jag ska även, enligt direktivet, belysa den fysiska planeringsprocessen kring en utbyggnad med avseende på övergripande inträngsaspekter, linjeföring och barrårefekter. Jag ska samråda med de myndigheter och regionala och lokala företrädare som ansvarar för att genomföra åtgärdsplaneringen samt med övriga berörda instanser.
I uppdraget ingår också att söka relevanta internationella erfarenheter från främst övriga Europa, att utreda möjligheterna till sammankoppling med ett europeiskt höghastighetsnät samt att klargöra om en utbyggnad kan finansieras med EU-medel och i så fall i vilken omfattning. Dessutom ska jag följa utvecklingen av det transeuropeiska transportnätet (TEN-T).

1.2 Mitt arbetssätt

1.2.1 Sakkunniga

1.2.2 Studiebesök och möten

1.2.3 Genomförda kartläggningar och utredningar

Banverket har bidragit med underlag i flertalet av de frågeställningar som ska utredas enligt direktivet. Banverket har i sin tur tagit hjälp av olika konsulter i arbetet med att ta fram material till utredningen. Vissa frågor har utretts av Öhrlings PricewaterhouseCoopers och av sekretariatet. Nedan beskrivs det arbete som genomförts inom ramen för utredningen.

Nulägesanalys

Banverket har på mitt uppdrag lätit Railize International AB beskriva dagens trafiksystem och dess begränsningar med avseende på bland annat marknads- och trafikutveckling, resursutnyttjande och vilka problem som i dag finns vad gäller person- och gods trafik. Därtill har konsekvenserna av att genomföra åtgärder i nivå med dagens planeringsram beskrivits.

Särskilt beaktande av de transportpolitiska målen

I syfte att ta särskild hänsyn till regeringens övergripande transportpolitiska mål och delmål har Banverket inom ramen för utredningen lätit Railize International AB beskriva bidraget till måluppfyllelse av det föreslagna höghastighetsnätet.

Samhällsekonomisk kalkyl och nyttoberäkning

För att belysa de samhällsekonomiska effekterna av en utbyggnad av höghastighetsbanor har Banverket på mitt uppdrag lätit WSP Sverige AB genomföra samhällsekonomiska kalkyler och nyttoberäkningar. Kalkylerna har gjorts enligt vedertagna beräkningsmetoder. Fördelningen mellan regioner och den sammanvägda nytan ingår i analysen. I enlighet med uppdraget har även en bedömning gjorts av de effekter som inte, eller bara delvis, ingår i en samhällsekonomisk kalkyl.
Finansieringsmodeller

Anläggningskostnader

Banverket har på mitt uppdrag gjort en bedömning av den totala anläggningskostnaden för de föreslagna höghastighetsbanorna. Även Swepro Project Management AB har analyserat anläggningskostnaden baserat på nationella och internationella erfarenheter.

Sträckning och etappindelning

Banverket har inom ramen för utredningen låtit Railize International AB analysera olika aktuella sträckningar vid en utbyggnad av höghastighetsbanor. Kopplingen till Danmark avseende höghastighetsbanor har utretts och konsekvenserna av en alternativ utbyggnad av Södra och Västra stambanan har också belysts.

Etappvis eller sammanhållen utbyggnad

Banverket har på mitt uppdrag låtit Swepro Project Management AB analysera effekterna av en etappvis respektive sammanhållen utbyggnad. I analysen ingår företagsekonominiska och byggtekniska effekter, anläggningskostnadseffekter, projektkostnadseffekter och resurseffekter.
Utveckling av stationer och mötesplatser

Inom ramen för utredningen har Banverket låtit Westin Real Management AB utreda förutsättningarna för att utveckla stationer och omstigningsplatser i anslutning till det nya höghastighetsnätet. Arbetet har genomförts i samråd med de berörda kommunerna. De planmässiga och ekonomiska förutsättningarna samt övriga förhållanden avseende genomförandet har belysts utifrån ett antal strategiska utgångspunkter. Uppdraget har bland annat innefattat besök hos berörda kommuner, bedömning av omfattning och investeringsbehov för respektive resandeterminal, bedömning av potential för fastighetsexploatering och tillvaratagande av erfarenheter från utländska exempel på lyckade projekt.

Genomförandeprocess, tidplan och kritiska tidsaspekter

Banverket har inom ramen för utredningen låtit Swepro Project Management AB ta fram förslag på genomförandeprocess, tidplan och kritiska tidsaspekter för en utbyggnad av höghastighetsbanor. Förslaget innefattar planeringsprocess, projekteringsprocess, bygghandel och organisationsform.

Marknadsförutsättningar, trafikrättsreglering samt anskaffning av fordon

På mitt uppdrag har Banverket låtit Railize International AB utreda marknadsförutsättningarna för trafik på en eventuell höghastighetsbana. Utredningen innefattar trafikprognoser för persontrafik utifrån olika alternativa förslag för järnvägsnätet samt trafikprognoser för godstrafik. Även vissa fordonsträggor har belysts.

Tekniska aspekter

Jag har uppdragit åt Banverket att utreda de tekniska aspekternas kring en utbyggnad av höghastighetsbanor. Uppdraget innefattar sådant som underhåll och depåer för fordon, banstandard, el-, signal- och telesystem, anläggningsteknik, gällande EG-direktiv för interoperabilitet, pågående teknisk utveckling fram till 2020 och
kritiska aspekter avseende tillämpning i Sverige, till exempel vinter-
förhållanden.

Linjeföring och reducering av barriär- och intrångseffekter

Förrutsättningarna för hur linjeföring och profiler av höghastigh-
hetsbanor kan anpassas till landskapets förutsättningar och funk-
tioner på bästa sätt och reducera barriär- och intrångseffekter har Banverket låtit utreda på mitt uppdrag. Utredningen som har genomförts av Atrax Energi AB beskriver typiska effekter och möjliga anpassningsåtgärder vid en utbyggnad av höghastighets-
banor.

Miljöbedömningar utifrån 6 kap. 12 § miljöbalken

Banverket har på mitt uppdrag låtit Atrax Energi AB genomföra relevanta miljöbedömningar med utgångspunkt i 6 kap. 12 § miljö-
balken och ta fram en beskrivning av planeringsprocessen som ett led i en miljökonsekvensbeskrivning i enlighet med miljöbalkens krav. En workshop kring miljökonsekvensbeskrivningar har genomförts inom ramen för uppdraget med representanter från Banverket, Boverket, Myndigheten för samhällsskydd och bered-
skap, Naturvårdsverket, Riksantikvarieämbetet, Socialstyrelsen, Transportstyrelsen och Vägverket.

Klimatfrågan

I syfte att belysa klimatfrågan har Banverket inom ramen för utredningen låtit Railize International AB redogöra för de klimat-
politiska mål som är relevanta för sektorn och de utmaningar som transportsektorn i detta avseende står inför. Konsekvenserna av ett genomförande av höghastighetsbanor i relation till klimatfrågan och det totala transportsystemet har också behandlats.
Internationella erfarenheter

Banverket har inom ramen för utredningen låtit Railize International AB hämta in internationella erfarenheter från främst övriga Europa avseende utbyggnad av höghastighetsnät. En internationell översikt har tagits fram och närmare studier har genomförts av höghastighetsprojekten i bland annat Frankrike, Italien, Portugal, Spanien och Storbritannien.

Sammankoppling med europeiskt höghastighetsnät

På mitt uppdrag har Banverket låtit Railize International AB utreda möjligheterna till sammankoppling med ett europeiskt höghastighetsnät. I uppdraget har ingått att beskriva Fehmarn bält-förbindelsens förverkligande till 2018 och det pågående utvecklingsarbetet i Öresundsregionen samt norra Tyskland.

Utveckling av det transeuropeiska transportnätet (TEN-T)

Utredningen har genomfört en kartläggning av utvecklingen av det transeuropeiska transportnätet (TEN-T): vilka typer av projekt som omfattas och en beskrivning av den pågående översynen av TEN-T.

Förutsättningar för EU-finansiering

En genomgång av de formella kriterierna för olika typer av EU-bidrag (till exempel bidrag inom ramen för TEN-T) har genomförts i syfte att belysa förutsättningarna för finansiering med EU-medel.

Översyn av befintliga regelsystem och lagar

Banverket har på mitt uppdrag låtit Mannheimer Swartling Advokatbyrå AB genomföra en översyn av befintliga regelsystem och lagar. Översynen innefattar en genomgång av relevant lagstiftning och en granskning av utredningar och förslag utifrån ett juridiskt perspektiv.
1.3 Betänkandets disposition

I de inledande kapitlen 2–5 beskrivs förutsättningarna för en eventuell utbyggnad av höghastighetsbanor i Sverige, vilka tidigare utredningar som gjorts och internationella erfarenheter av höghastighetsprojekt. I kapitel 6 beskriver och värderar jag de olika handlingsalternativen och effekterna av dessa. I kapitel 7 redogör jag för höghastighetsalternativet som är utgångspunkten för de överväganden och förslag som lämnas i kapitel 8 och 9. Betänkandet avslutas med ett kapitel där jag beskriver konsekvenserna av förslagen.
2 Utgångspunkter

2.1 Det svenska järnvägssystemet och höghastighetsbanor

Sverige har i många avseenden varit ett föregångsland i Europa då det gäller att utveckla och effektivisera järnvägsektorn. Den vertikala uppdelning som genomfördes i samband med 1988 års trafikpolitiska beslut då Banverket bildades och fick ansvaret för infrastrukturen, har skapat förutsättningen för denna utveckling. I och med reformen fick SJ AB och Green Cargo AB möjlighet att koncentrera sin verksamhet till trafiken och Banverket kunde koncentrera sig på att utveckla infrastrukturen. Detta har varit viktiga förutsättningar för den ökning av järnvägstrafiken och den vitalisering av sektorn som blivit resultatet av reformen.

Trots de omfattande investeringar som gjorts i bland annat Mälardalen och i Öresundsregionen har trafikökningen lett till att delar av järnvägsnätet i dag har bristande kapacitet. Av nedanstående bild framgår vilka delar av bannätet i södra Sverige som har de största kapacitetsbristerna. I avsnitt 4.5 beskrivs dagens kapacitetsbrister mer i detalj.

Avregleringen av persontrafiken innebär att det monopol på interregional trafik som i dag innehas av SJ upphör. Förslaget går längre än de marknadsöppningsdirektiv som antagits inom EU och innebär att Sverige blir det första landet i Europa som har en fullständigt avreglerad järnvägsmarknad.

I många andra länder i Europa har järnvägskapaciteten ökat väsentligt genom tillkomsten av höghastighetsbanor för persontrafik. Detta innebär också att det finns en bred erfarenhet och kompetens inom området. Tekniken och de standarder som finns för konstruktion och byggande av både banor och rullande material är i dagsläget väl beprövade i många europeiska länder. Inom EU har tekniska specifikationer för driftkompatibilitet beslutats för så väl höghastighetsbanor som rullande material.

Av nedanstående tabell framgår hur begreppet höghastighetsbanor definieras i detta betänkande.

Tabell 2.1 Definition av konventionell järnväg och höghastighetsbanor

<table>
<thead>
<tr>
<th></th>
<th>Konventionell järnväg</th>
<th>Höghastighetsbanor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition</td>
<td>Uppgraderad eller nybyggd bana för person- och godståg</td>
<td>Nybyggd bana dimensionerad för snabba persontåg</td>
</tr>
<tr>
<td>Maxhastighet</td>
<td>200–250 km/h</td>
<td>250–350 km/h</td>
</tr>
<tr>
<td>Medelhastighet</td>
<td>120–180 km/h</td>
<td>200–250 km/h</td>
</tr>
<tr>
<td>Tågtyper</td>
<td>Snabbtåg, pendeltåg, regionaltåg, tunga och lätta godståg</td>
<td>Höghastighetståg, snabba regionaltåg</td>
</tr>
<tr>
<td>Banegeometri</td>
<td>Måttliga kurvradier, små lutningar</td>
<td>Stora kurvradier, stora lutningar</td>
</tr>
<tr>
<td>Plankorsningar</td>
<td>Förekommer</td>
<td>Förkommer inte</td>
</tr>
</tbody>
</table>

Källa: Banverket.

2.2 Transportpolitiska mål

I mina direktiv sägs att jag utifrån den analys jag gör och utifrån det transportpolitiska målet ska föreslå olika handlingsalternativ i frågan om höghastighetsbanor. Enligt direktivet ska det övergripande transportpolitiska målet och delmålen särskilt beaktas i utredningens arbete.

Det nuvarande övergripande målet, som fastställdes 1998, formulerades i propositionen Transportpolitik för en hållbar ut-
veckling (prop. 1997/98:56, TU10, rskr. 266): Det övergripande målet för transportpolitiken ska vara att säkerställa en samhällsekonomiskt effektiv och långsiktigt hållbar transportförsörjning för medborgarna och näringslivet i hela landet. Detta mål vidareutvecklades i följande delmål:

- tillgängligt transportsystem
- hög transportkvalitet
- säker trafik
- god miljö
- positiv regional utveckling.

I budgetpropositionen för 2007 aviserade regeringen att man ville se över de transportpolitiska delmålen och i juli 2007 gavs Statens institut för kommunikationsanalys (SIKA) i uppdrag att se över och lämna förslag till revidering av de transportpolitiska målen (N2007/6048/TR).

Funktionsmålet tillgänglighet

Funktionsmålet innebär enligt propositionen att transportsystemets utformning, funktion och användning ska medverka till att ge alla en grundläggande tillgänglighet med god kvalitet och användbarhet samt bidra till utvecklingskraft i hela landet. Transportsystemet ska vara jämställt, det vill säga likvärdigt svara mot kvinnors respektive mäns transportbehov.
För funktionsmålet tillgänglighet bör enligt regeringen följande preciseringar gälla:

- Medborgarnas resor förbättras genom ökad tillförlitlighet, trygghet och bekvämlighet.
- Kvaliteten för näringslivets transporter förbättras och stärker den internationella konkurrenkskraften.
- Tillgängligheten förbättras inom och mellan regioner samt mellan Sverige och andra länder.
- Arbetsformer, genomförandet och resultaten av transportpolitiken medverkar till ett jämställt samhälle.
- Transportsystemet utformas så att det är användbart för personer med funktionsnedsättning.
- Barns möjligheter att själva på ett säkert sätt använda transportsystemet och vistas där ökar.
- Förutsättningarna för att välja kollektivtrafik, gång och cykel förbättras.

Hänsynsmålet säkerhet, miljö och hälsa

Hänsynsmålet formuleras enligt propositionen som att transportsystemets utformning, funktion och användning ska anpassas till att ingen ska dödas eller skadas allvarligt samt bidra till att miljö- och hälsokvalitetsmålen uppnås och till ökad hälsa.

Delmålet säkerhet preciseras för respektive trafikslag. Regeringens bedömning avseende delmålet säkerhet inom järnvägstransportområdet är att målet bör preciseras med att antalet omkomna och allvarligt skadade inom järnvägstransportområdet fortlöpande minskar. Delmålet miljö och hälsa preciseras enligt följande:

- Transportsektor bidrar till att kvalitetsmålet begränsad klimatpåverkan nås genom en stegvis ökad energieffektivitet i transportsystemet och ett brutet fossilberoende. År 2030 bör Sverige ha en fordonsflotta som är oberoende av fossila bränslen.
Transportsektorn bidrar till att övriga miljökvalitetsmål nås och till minskad ohälsa. Prioritet ges till de miljöpolitiska delmål där transportsystemets utveckling är av stor betydelse för möjligheterna att nå uppsatta mål.

När det gäller miljön hänvisar regeringen vidare till de av riksdagen beslutade nationella miljökvalitetsmålen som utgör grunden för den svenska miljöpolitiken. Enligt regeringen bör miljökvalitetsmålen med tillhörande miljöpolitiska delmål även fortsättningsvis vara utgångspunkten för transportsektorns miljöarbete. På det sättet, menar regeringen, säkerställs att ambitionerna i den nationella miljöpolitiken också genomsyrar transportsektorns verksamhet.

Vad gäller hälsa menar regeringen att det är angeläget att alla verksamheter i samhället medverkar till att minska ohälsan. Transportpolitiken kan enligt regeringen bidra till minskad ohälsa genom insatser inom miljöområdet, till exempel insatser för att minska luftföroreningar och buller.

Tillämpning av målen

I propositionen skriver regeringen att det är en nödvändighet för Sveriges välstånd att effektivisera transportsystemet och att väl fungerande resor och transporter är prioriterade i regeringens politik för att bidra till en mer hållbar tillväxt. De transportpolitiska målen och de transportpolitiska principerna ska även i framtiden vara den viktigaste utgångspunkten för regeringens åtgärder och val av styrmedel inom transportsystemet. Regeringen skriver vidare i propositionen att transportpolitisk måluppfyllelse bör vara vägledande i planering och bedömning av infrastrukturåtgärder i transportsystemet, men att det alltid måste finnas utrymme för avvägning mot andra intressen och effekter, liksom mot mål inom andra politikområden.

2.3 Finansieringsprinciper

Enligt direktivet ska jag beskriva olika finansieringslösningar och deras respektive effekter, bland annat för statsbudgeten, samt presentera en finansieringsmodell. Utgångspunkten för förslagen och finansieringsmodellen ska vara de principer som regeringen föreslagit i propositionen Framtidens resor och transporter – infrastruktur för hållbar tillväxt.

2.3.1 Anslagsfinansiering som huvudprincip

I propositionen slår regeringen fast att anslagsfinansiering ska vara huvudregel för infrastrukturinvesteringar. Motivet till regeringens ställningstagande är att anslagsfinansiering av infrastrukturinvesteringar ger bättre överskådlighet i statsbudgeten samt bättre överblick och större inflytande för riksdagen än lånefinansiering. Regeringen bedömer att fördelarna med lån, som till exempel större flexibilitet och effektivitet i projekten, inte överväger nackdelarna. Därför bör lånefinansiering endast undantagsvis användas för statliga investeringar.

2.3.2 Medfinansiering

Regeringen skriver i propositionen att väl fungerande infrastruktur och kommunikationer är en angelägenhet för såväl stat, kommuner, landsting, företag och resenärer och att man ser positivt på ett ökat gemensamt ansvarstagande för åtgärder inom transportinfrastrukturen. Att inbjuda olika intressen att vara med och på olika sätt bidra till att bekosta investeringar och därmed vara med och påverka utformningen av dem kan, enligt regeringen, vara ett sätt att öka anpassningsförmågan och flexibiliteten i infrastrukturutvecklingen.

All samfinansiering mellan stat och privata intressen ska ske inom ramen för gällande statsstödsregler. Regeringen påpekar att de förbättrade möjligheter till medfinansiering som eftersträvas inte förändrar hur det grundläggande ansvaret för samhällets infrastruktur fördelas mellan statliga, regionala, kommunala och privata aktörer. Att lämna bidrag till statlig infrastruktur är en frivillig uppgift för kommuner, landsting och företag, skriver regeringen.
Regeringen bedömer att medfinansiering kan bidra till en större total åtgärdsvolym. Genom att den statliga satsningen kombineras med finansiering från andra intressenter kan antalet åtgärder i de långsiktiga planerna utökas. Medfinansiering ska enligt regeringen inte medföra att anslagen till infrastrukturområdet minskas utan fungera som ett renodlat tillskott som gör det möjligt med fler åtgärder inom området.

Trafikverken bör, enligt regeringen, pröva möjligheterna till medfinansiering som en permanent åtgärd inom ramen för planering och genomförande av infrastrukturprojekt. Trafikverken är Banverket, Luftfartsverket, Sjöfartsverket och Vägverket.

2.3.3 Ansvarsfördelning mellan nationella, regionala och lokala aktörer för finansiering av infrastruktursatsningar

Regeringen skriver i propositionen Framtidens resor och transporter – infrastruktur för hållbar tillväxt att samtidigt som staten har ett övergripande ansvar för väg- och banhållning på allmänna vägar och järnvägar, så finns ett intresse från lokala och regionala aktörer att påverka planering och infrastruktur. Bland annat har detta intresse visat sig i ökad kommunal aktivitet när det gäller finansiering av statliga väg- och järnvägsbyggen. Enligt regeringen kan kommunal medfinansiering aktualiseras av olika orsaker som till exempel företagsetableringar eller vilja att samordna det kom-
munala planarbetet och ombyggnationer med statliga väg- och järnvägsinvesteringar. Gemensamma infrastruktursatsningar har också blivit en del av samarbetet med lokala och regionala aktörer för att främja regional tillväxt, menar regeringen.

Från och med den 1 mars 2009 kan kommuner och landsting lämna bidrag till byggande av väg och järnväg som staten ansvarar för, i enlighet med regeringens förslag i propositionen Kommunala kompetensfrågor m.m. (prop. 2008/09:21, KU5, rskr. 65).

2.3.4 Bidrag från EU eftersträvas

I propositionen skriver regeringen att den kommer att vara aktiv för att erhålla EU-bidrag och att man bedömer att Sverige kommer att få vissa EU-bidrag för planering och investeringar i infrastrukturon under planperioden. I avsnitt 2.7.2 redogör jag för EU-bidragens regelverk.

2.4 Samhällsekonomiska kalkyler och nyttoberäkningar

Enligt direktivet ska jag genomföra samhällsekonomiska kalkyler och nyttoberäkningar enligt vedertagna beräkningsmetoder av de olika utbyggnadsalternativen. Vid beräkningar och bedömningar ska hänsyn tas till regeringens aviserade eller beslutade politik.

De samhällsekonomiska beräkningarna av en eventuell utbyggnad bör enligt direktivet spegla ett stort antal aspekter som kapa-
citet inom järnvägssystemet, marknadspotentialer, nettopåverkan på miljö och klimat under byggtid och drift jämfört med alternativa satsningar, befolkningsunderlag och restider. I arbetet bör även förekommande utbudsrestriktioner, som till exempel tillgång till arbetskraft och konjunkturpåverkan, beaktas samt en internationell utblick i frågan göras. För att åstadkomma en samlad effektsättning bör också icke prissatta effekter på natur- och kulturmiljöer beskrivas.

2.4.1 Samhällsekonomiska bedömningar och samhällsekonomiska kalkyler

En samhällsekonomisk bedömning syftar till att värdera förändringen av välfärden i samhället till följd av de åtgärder som studeras. I begreppet välfärd ingår allt som värdesätts av individerna i samhället oavsett om det går att värdera i monetära termer eller inte.

Generellt sett ger samhällsekonomiska kalkyler och de prognoser som ingår i dessa mest rättvisande resultat vid bedömning av en situation som i stort liknar de förhållanden som prognosmodellerna är skattade utifrån. Vid så stora systemförändringar som ett införande av höghastighetsbanor skulle innebära i form av förändrade resmöjligheter, gå effekterna, enligt min bedömning, utöver det som fångas i modellerna.
2.4.2 Samlade effektbedömningar

I propositionen Framtidens resor och transporter – infrastruktur för hållbar tillväxt gör regeringen bedömningen att relevanta och jämförbara samhällsekonomiska analyser bör spela en viktig roll vid prioriteringen mellan olika infrastrukturinvesteringar.

En bra effektbedömning ger enligt regeringen en rättvisande bild av vad en åtgärd leder till, möjliggör sakliga jämförelser mellan olika alternativ, redovisar öppet förutsättningar och begränsningar, innehåller relevanta känslighetsanalyser och är tydligt och klart dokumenterad.

I regeringens uppdrag till trafikverken att genomföra åtgärdsplanering inför fastställandet av en nationell trafikslagsövergripande plan för utveckling av transportsystemet, preciseras propositionens resonemang kring prioritering av åtgärder. Samhällsekonomisk nettonuvärdekvot och samhällsekonomisk bedömning med prissatta effekter och ej prissatta effekter såsom exploateringseffekter och restidsosäkerhet ska tas fram för föreslagna objekt.

Den samlade effektbedömningen ska vidare innefatta miljöbedömningar utgående från av trafikverken föreslagen metod som tagits fram i samband med ett uppdrag från regeringen om inledande förberedelser för infrastrukturåtgärder för perioden 2010–2021.
2.5 Rätten till marknadstillträde

I dag består marknaden för persontrafik på järnväg i huvudsak av den interregionala, där SJ AB har ensamrätt att bedriva kommersiell trafik, och den lokala/regionala marknaden, där trafiken företrädesvis upphandlas av trafikhuvudmännen i länen under konkurrens mellan anbudsgivande operatörer. Till detta kommer den interregionala trafik som upphandlas av Rikstrafiken.

Enligt regeringen finns goda skäl att gå längre än vad direktivet kräver och regeringen föreslår därför att även den nationella marknaden för persontransport på järnväg öppnas för konkurrens. Regeringens förslag innebär att SJ:s exklusiva trafikeringsrätt avvecklas och alla kommersiella tågoperatörer ges en likvärdig rätt att trafikera det svenska järnvägsnätet. Trafikhuvudmän får utföra eller organisera persontrafik på det järnvägsnät som staten förvaltar endast i den utsträckning som regeringen bestämmer.

Trafikeringsrätten ger en organisatör eller utövare av trafik rätten att förhandla om tåglägen eller annan infrastrukturkapacitet. Det innebär dock ingen garanti för att erhålla tågläge så att tilltänkt trafik kan genomföras. Kommunala och privata infrastrukturförrådande har full rätt att inom järnvägslagens bestämmelser ange
prioriteringskriterier och avgifts villkor för trafikering på sin infrastruktur.

2.6 Banavgifter

Enligt mina direktiv ska jag presentera förslag till hur ett avgiftssystem kan utformas för ett eventuellt höghastighetsnät kontra det befintliga järnvägsnätet.

2.6.1 Principer för banavgifter

Banverket har fått i uppdrag av regeringen att vidareutveckla verktyg och metoder i syfte att skapa en modell för att tilldela
kapacitet inom järnvägens infrastruktur som medför optimalt nyttjande av järnvägsnätet. Enligt regeringens bedömning finns utrymme att höja banavgifterna. Ökade intäkter från banavgifter utgör ett tillskott till finansiering av ökade insatser för drift och underhåll, menar regeringen.

I propositionen Konkurrens på spåret framhåller regeringen också att ekonomiska styrmedel kan utgöra en del av de objektiva kriterier som ska ligga till grund för kapacitetstilldelningen av järnvägsnätet. Möjligheterna att använda avgifter som ett av flera instrument i kapacitetstilldelningsprocessen bör därför enligt regeringen uppmärksammas.

2.6.2 Banavgifter i Europa

VTI gjorde 2005 även en marknadsanalys av höghastighetsbanor i Europa på uppdrag av Banverket (VTI notat 26-2005). Av rapporten framgår att det i Europa finns olika system för banavgifter på de olika höghastighetsnäten. Till exempel skiljer sig systemen åt vad gäller vilka kostnader som ska täckas av avgiften, och om avgiften tas ut per tåg- eller personkilometer.

I Tyskland ska banavgifterna täcka kostnader för trafikledning, underhåll och personal för infrastrukturförvaltning medan investeringar finansieras med statsbidrag. Avgifterna beräknas per tågkilometer med justeringar för sådant som styv tidtabell och sen
beställning av tägläge. Under perioden 2004–2005 var avgiften på en höghastighetslinje cirka 10 euro per tågkilometer. På en vanlig huvudlinje var motsvarande avgift cirka 3 euro per tågkilometer.

I Frankrike, vars tågtrafik domineras av höghastighetstågen, har banavgifterna enligt VTIs rapport ökat kraftigt under 2000-talet. Banavgiften för ett TGV (Train à Grande Vitesse) var 2004 cirka 4 euro per tågkilometer på en normalbelastad linje under normaltrafiktid. Dock påpekas att variationerna är stora, från 13,60 euro till 2 euro per tågkilometer beroende på bandel och tid på dygnet. Till banavgifterna tillkommer en avgift för stationsuppehåll.

Spanien har ett banavgiftssystem med flera variabler som inte redovisas närmare i rapporten från VTI. Ett av de exempel som presenteras är höghastighetståg på sträckan Madrid–Sevilla där banavgiften, inklusive stationsavgifter, 2004 uppgick till 8,12 euro per tågkilometer.

2.7 Transeuropeiska transportnätverk (TEN-T)

Enligt direktiven ska jag bevaka arbetet med revideringen av det transeuropeiska transportnätverket (TEN-T).

2.7.1 För ekonomisk sammanhållning och hållbar utveckling

Finansiering av projekt genom TEN-T kan ske för infrastrukturprojekt som omfattas av riktlinjerna för TEN-T. Enligt riktlinjerna ska prioritering ges till projekt som kan underlätta transporter, optimera den befintliga infrastrukturens effektivitet, samordna nätets olika delar och integrera miljödimensionen i transportnätet.

I riktlinjerna för TEN-T pekas 30 projekt ut som särskilt prioriterade. Tre av dessa berör Sverige: den fasta förbindelsen över Öresund (färdigställd 2000), den nordiska triangeln (vägar och

Syftet med de prioriterade projekten är bland annat att kunna koncentrera insatser till de mest angelägna stråken. Utöver de prioriterade projekten finns det i riktlinjerna för TEN-T även mer omfattande nät för järnvägar, vägar och andra transportslag. De medel som går till dessa nät är betydligt mindre än de som går till de prioriterade projekten.

Utifrån TEN-T delas det svenska järnvägsnätet i dag in i tre huvudgrupper: TEN höghastighetsnätet, TEN konventionella nätet och nationella nätet (icke-TEN). TEN höghastighetsnätet omfattar normalhuvudspår för fjärrtrafik inom den nordiska triangeln med sträckorna

- Malmö–Katrineholm–Södertälje Syd Övre–Stockholm–Sunds- vall (ej Arlandabanan)
- Malmö–Göteborg via Västkustbanan
- Göteborg–Trollhättan via Nordlänken
- Göteborg–Katrineholm inklusive Karlstad–Laxå.

Dessutom ingår samtliga normalhuvudspår inom Stockholms central. De normalhuvudspår som enbart trafikeras av pendel- eller regionaltåg ingår inte utan klassas som nationella nätet (Banverket, Järnvägsbeskrivning 2010 del 1, utgåva 2009-04-30).

Europeiska järnvägskorridorer som ingår i TEN-T

Merparten av de prioriterade projekten inom TEN-T är renodlade järnvägsprojekt. Några innefattar både väg- och järnvägsinfrastruktur och några gäller vattenvägar. De prioriterade projekten (PP) på järnvägssidan framgår av tabell 2.2.
<table>
<thead>
<tr>
<th>Korridor</th>
<th>Involverade medlemsstater</th>
<th>Planerat slutdatum</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP1 Railway axis Berlin–Verona/Milan–Bologna–Napels–Messina–Palermo</td>
<td>AT, IT, DE</td>
<td>2024</td>
</tr>
<tr>
<td>PP3 High-speed railway axis of south-west Europe</td>
<td>ES, FR, PT</td>
<td>2020</td>
</tr>
<tr>
<td>PP4 High-speed railway axis east</td>
<td>FR, DE</td>
<td>2013</td>
</tr>
<tr>
<td>PP9 Railway axis Cork–Dublin–Belfast–Stranraer (COMPLETED)</td>
<td>IRL, UK</td>
<td>2001</td>
</tr>
<tr>
<td>PP11 Öresund fixed link (COMPLETED)</td>
<td>DK, S</td>
<td>2001</td>
</tr>
<tr>
<td>PP12 Nordic triangle railway-road axis</td>
<td>FIN, S</td>
<td>2016</td>
</tr>
<tr>
<td>PP14 West Coast Main Line</td>
<td>UK</td>
<td>2009</td>
</tr>
<tr>
<td>PP16 Freight railway axis Sines/Algeciras–Madrid–Paris</td>
<td>ES, PT</td>
<td>2020</td>
</tr>
<tr>
<td>PP19 High-speed rail interoperability on the Iberian peninsula</td>
<td>ES, PT</td>
<td>2020</td>
</tr>
<tr>
<td>PP20 Fehmarn Belt railway axis</td>
<td>DE, DK</td>
<td>2018</td>
</tr>
<tr>
<td>PP23 Railway axis Gdansk–Warsaw–Brno/Bratislava–Vienna</td>
<td>CZ, PL, SK</td>
<td>2017</td>
</tr>
<tr>
<td>PP27 Rail Baltica axis Warsaw–Kaunas–Riga–Tallin–Helsinki</td>
<td>EE, LT, LV, PL</td>
<td>2020</td>
</tr>
<tr>
<td>PP28 Europcaprail on the Brussels–Luxembourg–Strasbourg railway axis</td>
<td>BE, LUX</td>
<td>2019</td>
</tr>
<tr>
<td>PP29 Railway axis in the Ionian/Adriatic inter-modal corridor</td>
<td>GR</td>
<td>2019</td>
</tr>
</tbody>
</table>

Källa: EU-kommissionen, DG TREN.
Ett av projekten (PP16) omfattar endast godstrafik, men många av de övriga prioriterade projekten syftar till att utöka kapaciteten för både person- och godstrafik. Höghastighetsbanan i sydvästra Europa (PP3) ska till exempel trafikeras även med godståg. Andra höghastighetsprojekt lyfter också fram möjligheten att flytta persontrafik från konventionella banor till förmån för utökad godstrafik som en viktig faktor.

2.7.2 Riktlinjer för EU-finansiering

EU ger finansiellt stöd till implementeringen av TEN-T genom

- TEN-T-budgeten
- Sammanhållningsfonden och strukturfonderna (främst Europeiska regionala utvecklingsfonden, ERUF)
- lån och garantier genom Europeiska investeringsbanken (EIB).

Tabell 2.3 EU-finansiering av TEN-T, miljarder euro

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TEN-T-budget</td>
<td>2,2</td>
<td>4,43</td>
<td>1,7 %</td>
<td>8</td>
</tr>
<tr>
<td>Sammanhållnings-</td>
<td>8,3</td>
<td>17,33</td>
<td>6,6 %</td>
<td>34,79</td>
</tr>
<tr>
<td>ERUF</td>
<td>7,5</td>
<td>8,6</td>
<td>4,1 %</td>
<td>8,33</td>
</tr>
<tr>
<td>EIB***</td>
<td>26,5</td>
<td>44,9</td>
<td>18,3 %</td>
<td>54</td>
</tr>
<tr>
<td>Annan finansier-</td>
<td>63,4</td>
<td>208</td>
<td>69,4 %</td>
<td>283,88</td>
</tr>
<tr>
<td>ring****</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totalt</td>
<td>107,9</td>
<td>283,26</td>
<td>389******</td>
<td></td>
</tr>
</tbody>
</table>

* Uppskattade investeringar.
** Inkluderar Pre-Accession Structural Instrument (ISPA).
**** Offentlig och privat finansiering.

Källa: EU-kommissionen, DG TREN.

ERUF har som syfte att bidra till att stärka den ekonomiska och sociala sammanhållningen inom EU. Den ska främst understödja insatser för att avhjälpa regionala obalanser och stödja utveckling och strukturell anpassning av regioner som släpar efter i utvecklingen. Fonden ska även stödja gränsöverskridande, transnationellt och interregionalt samarbete. De länder som fått mest stöd genom ERUF är samma som omfattas av Sammanhållningsfonden. De största stöden från ERUF har dock omfattat transportinfrastrukturprojekt utanför TEN-T.

Finansiering genom TEN-T-budgeten

Revidering av riktlinjer för TEN-T

Av Regeringskansliets faktapromemoria (2008/09:FPM103) framgår den preliminära svenska ståndpunkten i de frågor som behandlas i grönboken. Regeringen konstaterar bland annat att utformningen av de nya riktlinjerna har betydelse för den svenska statsbudgeten och de framtida möjligheterna att få bidrag från TEN-T. Enligt den svenska representationen i Bryssel väntas beslut om nya riktlinjer först i slutet av 2010.

I grönboken konstateras att de totalt cirka 400 miljarder euro som hittills investerats i transeuropeiska transportnät har koncentrerat...

2.8 Det europeiska höghastighetsnätet

2.8.1 Höghastighetsnät i världen

Utbyggnad av höghastighetsbanor sker i dag på flera håll i världen. Utanför Europa är det främst länder i Asien som Kina, Korea och Taiwan som har eller håller på att bygga höghastighetsbanor. Många länder har också påbörjat planering för utbyggnad, däribland Brasilien, Indien och Ryssland (UIC, High Speed Rail, 2009).
2.8.2 Utbyggnaden av det europeiska höghastighetsnätet

Tabell 2.5 Höghastighetslinjer i Europa

<table>
<thead>
<tr>
<th>Land</th>
<th>Linje</th>
<th>Öppningsår</th>
<th>Längd</th>
<th>Högsta hastighet</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>LGV Paris Sud Est</td>
<td>1981/1983</td>
<td>419 km</td>
<td>300 km/h</td>
</tr>
<tr>
<td>F</td>
<td>LGV Atlantique</td>
<td>1989/1990</td>
<td>291 km</td>
<td>300 km/h</td>
</tr>
<tr>
<td>D</td>
<td>Mannheim–Stuttgart</td>
<td>1985/1991</td>
<td>109 km</td>
<td>280 km/h</td>
</tr>
<tr>
<td>I</td>
<td>Rom–Florens</td>
<td>1981/1992</td>
<td>248 km</td>
<td>250 km/h</td>
</tr>
<tr>
<td>E</td>
<td>Madrid–Sevilla</td>
<td>1992</td>
<td>471 km</td>
<td>270 km/h</td>
</tr>
<tr>
<td>D</td>
<td>Hannover–Würzburg</td>
<td>1991/1994</td>
<td>338 km</td>
<td>280 km/h</td>
</tr>
<tr>
<td>F</td>
<td>LGV Contournement Lyon</td>
<td>1992/1994</td>
<td>121 km</td>
<td>300 km/h</td>
</tr>
<tr>
<td>F</td>
<td>LGV Nord Europé</td>
<td>1994/1996</td>
<td>346 km</td>
<td>300 km/h</td>
</tr>
<tr>
<td>F</td>
<td>LGV Interconnexion IDF</td>
<td>1994/1996</td>
<td>104 km</td>
<td>300 km/h</td>
</tr>
<tr>
<td>F/GB</td>
<td>Kanaltunneln–London</td>
<td>1994</td>
<td>74 km</td>
<td>300 km/h</td>
</tr>
<tr>
<td>B/F</td>
<td>Bryssel–franska gränsen</td>
<td>1997</td>
<td>72 km</td>
<td>300 km/h</td>
</tr>
<tr>
<td>D</td>
<td>Hannover–Berlin</td>
<td>1998</td>
<td>189 km</td>
<td>250 km/h</td>
</tr>
<tr>
<td>F</td>
<td>LGV Méditerranée</td>
<td>2001</td>
<td>259 km</td>
<td>320 km/h</td>
</tr>
<tr>
<td>D</td>
<td>Köln–Frankfurt</td>
<td>2002/2004</td>
<td>197 km</td>
<td>300 km/h</td>
</tr>
<tr>
<td>E</td>
<td>Madrid–Lleida</td>
<td>2003</td>
<td>519 km</td>
<td>300 km/h</td>
</tr>
<tr>
<td>I</td>
<td>Rom–Neapel</td>
<td>2006</td>
<td>220 km</td>
<td>300 km/h</td>
</tr>
<tr>
<td>F</td>
<td>LGV Est</td>
<td>2007</td>
<td>332 km</td>
<td>320 km/h</td>
</tr>
<tr>
<td>NL</td>
<td>Amsterdam–belgiska gränsen</td>
<td>2008</td>
<td>120 km</td>
<td>300 km/h</td>
</tr>
<tr>
<td>E</td>
<td>Lleida–Barcelona</td>
<td>2006/2008</td>
<td>170 km</td>
<td>300 km/h</td>
</tr>
</tbody>
</table>

LGV = Ligne à Grande Vitesse.
Källa: UIC.
Enligt Järnvägsgruppen vid Kungliga Tekniska högskolan (KTH) (Höghastighetsbanor i Sverige, 2008) kan utvecklingen av det europeiska höghastighetsnätet delas in i tre olika men delvis överlappande faser:

- I den andra fasen, som fortfarande pågår, ansluter man nya sträckor eller förlänger de redan existerande sträckorna. Exempel på detta är förlängningen av LGV Sud Est mot Marseille i Frankrike.

- Den tredje fasen kännetecknas enligt KTH av att de olika regionala och nationella systemen börjar knytas ihop till ett Europa-täckande höghastighetsnät. Gemensamma standarder utvecklas och olika åtgärder vidtas för att öka interoperabiliteten mellan olika länder. Flera av de prioriterade projekten inom TEN-T kan sägas vara av den karaktären.
Bild 2.2 nedan visar höghastighets- och snabbtågsnäten i Europa.

Bild 2.2 Järnväg med högre hastigheter på kontinenten

Källa: Railize International AB.

2.8.3 Trafikutveckling

Sverige har generellt ett högt tågresande mätt i personkilometer per invånare jämfört med andra europeiska länder, vilket framgår av tabell 2.6. Av de redovisade länderna har endast Frankrike ett högre tågresande. Observera att ”HS personkilometer” innefattar både snabb- och höghastighetstrafik; för Sveriges del är det alltså trafik med snabbtågen X2000 som utgör 27 procent av det totala tågresandet.
Tabell 2.6 Basfakta det europeiska järnvägsnätet år 2007

<table>
<thead>
<tr>
<th>Land</th>
<th>Befolkning i mn</th>
<th>Areal i km²</th>
<th>Bankkm*</th>
<th>Md ton-km gods per år</th>
<th>Md Person-km per år</th>
<th>Därav HS mdr Person-km</th>
<th>HS person-km %</th>
<th>Person-km per inv/år</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sverige</td>
<td>9 450 000</td>
<td>11 000</td>
<td>68</td>
<td>10,3</td>
<td>2,8</td>
<td>27</td>
<td>1 144</td>
<td></td>
</tr>
<tr>
<td>Tyskland</td>
<td>82 357 000</td>
<td>38 000</td>
<td>361</td>
<td>79,1</td>
<td>21,9</td>
<td>28</td>
<td>965</td>
<td></td>
</tr>
<tr>
<td>Frankrike</td>
<td>63 552 000</td>
<td>31 000</td>
<td>108</td>
<td>82,0</td>
<td>48,0</td>
<td>59</td>
<td>1 302</td>
<td></td>
</tr>
<tr>
<td>Italien</td>
<td>59 302 000</td>
<td>16 000**</td>
<td>71</td>
<td>49,8</td>
<td>8,8</td>
<td>18</td>
<td>844</td>
<td></td>
</tr>
<tr>
<td>Spanien</td>
<td>44 507 000</td>
<td>13 000</td>
<td>25</td>
<td>22,0</td>
<td>3,6</td>
<td>16</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>UK</td>
<td>61 245 000</td>
<td>17 000</td>
<td>123</td>
<td>50,2</td>
<td>-</td>
<td>-</td>
<td>822</td>
<td></td>
</tr>
<tr>
<td>Portugal</td>
<td>11 92 000</td>
<td>2 000***</td>
<td>11</td>
<td>4,0</td>
<td>0,5</td>
<td>13</td>
<td>364</td>
<td></td>
</tr>
<tr>
<td>Nederländerna</td>
<td>16 41 000</td>
<td>5 000</td>
<td>35</td>
<td>16,3</td>
<td>0,8</td>
<td>5</td>
<td>1 019</td>
<td></td>
</tr>
</tbody>
</table>

HS = höghastighets- och snabbtågstrafik.
Källa: Egen bearbetning av data från Eurostat, UIC och VTI.

2.8.4 Höghastighetsnäten i de olika länderna

I det följande avsnittet beskrivs de europeiska höghastighetsnäten översiktligt. I kapitel 5 finns en fördjupad beskrivning av erfarenheterna från genomförda höghastighetsprojekt i några av de aktuella länderna.

Tyskland saknar sammanhängande höghastighetsnät

Tyskland har i dag fem höghastighetslinjer i trafik som omfattar totalt cirka 130 mil. Tågtrafiken i Tyskland präglas av att landet har en struktur med många städer/regioner av ungefär samma storlek som är jämnt fördelade geografiskt, och det saknas därför en dominerande huvudlinje. Höghastighetslinjerna bildar inte heller något sammanhängande nät till skillnad från vad som är fallet i flera andra europeiska länder. Trafiken mellan höghastighetslinjernas ändpunkter är av mindre betydelse i Tyskland.

Höghastighetslinjerna trafikeras av såväl InterCityExpress (ICE) som andra typer av tåg, exempelvis InterCity (IC) och InterRegio (IR). I Tyskland har alla licensierade operatörer tillträde till spåren förutsatt att man betalar banavgifterna, som jämförelsevis är höga. Det finns också marknadsutrymme för fler operatörer.
Inom fjärtrafiken dominerar dock statliga operatören Deutsche Bahn AG (DB).

I Frankrike dominerar höghastighetstågen

Tågtrafiken i Frankrike domineras av höghastighetstrafik på ett sätt som saknar motstycke i övriga Europa. År 2008 svarade TGV-trafiken för ungefär 60 procent av den totala persontrafiken på järnväg i Frankrike.

<table>
<thead>
<tr>
<th>Linje</th>
<th>Öppningsår</th>
<th>Linjeavstånd</th>
<th>Hastighet</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>LGV Sud-Est</td>
<td>1981–1983</td>
<td>410 km</td>
<td>300 km/h</td>
<td>Länkar Paris med Lyon</td>
</tr>
<tr>
<td>LGV Atlantique</td>
<td>1989–1990</td>
<td>280 km</td>
<td>300 km/h</td>
<td>Länkar Paris med Rennes, Nantes och Bordeaux</td>
</tr>
<tr>
<td>LGV Nord-Européen</td>
<td>1993</td>
<td>333 km</td>
<td>300 km/h</td>
<td>Länkar Paris med Lille och leder vidare mot Engelska kanalen och Belgien</td>
</tr>
<tr>
<td>LGV Rhône-Alpes</td>
<td>1994</td>
<td>177 km</td>
<td>300 km/h</td>
<td>Undviker Lyon för vidare resa mot Marseille</td>
</tr>
<tr>
<td>LGV Jonction</td>
<td>1996</td>
<td>122 km</td>
<td>300 km/h</td>
<td>Förbifatt Paris med uppehåll på Charles-de-Gaulle</td>
</tr>
<tr>
<td>LGV Mediterranée</td>
<td>2001</td>
<td>251 km</td>
<td>300 km/h</td>
<td>Länkar Paris med Marseille och Montpellier</td>
</tr>
<tr>
<td>LGV Est-Européen</td>
<td>2007</td>
<td>300 km</td>
<td>320 km/h</td>
<td>Länkar Paris med Strasbourg</td>
</tr>
</tbody>
</table>

Källa: Railize International AB.

Kapacitet lika viktigt som hastighet i Italien

De italienska höghastighetsbanorna är byggda för blandad trafik och är avsedda att kunna trafikeras av både fjärr- och regionaltåg. Hög hastighet har inte varit ett självvänt mål i Italien utan en kapa-
citetsökning för både person- och godstrafik har varit lika ange-
lägen.

Italiens första höghastighetslinje, mellan Rom och Florens, byggdes i etapper under 1970- och 1980-talen och blev klar i nuvarande utformning 1991. Den klassas dock inte som en full-
värdförd höghastighetsbana av den statliga italienska infrastruktur-
förvaltaren Reale Ferroviaria Italiana (RFI). Det finns därför planer
på att uppradera banan från 250 kilometer i timmen till 300 kilo-
meter i timmen. Linjen Rom–Neapel som öppnade 2006 är den första riktiga höghastighetsbanan i Italien. Under 2008 öppnade
höghastighetslinjen mellan Milano och Bologna, och i december
2009 ska linjen Milano–Turin börja trafikeras. Flera nya linjer för
höghastighetståg är också under uppbyggnad.

Spanien satsar stort på höghastighetsbanor

Spanien har stora planer för utbyggnad av höghastighetsbanor. Den första linjen, mellan Madrid och Sevilla, öppnades för trafik 1992. Linjen är cirka 470 kilometer lång och dubbelspårig med en högsta tillåtna hastighet av 300 kilometer i timmen. De spanska hög-
hastighetsbanorna är byggda som normalspår medan det konven-
tionella järnvägsnätet domineras av bredspår. Höghastighets-
banorna trafikeras huvudsakligen av AVE-tåg (Alta Velocidad
Española). Banorna trafikeras också delvis av andra tåg med lägre
hastigheter som också trafikerar det övriga järnvägsnätet. Det finns
i dag endast en operatör, statliga Red Nacional de Ferrocarriles
Españoles (Renfe), på såväl höghastighetsnätet som det vanliga
järnvägsnätet.

Den befolkningsmässigt viktiga sträckan Madrid–Barcelona
öppnade 2008 efter vissa förseningar. Restiden mellan städerna
kortades då med cirka 3,5 timmar. Ytterligare ett flertal linjer är
under utbyggnad eller på planeringsstadiet. Den spanska regeringen
har som uttalat mål att Spanien till 2020 ska ha 1 000 mil hög-
hastighetsjärnväg och att 90 procent av landets befolkan ska bo
inom fem mil från en station på höghastighetsnätet (Järnvägs-
Fler europeiska länder planerar för höghastighetsbanor

Höghastighetsbanor finns eller är under konstruktion i bland annat Belgien, Nederländerna, Schweiz och Storbritannien.

De europeiska höghastighetsprojekten beskrivs närmare i kapitel 5.

2.8.5 Gränsöverskridande trafik

EU har genom en rad direktiv försökt främja konkurrensen mellan järnvägsföretagen på den inre marknaden. Hittills har EU beslutat om tre så kallade järnvägs paket i syfte att tvinga medlemsstaterna att öppna sina respektive järnvägsmarknader. Genom det andra järn
vägpaketet1, som antogs 2004, harmoniserades regler om säkerhet och teknisk utformning inom gemenskapen för att effektivisera internationell trafik och underlätta för järnvägsföretagen. Utöver detta föreskrivs en tidigareläggnings av total marknadsöppning för godstrafik inklusive cabotage på alla järnvägslinjer. Det finns därmed goda förutsättningar för att bedriva internationell godstrafik, men än så länge saknas märkbara konsekvenser av förändringen (Konkurrens på spåret, SOU 2008:92).

I oktober 2007 beslutades EU:s tredje järnvägpaket2 och det så kallade marknadsöppningsdirektivet (direktiv 2007/58/EG). Direktivet innebär att marknaden för internationell persontrafik öppnas på i stort sett hela det europeiska järnvägsnätet från och med den 1 januari 2010, se även avsnitt 2.5. Marknadsöppningen innefattar dock ett antal begränsningar, bland annat ska trafikens huvudsakliga syfte vara att beforda resande mellan skilda medlemsstater. Medlemsstaterna har också rätt att begränsa tillträdesrätt och rätt till cabotage på sträckor som omfattas av avtal om allmänna tjänster eller där ett järnvägsföretag har beviljats exklusiv tillträdesrätt.

Avregleringen inom EU har i praktiken inneburit stora skillnader mellan olika medlemsländer. Trots att det första järnvägpaketet formellt är infört i alla medlemsländer finns stora brister i tillämpningen.

1 Direktiv 2004/49/EG om säkerhet på gemenskapens järnvägar och om ändring av direktiv 95/18/EG om tillstånd för järnvägsföretag och direktiv 2001/14/EG om tilldelning av infrastrukturkapacitet, uttag av avgifter för utnyttjande av järnvägsinfrastruktur och utfärande av säkerhetsintyg, Direktiv 2004/50/EG om ändring av direktiv 96/48/EG om driftskompatibiliteten hos det transeuropeiska järnvägssystemet för höghastighetståg och Direktiv 2001/16/EG om driftskompatibiliteten hos det transeuropeiska järnvägssystemet för konventionella tåg, samt Direktiv 2004/51/EG om ändring av direktiv 91/440/EG om utvecklingen av gemenskapens järnvägar.

2 Förordning (EG) nr 1371/2007 om rättigheter och skyldigheter för tågresenärer, Direktiv 2007/58/EG om ändring av direktiv 91/440/EG om utvecklingen av gemenskapens järnvägar och Direktiv 2002/76/EG om tilldeling av infrastrukturkapacitet och uttag av avgifter för utnyttjande av järnvägsinfrastruktur samt Direktiv 2007/59/EG om behörighetsprövning av lokförare som framför lok och tåg på järnvägssystemet i gemenskapen.
Gränsöverskridande trafik inom Norden

I propositionen Framtidens resor och transporter – infrastruktur för hållbar tillväxt skriver regeringen att det är viktigt med samarbete med de nordiska grannländerna i infrastrukturfrågor. Regeringen har inlett ett samarbete med Danmark om att kartlägga den gränsöverskridande infrastrukturen.
3 Genomförda svenska utredningar och projekt samt aktuella intresseorganisationer

3.1 Genomförda svenska utredningar

3.1.1 Höghastighetståg i Sverige – Statens Järnvägar 1995

Utredningens syfte var att på ett allsidigt sätt belysa förutsättningarna för att bygga nya banor för hastigheter uppemot 350 kilometer i timmen. Möjigheterna att bedriva trafik på sådana banor i ett system där den långväga höghastighetstrafiken samordnades med ett nät för interregional och regionaltågstrafik skulle också belysas.

Två möjliga alternativ till banutbyggnad studerades:

- En utveckling av X2000-konceptet med högre fart och med förbättrade spår på Västra och Södra stambanan. Även i detta alternativ förutsattes en väl utvecklad regionaltågstrafik.

I utredningen slogs fast att det var angeläget att fortsätta utvecklingen av det svenska järnvägsnätet för utökad trafik i södra Sverige och mot den europeiska kontinenten. Framtida banor borde enligt utredningen dimensioneras för att klara hastigheter uppemot
350 kilometer i timmen i de avsnitt där höghastighetståg kan bli aktuella.

Ett fortsatt planerings- och utvecklingsarbete av bland annat Götalandsbanan, fordonsplanering, tekniska normer, stationer och miljöanalys föreslogs.

3.1.2 Idéstudie om höghastighetsjärnvägar i Sverige – Banverket 2003

Mot denna bakgrund uppdrog Banverket åt Scandiaconsult i Sverige AB att studera förutsättningarna att bygga höghastighetsbanor mellan Stockholm och Göteborg (Götalandsbanan) samt mellan Stockholm och Malmö (Europabanan). Utbyggnaden av höghastighetsbanor jämfördes med alternativ som innebar upprustning av de befintliga banorna, det vill säga Södra och Västra stambanan.

I utredningen som presenterades i november 2003 konstateras att Götalandsbanan och kanske även Europabanan är intressanta framtidsprojekt inom järnvägssektorn. Det främsta skälet till denna bedömning anges vara att kapacitetsutnyttjandet i det svenska järnvägsnätet blir allt högre, vilket leder till att järnvägstrafiken i framtiden kommer att få svårt att utvecklas om kapaciteten inte kan utökas väsentligt.

I utredningen föreslås tills vidare en utbyggnad av de länkar som är vältmotiverade av andra skäl än för genomgående höghastighetstrafik såsom Ostlänken, det vill säga sträckan Järna–Linköping, och sträckan Göteborg–Borås.

Vad gäller Europabanan föreslås att ett eventuellt investeringsbeslut för sträckan Jönköping–Helsingborg skjuts framåt i tiden. Anledningen till denna bedömning är att projektet i denna del inte ger några successiva utbyggnadsvinster och att den totala vinsten är mycket beroende av upprustningsåtgärder i Danmark som inte bedömdes som aktuella då rapporten skrevs.
Rapporten lyfter fram den mycket höga investeringskostnaden för banorna och de stora osäkerheterna både vad gäller kostnader och nyttor. Detta ger slutsatsen att ett eventuellt investeringsbeslut måste bygga mer på politisk övertygelse än på traditionella beräkningsmodeller.

Eftersom projektet är så stort menar man att nyttonerna med avlastning av Södra och Västra stambanan inte kommer att realiseras på många år och att upprustningsåtgärder på dessa banor ändå måste genomföras. Vidare menar man att ett genomförande av Götalandsbanan och Europabanan inte löser de ökade kapacitetsproblemen på stambanorna utan att kapacitetsköjande åtgärder på dessa måste genomföras även om banorna byggs.

De samhällsekonomiska kalkyler som genomförts är gjorda i enlighet med Banverkets etablerade metoder och visar på mycket stora samhällsekonomiska nyttoner. De nyttoner som normalt beräknas i Banverkets kalkyler väger dock inte upp kostnaderna. Samtidigt påpekas att det är svårt att beräkna alla nyttor som uppstår i ett så stort och genomgripande projekt, och att de samlade kalkylresultaten kan ifrågasättas både på grund av detta och på grund av osäkerhet i indata.

Banverket konstaterar i förordet till utredningen att de metoder och modeller som normalt sett används för att utvärdera järnvägsprojekt behöver utvecklas för att man på ett bättre sätt ska kunna bedöma den typ av systemförändringar som ett byggande av de båda banorna skulle innebära. Banverket ställer sig i princip bakom de slutsatser som framförs i rapporten.
3.1.3 Svenska höghastighetsbanor – Banverket 2008

Sammanfattning av rapporten

Analyserna skulle enligt uppdraget avse vilka effekter banorna får för det samlade svenska transportsystemet. Effekterna för övrig persontrafik och godstrafik skulle också belysas.

Som ett led i arbetet gav Banverket Bo-Lennart Nelldal vid Kungliga Tekniska högskolan (KTH) i uppdrag att ta fram en underlagsrapport baserad på tidiga renskärningar och redan publicerat material. I underlagsrapporten redovisas följande potentiella resider från Stockholm.

Tabell 3.1 Kortaste restid till Stockholm, timmar:minuter

<table>
<thead>
<tr>
<th></th>
<th>År 2001</th>
<th>Med höghastighetsbanor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nyköping</td>
<td>0:59</td>
<td>0:36</td>
</tr>
<tr>
<td>Norrköping</td>
<td>1:13</td>
<td>0:51</td>
</tr>
<tr>
<td>Linköping</td>
<td>1:38</td>
<td>1:03</td>
</tr>
<tr>
<td>Jönköping</td>
<td>3:02</td>
<td>1:21</td>
</tr>
<tr>
<td>Göteborg</td>
<td>2:59</td>
<td>2:00</td>
</tr>
<tr>
<td>Värnamo</td>
<td>4:10</td>
<td>1:54</td>
</tr>
<tr>
<td>Malmö</td>
<td>4:11</td>
<td>2:41</td>
</tr>
</tbody>
</table>

Källa: KTH.

Banverket drar slutsatsen att de trafikupplägg som skisseras i rapporten från KTH klart visar att de båda banorna kraftigt kan minska restiderna i de aktuella relationerna men att vissa av de beräknade restiderna är väl korta. Detta mot bakgrund av tidigare beräkningar med utgångspunkt från maxhastigheter på 320 kilometer i timmen och med större marginaler i tidtabellerna. De restider som kommande beräkningar kan ge kommer enligt Banverket förmodligen inte på något avgörande sätt att skilja sig från dem som redovisats av KTH. Banverket påpekar dock att de restider och trafikupplägg som förutsätts har betydelse för utfallet i de
sambalisekonomiska beräkningarna och det är därför viktigt att de är realistiska.

I ett längre tidsperspektiv är därför, enligt rapporten, en kapacitetsökning i form av nya separata höghastighetsbanor att föredra. Skålet är att de tillför kapacitet, kortar restiderna, separerar olika sorters trafik och ökar tillgängligheten genom att flera stora städer knyts samman på ett bättre sätt än i dag.

Banverket betonar i rapporten att det återstår mycket arbete med att tydligt klarlägga nyttor, värdera alternativa sträckningar, planera och kalkylera projekten. Avslutningsvis konstaterar dock Banverket att höghastighetsjärnvägar har så tydliga fördelar och nyttor för hela det svenska transportsystemet att de bör pekas ut som en strategiskt viktig framtidssatsning.

Granskning av rapporten

Konsultbolaget delar i stort de bedömningar som gjorts av KTH. I följande frågor är man dock inte helt enig med KTH och med de slutsatser som dras i KTH:s rapport.

- Konsultbolaget menar att även om man delar de flesta slutsatser så är hela rapporten mycket positiv till höghastighetsjärnvägar och skriven från ett järnvägsperspektiv. Det vono enligt konsultbolaget önskvärt med ett mer objektivt och trafikslagsövergripande perspektiv. Även om de positiva effekterna av hög-
hastighetsbanor är betydande är det inte enligt konsultbolaget säkert att de mycket stora investeringsbelopp som det här är frågan om inte skulle skapa större nytta vid en alternativ användning. Den alternativa användningen skulle kunna vara både inom andra trafikslag men även förbättringar av det existe-
rande bannätet.

- Konsultbolaget ifrågasätter KTH:s slutsats att höghastighets-
banor är klart samhällsekonomiskt lönsamma. De menar att nuvarande metoder för att utvärdera projektet inte är ändamåls-
enliga och att det med tanke på de mycket stora kostnaderna inte är självklart att de är lönsamma i den utsträckningen som KTH anger. Ytterligare utredning av både Göteborgsbanan och Europabanan rekommenderas.

- Vad gäller Europabanan ifrågasätts om KTH:s förslag till linje-
sträckning, som innebär en bana från Jönköping till Helsingborg och vidare till Hamburg via Helsingör, är den bästa. Sträck-
ningen behöver enligt konsultbolaget utredas vidare och hänsyn

tas till de danska planerna.

- Konsultbolaget ifrågasätter KTH:s jämförelse mellan sträck-
ningarna Madrid–Barcelona och Öresund–Stockholm och menar att marknadspotentialen är dubbelt så stor i det spanska

projektet.

- De nyttoeffekter som KTH beräknar att höghastighetsbanor skulle innebära för godstrafiken ifrågasätts. Konsultbolaget
ifrågasätter om en så stor tillväxt av godstrafik som KTH räknar
med är realistisk. Frågan ställs om det inte finns mer kostnads-
effektiva sätt att tillskapa ytterligare kapacitet för godstrafiken
än genom att bygga höghastighetsjärnvägar.

I uppdraget ingick också att göra en egen generell bedömning av höghastighetsbanor i Sverige och här anser konsultbolaget att sådana banor med utgångspunkt från marknadsförutsättningar och trafikstruktur har goda möjligheter att uppfylla lönsamhet. Bedömning

ingen innefattar banornas effekt på det övriga järnvägsnätet i form

av kapacitetstillskott för godstrafik och regional och interregional

persontrafik. De utpekade linjerna anses vara de som i första hand

bör komma i fråga för höghastighetstrafik.

Vad gäller de totala ekonomiska effekterna är konsultbolaget

dock inte lika positivt som KTH. Man menar att det inte är själv-
klart att projektet som helhet uppvisar samhällsekonomisk lönsamhet, även om existerande modeller för trafikprognoser samt värdering av kapacitetstillskott och miljövinster förändras.

Ostlänken anses vara det projekt som har bäst förutsättningar att uppvisa samhällsekonomisk lönsamhet. Även investeringar i resterande delen av Götaledsbanan anses vara rimliga i ett samhällsekonomiskt perspektiv inte minst med utgångspunkt från att Jönköping och Borås knyts till den genomgående förbindelsen från Stockholm.

För sträckan Jönköping–Helsingborg menar man att det trots ett omfattande trafikunderlag i dagsläget finns osäkerheter kring projektet som måste beaktas. Bland dessa nämns att banan inte är detaljutredd på samma sätt som Götaledsbanan, att projektet är beroende av samverkan med Danmark samt bristen på mellanliggande marknader mellan Jönköping och Helsingborg.

Avslutningsvis påpekar konsultbolaget att utvecklingen av höghastighetsbanor i Tyskland ifrågasätts eftersom kostnaderna för att bygga dessa banor har ökat mycket kraftigt. Detta hänger i sin tur samman med ambitiösa och kostnadsdrivande lösningar inom säkerhet, stationsutformning och miljöanpassning.

Remissbehandling av rapporten

Banverkets rapport remitterades till 18 remissinstanser varav 8 har svarat.

Sveriges Kommuner och Landsting (SKL) och Lunds tekniska högskola är positiva till Banverkets slutsatser. SKL anser att erfarenheter från internationella och nationella infrastrukturprojekt talar för att nyttorna i praktiken kommer att bli mycket större än vad rapporten påvisar.

Ett antal remissinstanser inklusive Statens institut för kommunikationsanalys (SIKA), Statskontoret och Statens väg- och transportforskningsinstitut (VTI) är mer tveksamma till Banverkets bedömningar. Samtliga remissinstanser utom SKL och Lunds tekniska högskola anser att frågan behöver utredas ytterligare och att effekterna, kostnaderna och finansieringen måste studeras mer ingående.

VTI tycker att det är principiellt tveksamt att Banverket använt en konsultrapport som underlag för sitt ställningstagande samt tidigt som verket reserverar sig för de stora osäkerheter som framkom-

Lunds tekniska högskola menar att det är i stort sett omöjligt att göra prognoser för trafikutvecklingen på ett helt nytt trafiksistema som etablerandet av höghastighetsbanor skulle innebära. Projektet bör därför, enligt högskolan, inte endast utvärderas med traditionella prognosmetoder och analyser av kostnader och nyttor.

Vägverket menar att godstransporter på väg och järnväg är komplement till varandra och att konkurrensytorna vanligtvis är mindre. När det gäller hur omfattande potentialen är av att överflytta gods från väg till järnväg finns stora osäkerheter som enligt Vägverket bör lyftas fram.

Luftfartsstyrelsen menar att det saknas underlag för att avgöra om järnvägen tar marknadsandelar från inrikesflyget i Sverige och menar att överflyttningspotentialen från flyg till tåg är övervärderad i rapporten. Styrelsen menar att den nationella reservandersökningen inte stöder rapportens beskrivning av hur omfattande tågets möjligheter är att öka sina marknadsandelar.

3.1.4 Nya tåg i Sverige – SJ med flera 2008

Sammanfattning av rapporten

Utgångspunkten är affärsämnighet där privata och offentliga aktörer bidrar till en samfinansiering.

I rapporten konstateras att marknadsunderlaget i Sverige är tillräckligt omfattande för att etablera höghastighetståg. Den föreslagna trafikmodellen skiljer sig dock från flera länder i Europa eftersom det utmed bansträckningen finns flera stora städer där tågen enligt modellen kommer att stanna.

För att driva trafiken på de nya höghastighetsbanorna krävs enligt rapporten 40 nya höghastighetståg och cirka 75 interregionala snabbtåg. Bedömningen är att investeringarna i rullande materiel kan genomföras på kommersiell grund av operatörer och trafikhuvudmän.

Genom projektets beräknade lönsamhet finns det enligt Industrigruppen möjlighet till samfinansiering med privata investerare. Gruppen har angett hur finansieringen skulle kunna fördelas.

Tabell 3.2 Möjlig fördelning av finansiering av höghastighetsbanor, miljarder kronor

<table>
<thead>
<tr>
<th>Andel</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Privat</td>
<td>37</td>
</tr>
<tr>
<td>EU</td>
<td>9</td>
</tr>
<tr>
<td>Staten</td>
<td>28</td>
</tr>
<tr>
<td>Regionerna</td>
<td>19</td>
</tr>
<tr>
<td>Summa</td>
<td>93</td>
</tr>
</tbody>
</table>

Källa: Nya tåg i Sverige.
Gruppen föreslår en modell för projektets genomförande där staten bildar ett särskilt bolag som ansvarar för planering, styrning, upp-
handling och förvaltning av ingångna avtal. Bolaget föreslås också
upphandla samtliga delar av projektet genom funktionsupphandling
där underhåll av infrastrukturen under en 30-årsperiod ingår.

Den aktör, förmodligen ett konsortium, som vinner upphand-
ligen ansvarar för finansiering av den del som inte staten svarar för
samt för konstruktions- och tillgänglighetsrisker.

Ersättning till konsortiet sker via det statliga bolaget som beta-
lar en tillgänglighetsbaserad ersättning som täcker investerings-
kostnader, underhåll och avkastning på insatt kapital.

Det statliga bolaget uppbär banavgifter baserade på en upp-
handling av rätten att bedriva trafik på banan. De totala intäkterna
för banavgifter beräknas av Industrigruppen uppgå till 4,3 miljarder
 Kronor per år baserat på dagens trafikprognoser. En särskild för-
handlingsgrupp bör enligt gruppens bedömning bildas inom det
statliga bolaget för att hantera ansökningar om trafikrätt och
för arbetet med att integrera höghastighetstrafiken med övrig tåg-
trafik.

Industrigruppens beräkningar visar på en potential att minska de
totala utsläppen från transportsektorn till 2020 med 1 miljoner ton
koldioxid per år vid ett genomförande av projektet. Detta motsva-
rar fem procent av dagens totala utsläpp inom den svenska trans-
portsektorn.

Remissbehandling av rapporten

Efter det att Industrigruppen presenterat sin rapport remitterade
Banverket rapporten till 17 myndigheter och organisationer. Fyra
statliga myndigheter lämnade synpunkter på rapporten.

SIKA anser att rapporten argumenterar väl för alternativet hög-
haftighetsbanor och att byggande av höghastighetsbanor är
genomtänkt ur tillgänglighetssynpunkt och utifrån ett över-
gripande perspektiv på olika transportslag. Institutet har dock syn-
punkter på den samhällsekonomiska kalkyl som utredningen pre-
senterar eftersom något alternativ med kapacitetsförstärkningar i
det konventionella järnvägsnätet inte presenteras. Alternativet att
investera i höghastighetsbanor jämförs endast med alternativen att
it inte genomföra några investeringar alls. Institutet anser att rap-
portens förslag till samverkan mellan det privata näringslivet och statlig och regional offentlig sektor framstår som fördelaktigt.

Vägverket är tveksamt till de ökningar av godstransporter på järnväg som anges i rapporten och anser att potentialen för överflyttning av gods- och persontransporter är osäker. Vidare saknar verket analyser över de negativa effekter i form av bland annat bul­ler och påverkan på natur-, rekreations- och kulturmiljöer som kan bli en följd av en byggnation av höghastighetsbanor.

VTI anser att det är positivt att de aktuella aktörerna engagerar sig i verksamheter som traditionellt varit ett statligt ansvar. Sam­tidigt menar man att rapporten är översiktlig och att det inte är möjligt att bedöma om utredningens beräkningar stämmer överens med de generella principer för nyttobe­räkningar som i dag tillämp­pas av trafikverken.

3.2 Beskrivningar av och erfarenheter från tidigare genomförda stora nationella infrastrukturprojekt

I mina direktiv anges att en viktig del av arbetet är att inhämta kun­skap och erfarenheter från andra större investeringsprojekt. I det följande beskrivs Öresundsförbindelsen och Botniabanan som båda är mycket stora projekt och som organisatoriskt har genomförts
Genomförda svenska utredningar och projekt samt aktuella … SOU 2009:74

utanför infrastrukturerverken. Jag har även övervägt om det inom andra samhällssektorer, till exempel inom energisektorn, har funnits projekt som skulle kunna vara relevanta att beskriva och hämta erfarenheter från. Jag har dock inte kunnat finna några sådana och enligt min mening är de allra mest relevanta infrastrukturprojekten de satsningar som gjorts på höghastighetsbanor inom andra europeiska länder. Dessa projekt beskrivs i avsnitt 5.

3.2.1 Öresundsförbindelsen

Öresundsförbindelsen är ett samlande begrepp för bron över Öresund och dess svenska och danska landanslutningar. Landanslutningarna på den svenska sidan består av en mil motorväg och en mil järnväg.

Genomförande av förbindelsen över Öresund regleras i ett avtal mellan Sveriges och Danmarks regeringar som ingicks 1991.

I avtalet sägs att de båda länderna gemensamt ska anlägga och driva en avgiftsfinansierad fast förbindelse för järnvägs- och vägtrafik mellan Kastrup och Limhamn. I avtalet sägs vidare att utbyggnaden av förbindelsen ska utbjudas till internationell upphandling.

Vidare sägs att kostnaderna för projektering, byggande och drift i sin helhet ska täckas av konsortiet genom avgifter från trafikanterna som använder bron. I avtalet sägs explicit att anslag över respektive stats statsbudget inte ska anvisas för konsortiets verksamhet.

Merparten av avgifterna ska komma från biltrafiken och konsortiet bestämmer storleken på dessa avgifter. Intäkterna från järnvägstrafiken utgörs av en fast summa och påverkas inte av trafikvolymen.

Finansiering har skett genom lån som beräknas vara återbetalda inom 30 år från brons öppnande. Skulden uppgår till cirka 20 miljarder danska kronor. Till detta kommer skulder på totalt 10 mil-

Det har inte gjorts någon samlad utvärdering av Öresundsprojektet. Vad som dock kan konstateras är att både byggande och finansiering av förbindelsen genomförts helt i enlighet med de planer som funnits för projektet.

3.2.2 Botniabanan

Vad gäller frågan om resecentrum stadgas i avtalet att varje kommun ansvarar för att bygga och förvalta resecentrum inom sin
Genomförda svenska utredningar och projekt samt aktuella ...

SOU 2009:74

... kommun. Kommunerna har förbundit sig att upplåta resecentrum till aktuella trafikutövare på konkurrenseneutrala villkor.

Banan finansieras i sin helhet av lån som tas upp av bolaget. Riksdagen har beslutat om en högsta total låneram för projektet på 17,6 miljarder kronor vilket ska täcka både investerings- och finansieringkostnader. Respektive kommun svarar för finansiering av resecentrum. Banan har också fått visst stöd från EU inom ramen för TEN-T, se vidare avsnitt 2.7. Vid årsskiften 2008/2009 hade bolaget erhållit totalt 149 miljoner kronor i stöd från EU.

Antalet anställda i bolaget varierar över tid och uppgick som mest till drygt 110 personer under 2006. I takt med att banan färdigställs kommer antalet anställda att minska i och med att projektorganisationen successivt avvecklas.

3.3 Aktuella intresseorganisationer

3.3.1 Europakorridoren – intresseförening för Götalandsbanan och Europabanan

Europakorridoren AB ägs av de svenska medlemmarna i en ideell förening som även har medlemmar från Tyskland och Danmark. De svenska medlemmarna är främst kommuner, regioner och regionförbund.

Europakorridorens styrelse har i dialog med Banverket framfört att beslut om projekt av Europakorridorens storlek måste byggas mer på politisk övertygelse än på traditionella beräkningsmetoder. Vidare anser man att det är mycket viktigt att varje del av projektet planeras för en hastighetsstandard på 350 kilometer i timmen.

Sju av kommunerna längs med Ostlänken samt regionförbundet Sörmland och regionförbundet Östsmar har sedan 2001 ett gemensamt bolag, Nyköping-Östgötalänken AB. Bolaget verkar för att ägarna ska arbeta och agera samordnat i frågor kring Ostlänken.

3.3.2 Stambanan.com

Stambanan.com är ett nätverk som arbetar med järnvägs- och utvecklingsfrågor kopplade till Södra stambanan. Medlemmar i nätverket är 24 kommuner, Region Skåne samt regionförbunden i Jönköpings, Kalmar och Kronobergs län.
Nätverket arbetar för följande mål:

- Att Södra stambanan ska utvecklas för att klara hastigheter på 250 kilometer i timmen.
- Att Södra stambanans kapacitet ska utvecklas så att den på samtliga avsnitt stämmer överens med trafikutvecklingen.
- Att anslutande järnvägar ska utvecklas för att förbättra märkningen till och från trafiken på Södra stambanan för resor i tvärled.
- Att Göta landsbanan ska byggas.
- Att en ny höghastighetsbana mellan Mälardalen och Öresundregionen ska placeras i Södra stambanestråket.

3.3.3 Internationella intresseorganisationer

IBU. Hög hastighetståg är dock endast en av de åtgärder som utreds inom projektet, andra transportinfrastruktursatsningar som omfattas av IBU är Fehmarn bält-förbindelsen och den fasta förbindelsen mellan Helsingborg och Helsingör.

4 Nulägesbeskrivning

4.1 Utvecklingen av persontransportmarknaden och dagens trafikvolymer

4.1.1 Utvecklingen av den totala persontrafikmarknaden 1950–2008

Utvecklingen av resandet korrelerar med utvecklingen av den privata konsumtionen.

I början av 1950-talet dominerade järnvägen den interregionala persontransportmarknaden med en marknadsandel på 73 procent. I takt med att bilens marknadsandel har ökat har järnvägens minskat för att 2008 uppgå till 16 procent av de interregionala resorna.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Järnväg</td>
<td>58</td>
<td>63</td>
<td>47</td>
<td>48</td>
<td>55</td>
</tr>
<tr>
<td>Flyg</td>
<td>10</td>
<td>17</td>
<td>36</td>
<td>33</td>
<td>27</td>
</tr>
<tr>
<td>Buss</td>
<td>32</td>
<td>20</td>
<td>17</td>
<td>19</td>
<td>18</td>
</tr>
<tr>
<td>Totalt</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Källa: Banverket.

4.1.2 Utvecklingen av persontrafiken med järnväg

Kungliga Tekniska högskolan (KTH) har på uppdrag av Banverket årligen undersökt utbud och priser på ett stort antal järnvägslinjer under perioden 1990-2008. Undersökningarna visar att medelhastigheten höjts kraftigt, framför allt på längre avstånd, samt att turtätheten ökat både i fjärr-, regional- och lokaltrafiken. Antalet avgångar har under perioden ökat med 50 procent och restiden är minst 20 procent kortare än vad den var i början av perioden. Detta har sammantaget lett till en ökning av de kortväga resorna, det vill säga under 10 mil, med 120 procent mätt i antal personkilometer. Motsvarande siffra för de långväga resorna uppgår till 50 procent.

Den långväga trafik som har ökat mest är den storregionala trafiken och den interregionala snabbtågstrafiken. Ökningen av den storregionala trafiken är en följd av att nya banor har byggts vilka trafikeras av snabba tåg med hög turtäthet. Exempel på sådana trafikupplägg är Svealandsbanan, Mälarbanan och Öresundstågen. I dessa relationer har tillkomsten av ny infrastruktur varit helt avgörande för trafikutvecklingen.

Belägningen i tågtrafiken har ökat kraftigt under perioden, inte minst på SJ AB:s X2000-tåg. När dessa tåg introducerades 1991 fanns det bara 1 klass och beläggningsgraden var då cirka 40 pro-

92

4.1.3 Utvecklingen av persontrafiken med järnväg kring storstäderna

Utvecklingen av järnvägstrafiken har stor betydelse i storstadsområdena och den har också utvecklats snabbt i dessa områden. Detta beror på befolkningstillväxten i dessa områden men också på att järnvägen lämpar sig för stora flöden i befolkningstäta områden samt att de regionala aktörerna har valt att satsa på järnvägstrafiken.

I och med länshuvudmannareformen har regionerna fått möjlighet att själva planera och bedriva trafiken. Upphandling av trafiken har inneburit att SJ har fått konkurrens. I dag bedrivs till exempel Pågatågstrafiken av Arriva Skandinavien A/S och Öresundstrafiken av DSBFirst.

Avgörande för den utveckling i de tre storstadsregionerna som beskrivs nedan har varit att infrastrukturen har byggts ut och nya tåg köpts in. Samordningen av den totala kollektivtrafiken inom respektive område med gemensamma och enhetliga taxor har också varit en viktig del.

Pendeltågstrafiken i Stockholm är den trafik som har störst omfattning. Tillkomsten av Svealandsbanan och trafikutbudet inom ramen för Tåg i Mälardalen som drivs i samarbete mellan SJ och de
aktuella trafikhuvudmänne har bidragit till detta. Pågåten i Skåne är den trafik som utvecklats snabbast under senare år.

Stockholmsregionen

Av figur 4.1 nedan framgår utvecklingen av tågtrafiken i Stockholmsregionen under perioden 1950–2008. Under perioden har antalet invånare i regionen ökat från 1,1 miljoner 1950 till dagens 2,0 miljoner.

Figur 4.1 Utvecklingen av tågtrafiken i Stockholmsregionen

![Diagram](image_url)

Av figur 4.1 framgår också att den storregionala trafiken i Mälardalen har ökat mycket snabbt efter det att infrastrukturen utökats med Svealandsbanan, Mälarcircus och Arlandabanan. Den nya infrastrukturen och de nya trafikuppläggen innebär att man inom en timme kan nå bland annat Eskilstuna och Västerås. Den storregionala trafiken omfattar i dag i stort sett samma transportbelastning som pendeltågstrafiken, det vill säga cirka 1,3 miljarder personkilometer årligen. Pendeltågen i Stockholmsregionen och Mälardalstrafiken svarar i och med detta för knappt 25 procent av det totala persontransportarbetet med järnväg i Sverige i dag.

Skåne

Av figur 4.2 nedan framgår utvecklingen av Pågatågen och Öresundstrafiken. Resandet med Pågatågen har ökat mycket snabbt i takt med att systemet har byggts ut. Öresundstrafiken har också expanderat mycket kraftigt sedan starten 2000 och har påverkat Pågatågen positivt. De båda systemen har blivit allt mer integrerade och de tåg som används i Öresundstrafiken används ibland inom Pågatågssystemet.

Transportarbetet med Pågatågen uppgår till 0,4 miljarder personkilometer och är i dag sex gånger större än då trafiken etablerades 1980. Trafiken med Öresundstågen inom Skåne och på den svenska delen av Öresundsförbindelsen uppgår till 0,6 miljarder personkilometer. Detta innebär att trafiken inom de båda systemen sammanlagt uppgår till 1,0 miljard personkilometer vilket utgör 9 procent av det totala persontransportarbetet på järnvägsnätet i Sverige.

Byggandet av Citytunneln i Malmö pågår och beräknas vara klart i december 2010. Tunneln kommer att innebära flera nya stationer i Malmö och att tågen kan gå direkt till Köpenhamn utan att vända.
Göteborgsregionen

Pendeltågstrafiken i Göteborgsområdet uppgår till 0,2 miljarder personkilometer. Tillsammans med trafiken på övriga regionala linjer och den storregionala trafik som bedrivs i SJ:s egen regi beräknas resandet uppgå till cirka 0,5 miljarder personkilometer vilket motsvarar fem procent av det totala persontransportarbetet på järnväg i Sverige.

4.1.4 Beskrivning av den regionala persontrafiken med järnväg i övriga delar av landet

Även utanför storstadsområdena har många trafikhuvudmän satsat på att utveckla tågtrafiken. I det följande beskrivs kortfattat några av de aktuella trafikuppläggen.

Mittnabo och Norrtåg

Från och med 2011 kommer huvudansvaret för trafiken att tas över av Norrtåg AB som är ett samverkansbolag mellan länstrafiken i Västernorrland, Jämtland, Västerbotten och Norrbotten. Trafiken kommer då att utökas på befintliga sträckor och kompletteras med trafik på Botniabanan. Trafiken möjliggörs genom ett beslut av riksdagen där de aktuella trafikhuvudmännen fått rätt att driva dagtågstrafiken i Norrland på linjer norr om Sundsvall/Ånge.

Tåg i Bergslagen

Värmland

Krösatågen

Krösatågen körs enligt ett samverkansavtal mellan Jönköpings länstrafik, länstrafiken Kronoberg, Hallandstrafiken och Rikstrafiken. Rikstrafiken bidrar till finansieringen av verksamheten.

4.2 Utvecklingen av godstransportmarknaden och dagens trafikvolymer

4.2.1 Utvecklingen av den totala godstransportmarknaden 1950–2008

Utvecklingen av godstransportarbetet är starkt korrelerad till utvecklingen av bruttonationalprodukten och tillväxten har varit en av de viktigaste orsakerna till att godstransporterna har ökat i omfattning. Strukturförändringar inom industrin har också haft stor betydelse för trafiktillväxten som skett i takt med att produktionen har koncentrerats till färre och större enheter samtidigt som speci-
Aliseringsgraden har ökat. Även distributionen har rationaliserats genom centralisering av lager, vilket också inneburit en ökning av det totala transportarbetet. Effektiviseringar och ökad konkurrens inom transportsektorn har också bidragit till den omfattande trafiktillväxten.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Järnväg</td>
<td>28</td>
<td>27</td>
<td>28</td>
<td>24</td>
<td>25</td>
</tr>
<tr>
<td>Inrikes sjöfart</td>
<td>8</td>
<td>17</td>
<td>12</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>Utrikes sjöfart</td>
<td>47</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td>29</td>
</tr>
<tr>
<td>Vägtrafik</td>
<td>17</td>
<td>26</td>
<td>31</td>
<td>38</td>
<td>38</td>
</tr>
<tr>
<td>Totalt</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Källa: Banverket.

Lastbilstrafikens expansion kan förklaras med att infrastrukturen har förbättrats i form av utbyggnad av vägnätet i kombination med att tyngre och längre fordon blivit tillåtna. Åkerierna har dessutom erbjudit en jänn och hög transportkvalitet som skapat förutsättningar för nya produktionssystem inom näringslivet och distribution till nya marknader.

Under de senaste åren har järnvägens marknadsandel stabiliserats och järnvägen har kunnat tillgodogöra sig ökningen av den totala godstransportmarknaden i ungefär samma utsträckning som lastbilstrafiken.

Fokus på miljöfrågorna och det faktum att lastbilsavgifter införts i bland annat Tyskland, Österrike och Schweiz har gynnat järnvägstransporterna.

4.2.2 Utvecklingen av godstransporter med järnväg

Järnvägens tekniska utveckling har inneburit att utbudet har förbättrats genom högre hastighet och axellast samt genom införandet av kombitrafik och direkttåg. Även den operativa driften har utvecklats och rationaliserats kraftigt genom införande av fjärrblockering och andra tekniska system. Det senare gäller även för persontrafiken.

Samtliga dessa förbättringar har höjt trafikutbudets kvalitet och dämpat ökningen av transportkostnaderna i relationer med omfattande trafik och för kunder med stora och frekventa godsflöden. För övriga typer av transporter har järnvägens kvalitet och service-nivå inte utvecklats på motsvarande sätt. Det senare blir särskilt tydligt vid en jämförelse med lastbilstrafiken.

Avregleringen av godstrafiken som genomfördes 1996 har dock inneburit att nya operatörer som är mer flexibla och kundanpassade har etablerats på marknaden. Detta har i sin tur lett till en prispress på de redan etablerade aktörerna och dessa har blivit effektivare. En bättre lönsamhet hos operatörerna har kunnat noteras efter avregleringen.

Vid sidan av Green Cargo AB som fortfarande är den dominerande aktören på marknaden svarade andra järnvägsföretag under

De senaste åren har ökningen av järnvägstransporter främst avsett högfordjat gods som transporterats som kombitransporter inte minst till och från Göteborgs hamn. Till skillnad från tidigare har antalet orter som trafikeras med godstransporter på järnväg varit relativt oförändrat under de senaste fem åren. Den tidigare trenden med nedläggning av industrispår har brutits och under perioden har några nya spår och kombiterminaler tillkommit.

I flera av Europas länder har utvecklingen av godstransporter på järnväg varit positiv till följd av avregleringen. Utvecklingen har dock startat från en betydligt lägre nivå i form av marknadsandelar än de som är aktuella i Sverige.

I Tyskland har godstrafiken på järnväg under perioden 2001–2007 ökat sina marknadsandelar från 15,7 procent till 17,3 procent och transportarbetet har under samma period ökat med 50 procent mätt i antal tonkilometer. Införandet av avståndsbaserade vägavgifter för lastbilstrafik är en viktig förklaring till denna utveckling men även att nya aktörer etablerat sig på marknaden till följd av avregleringen.

4.3 Befintligt bansystem

Den svenska järnvägsinfrastrukturen omfattar i dag cirka 11 800 kilometer trafikerad bana varav 3 800 kilometer utgörs av dubbelspår. Av dessa banor är drygt 7 800 kilometer elektrifierade. I nätet ingår 3 731 broar och 132 tunnlar.

Det statliga nätet som Banverket förvaltar utgör cirka 80 procent av det totala järnvägsnätet i Sverige. De övriga delarna sköts av företag, kommuner eller föreningar. Exempel på företag som förvaltar banor är Arlandabanan Infrastructure AB som äger och förvaltar Arlandabanan, Öresundsbrokonsortiet som äger och förvaltar förbindelsen över Öresund, AB Storstockholms Lokal-
trafik som äger och förvaltar lokalbanorna Roslagsbanan och Salt-sjöbanan i Stockholm samt Inlandsbanan AB som förvaltar den statligt ägda Inlandsbanan mellan Mora och Gällivare.

Förutom det ovan beskrivna bannätet omfattar järnvägsnätet även så kallad kapillär infrastruktur, det vill säga uppställnings- och anslutningspåar. Dessa banor är betydelsefulla bland annat för att mata ut gods från industrier och hamnar till de större godsstråken.

Till infrastrukturen hör också ett cirka 12 000 kilometer långt optiskt fiberglass som ligger i anslutning till järnvägen. Fiberglass förser järnvägen med säkra data-, tele- och signaltjänster.

Kostnaderna för drift, underhåll och reinvesteringar i det nät som Banverket förvaltar uppgick till drygt 5,9 miljarder kronor under 2008.

Under de senaste fem åren har investeringar för cirka 37 miljarder kronor genomförts i det svenska järnvägsnätet. De största projekt- en är tunneln genom Hallandsåsen, övriga delar av Västkustbanan, Citytunneln i Malmö, Citybanan i Stockholm, kapacitetsförstärkningar i Göteborgsområdet, Vänerbanan, godsstråket genom Bergslagen, Ostkustbanan och Stambanan genom Övre Norrland. Investeringarna i Botniabanan görs inom ramen för det för ändamålet bildade bolaget vilket tidigare beskrevits i avsnitt 3.2.2.

4.4 Befintliga operatörer

Det svenska järnvägsnätet trafikerades under 2008 av sammanlagt 26 järnvägsföretag som bedrev kommersiell trafik. Det motsvarar enligt Banverket en ökning med cirka 70 procent under den senaste tioårspериoden. Av de operatörer som bedrev trafik på svenska banor under 2008 bedrev tre spårvägstrafik och en tunnelbane- trafik. Inlandsbanan AB och Tågåkeriet i Bergslagen AB bedrev både person- och godstrafik på järnväg. Ett stort antal järnvägs-

I förhållande till många andra länder i Europa finns det en stor andel järnvägsföretag verksamma i Sverige som helt eller delvis är kontrollerade av utländska företag. 14 av de 26 järnvägsföretag som bedrev person- och/eller godstrafik i Sverige under 2008 var under någon form av utländsk kontroll.

4.5 Kapacitetsutnyttjande

4.5.1 Begreppet kapacitet och kapacitetsutnyttjande av det svenska järnvägsnätet

Kapacitet är inget entydigt begrepp. Den kapacitet som finns i järnvägsnätet beror bland annat på följande faktorer:

- infrastruktur
- trafikstruktur
- fordon
- beläggningsgrad på gods- och persontåg
- storlek på tågen
- tidtabell
- hastighetsskillnader
- förseningar.

Vid en analys av kapaciteten längs med en bana eller ett stråk är det viktigt att komma ihåg att kapaciteten aldrig är högre än den svagaste länken längs med ett stråk.

På de järnvägslinjer som markerats med rött är kapacitetsutnyttjandet över 80 procent av den totala kapaciteten vilket innebär att det i praktiken är mycket svårt att lägga till ytterligare tåg utan att förseningarna ökar. De röda sträckorna finns i dag kring de tre storstäderna, på Ostkustbanan mellan Gävle och Sundsvall, mellan Kil och Kristinehamn och mellan Gävle och Örnsköldsvik.

För operatörerna innebär detta att man inte kan få ytterligare tåglägen eller de tåglägen man önskar. Den efterfrågan som finns kan inte tillgodoses och sannolikt finns även en dold efterfrågan genom att operatörer inte söker tåglägen på sträckor som redan i dag är överbelastade, eftersom man vet att ansökning inte kommer att resultera i att man tilldelas den önskade kapaciteten.

På de gulmarkerade sträckorna uppgår kapacitetsutnyttjandet till mellan 60 och 80 procent av den totala kapaciteten.
Bild 4.1 Kapacitetsbegränsningar i järnvägsnätet 2008

Källa: Banverket.
Blandningen av snabba och långsamma tåg har stor betydelse för kapaciteten eftersom tågen inte kan köra om varandra var som helst. Vid blandad trafik sjunker kapaciteten väsentligt. Problem uppstår mellan snabbtåg och långsammare godståg, men även mellan godståg och lokaltåg som stannar på många stationer och därigenom har en mycket låg medelhastighet, det vill säga mellan 50 och 60 kilometer i timmen.

Storleken på tågen är ett mått på hur mycket av den totala kapaciteten för varje tågläge som utnyttjas. För godståg har kapaciteten ofta större betydelse än frekvensen. Kundernas önskemål är ofta att det ska gå ett tåg per dygn med passande och tillförlitliga avgångs- och ankomsttider samt att kostnaden för transporten ska vara låg.

För persontrafik har turtätheten en avgörande betydelse och det går inte att ersätta turer med färre långa tåg. I dagsläget kör man dock med två sammankopplade X2000-tåg på vissa avgångar för att öka kapaciteten.

Andelen försenade tåg uppgår i dag till 30–50 procent på de olika delsträckorna på Västra stambanan och Södra stambanan. Även Ostkustbanan, Dalabanan och sträckan Laxå–Kil har en hög andel försenade tåg. De största förseningarna finns i storstadsområdena.
4.5.2 Dagens trafik och kapacitetsutnyttjande på Västra stambanan och Södra stambanan

KTH har på mitt uppdrag studerat och analyserat kapacitetsutnyttjandet på det svenska bannätet och då främst på Västra stambanan och Södra stambanan som är de stråk som är aktuella för höghastighetsbanor. Analyser har gjorts av antalet tåg, tågens storlek, hastighetsskillnader och förseningar.

Den mest belastade sträckan räknat i antal tåg är den mellan Hallsberg och Göteborg. Här går totalt 315 tåg dagligen varav 85 stycken går hela sträckan. Blandningen av tåg med olika hastigheter är stor och här kör lokaltåg med en genomsnittshastighet på 67 kilometer i timmen, godståg med en motsvarande hastighet på 80 kilometer i timmen och regionaltåg som håller en hastighet på cirka 100 kilometer i timmen. Till detta kommer posttåg som har en genomsnittshastighet på 130 kilometer i timmen och slutligen X2000 med 145 kilometer i timmen.

På Södra stambanan mellan Mjölby och Hässleholm går totalt 112 tåg per dygn varav 59 går hela vägen. Ett av banans mest belastade avsnitt är sträckan mellan Hässleholm och Arlöv. Spridningen mellan olika hastigheter är här något mindre än på Västra stambanan.

Andelen försenade tåg är hög och uppgår som tidigare nämnts till mellan 30 och 50 procent på olika delsträckor av de båda banorna. Även genomsnittsförseningen är hög och detta gäller i synnerhet för tåg som går längre sträckor längs med banorna. Variationerna i förseningarna är stora vilket också tyder på att man ligger nära kapacitetsgränsen.

KTH:s bedömning, som även delas av Banverket, är att det redan i dag finns en potentiell efterfrågan som inte kan tillgodoses. Denna efterfrågan bör ses i relation till de befolkningsökningar som prognostiseras längs med de aktuella banorna.

4.5.3 Möjligheten att öka kapacitetsutnyttjandet på kort och lång sikt

På kort sikt

Mot bakgrund av de kapacitetsproblem som beskrivits ovan kan man konstatera att oavsett om höghastighetsbanor kommer att byggas eller inte så måste kapacitetsutnyttjandet och kvaliteten på de befintliga banorna förbättras på kort sikt. Med kort sikt avses här 3–5 år. Åtgärderna ligger inom ramen för de tre första stegen enligt fyrstegsprincipen, det vill säga

1. åtgärder som kan påverka transportbehovet och val av transportsätt
2. effektivare utnyttjande av befintliga trafikanläggningar och fordon
3. begränsade ombyggnadsåtgärder.

De åtgärder som är aktuella är alltså sådana som kan genomföras utan omfattande investeringar i nya banor. Åtgärderna är av den karaktären att de kommer till nytta oavsett om höghastighetsbanorna byggs eller inte. Följande åtgärder beskrivs kortfattat:
• trafikplaneringsåtgärder
• förbättrat underhåll av infrastruktur och fordon
• mindre investeringar i signalsystem, mötesplatser och förbi-gångsspår
• bättre kapacitetsutnyttjande av tågen och tåg med högre kapacitet
• differentierade avgifter.

Genom att planera trafiken så att den under vissa tider eller på vissa sträckor blir mer likartad vad gäller hastigheten öppnas möjligheter att köra fler tåg. Om fler snabba eller långsamma tåg går efter varandra kan man köra fler tåg, eftersom det är blandningen av snabba och långsamma tåg som gör att kapaciteten sjunker. Problemet med detta är att Banverket måste styra mer vid fördelning av tåglägen vilket i viss mån strider mot den avreglering som genomförts på godssidan och som nu genomförs för persontrafiken.

I storstadsregionerna har Banverket redan i dag utarbetat tidstabeller med förplanerade tåglägen som gör att den befintliga bankapaciteten utnyttjas optimalt utan att punktligheten äventyras.

En annan metod att planeringsmässigt öka kapaciteten är att enkelrika godstrafiken på två enkelspåriga banor åt var sitt håll så att man i teknisk bemärkelse skapar ett dubbelspår av de båda banorna. Vid en sådan lösning kan godståg köras i kolonn under vissa tider på dygnet. Ett sådant arrangemang kan kräva att persontrafiken måste prioriteras ned under vissa tider. Den totala kapaciteten ökar dock och gångtiderna minskar eftersom de flesta tägmöten faller bort.

Ovanstående åtgärder kan genomföras snabbt och kräver inga omfattande investeringar men de förutsätter att operatörer och huvudmän kan erbjudas andra tåglägen.

Fel på infrastruktur och fordon förorsakar förseningar som i sin tur innebär att den befintliga kapaciteten inte kan utnyttjas fullt ut. För att hantera förseningar läggs marginaler in i tidstabellerna och dessa marginaler ökar i takt med risken för förseningar. För att utnyttja kapaciteten fullt ut krävs att alla tåg kommer i rätt tid. För att minska förseningarna och förbättra punktligheten i Stockholm och Mälardalen har underhållsprojektet Kraftsamling Mälardalen genomförts och varit framgångsrikt.
På kort sikt kan mindre investeringar i infrastruktur öka kapaciteten. Exempel på sådana investeringar är åtgärder i signalssystem samt byggande av mötesplatser och förbigångsspår.

Bättre kapacitetsutnyttjande av tägen kan åstadkommas genom att operatörerna prisdifferentierar sina produkter. Denna metod har framgångsrikt använts av SJ där beläggningsgraden på snabbtågen har ökat från 55 procent till 73 procent efter det att man infört en mer differentierad prissättning. Denna metod är dock svår att tillämpa för pendeltågstrafik eftersom resenärerna här styras av sina arbetsstider. Tågens totala kapacitet kan i vissa fall ökas genom längre tåg och tåg med större kapacitet. På marknaden finns i dag tvåvåningståg och bredare tåg vars kapacitet är 30–40 procent högre än konventionella tåg.

Även när det gäller godstransporter finns det möjlighet att till en viss gräns utnyttja befintlig bankkapacitet effektivare. Genom högre axellast, större fordonss profil och genom tyngre och längre tåg kan ytterligare tågkapacitet tillskapas inom ramen för de begränsningar som finns i det befintliga systemet.

Givet att ambitionen är att tillgodose befintlig efterfrågan är det därför inte ett alternativ att styra med hjälp av banavgifterna i de fall man redan nått kapacitetstakten.

På lång sikt

På lång sikt är investeringar i ny infrastruktur ett sätt att öka kapaciteten. På enkelspåriga järnvägar kan ett första steg vara att bygga fler mötesstationer. Därefter kan enkelspår byggas ut till dubbelspår på de avsnitt där efterfrågan är som störst.

På avsnitt med mycket hög efterfrågan som till exempel kring storstäderna kan man genom att bygga ut till totalt fyra spår separera den långsamma trafiken från den snabba om man väljer att
bygga det tillkommande dubbelspåret i form av höghastighetsbanor. En fördel med att bygga två helt nya spår är att de kan ges en rakare sträckning och därmed tillåta högre hastigheter än om man väljer att bygga ett extra dubbelspår längs med en redan befintlig bana.

Om dagens snabbtåg lyfts bort från de konventionella banorna ökar kapaciteten för både godståg och regionaltåg som har ungefär samma medelhastighet. Samtidigt tillförsäkras en hög kvalitet och punktlighet på höghastighetsbanorna där alla tåg går fort. I avsnitt 6.5.2 beskrivs konsekvenserna för kapaciteten på Västra och Södra stambanan om höghastighetsbanor byggs på sträckorna Stockholm–Göteborg och Stockholm–Malmö.

4.6 Banverkets åtgärdsplanering

- 136 miljarder kronor går till drift och underhåll av statliga vägar.
- 64 miljarder kronor går till drift och underhåll av statliga järnvägar.
- 217 miljarder kronor går till den statliga ramen för att utveckla transportsystemet. Medlen ska användas för åtgärder för statliga vägar och järnvägar samt räntor och amorteringar.

Av de 217 miljarderna avser 33 miljarder länsplaner och resterande 184 miljarder den nationella planen.
I uppdraget anger regeringen att en större andel av ramen än i de planer som regeringen tidigare fastställt kommer att behövas för angelägna väginvesteringar. Minst 50 procent av den obundna ramen ska gå till dessa investeringar. Regeringens ställningstagande baseras på att översiktliga lönsamhetsberäkningar i inriktningsterminalunderlagen visar på en högre samhällsekonomisk lönsamhet för analyserade vägåtgärder än för järnvägsåtgärder. Regeringen fastställer därefter under våren 2010 en ny nationell plan och fastställer då även länsramarna.

Om det inte fattas något beslut om höghastighetsbanor bör även Västra och Södra stambanan anpassas för hastigheter på 250 kilometer i timmen och kapaciteten på de båda banorna kommer enligt Banverket att behöva förstärkas. Dock kommer inga sådana åtgärder att ingå i den kommande transportplanen.
4.7 Befintliga planer för järnvägsnäten i Danmark och norra Tyskland

En viktig förutsättning för möjligheten att koppla ett svenskt höghastighetsnät till det europeiska är den kapacitet som finns i Danmark och Tyskland. Även för godstrafikens utvecklingsmöjligheter är järnvägskapaciteten genom våra båda grannländer av avgörande betydelse. Nedan beskrivs de infrastrukturplaner som för närvarande finns i Danmark och Tyskland. I avsnitt 7.8.4 redogör jag för min syn på hur planerna i de båda länderna påverkar den framtida trafikens utvecklingsmöjligheter.

4.7.1 Danmark

Ett antal projekt beslutades i samband med propositionen och det järnvägsprojekt som ingick bland dessa var en utbyggnad av järnvägskapaciteten mellan Köpenhamn och Ringsted. För detta projekt, som är mycket viktigt för trafiken på Själland, den danska fjärrtågstrafiken och för trafiken till och från Tyskland,avsattes 10 miljarder Danska kronor. Banan kommer att byggas för 200 kilometer i timmen med möjlighet att uppgradera till 250 kilometer i timmen.

Vidare planeras en uppgradering av banan mellan Ringsted och Rödby till 160 kilometer i timmen. Uppgraderingen innefattar även anläggning av dubbelspår och elektrifiering av banan. En utredning ska även göras om det är samhällsekonomiskt lönsamt att uppgradera denna bandel för hastigheter över 160 kilometer i timmen.

I propositionen skisseras ett trafikutslag för fjärrtågstrafiken som skulle innebära att restiden mellan flera stora danska städer reduceras till en timme. Visionen är att sådan trafik ska vara möjlig på sträckorna Köpenhamn–Odense, Odense–Århus och Århus–
Aalborg. Första etappen skulle vara sträckan Köpenhamn–Odense och i propositionen avsätts medel både till utredningar och för att genomföra deletappen Ringsted–Odense.

Signalsystemet på hela det danska bannätet kommer att upprgraderas till ERMTS2. Uppgraderingen beräknas vara klar 2021.

Under 2011 kommer beslut att fattas om ytterligare väg- och järnvägsprojekt.

4.7.2 Norra Tyskland

I detta kapitel beskrivs omfattningen av ett antal europeiska höghastighetsprojekt och hur de utvecklats. Statens väg- och transportforskningsinstitut (VTI) och Banverket har beskrivit den internationella utvecklingen vad gäller järnväg med höghastighetstrafik i flera tidigare rapporter. Inom ramen för denna utredning har dessa tidigare studier kompletterats med nyare underlag och utredningen har dessutom genomfört ett antal studieresor i Europa. Vissa uppgifter har hämtats direkt från ansvariga myndigheter i respektive land.

5.1 Frankrike

Figur 5.1 Interregionalt transportarbete i miljarder personkilometer

Källa: Railize International AB.

Få allvarliga olyckor har inträffat på höghastighetsbanorna, något som tillskrivs väl utbyggda stängsel, sensorer för att upptäcka hinder på spåren samt avsaknaden av plankorsningar.

5.1.1 Kostnader och finansiering

Frankrike har flera höghastighetslinjer under byggnation och än fler befinner sig i olika stadier av planering hos den statliga infrastrukturförvaltaren Réseau Ferré de France (RFF). En osäkerhet som enligt RFF råder i dag är finansieringen eftersom de sträckor

enligt RFF lett till att anläggningskostnaderna minskat drastiskt under det senaste året.

Tabell 5.1 Planerade höghastighetsspår i Frankrike

<table>
<thead>
<tr>
<th>Tidsperiod</th>
<th>Antal planerade kilometer spår</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fram till 2016</td>
<td>679 km</td>
</tr>
<tr>
<td>2016–2020</td>
<td>1 095 km</td>
</tr>
<tr>
<td>2020–2030</td>
<td>878 km</td>
</tr>
<tr>
<td>Totalt</td>
<td>2 552 km</td>
</tr>
</tbody>
</table>

Källa: Railize International AB.

5.1.2 Pågående utbyggnader

LGV Est Européenne

Projektet LGV Est Européenne mellan Paris och Strasbourg (fortsättningvis benämnt LGV Est) påbörjades redan 1985. På grund av den samhällsekonomiska osäkerheten med att trafikera de relativt glesbefolkade regionerna på vägen mot Strasbourg samt tekniska skillnader mellan de två olika typer av tåg (SNFC TGV och DB ICE) som trafikerar sträckan, har såväl utbyggnad som trafikstart

LGV Sud-Europé–Atlantique

LGV Perpignan–Figueras

Den anbudsprocess som föregick projektet misslyckades dock inledningsvis och processen fick göras om. Risken för den privata sektorn ansågs för hög och det ifrågasattes om projektet var kommersiellt gångbart. Ett andra anbudsförarande med mer specificerade riktlinjer genomfördes, där den privata sektorn fick definiera riskpremien för projektet.
5.1.3 Effekter för flygresandet

Av nedanstående tabell framgår marknadsandelarna mellan tåg och flyg på några av de sträckor som trafikeras med höghastighetståg i Frankrike.

Tabell 5.2 Konkurrensförhållanden mellan tåg och flyg

<table>
<thead>
<tr>
<th>Avstånd</th>
<th>Restid med tåg</th>
<th>Antal tåg per riktning per dag</th>
<th>Antal flygförbindelser *</th>
<th>Marknadsandel tåg-flyg (procent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paris–Lille 220 km</td>
<td>1:00</td>
<td>23</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Paris–Bryssel 325 km</td>
<td>1:22</td>
<td>24</td>
<td>2</td>
<td>> 95</td>
</tr>
<tr>
<td>Paris–Rennes 344 km</td>
<td>2:03</td>
<td>23</td>
<td>3</td>
<td>> 95</td>
</tr>
<tr>
<td>Paris–Nantes 380 km</td>
<td>1:59</td>
<td>23</td>
<td>4</td>
<td>> 90</td>
</tr>
<tr>
<td>Paris–Lyon 463 km</td>
<td>1:57</td>
<td>24</td>
<td>9</td>
<td>> 90</td>
</tr>
<tr>
<td>Paris–Strasbourg 475 km</td>
<td>2:17</td>
<td>17</td>
<td>10</td>
<td>ca 80</td>
</tr>
<tr>
<td>Paris–Bordeaux 570 km</td>
<td>2:58 km</td>
<td>21</td>
<td>20</td>
<td>ca 65</td>
</tr>
<tr>
<td>Paris–Marseille 769 km</td>
<td>3:02</td>
<td>17</td>
<td>21</td>
<td>ca 70</td>
</tr>
<tr>
<td>Paris–Toulouse 806 km</td>
<td>5:12</td>
<td>7</td>
<td>39</td>
<td>30–40</td>
</tr>
</tbody>
</table>

* Ett tåg har plats för ett betydligt större antal resande än inrikesflyget.
(1) Trafiken på sträckan sker både på höghastighetsnätet och på konventionell järnväg.
Källa: Railize International AB.

Samverkan mellan höghastighetståg och flyg

Ett antal flygplatser i Frankrike har i dag spårforbindelse av något slag: flygplatserna i Lyon, Nice, Strasbourg samt Charles-de-Gaulle och Orly i Paris. Charles-de-Gaulle har både en integrerad station för pendeltåg och en integrerad TGV-station.

När den gränsöverskridande persontrafiken på järnväg öppnas för konkurrens 2010 planerar Air France/KLM i samverkan med Veolia trafikering med höghastighetståg i direkt konkurrens med bland andra SNCF. Detta kommer sannolikt att innebära att samverkan inom TGV Air kommer att upphöra.

5.2 Spanien

Spanien har haft en snabb utveckling av transportinfrastruktur inklusive utbyggnad av höghastighetsbanor. En viktig bidragande orsak är mycket stora EU-bidrag som har använts för investeringar i vägar och järnvägar. Spanien satsar cirka 35 miljarder kronor per år i höghastighetsnätet under pågående planperiod. Den spanska regeringen har som mål att alla större städer ska ha mindre än fyra timmars restid till huvudstaden Madrid och mindre än sex och en halv timme till Barcelona.

restiden till två och en halv timme. Kostnaden för banan uppgick till 1 900 miljoner euro.

En direkt effekt när höghastighetslinjen mellan Madrid och Sevilla öppnades var att tåget tog stora marknadsandelar av flyget. År 1991 hade tåget drygt 20 procent av marknaden, en andel som 1993 hade ökat till över 80 procent. Sedan dess har tågets marknadsandel på sträckan legat stabilt på omkring 80 procent.

Höghastighetsbanorna i Spanien är byggda med normalspår till skillnad mot det ordinarie nätet som har bredspår, vilket innebär att möjligheterna till sammankoppling med övriga Europa förenklats.

De spanska AVE-tågen har en mycket hög punktlighet, över 99 procent på vissa sträckor. Det finns ett system för återbetalning av biljetter med en glidande skala där resenären i vissa fall har rätt till ersättning med 100 procent om tåget är mer än 30 minuter försonat. Återbetalning sker redan vid fem minuters försening. Viktiga faktorer för att klara detta åtagande är att banorna enbart trafikeras med höghastighetståg och snabbtåg (vissa delsträckor) samt att det finns stor kapacitet på banan.

I den spanska infrastrukturplanen (PEIT) för 2005–2020 finns budgeterat 121 miljarder euro till satsningar på järnvägen, vilket utgör nära 50 procent av den totala PEIT-budgeten. Av dessa är drygt 80 miljarder euro avsatta för höghastighetsprojektet.

Spanien har omfattande planer för vidare utbyggnad av höghastighetsnätet. Fler linjer planeras bland annat för norra Atlantkusten. Planer finns också för en linje som ska knyta samman Madrid med Lissabon, Portugal. År 2010 kommer Spaniens höghastighetsnät omfatta 2 200 kilometer, att jämföra med de två länder som haft höghastighetståg längst: Japan har 2 100 kilometer höghastighetsjärnväg, Frankrike 1 900 kilometer. Ett av de stora projekt som pågår är utbyggnaden av linjen mellan Figueras, Spanien och Perpignan, Frankrike (se ovan).

Sista delen av den befolkningsmässigt viktiga sträckan Madrid–Barcelona invigdes i februari 2008. Direkttågen mellan de båda
storstäderna trafikerar den 60 mil långa sträckan på 2 timmar och 38 minuter. Första delen av linjen (Madrid–Lleida) invigdes 2003, men trafikerades till en början i lägre hastigheter. År 2006 byttes signalsystemet till ERTMS vilket möjliggjorde hastigheter på upp till 350 kilometer i timmen.

I december 2008 hade tåget 45 procent av marknaden på sträckan jämfört med flyget. Innan höghastighetslinjen öppnade var andelen 32 procent.

5.3 Portugal

År 2005 beslutade den portugisiska regeringen om utbyggnad av tre höghastighetsbanor: Lissabon–Porto (300 kilometer i timmen), Lissabon–Madrid (350 kilometer i timmen) och Porto–Vigo (250 kilometer i timmen).

Den totala investeringen i det portugisiska höghastighetsnätet har beräknats till cirka 8,5 miljarder euro. Projektet Poceirao–Caia har beräknats till 1,7 miljarder euro och motsvarar ungefär 20 procent av den totala investeringen. Finansieringen av projektet har lösts genom att 45 procent av investeringskostnaden täcks av banavgifter och andra intäkter. EU bidrar med 19 procent och den portugisiska staten står för resterande 36 procent.

5.4 Nederländerna

Projektet som helhet ingår i TEN-T och är det största internationella höghastighetsprojekt som genomförts. Projektet omfattar totalt cirka 1 100 kilometer höghastighetsjärnväg med endast två kortare delsträckor i Belgien som även används för konventionell trafik. Projektet påbörjades 1990 och har kostat cirka 190 miljarder kronor.

Bild 5.2 Karta höghastighetsprojekt Paris–Bryssel–Köln–Paris–Amsterdam–London

Källa: EU-kommissionen, DG TREN.
HSL Zuid (HSL = Hogesnelheidslijn) är den del av höghastighetsprojektet London–Paris–Bryssel–Köln–Amsterdam som binder samman Amsterdam/Schiphol med Bryssel. HSL Zuid omfattar 125 kilometer höghastighetsjärnväg, varav 100 kilometer innanför den nederländska gränsen.

Projektkostnaden uppgår till drygt 7 miljarder euro och projektet genomförs som en OPS. Projektet leds av ett konsortium (InfraSpeed). Banan kommer att ägas av staten som betalar konsortiet en årlig avgift för att tillhandahålla över 99 procent tillgänglighet. Koncessionsavtalet är på 30 år, varav fem år avser konstruktion och 25 år drift och underhåll. InfraSpeed tar det huvudsakliga ansvaret för projektet som är ett så kallat design, build, operate and maintain-kontrakt.

En fullständigt integrerad OPS-lösning ansågs vara alltför riskfylld och tidskrävande varför projektet delades upp i fem huvudsakliga delar varav flera behandlades i separata kontrakt:
- Byggnation, drift och underhåll av banvallen.
- Rälssystemet (räls, bullerskydd, signalsystem, elförsörjning).
- Koncession på 15 år till tågoperatörerna.
- Resecentrum.
- Sammankoppling med den belgiska delen.

Linjen kommer att trafikeras av High Speed Alliance (HSA) som drivs gemensamt av flygbolaget Air France/KLM och den statliga järnvägsoperatören Nederlandse Spoorwegen (NS).

Ett samverkansavtal finns mellan NS och Air France/KLM som grundar sig dels på biljettsamverkan för resenärer till och från
Schiphol, dels på att Air France/KLM äger tio procent i NS dotterbolag, NS High Speed, som kommer att bedriva persontrafik på HSL Zuid när denna öppnar för trafik.

5.5 Italien

Infrastrukturen förvaltas av statliga Rete Ferroviaria Italiana (RFI) som har en särskild funktion, Treno Alta Velocità (TAV), med uppgift att bygga ut höghastighetsnätet.

Linjen mellan Turin i Italien och Lyon i Frankrike består till största delen av en 50 kilometer lång tunnel genom Alperna. Tunneln ska konstrueras för att klara tåg med hastigheter på upp till 250 kilometer i timmen. Byggtiden är beräknad till cirka sju år, följd av en testperiod på fyra år innan banan tillåts öppna för full trafik.
Italienska och franska staten är huvudsakliga finansiärer tillsammans med EU. Italien står för cirka 60 procent av kostnaderna, Frankrike för knappt 40 procent. Tillsammans har man startat det statliga bolaget Lyon Turin Ferroviaire (LTF) som ansvarar för förstudier och inledande undersökningar bland annat av möjligheten att använda en OPS-lösning för att finansiera projektet. Kostnaden för att bygga tunneln beräknas till 6,7 miljarder euro. De operativa kostnaderna har uppskattats till cirka 34 miljoner euro per år.

Beräkningar av kostnader och intäkter komplicerar av att projektet både har en lång byggtid (totalt 11 år) och lång koncessions tid (60 år). Den lokala befolkningen i området har starkt motsatt sig projektet vilket lett till förslag på förbättringar. De stora osäkerheterna kring framtida kassaflöden gäller främst intäktssidan. Inga beslut har fattats kring hur banavgifter ska tas ut av operatörerna.

Utbyggnaden av banan har förutom de finansiella svårigheterna inneburit många konstruktionsmässiga utmaningar. Stora delar av banan byggs i tätbebyggda områden. Arkeologiska platser, tunnelar och anpassning till godstrafik har ytterligare komplicerat arbetet med linjen.
5.6 Storbritannien

Erfarenheterna från tunnelprojektet visar på svårigheterna med en ersättningsmodell som baseras på trafikrisk. De trafikprognoser som låg till grund för byggnationen har inte infriats, varken för

Trafikmängden (persontrafik) har dock ökat på senare år som en följd av utbyggnaden av HS1 från London S:t Pancras.

5.7 Norge

5.8 Ryssland

Ryssland har en plan för att bygga höghastighetsbanor och den första trafikstarten planeras till 2020. Efter analys av resandevolym har 18 sträckor mellan ett antal större städer identifierats som lämpliga för utbyggnad av höghastighetsbanor. Moskva och Sankt
Petersburg med en sammanlagd befolkning på cirka 25 miljoner har utsetts till pilotprojekt.

Till en början kommer banan att trafikeras i hastigheter på upp till 250 kilometer i timmen men de tåg som köpts in kan med mindre anpassningar klara upp till 330 kilometer i timmen.

5.9 USA

En stor utmaning för projektet är att det saknas kompetens och personella resurser på området som en följd av att investeringar i det amerikanska järnvägssystemet under lång tid varit kraftigt nedprioriterade.
5.10 Kina

Maglev-tåg

5.11 Sammanfattning internationella erfarenheter

Motiven för utbyggnad av höghastighetsbanor har både varit transportpolitiska: restidsvinster och förbättrad tillgänglighet, och tillväxtpolitiska: regional utveckling och förbättrad produktivitet. Av det underlag som utredningen haft till förfogande framgår att beslutet att investera i höghastighetsbanor i Europa sällan har grundats på samhällsekonomiska kalkyler. Snarare har man argumenterat utifrån breda ekonomiska effekter. På senare år har dock kostnads- och intäktsanalyser använts för höghastighetsprojekt i allt högre omfattning, bland annat i Frankrike och Spanien. Intäkts- och kostnadskalkylerna baseras dock på olika antaganden och utgångspunkter, till exempel kan tidsvärden variera mellan olika projekt.

Sammantaget kan sägas att utbyggnaden av höghastighetsbanor internationellt har lett till följande övergripande effekter och erfarenheter:

- Förbättrad konkurrenskraft för järnvägen i förhållande till bil- och flygtrafik.
- Påverkan på val av färdmedel och därigenom miljöeffekter.
- Förbättrad lönsamhet för operatörerna.
- Separat projektorganisation eller projektbolag vanligast för att hantera höghastighetsprojekten.
- Ambition att knyta ihop olika länder med varandra.
- Frigörande av kapacitet på befintligt nät.
- Regional samhällsutveckling som till exempel regionförstoring.
- Stadsutveckling kring nya höghastighetsbanor.
- Osäkerhet om trafikutvecklingen är ett osäkerhetsmoment vid bedömning av projektets effekter.
- Opinion kring linjesträckningar och kring frågan om barriäreffekter.

De erfarenheter som gjorts har inneburit att riskerna på alla områden kunnat tydliggöras och i vissa fall reducerats och det råder relativt öppet informationsutbyte mellan operatörer och infra-
Strukturnhållare. Varje lands geografiska och demografiska struktur är dock olika och trafiksystemen har anpassats därefter.

De tekniska specifikationer för driftskompatibilitet för höghastighetsbanor som beslutats av EU-kommissionen har implementerats i hela EU-området. Tekniska specifikationer finns för både bana och fordon.

OPS-modellen och andra livscykelmodeller bedöms generellt ha komparativa fördelar när det råder relativt stor frihet i utformandet av anläggningen. Järnvägar i allmänhet och höghastighetsbanor i synnerhet är detaljreglerade vad gäller den tekniska utformningen. Att OPS-lösningar ändå används i så många fall beror bland annat på att de OPS-modeller som används innehåller extern lånefinansiering som kan användas antingen för att överlåta en del av risken eller för att kringgå budgetrestriktioner. En OPS-lösning kan konstrueras så att statliga investeringar som annars skulle ha stoppats av stabilitetspaktens underskottsregler (Maastrichtkriterierna) möjliggörs.
Beskrivning och värdering av olika handlingsalternativer

Mina bedömningar och förslag:

- Höghastighetsbanor bidrar i högre grad till att uppnå de transportpolitiska målen än en uppradering av Södra och Västra stambanan för snabbtågstrafik.

- Den samhällsekonomiska kalkyl som genomförts för byggande av höghastighetsbanor visar på en positiv nettonuvärdeskvot som uppgår till 0,15. Det innebär att de samhällsekonomiska nyttorna för projektet är något större än de samhällsekonomiska kostnaderna.

- Mot bakgrund av projekets storlek, betydelsen av gjorda prognoser och den risk som hänger samman med detta anser jag att den samhällsekonomiska kalkyl som presenteras här bör bli föremål för vidare analys.

- De positiva effekter som inte kan kvantifieras i den samhällsekonomiska kalkylen bör också ingå i en samlad bedömning.

- Den företagsekonomiska lönsamheten i trafiken bedöms bli god. Trafiken kan därmed bidra till att bekosta baninvesteringarna.

- Genom att bygga separata höghastighetsbanor kommer kapacitetsbehovet i de aktuella relationerna att tryggas även i ett långsiktigt perspektiv.

- De korta restiderna innebär väsentligt förbättrad tillgänglighet för medborgarna och näringslivet.

- Den kapacitet som frigörs på stambanorna möjliggör en utveckling av godstrafiken.

6.1 Utgångspunkter för värdering av de olika handlingsalternativen

I mitt arbete med att värdera de olika handlingsalternativen har jag formulerat följande utgångspunkter:

- Handlingsalternativen bör bedömas dels som ett sätt att möta transportkraven i ett föränderligt samhälle (inre effektivitet), dels som ett sätt att medverka till att förändra samhället (yttre dynamisk effektivitet) i ett tillväxtpolitiskt samhällsbyggnadsperspektiv.
- De samhällsekonomiska kalkylerna bör tillsammans med andra samhällsekonomiska bedömningar ligga till grund för beslut om de aktuella investeringarna i transportinfrastruktur. De samhällsekonomiska kalkylerna är ett värdefullt redskap för att bedöma olika alternativa infrastruktursatsningar.
- Investeringarna bör även bedömas utifrån förutsättningarna att aktivt bidra till ökad attraktivitet, regionförstoring och specialisering för att därigenom ge ökad utvecklingskraft för såväl Sverige som helhet som för berörda regioner. Investeringen bör ses i ett dynamiskt yttre tillväxtperspektiv.
- Investeringen bör också bedömas ur ett företagsekonomiskt perspektiv.
6.2 Geografisk avgränsning och uppsatta restidsmål – samtliga alternativ

För att fastställa omfattningen på de olika alternativen som utredningen har behandlat har jag börjat med att avgränsa utredningsområdet geografiskt. Det geografiskt avgränsade området har därefter använts för både alternativet som innebär en uppradering av stambanorna och alternativet med höghastighetsbanor.

Utgångspunkter för analysen har varit restiden utifrån ett konkurrensperspektiv och behovet av kapacitet på de aktuella banorna. Anledningen till att restiden fått en så framträdande roll är dess betydelse vad gäller järnvägens marknadsandel och därmed järnvägens bidrag till den transportpolitiska måluppfyllelsen. Av nedanstående tabell framgår de mål för restiden som denna utredning har satt upp för de olika sträckorna.

<table>
<thead>
<tr>
<th>Tabell 6.1 Uppsatta restidsmål för olika reserelationer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reserelation</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Stockholm–Göteborg</td>
</tr>
<tr>
<td>Stockholm–Malmö</td>
</tr>
<tr>
<td>Göteborg–Malmö</td>
</tr>
<tr>
<td>Stockholm–Sundsvall</td>
</tr>
</tbody>
</table>

Utredningens restidsmål utgår från jämförelser med dagens restider och baseras i övrigt på antaganden om marknadsförutsättningar och på de internationella erfarenheter som finns vad gäller sambandet mellan restiden med tåg och tågets konkurrenskraft och marknadsandel. Målen har satts upp för att underlätta utredningens utvärderingsarbete och ska ses som indikativa. Mot bakgrund av att restidsmålen direkt påverkar anläggningskostnaderna är de tider som valts av stor betydelse för utvärderingen.
Beskrivning och värdering av olika handlingsalternativ

SOU 2009:74

För att maximera järnvägens bidrag till den transportpolitiska måluppfyllelsen har utgångspunkt enligt för-}

utsättningar i så hög utsträckning som möjligt ska vara uppfyllda:

- halva restiden jämfört med bil
- 30 minuter kortare restid än med flyg från city till city
- högst 3 timmars restid, enkel resa, för tjänsteresor över dagen
- högst en timmes restid, enkel resa, för daglig pendling.

Vid utvärdering av i vilken omfattning ovanstående förutsättningar uppfylls har marknaderna i de största orterna vägt tyngst.

Vid en jämförelse av marknadsandelar mellan tåg och flyg kan man med hjälp av internationella erfarenheter konstatera att tågets marknadsandel uppgår till cirka 50 procent om det tar 3,5 timmar att resa med tåg. Vid en restid på 2 timmar närmar sig tågets marknadsandel 100 procent. Vid denna restid är tåget snabbare än flyget och resenärerna upplever i regel även tåget som ett bekvämare alternativ.

Vad gäller behovet av kapacitet på banorna med undantag för Västra och Södra stambanan konstaterar jag att de prognostiserade transportvolymerna längs med Västkustbanan respektive Östkustbanan inte kommer att kräva större kapacitet än det dubbelspår som håller på att byggas respektive befintligt dubbelspår. Givet att dessa banor tillåter en hastighet på 250 kilometer i timmen och håller hög standard vad gäller axellast, lastprofil och längden på godstågen kommer både de uppsatta restidsmålen och behovet av kapacitet att kunna tillgodoses.

Den kapacitetsanalys som genomförts har förutsatt en blandad trafik bestående av godstrafik, snabbtåg och omfattande interregional tågtrafik.

Mot bakgrund av att både kapacitetsbehoven och restidsmålen kan uppnås med ett konventionellt dubbelspår på både Västkustbanan och Östkustbanan anser jag att det i dag inte finns förutsättningar att anlägga separata höghastighetsbanor på sträckorna Malmö–Göteborg respektive Stockholm–Sundsvall.

Jag vill understryka att även om banutbyggnaden kommer att ske i de aktuella sträken så kommer höghastighetstrafiken att påverka stora delar av landet. De trafikupplägg som ligger till grund för mina bedömningar och förslag omfattar en rad orter som kommer att trafikeras med höghastighetståg och som nås genom att höghastighetstågen fortsätter ut på det konventionella bannätet. Även för orter som inte kommer att betjänas med höghastighetståg kommer tillgängligheten att förbättras väsentligt i form av kortare restider. Detta kommer att åstadkommas genom en kombination av höghastighetstrafik, andra interregionala tåg och regional järnvägstrafik. I avsnitt 6.5 redovisar jag de restider som kommer att uppnås med hjälp av sådan trafik i ett antal reserelationer.

6.3 Jämförelsealternativ

6.3.1 Beskrivning av jämförelsealternativet

För att utvärdera de båda alternativen med en uppradering av stambanorna respektive byggnade av höghastighetsbanor måste de ställas mot ett så kallat jämförelsealternativ.

Det jämförelsealternativ som används här är detsamma som används i den nu pågående åtgärdsplaneringen för perioden 2010-2021 och som benämnas Basprognos 2020. I Basprognos 2020 för- utsätts att ett antal kapacitetshöjande åtgärder för både gods- och per-
sontrafik genomförs på de båda stambanorna. Den sammanlagda kostnaden för de aktuella åtgärderna uppgår till 8 miljarder kronor.
Bland de åtgärder som ingår i jämförelsealternativet kan nämnas:

- Göteborg–Borås, nytt dubbelspår Mölnlycke–Landvetter–Bollebygd
- ökad kapacitet på Västra stambanan, Järna–Hallsberg–Olskroken.

Banverkets bedömning är att de ovan nämnda åtgärderna innebär att det är möjligt att trafikera banorna med både person- och godstrafik. Bristande kapacitet förutses dock i vissa fall leda till stora inskränkningar i form av förlängd restid.

I storstadsområdena genomförs dessutom under perioden fram till 2020 Citybanan i Stockholm som beräknas vara klar 2017 och Citytunneln i Malmö som beräknas vara klar i december 2010.

6.3.2 Värdering av jämförelsealternativet

De åtgärder som förutsätts i Basprognos 2020 kommer att innebära följande för de framtida möjligheterna att trafikera de båda stambanorna och de tre storstadsregionerna:

- Möjligheten att öka godstrafiken är mycket måttlig.
- Snabbtågstrafiken med X2000 kan få tillgång till ytterligare något tågläge.
- Antalet övriga fjärrtåg kan öka något.
- Den interregionala tågtrafiken i de tre storstadsområdena det vill säga Öresundståg, Västtrafik och Tåg i Mälardalen kan utökas med några ytterligare tåg.
- En kraftig utbyggnad av regionaltågssystemen, det vill säga pendeltågstrafiken, i de tre storstadsregionerna kan genomföras. Det förutsätter dock att Västlänken i Göteborg byggs.
Med en utbyggnad i enlighet med jämförelsealternativet kan jag konstatera att förutsättningarna för järnvägstrafiken längs med de båda stambanorna och mellan de tre storstadsregionerna kommer att vara i stort sett oförändrade jämfört med dagens situation. En sådan utveckling skulle innebära fortsatta problem inte minst för godstrafiken. Även möjligheterna att öka järnvägens andel av den långväga persontrafiken bedöms som begränsade.

Jämförelsealternativet är i denna utredning dock främst en förutsättning för att genomföra beräkningarna för alternativen med en uppgradering av stambanorna och höghastighetsalternativet.

6.4 Uppgradering och utbyggnad av Södra stambanan och Västra stambanan för snabbstågstrafik

6.4.1 Beskrivning av en uppgradering och utbyggnad av de båda stambanorna för snabbstågstrafik

Som alternativ till en utbyggnad av separata höghastighetsbanor har jag tagit fram ett utredningsalternativ som innefattar uppgradering och viss utbyggnad av Södra och Västra stambanan. I enlighet med mina direktiv innebär alternativet en uppgradering och utbyggnad av befintliga banor. Uppgraderingen syftar till att banorna ska kunna nyttjas för snabbtåg, det vill säga trafik i hastigheter upp till 250 kilometer i timmen.

Den uppgradering av stambanorna som här beskrivs innebär en höjning av den högsta tillåtna hastigheten för snabbtågen från 200 kilometer i timmen till 250 kilometer i timmen. Detta kräver mer kapacitet vilket innebär att delar av stambanorna behöver byggas ut.
Stambanealternativet saknar dock helt utbyggnad med höghastighets-
spår, vilket betyder att varken Ostlänken, Göta landsbanan eller Europa-
banan ingår i detta alternativ.

Det valda uppraderingsalternativet, härefter kallat stambanealternativet, innebär utvecklade snabbtägsförbindelser mellan Stockholm och Göteborg på Västra stambanan och från Stockholm till Skåne längs Södra stambanan och vidare mot kontinenten.

Utgångspunkten för förslaget är att snabbtägstrafiken på banan, det vill säga trafik upp till 250 kilometer i timmen, blandas med interregionala tåg, regionaltåg, pendeltåg och tunga godståg.

Kapaciteten byggs ut på de delar av banan som i dag är mest belastade. De åtgärder som föreslås i stambanealternativet utgår från restids- och kapacitetsanalyser som genomförts inom ramen för utredningen.

Av figur 6.1 visas kapacitetsutbyggnader och uppradering för stambanealternativet.

Bild 6.1 Karta stambanealternativet
En översiktlig beskrivning av de åtgärder som föreslås inom ramen för stambanealternativet framgår av tabell 6.2. I bilaga 3 finns en mer detaljerad redovisning av vilken även de restidsvinster som åtgärderna resulterar i framgår.

Den totala kostnaden för en utbyggnad och uppgradering av stambanorna i enlighet med förslaget har inom denna utredning beräknats till 54 miljarder kronor. Beräkningarna är avstämda med Banverket. Bedömningen av vilka åtgärder som ska ingå i det föreslagna stambanealternativet och omfattningen av dessa har gjorts utifrån dagens kapacitetssituation och möjligheten att förbättra restiderna. Övriga utgångspunkter har varit

- bedömd ökning av regionaltågs trafiken i storstadsområdena, Östergötland, Småland och Skåne
- bedömd ökning av den interregionala förbindelserna med Öresundståg, Västtrafik och Tåg i Mälardalen
- möjligheten att öka kapaciteten för den internationella gods trafiken.

Tabell 6.2

<table>
<thead>
<tr>
<th>Västra stambanan</th>
<th>Mnkr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Åtgärder 2010–2020</td>
<td>11 000</td>
</tr>
<tr>
<td>Åtgärder 2021–2025</td>
<td>10 500</td>
</tr>
<tr>
<td>Summa Västra stambanan</td>
<td>21 500</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Södra stambanan</th>
<th>Mnkr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Åtgärder 2010–2020</td>
<td>14 900</td>
</tr>
<tr>
<td>Åtgärder 2021–2025</td>
<td>18 000</td>
</tr>
<tr>
<td>Summa Södra stambanan</td>
<td>32 900</td>
</tr>
<tr>
<td>Totalt</td>
<td>54 400</td>
</tr>
</tbody>
</table>

Källa: Railize International AB.

Uppgraderingar för att öka hastigheten till 250 kilometer i timmen och vissa kapacitetsutbyggnader bedöms kunna vara klara 2020. Ytterligare kapacitetsutbyggnad antas i förslaget genomföras fram till och med 2025.

I kostnadsbedömningen är inte kostnaden för installation av signalsystemet ERTMS inkluderad. Min bedömning är att ERTMS behöver installeras oavsett andra åtgärder på stambanorna och grundinvesteringen ingår därför inte i kostnaderna för stambanealternativet. Däremot ingår kostnaden för en tidigareläggning av ERTMS – jämfört med Banverkets plan – i kostnaden för att möjliggöra en hastighetsökning till 250 kilometer i timmen på delar av banorna.

Transportkapaciteten på det befintliga järnvägsnätet kan öka genom att godstågen förlängs. I dag kan normalt 650 meter långa godståg framföras och vid nyanläggning bygger Banverket för en tåglängd på 750 meter. I stambanealternativet ingår uppraderingar som innebär att de tunga godsstråken Hallsberg–Göteborg och Hallsberg–Skåne–Maschen (Hamburg) klarar tåglängder upp till 1 000 meter, vilket ger högre kapacitet och lägre transportkostnader.

6.4.2 Värdering av en uppgradering och utbyggnad av de båda stambanorna för snabbtågstrafik

Samhällsekonomiska kalkyler

Jag har i mitt utvärderingsarbete koncentrerat mig på de båda alternativens effekter för trafiken och på alternativens bidrag till den transportpolitiska måluppfyllelsen.
Effekter av stambanealternativet

En utbyggnad av stambanorna med det trafikupplägg som beskrivs nedan leder, enligt Kungliga Tekniska högskolan (KTH), till 12 procent högre resande mätt i antal personkilometer än i jämförelsealternativet. De nya resenärerna kommer från flyget som förväntas minska med 1,2 miljarder personkilometer. En jämförelse med höghastighetsalternativet (se nedan) visar dock att en uppgradering av stambanorna ger väsentligt mindre effekter än vid en utbyggnad av höghastighetsbanor. I höghastighetsalternativet beräknas tågresandet bli 6,9 miljarder personkilometer högre än med stambanealternativet.

Det sammantagna behovet av person- och godstransporter innebär en ökad belastning på Södra och Västra stambanan som redan i dag är de mest belastade i det svenska järnvägsnätet.

Den blandade trafiken i stambanealternativet innebär att hastigheterna hålls nere och kapaciteten begränsas. De analyser som genomförts inom ramen för denna utredning visar att de restidsmål som beskrivits i avsnitt 6.2 ovan inte är möjliga att uppnå med hjälp av de åtgärder som föreslås i stambanealternativet.

Beräknade restider med stambanealternativet för olika relationer framgår av tabell 6.3.
<table>
<thead>
<tr>
<th>Tabell 6.3 Restider och restidsmål för stambanealternativet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restider från Stockholm C till</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
</tr>
<tr>
<td>Norrköping C</td>
</tr>
<tr>
<td>Linköping C</td>
</tr>
<tr>
<td>Nässjö C</td>
</tr>
<tr>
<td>Jönköping S</td>
</tr>
<tr>
<td>Ulricehamn</td>
</tr>
<tr>
<td>Borås C</td>
</tr>
<tr>
<td>Göteborg C</td>
</tr>
<tr>
<td>Trollhättan</td>
</tr>
<tr>
<td>Uddelavalla</td>
</tr>
<tr>
<td>Varberg</td>
</tr>
<tr>
<td>Halmstad C</td>
</tr>
<tr>
<td>Värnamo</td>
</tr>
<tr>
<td>Ljungby</td>
</tr>
<tr>
<td>Växjö</td>
</tr>
<tr>
<td>Kalmar C</td>
</tr>
<tr>
<td>Karlskrona C</td>
</tr>
<tr>
<td>Hässleholm</td>
</tr>
<tr>
<td>Kristianstad C</td>
</tr>
<tr>
<td>Helsingborg C</td>
</tr>
<tr>
<td>Lund C</td>
</tr>
<tr>
<td>Malmö C</td>
</tr>
<tr>
<td>Kastrup</td>
</tr>
<tr>
<td>Köpenhamn H</td>
</tr>
<tr>
<td>Hamburg Hbf</td>
</tr>
<tr>
<td>Berlin Hbf</td>
</tr>
</tbody>
</table>

Kursiv restid anger tågbyte

Ett restidsmål (i regel mot flyg) kan inte uppfyllas
Inget av restidsmålen mot bil eller flyg kan uppfyllas

Källa: Resrobot och KTH.

I figur 6.1 nedan skisseras ett tänkbart trafikeringsalternativ på de uppgaderade stambanorna. Utbudet av persontrafik har i exemplet ökats något jämfört med trafiken i dag men ökningen är måttlig för att resterande trafik ska få plats på banan. Framför allt gäller detta för godstrafiken från Hallsberg mot Göteborg och på Södra stambanan.
Snabbtåg
Linjenät på Västra och Södra stambanan utan Götalands- och Europabanan

Interrigional och regional tågtrafik tillsammans med interregional och regional tågtrafik kommer att anslutas till det nya tåglinjennätet.

Källa: Railize International AB/KTH.

Efterfrågan på godstransporter och tåglägen på Västra och Södra stambanan är redan stor genom en kombination av ökande inrikes- och utrikestransporter. Efterfrågan på godstransporter på järnväg kommer enligt min bedömning att fortsätta att öka.

Inom ramen för utredningen har jag låtit genomföra en analys av hur många godståg det går att köra på stambanorna vid olika omfattning på persontrafiken. Antalet persontåg har bestämts genom
Beskrivning och värdering av olika handlingsalternativer

SOU 2009:74

Peter Andersson

antaganden om framtidens trafikutveckling. Varje scenario har ett antal olika persontrafikupplägg med uppgift om fordon, turtäthet, kopp- lingar till andra trafikupplägg, uppehållsmönster, tidskänslighet med mera.

Kapaciteten på Södra stambanan har analyserats på motsvarande sätt som Västra stambanan. För godstrafiken är delsträckan Mjölby–Hässleholm den mest intressanta, varför analysen har begränsats till denna del.

Figur 6.2 Antal möjliga godståglägen som kan tidtabelläggas under dagtid 2008 och 2025 med och utan omfattande snabbstågstrafik

Källa: Railize International AB.
Bidrag till transportpolitisk måluppfyllelse

Åtgärderna inom stambanealternativet kommer i viss utsträckning att bidra till att uppfylla de mål som regeringen ställt upp för transportinfrastrukturen.

Min bedömning är att stambanealternativet kommer att bidra till måluppfyllelsen för samtliga mål i lägre grad än en utbyggnad med höghastighetsbanor. Särskilt vad gäller godstransporter är möjligheten till förbättrad kapacitet på det befintliga bannätet betydligt mer begränsad i jämförelse med höghastighetsalternativet. Detta innebär att måluppfyllelsen för främst tillgänglighetsmålet är lägre i stambanealternativet än i höghastighetsalternativet.

Restidsanalyserna har visat att restidsmålen inte kommer att kunna nås i samma utsträckning vid blandad trafik på stambanan som vid en nybyggnad med höghastighetsbanor.

6.5 Höghastighetsbanor

6.5.1 Beskrivning av höghastighetsbanorna

Definition av höghastighetsbanor

I enlighet med gällande EG-direktiv är höghastighetståg i denna utredning definierade som trafik med fordon i hastigheter över 250 kilometer i timmen.

Höghastighetsbanorna utgörs av dubbelspår som medger trafik i hastigheter över 250 kilometer i timmen och i tabell 2.1 har jag tidigare angett ytterligare kriterier för vad som i denna utredning definieras som en höghastighetsbana. De kostnadsberäkningar som gjorts utgår från en maximal hastighet på 320 kilometer i timmen.

Banorna är tänkta att trafikeras med särskilda höghastighetståg och med snabba och accelerationsstarka tåg för interregional trafik. De båda tågtyperna kommer också att användas för direkttrafik till slutstationer som ligger utanför höghastighetsbanorna.

Både vad gäller fordon och banor för hastigheter över 250 kilometer i timmen finns gällande EG-direktiv (96/48/EG) som definitionerar den europeiska standarden. Dessa benämns tekniska specifikationer för driftskompatibilitet (TSD).
Götalandsbanan

För att stödja det fysiska planeringsarbetet bildade Banverket under 2003 arbetsgrupper för att utarbeta gemensamma mål och riktlinjer för utbyggnadens tekniska och funktionella standard. Ett omfattande samråd har genomförts med kommuner, trafikhuvudmän, regionförbund och andra intressenter. Under samma period har även samråd och möten genomförts med allmänheten i enlighet med de bestämmelser som fastslås i lagen om byggande av järnväg. Kommunerna längs med sträckningen har upprättat planprogram för stadsutveckling kring resecentrum vilket innebär att parallella planeringsprocesser har genomförts i ett tidigt skede av projektet.

Av nedanstående bild framgår den föreslagna sträckningen av Götalandsbanan.
Anläggandet av Götalandsbanan skulle innebära cirka 44 mil nya dubbelspår mellan Järna och Almedal. Stationerna längs med banan beskrivs i avsnitt 7.4.1.

Europabanan

Inom ramen för denna utredning har ett antal alternativa sträckningar utretts. Arbetet har skett i samråd med Banverket. I avsnitt 7.1.3 redovisas mina överväganden kring de olika linjealternativen. Av bild 6.3 framgår huvudsträckningen av banan. En mer detaljerad bild av det linjesträckningsalternativ som förordas framgår av bild 7.2. Stationerna längs med banan beskrivs i avsnitt 7.4.1.

Bild 6.3 Europabanan föreslagna huvudsträckning

[Källa: Railize International AB.]

Kostnaden för Götalandsbanan och Europabanan

Banverket har på mitt uppdrag beräknat kostnaden för Götalandsbanan och Europabanan med hjälp av så kallad successiv kalkylering. Utgångspunkterna för beräkningarna är följande:

- Beräkningen avser sträckorna från Järna väster om Stockholm till Almedal i Göteborg respektive till Åkarp i Skåne.
Kostnader för stationer ingår för de delar som normalt är Banverkets ansvar, det vill säga plattformar, plattformanslutningar, väderskydd och informationssystem. Övriga kostnader för att anlägga stationerna bärs av stationsägaren, se avsnitt 7.4.

I relation till Banverkets normala beräkningsrutiner har vissa osäkerhetsfaktorer avseende organisatoriska risker och risker i samband med genomförandet reducerats. Banverket har studerat de förslag och den riskfördelning för projektet som föreslås i avsnitt 8 och 9 och bedömer att förslagen skulle kunna leda till en sänkning av medelvärdet i kalkylen med cirka 10 miljarder kronor.

I den tekniska utvärdering som Banverket gjort och som redovisas i avsnitt 7.5 bedömer verket att de tekniska osäkerheterna skulle kunna minskas. I den nedan redovisade anläggningskostnaden ingår en osäkerhetspost för tekniska faktorer som belastar kalkylen med 10 miljarder kronor. Exempel på en teknisk osäkerhet är eventuellt behov av ballastfritt spår (se avsnitt 7.5.1) som bedöms kosta 5 miljarder kronor.

För att det ska vara möjligt att öka kapaciteten på stambanorna för godstrafik krävs investeringar i terminaler och andra anläggningar motsvarande cirka 4 miljarder kronor. Dessa investeringar finns med i det aktuella förslaget i åtgärdsplaneringen. Om inte höghastighetsbanorna byggs och motsvarande ökning av godstrafiken ska vara möjlig bedömer Banverket att det krävs tillkommande investeringar på stambanorna på mellan 7 till 15 miljarder kronor.

Även Swepro Project Management AB har för utredningens räkning uppskattat anläggningskostnaden med hjälp av internationella och nationella referensobjekt i form av kostnader för höghastighetsbanor som färdigställts i övriga delar av Europa. Uppskattningen har gjorts genom att olika delar av banan har jämförts med de internationella banavsnitten för att hitta objekt som i så hög utsträckning som möjligt liknar de aktuella svenska etapperna. Bedömningen har gjorts utifrån bland annat topografi, geologiska förutsättningar, banlängd, tätortspassager och krav på spårgeometri. Bedömningar har även gjorts av den beräknade andelen broar och tunnlar på de svenska etapperna.

Swepro har även tagit fram en genomsnittlig kostnad för byggnade av höghastighetsbanor i Europa för att ytterligare kunna verifiera resultaten av de kostnadsuppskattningar som jämförelsen med de utländska referensobjektken resulterat i. Här har även generella kostnadsberäkningsmodeller som tagits fram av Europeiska järnvägsunionen, UIC, ingått.

Den samlade bedömningen är att Götlandsbanan och Europabanan så som de avgränsats ovan bör kunna uppföras inom en kostnadsram på högst 127 miljarder kronor (prissnivå 2008).

Trots olika beräkningsmodeller landar de båda bedömningarna på i stort sett samma nivå. Min uppfattning är mot denna bakgrund att den kostnad som ingår i den samhällsekonomiska kalkylen, det vill säga 125 miljarder kronor, är en god skattning av den framtida verkliga kostnaden för det totala projektet.

Jag vill dock betona att osäkerheterna i de gjorda beräkningarna är stora inte minst mot bakgrund av att planeringen för vissa delar av sträckorna är i ett mycket tidigt skede och att bland annat kostnader för skyddsåtgärder motiverade av miljöhänsyn är svåra att skatta i detta
tidiga läge. Vissa av de internationella erfarenheter från höghastighetsprojekt som jag tagit del av tyder också på risker för betydande för-
dyningar och förseningar under byggtiden.

6.5.2 Värdering av höghastighetsbanorna

Samhällsekonomiska kalkyler

WSP Sverige AB har på utredningens uppdrag genomfört en sam-
hällsekonomisk kalkyl för bygget av separata höghastighets-
banor mellan Stockholm (Järna) och Skåne (Åkarp) samt mellan
Stockholm och Göteborg (Almedal).

I enlighet med direktivet har kalkylerna genomförts enligt veder-
tagna beräkningsmetoder vilket i praktiken innebär de metoder som
används av trafikverken inom ramen för den pågående åtgärdsplaner-
ingen. Jag har dock valt en trafikprognos, Samvips, som har tagits
fram av Järnvägsgruppen vid KTH och som i vissa avseenden
avviker från den prognos, Sampers, som används inom åtgärds-
planeringen. Mina skäl för detta ställningstagande är följande:

• Den enda prognos som fanns för de båda höghastighetsbanorna
 när utredningen startade sitt arbete i december 2008 var en Sam-
 vips prognos.

• Syftet med den basprognos som tas fram inom åtgärdsplan-
 eringen är att den ska ligga till grund för de samhällsekono-
miska kalkylerna och inte att göra den bästa bedömningen av
 den troliga utvecklingen av trafiken. De samhällsekonomiska
 kalkylerna inom åtgärdsplaneringen används därefter för priori-
 tering mellan de aktuella objekten.

• Den valda trafikprognosen ligger även till grund för de företags-
ekonomiska beräkningarna som genomförts inom utredningen
 och här är det nödvändigt med en prognos som på bästa sätt
 skattar den framtida utvecklingen av trafiken.

• I Sampers finns ingen uppdaterad och tillförlitlig metod för att
 beräkna utrikesresor. Detta finns dock i Samvips.
Beskrivning och värdering av olika handlingsalternativ

- Trafikverken har konstaterat att överflyttningen från flyg till tåg verkar vara orealistiskt låg i Sampers då stora förbättringar genomförts av tågutbudet. Verken har därför rekommenderat att Samvips bör komplettera Sampers vid analyser av stora projekt.

De båda prognoserna utgår från olika basår och har olika mätmetod då det gäller de resvaneundersökningar som ligger till grund för prognoserna. De data som utgör grunden för de båda prognoserna publiceras av SIKA och Banverket. Skillnaden mellan utfallet av de båda prognosmetoderna framgår av tabell 6.4.

Tabell 6.4 Utgångsdata och utfall för Samvips respektive Sampers, miljarder personkilometer

<table>
<thead>
<tr>
<th></th>
<th>Samvips 2007</th>
<th>Sampers 2006</th>
<th>Samvips 2020</th>
<th>Sampers 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Långväga resor</td>
<td>33,8</td>
<td>24,5</td>
<td>37,1</td>
<td>28,6</td>
</tr>
<tr>
<td>Utrikes resor</td>
<td>5,9</td>
<td>7,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kortväga resor</td>
<td>97,7</td>
<td>87,7</td>
<td>111,6</td>
<td>99,8</td>
</tr>
<tr>
<td>Total</td>
<td>137,4</td>
<td>112,2</td>
<td>156,4</td>
<td>128,4</td>
</tr>
</tbody>
</table>

Källa: Sampers/Banverket, Samvips/KTH.

I trafikverkens pågående åtgärdsplanering används alltså inte Samvipsprognoser, men bortsett från detta följer WSP:s beräkningar de värderingar och kalkylförutsättningar som används i åtgärdsplaneringen. I studier som genomförts för Götalandsbanan visas att valet av prognosmodell inte har särskilt stor påverkan på resultatet. Däremot har de ingående kalkylvärdena och beräkningsmetoderna stor betydelse för att förklara de skillnader som uppstår mellan olika beräkningar.

Bland de prissatta värderingarna, som används för tidsförändringar och externa effekter, kan nämnas värdet för utsläpp av kolhydrat som i kalkylen värderas till 1,5 kronor per kilo.

I tabell 6.5 redovisas de övergripande förutsättningarna för den samhällsekonomiska kalkylen och av tabell 6.6 framgår ett sammandrag av kalkylen.
Tabell 6.5 Övergripande kalkylförutsättningar

<table>
<thead>
<tr>
<th>Faktor</th>
<th>Värde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prisnivå, år</td>
<td>2006</td>
</tr>
<tr>
<td>Diskonteringsår</td>
<td>2010</td>
</tr>
<tr>
<td>Prognosår</td>
<td>2020</td>
</tr>
<tr>
<td>Kalkylränta</td>
<td>4 %</td>
</tr>
<tr>
<td>Kalkylperiod</td>
<td>40 år</td>
</tr>
</tbody>
</table>

Tabell 6.6 Sammanställning av samhällsekonomisk kalkyl

<table>
<thead>
<tr>
<th>Miljarder kronor under 40 år</th>
<th>Diskonterat till nuvärde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konsumentöverskott</td>
<td>51,1</td>
</tr>
<tr>
<td>Resuppoffring persontrafik</td>
<td>44,7</td>
</tr>
<tr>
<td>Godstillgänglighetsvinster</td>
<td>6,4</td>
</tr>
<tr>
<td>Producentöverskott</td>
<td>52,7</td>
</tr>
<tr>
<td>Biljetttäkter järnväg</td>
<td>132,6</td>
</tr>
<tr>
<td>Kostnader järnväg</td>
<td>-59,9</td>
</tr>
<tr>
<td>Biljetttäkter flyg</td>
<td>-58,2</td>
</tr>
<tr>
<td>Kostnader flyg</td>
<td>38,2</td>
</tr>
<tr>
<td>Budgeteffekter</td>
<td>-22,7</td>
</tr>
<tr>
<td>Drivmedelsskatt vågtrafik</td>
<td>-18,1</td>
</tr>
<tr>
<td>Fordonskostnader</td>
<td>-4,6</td>
</tr>
<tr>
<td>Externa effekter</td>
<td>34,5</td>
</tr>
<tr>
<td>Luftföroreningar och klimatgaser</td>
<td>13,5</td>
</tr>
<tr>
<td>Trafikolyckor</td>
<td>13,0</td>
</tr>
<tr>
<td>Marginellt slitage väg</td>
<td>1,4</td>
</tr>
<tr>
<td>Marginellt slitage kollektivtrafik</td>
<td>-1,2</td>
</tr>
<tr>
<td>Externa effekter gods</td>
<td>7,8</td>
</tr>
<tr>
<td>Drift och underhåll, reinvesteringar</td>
<td>-7,5</td>
</tr>
<tr>
<td>Restvärde</td>
<td>10,7</td>
</tr>
<tr>
<td>Summa nyttor</td>
<td>118,8</td>
</tr>
<tr>
<td>Summa investeringskostnader</td>
<td>103,0</td>
</tr>
<tr>
<td>Höghastighetsbanor</td>
<td>98,9</td>
</tr>
<tr>
<td>Godsterminaler</td>
<td>4,1</td>
</tr>
<tr>
<td>Nettonuvärde</td>
<td>15,8</td>
</tr>
<tr>
<td>Nettonuverdeskvot</td>
<td>0,15</td>
</tr>
</tbody>
</table>

1 Nettonuvärde = Summa nyttor – investeringskostnaden.
2 Nettonuverdeskvot = Nettonuvärde dividerat med investeringskostnaden. En nettonuverdeskvot på till exempel 0,8 betyder att för varje investerad krona får man tillbaka 1,80 kronor.

Källa: WSP Sverige AB.
Som framgår av tabellen visar kalkylen att projektet har en nettonuvärdeskvot på 0,15 vilket innebär att det är samhällsekonomiskt lönsamt.

Det som benämns nyttor i tabellen inkluderar samtliga effekter förutom investeringskostnaden vilket innebär att även negativa effekter i form av till exempel ökade fordonskostnader ingår i nytten.

De positiva samhällsekonomiska effekterna består främst av tidsvinster för resenärer med tåg samt ökade biljettintäkter men även av minskade externa effekter i form av reducerade utsläpp och olyckor.

För att projektet ska bedömas vara samhällsekonomiskt lönsamt ska den samlade nyttan överstiga investeringskostnaden vilket alltså är fallet i den här presenterade kalkylen. Kalkylen visar att projektet är svagt samhällsekonomiskt lönsamt.

Vissa effekter ingår inte i den samhällsekonomiska kalkylen på grund av att det inte finns tillförlitliga metoder för att värdera dem. Exempel på sådana är långsiktiga effekter på en regions lokaliseringssutveckling samt intrång i natur- och kulturmiljöer. En samhällsekonomisk kalkyl belyser således inte alla aspekter och min bedömning är att jag även måste överväga de effekter som inte ingår i kalkylen för att kunna göra en samlad effektedömning av projektet. Detta framgår också av mina direktiv där det sägs att mina bedömningar bör spegla ett stort antal aspekter såsom bland annat kapacitet inom järnvägssystemet, marknadspotentialer och påverkan på klimat och miljö. I det följande redogör jag för dessa effekter och för bidraget till den transportpolitiska målluppfyllelsen. Avslutningsvis sammanfattar jag min värdering av de båda alternativen.

Mot bakgrund av projektets storlek, betydelsen av gjorda prognoser och den risk som hänger samman med detta anser jag att den samhällsekonomiska kalkyl som presenterats här bör bli föremål för vidare analys.

Regional fördelning av den samhällsekonomiska nytten

WSP har på mitt uppdrag även undersökt hur nytten av höghastighetsbanorna fördelas sig mellan invånarna i olika län och kommuner. I det följande redogörs för hur nytorna som uppstår inom tågtrafiken fördelas regionalt. Konsumentöverskottsberäkningen för flyg har inte kunnat delas upp mellan invånarna i olika län efter-
som de resande förändringar som uppstår här inte finns redovisade på tillräckligt detaljerad nivå.

Av beräkningarna framgår att 42 procent av den totala restidsnyttan tillfaller invånarna i Stockholms län. 20 procent av nytta tillfaller invånarna i Västra Götalands län och 14 procent tillfaller invånarna i Skåne. Östergötland och Jönköping får tillsammans cirka 12 procent av nytta. De förbättrade tågförbindelserna till och från Europa via Skåne göra att cirka 4 procent av nytta tillfaller utlandet.

Av figuren nedan framgår inkomsteffekter per år och län.

Effekter av höghastighetsbanor

Med höghastighetsbanor finns möjligheter att etablera helt nya trafikupplägg både för person- och godstrafiken. Den högre efterfrågan, som prognostiseras till följd av de kortare restiderna, och den utökade bankkapaciteten ger möjlighet att köra tätare turer och differentiera utbudet. Projektet innebär i praktiken att vi bygger nya stambanor. De internationella erfarenheterna tyder på att etablering av höghastighetstrafik får stora effekter både vad gäller nygenererad trafik och överströmningar från andra trafikslag.

Figur 6.4 Möjligt linjenät i höghastighetsalternativet

Utöver de relationer som framgår av linjenätet ovan tillkommer till exempel möjligheter till trafik mot Norge via Trollhättan och Karlstad. Det möjliga linjenätet förutsätter att nuvarande planer för
infrastrukturinvesteringar i Danmark och Tyskland genomförs, se avsnitt 4.7.

Förutom höghastighetstågen förutsätts höghastighetsnätet i upp- lägget även trafikeras av interregionala tåg. Dessa tåg används för mellanmarknaderna för långväga regionala resor men även för matning till höghastighetsbanorna. De interregionala tågen växlar mellan nya och gamla banor för att ge goda förbindelser och kortare restider även till orter utanför nätet.

I de prognoser som ligger till grund för den samhällsekonomiska kalkyl som redovisas ovan förutses följande effekter på persontrafikmarknaden vid ett byggande av Götalandsbanan och Europabanan. Uppgifterna avser de direkta effekterna på transportarbetet under ett år.

- Persontrafiken på järnväg förutses öka med 7,7 miljarder personkilometer som en följd av kortare restider som ökar tågets marknadsandel och genererar nya resor.
- Flygtrafiken förutses minska med 1,6 miljarder personkilometer som en följd av att resenärerna väljer tåg i stället för flyg om restiderna blir tillräckligt korta.
- Biltrafiken förutses minska med 3,1 miljarder personkilometer som en följd av att tåget blir mer konkurrenscraftig jämfört med bilen.
- Den långväga busstrafiken förutses minska med 0,1 miljarder personkilometer som en följd av att tåget blir mer konkurrenscraftigt.
- Den lokala och regionala kollektivtrafiken förutses totalt sett öka något. Här ingår färre regionala busssresor där tåget blir mer konkurrenscraftigt och fler matarresor till tåg både lokalt och regionalt.
- Gång- och cykeltrafiken förutses påverkas marginellt.
Av nedanstående figur framgår de förväntade effekterna på den samlade persontransportmarknaden vid byggande av höghastighetsbanor.

Figur 6.5 Beräknade förändringar på persontransportmarknaden 2025 till följd av höghastighetsbanor

Förutom de ovan redovisade direkta effekterna förutses en större påverkan på lång sikt. Denna påverkan innefattar en minskad ökning av bilinnehavet för boende längs med höghastighetsbanorna. En positiv påverkan på lokaliseringen av bostäder och arbetsplatser förutses också.

Storleken på effekterna är beroende av omvärldsutvecklingen som till exempel den ekonomiska utvecklingen och utvecklingen av bränslepriset.

Med höghastighetsbanor fördubblas antalet möjliga täglägen och simuleringar visar att det går att köra 2–3 gånger fler godståg på Västra och Södra stambanan under dagen. Detta innebär helt nya möjligheter för operatörerna att erbjuda godstrafikkunderna de trafikutlägg som efterfrågas. I och med den frigjorda kapaciteten kommer också min betänkning transportkvaliteten i form av tidtablenshållning och tillförlitlighet att förbättras avsevärt.

Bidrag till transportpolitisk måluppfyllelse

De båda banorna kommer att få stor betydelse för att förbättra tillgängligheten mellan Sveriges tre storstadsregioner. Den förbättrade tillgängligheten, både nationellt och internationellt, bidrar till att stärka Sveriges utvecklings- och konkurrenskraft.

Götalandsbanan kommer att få stor betydelse för Östergötland, Västra Götaland och norra Småland och arbetsmarknaderna i regionerna kommer att förstora avsevärt främst genom den förbättrade tillgängligheten till storstadsområdena.
Övriga mellanliggande regioncentrum inom området kommer också att gynnas genom en bättre tillgänglighet till varandra och till de tre storstadsregionerna. Även kopplingen till det europeiska höghastighetsnätet kommer att innebära förbättringar i den internationella tillgängligheten. Storleken på dessa effekter är dock beroende av när och i vilken utsträckning banorna i Danmark och Tyskland uppraderas för högre hastigheter.

Den kapacitet som tillskapas i och med byggandet av höghastighetsbanor kommer att få utomordentligt stor betydelse inte minst för möjligheten att utveckla både den nationella och den internationella godstrafiken. Den frigjorda kapaciteten på de båda stambanorna kommer att underlätta för operatörerna att erbjuda sina kunder de järnvägstransporter som efterfrågas. Detta leder i sin tur till att funktionsmålet tillgänglighet uppfylls i högre utsträckning.

Den internationella godstrafiken bedöms ha en hög förbättringspotential både vad gäller volym och kvalitet. En sådan utveckling förutsätter dock att ett införande av höghastighetstrafik i de aktuella relationerna helt kommer att förändra resandemönster och val av trafikslag stärker min uppfattning att projektet även måste värderas utifrån detta mer övergripande perspektiv. De regionala utvecklingseffekter som inte fångas av kalkylen måste vägas in. Dessa består av större arbetsmarknadsregioner, ökat antal arbetsplatser, ökade inkomster och markexploateringseffekter. Alla dessa är effekter av den ökade tillgänglighet som en investering i höghastighetsbanor skapar.

6.6 Sammanfattande värdering av de olika handlingsalternativen

Som nämnts ovan har det inte varit möjligt att inom utredningens tidsram ta fram en samhällsekonomisk kalkyl för stambanealternativ. Min värdering av de båda handlingsalternativen baseras därför, vid sidan av den samhällsekonomiska kalkylen för höghastighetsbanorna, på effekterna (avsnitt 6.5.2) av de båda banorna samt på banornas bidrag till den transportpolitiska måluppfyllelsen.

Det faktum att ett införande av höghastighetstrafik i de aktuella relationerna enligt min uppfattning helt kommer att förändra resandemönster och val av trafikslag stärker min uppfattning att projektet även måste värderas utifrån detta mer övergripande perspektiv. De regionala utvecklingseffekter som inte fångas av kalkylen måste vägas in. Dessa består av större arbetsmarknadsregioner, ökat antal arbetsplatser, ökade inkomster och markexploateringseffekter. Alla dessa är effekter av den ökade tillgänglighet som en investering i höghastighetsbanor skapar.
Till viss del kan dessa effekter vara ett resultat av omlokalisering och ger då inget tillskott eftersom de motsvaras av en negativ effekt i en annan del av landet. Omfattningen av effekterna är också svåra att omsätta i monetära termer. Trots dessa osäkerheter är det enligt min uppfattning relevant att ta med dessa effekter vid en total bedömning av projektet.

En annan viktig aspekt att beakta utöver den samhällsekonomiska lönsamheten är enligt min uppfattning den företagsekonomiska lönsamheten. Den samhällsekonomiska kalkylen visar på ett betydningsfullt ökande förbättring för höghastighetståg. Enligt min bedömning finns det en betalningsvilja för snabba och komfortabla transporter och de är också effektiva att producera då tågen har en hög kapacitet och kan göra snabba omlopp. Detta innebär att det enligt min uppfattning delvis går att bekosta en utbyggnad av infrastrukturen med avgifter, se vidare kapitel 8.

Inledningsvis, i avsnitt 6.1, redogjorde jag för mina utgångspunkter för värderingen bland annat i form av de olika alternativens inre och yttre effektivitet. Högastighetsalternativets bidrag till den inre effektiviteten består enligt min bedömning av lägre transportkostnader och bättre transportutbud vilket leder till stärkt konkurrenskraft. Projektets bidrag till förbättringar av den yttre effektiviteten utgörs av möjligheten till regionförstoring och förbättrad utvecklingskraft i de områden där tillgängligheten förbättras. Detta innebär, med de skisser till trafikupplägg som redovisats, att även områden utanför banornas direkta närhet kommer att påverkas positivt av en investering i höghastighetsbanor.

I nedanstående tabell sammanfattas min bedömning av de båda alternativens bidrag till den transportpolitiska måluppfyllelsen.

Tabell 6.6 Sammanfattning av bidraget till transportpolitisiska måluppfyllelse vid en upgradering av stambanorna respektive byggande av höghastighetsbanor

<table>
<thead>
<tr>
<th>Effekt: Investering</th>
<th>Uppgradering stambanor</th>
<th>Byggande av höghastighetsbanor positiv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investeringskostnad, Mkr</td>
<td>54</td>
<td>125</td>
</tr>
<tr>
<td>Tillgänglighet</td>
<td>Positiv</td>
<td>Starkt positiv</td>
</tr>
<tr>
<td>Säkerhet, miljö, hälsa</td>
<td>Positiv</td>
<td>Starkt positiv</td>
</tr>
<tr>
<td>Kapacitet – godstrafik 1</td>
<td>Oförändrad</td>
<td>Starkt positiv</td>
</tr>
<tr>
<td>Kapacitet – persontrafik 1</td>
<td>Oförändrad</td>
<td>Starkt positiv</td>
</tr>
</tbody>
</table>

1 Med beaktande av prognostiserad trafiktillväxt.
Även de ovan nämnda restidsmålen och restidernas inverkan på den transportpolitiska målluppfyllelsen talar för att höghastighetsalternativet bör väljas framför en uppradera dess char. Visserligen ingår restiden som en viktig del i den samhällsekonomiska beräkningen men nedanstående tabell belyser tydligt skillnaderna i restider mellan de olika alternativen.

Tabell 6.7 Restidsmål, dagens restider samt beräknade restider vid uppradera av stambanan respektive byggande av höghastighetsbanor

<table>
<thead>
<tr>
<th>Till Stockholm från (tim:min)</th>
<th>Restidsmål 2009</th>
<th>Uppgraderade stambanor</th>
<th>Höghastighets- banor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linköping</td>
<td>1:05</td>
<td>1:39</td>
<td>1:21</td>
</tr>
<tr>
<td>Jönköping</td>
<td>1:45</td>
<td>3:10</td>
<td>2:39</td>
</tr>
<tr>
<td>Göteborg</td>
<td>2:00</td>
<td>2:45</td>
<td>2:26</td>
</tr>
<tr>
<td>Växjö</td>
<td>1:50</td>
<td>3:25</td>
<td>2:44</td>
</tr>
<tr>
<td>Helsingborg</td>
<td>2:40</td>
<td>5:03</td>
<td>3:55</td>
</tr>
<tr>
<td>Malmö</td>
<td>2:35</td>
<td>4:25</td>
<td>3:25</td>
</tr>
<tr>
<td>Köpenhamn</td>
<td>3:00</td>
<td>5:20</td>
<td>3:57</td>
</tr>
</tbody>
</table>

Ett genomförande av höghastighetsprojektet innebär en mycket stor investering och de negativa effekterna av projektet samt dess risker är inte försvarbara. De samlade miljöeffekterna av projektet redovisas i kapitel 7. Mot denna bakgrund anser jag, som tidigare nämnts, att de samhällsekonomiska beräkningarna bör bli föremål för ytterligare analys.

7 Analyser av höghastighetsalternativet

Mina bedömningar och förslag:

• Höghastighetsbanorna bör byggas som separata dubbelspår.
• Det svenska höghastighetsnätet bör avgränsas och dimensio-
 neras för persontrafik.
• För Europabanan bör sträckningen Jönköping–Värnamo
 Helsingborg/Hässleholm–Malmö väljas.
• Anskaffandet av fordon bör vara en angelägenhet för den en-
 skilde operatören.
• Depåer för fordon och fordonsunderhåll bör vara ett ansvar
 för operatörerna i samarbete med underhållsleverantörer,
 fastighetsägare och kommuner.
• Stationer i form av terminalbyggnader är ett ansvar för fastig-
 hetsägaren och/eller kommunerna. Infrastrukturförvaltaren
 ansvarar för plattformar och plattformsförbindelser.
• En ny järnväg innebär betydande påverkan på miljö, landskap
 och bebyggelse. Exakt vilken påverkan är dock inte möjligt
 att bedöma i detta skede. Miljöpåverkan behöver utredas
 vidare i den fortsatta planeringsprocessen.
• Genom landskapsanpassning och väl avvägd lokalisering kan
 intrångs- och barriäreffekter av den nya banan begränsas.
 Sådana åtgärder kan medföra ökade kostnader.
• En utbyggnad av höghastighetsbanor ger både positiva socio-
 ekonomiska effekter och positiva effekter på folkhälsan,
 bland annat genom ökad tillgänglighet och minskade luftför-
 oreningar.
• Det finns möjlighet att sammankoppla ett svenskt höghastighetsnät med det europeiska höghastighetsnätet, under förutsättning att befintliga banor i Danmark och norra Tyskland uppraderas och förstärks genom kapacitetshöjande åtgärder i enlighet med nuvarande planering. Utsikterna att köra tåg i hastigheter över 250 kilometer i timmen bedöms dock som små.

7.1 Bantyp, marknadsförutsättningar och linjesträckning

7.1.1 Nya spår parallellt med de befintliga stambanorna

Jag har utrett och prövat frågan om huruvida en byggnation av höghastighetsbanor parallellt med befintliga stambanor kan vara ett alternativ till byggande av separata höghastighetsbanor.

Genom att båda banorna i förslaget med separata höghastighetsbanor gemensamt nyttjar den kapacitet som tillskapas mellan Järna och Jönköping minskar den totala banlängden samtidigt som nya viktiga persontrafikmarknader nås. Genom trafik till Jönköping och Borås får systemet en större marknadstäckning i samspel med de befintliga stambanorna.

Genomförda trafiksimuleringar visar att sträckan Järna–Jönköping kommer att erbjuda tillräckligt med kapacitet både för persontrafiken mellan de tre storstadsområdena och för persontrafiken till och från Östergötland.

En fördel med att bygga nya banor parallellt med de befintliga skulle vara att en högre grad av avlastning av de befintliga banorna kan uppnås i ett sådant system eftersom avlastningen kan ske vid
fler punkter. Avlastningseffekten blir dock mycket stor även om de två nya spåren byggs som separata banor.

I båda banalternativen är det möjligt att koppla samman dessa med de befintliga stambanorna. I det parallella alternativet blir anslutningsbanorna kortare men kopplingspunkterna blir fler och mer komplexa.

Vid anläggning av parallella banor skulle dessa tillsammans med de befintliga stambanorna bli mycket yttrande med dubbla planskildheter. Eftersom höghastighetsbanor och konventionella banor har olika krav vad gäller kurvradier (där höghastighetsbanans linjesträckning måste vara rakare) kommer banorna inte att vara parallella på många avsnitt. Detta innebär att marken mellan de båda banorna isoleras med dåliga möjligheter till effektiv markanvändning som följd.

För att följa de befintliga stambananornas korridorer skulle ett antal stationssamhällen behöva passeras i mycket höga hastigheter. Här kan buller och arbetet med att begränsa detta bli ett problem.

Vid en parallell utbyggnad skulle påverkan på den befintliga trafiken bli mycket omfattande och dessutom pågå under en lång tidsperiod.

Anläggandet av separata banor innebär begränsade inskränkningar i den befintliga tågtrafiken. Mot bakgrund av den nuvarande kapacitets situationen på det befintliga nätet anser jag att detta är ett mycket viktigt argument för att välja en lösning med separata höghastighetsbanor.

Vid en internationell utblick finns några linjeavsnitt i Tyskland där höghastighetsbanor anlagts parallellt med befintliga banor. Här
har dock hastigheten på de nya banorna av markanvändnings- och miljöskäl begränsats till 250 kilometer i timmen. Ovanstående resonemang och det faktum att det inte har varit möjligt att finna några andra internationella exempel på parallel utbyggnad stödjer min slutsats att det svenska höghastighetsnätet bör anläggas i form av separata dubbelspår.

7.1.2 Banor enbart för persontrafik

I kapitel 6 har jag beskrivit effekten för kapaciteten på de båda stambanorna vid ett anläggande av höghastighetsbanor. Den fri-gjorda kapaciteten kommer enligt min uppfattning att få mycket stor betydelse för godstrafikens utvecklingsmöjligheter. Även möjligheten att bygga ut regionaltågssystemen kommer att påverkas positivt.

Vid en avvägning mellan en höghastighetsbana med eller utan godstrafik bör det beaktas att en bana enbart för persontrafik kan anläggas med betydligt brantare lutningar. På en renodlad persontrafikbana kan lutningar upp till 35 promille (35 meter per 1 000 meter) accepteras vilket ska jämföras med banor även för godstrafik där största möjliga lutning uppgår till 10 promille. De större möjliga lutningarna innebär att banan blir mer följsam i landskapet vilket i sin tur leder till färre konstbyggnader i form av broar och tunnlar och därmed lägre total anläggningskostnad.

Kapaciteten på en bana med enbart persontrafik blir också större till följd av ett homogenare trafikflöde. Att trafiken har mer likartad hastighet innebär också ett effektivare utnyttjande av banan.

En bana enbart för persontrafik behöver endast dimensioneras för 17 tons axellast till skillnad från en godsbana som kräver 25 tons axellast. Den lägre axellasten leder till lägre underhållskostnader.

De kapacitetsanalyser som jag har låtit genomföra tyder på att separata banor enbart för persontrafik kommer att skapa förutsättningar för en mycket kraftig expansion av godstrafiken på de befintliga stambanorna. Detta samtidigt som uppsatta restidsmål och kapacitetskrav kommer att kunna nås på höghastighetsbanorna med höghastighetstrafik och snabba regionaltågssystem.

Min samlade bedömning är därför att ett svenskt höghastighetsnät bör vara avgränsat till persontrafik.
7.1.3 Marknadsförutsättningar för persontrafik och val av linjesträckning

Vad gäller Europabanan från Jönköping och ner mot kontinenten är planeringsläget ett helt annat och jag har i mitt arbete utvärderat de fyra huvudkorridorer som framgår av bilden nedan.

Bild 7.1 De fyra utvärderade alternativen för Europabanans sträckning

Källa: Railize International AB.
Alternativ 1 Jönköping–Halmstad–Helsingborg–Malmö

Alternativ 2 Jönköping–Värnamo–Helsingborg/Hässleholm–Malmö

Alternativ 3 Mjölby–Nässjö–Hässleholm–Malmö

Alternativ 4 Linköping–Växjö–Kristianstad–Malmö

Från Linköping går denna sträckning via Eksjö, Vetlanda, Växjö och Kristianstad till Lund där den ansluter till Södra stambanan. Övriga orter som kan betjänas med regionaltågstrafik är Norrhult, Lönshöga och Hörby. I Eksjö är det möjligt att ansluta från Nässjö och Hultsfred, i Vetlanda från Nässjö och i Växjö till Kust till kust-
banan. I Kristianstad finns anslutningsmöjligheter till Hässleholm och Bromölla. Den totala banlängden från Linköping till Malmö skulle i detta alternativ bli cirka 460 kilometer.

De fyra alternativen har utvärderats mot varandra. Följande utvärderingskriterier har använts:

1. Restidsmål mellan Stockholm och Malmö på 2 timmar och 35 minuter.
2. Marknadsunderlaget ska vara maximalt.
3. Anläggningskostnaden ska vara den lägsta möjliga.
4. Inom storstadsområdet ställs kravet att banan ska bidra med kapacitet till den regionala trafiken i så hög utsträckning som möjligt.
5. Sträckningen ska möjliggöra en framtidiga utbyggnad av kapaciteten till och från Danmark.

Tabell 7.1 Restider, befolkningsunderlag och erforderliga baninvesteringar vid de olika bansträckningsalternativen

<table>
<thead>
<tr>
<th>Alternativ</th>
<th>Restid Malmö</th>
<th>Marknad 1 1 000 invånare</th>
<th>Marknad 2 1 000 invånare</th>
<th>Nybyggnad km</th>
<th>Uppgradering km</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2:46</td>
<td>556</td>
<td>886</td>
<td>150</td>
<td>240</td>
</tr>
<tr>
<td>2</td>
<td>2:30</td>
<td>501</td>
<td>788</td>
<td>290</td>
<td>210</td>
</tr>
<tr>
<td>3</td>
<td>2:34</td>
<td>449</td>
<td>735</td>
<td>300</td>
<td>265</td>
</tr>
<tr>
<td>4</td>
<td>2:41</td>
<td>518</td>
<td>835</td>
<td>405</td>
<td>170</td>
</tr>
</tbody>
</table>
I avsnitt 6.2 redogjorde jag för de restidsmål som satts upp vid utvärderingen av höghastighetsalternativet gentemot en uppradering av stambanorna. Restidsmålet är detsamma här, det vill säga 2 timmar och 35 minuter mellan Stockholm och Malmö.

De båda återstående alternativen, 1 till Halmstad och 4 i en östlig sträckning når inte de uppsatta restidsmålen och därför är dessa alternativ enligt min uppfattning inte aktuella.

Alternativet till Halmstad uppfyller inte kriteriet om att bidra till kapacitetsförsörjningen inom Skåne och alternativ 4 upvisar på grund av den långa sträckningen en i relation till de övriga alternativen hög anläggningskostnad.

Mot bakgrund av ovanstående resonemang förordar jag sträckningen från Jönköping via Värnamo och Markaryd och vidare mot Helsingborg/Hässleholm och Malmö.
En avstämning mot de kriterier (1–5) som satts upp ovan visar att detta alternativ når restidsmålet till Malmö. För att förkorta restiderna i östra Sverige innehåller alternativet en uppradering av Kust till kust-banan mellan Värnamo och Växjö till en beräknad kostnad av 1,8 miljarder kronor. Genom dessa åtgärder och med genomgående trafik kommer utbud och kvalitet i trafiken till Växjö, Kalmar och Karlskrona att förbättras betydligt.

Kriteriet (4) att banan inom Skåne ska möjliggöra övrig trafik och förstärka kapaciteten uppfylls också. Den tillkommande kapaciteten från Markaryd och söderut kommer att kunna utnyttjas av övrig trafik.

Det totala marknadsunderlaget (2) är stort med både Jönköping och Helsingborg som stora mellanmarknader. Med direkttåg fångas
även de mellanstora marknaderna i Nässjö, Växjö, Kalmar, Karlskrona, Halmstad och Hässleholm.

Av tidsskäl har det inte varit möjligt genomföra samhällsekonominiska kalkyler för samtliga fyra korridorer inom ramen för denna utredning.

7.2 Fordon

Höghastighetståg definieras som trafik med fordon i hastigheter över 250 kilometer i timmen i enlighet med gällande EG-direktiv (96/48/EG). Höghastighetsbanorna är tänkta att trafikeras både med särskilda höghastighetståg och med snabba och accelerationsstarka tåg för interregional trafik.

Enligt regeringens bedömning bör SJ AB åläggas att till den 1 november 2009 redovisa sitt behov av fordon för de närmaste åren. De fordon som SJ inte utnyttjar eller behöver som reserv bör

7.3 Depåer och fordonsunderhåll

En grundförutsättning för att kunna förvalta och utveckla höghastighetstågen är att skapa förutsättningar för ett ändamålsenligt fordonsunderhåll i anslutning till banorna. Underlag kring depåer och organisation av fordonsunderhåll har utredningen inhämtat bland annat från Alstom Transport AB, Bombardier Inc., Euromain AB, Interfleet AB och Jernhusen AB.

En utveckling av framtida höghastighetståg ställer höga krav på högteknologisk kompetens och praktisk tillämpning av ny teknik. De aktuella fordonen kräver nya lösningar och rutiner och utveck-
lingen går mot ett ökat fokus på förebyggande underhåll där hela tågsätt kör in i depå för snabba komponentbyten. Nya banor och ändrade trafikmönster innebär att placeringen av underhållswerkstätorna måste planeras långsiktigt. Vissa av dagens underhållsdepåer kommer att bli mindre åtkomliga med nya bansträckningar.

I andra länder har ofta etableringar av nya depåer och verkstäder för höghastighetståg skett i anslutning till viktiga kopplingspunkter. Därmed reducerar man tomkörningar mellan station och depå, optimiserar ledtidenerna och reducerar risken för trafikstörningar.

Dagens järnvägsstruktur med tillhörande byggnader kring de större städerna i Sverige härstammar från järnvägens ursprungliga utbyggnad och har inte anpassats till samhällets förändringar. Till exempel finns fortfarande flera godsbangårdar och terminaler med låg användning i städernas centrala delar samtidigt som nya anläggningar med mer frekvent användning hänvisas till städernas utkanter.

Höghastighetstågen kräver underhåll i tätare intervaller än konventionella tåg. Ur ett samhällsekonomiskt och miljömässigt perspektiv bör inte tunga komponenter som boggier (vikt 5–10 ton) transporteras till annan ort för att åtgärdas. Lokaliseringen av en underhållsdepå för den typen av underhåll bör därför anpassas till det aktuella trafikupplägget för en så effektiv underhållslösning som möjligt.

7.3.1 Ansvar och organisation

Avregleringen av marknaden för persontrafik på järnväg kommer att innebära nya förutsättningar även vad gäller underhållsverksamheten. I propositionen Konkurrens på spåret skriver regeringen att utvecklingen av terminal- och servicefunktioner inom järnvägssektorn inte har nått en helt tillfredsstillande lösning. Strukturella åtgärder kan behövas samtidigt som rollerna för befintliga aktörer ses över och preciseras. Enligt regeringen kan det finnas behov av att genom uppdrag respektive ägandirektiv ge Banverket och Jernhusen i uppgift att bevara uppdraget för etablering av nya terminal- och servicefunktioner för anslutning till befintliga spår och terminaler beaktas i planeringen. Att anläggningarna i regel behöver ligga i nära anslutning till terminal- och huvudspår bör särskilt beaktas. Planeringen bör avse såväl befintlig mark som nyanskaffa-
Enligt regeringen bör Jernhusen, där lokala monopol föreligger, i sin förvaltning av verkstadsfastigheter se till att dessa så långt det är möjligt kan användas för olika verkstäder och verkstadsfunktioner som trafikutövare och fordonägare behöver utnyttja. Med lokalt monopol avses att det endast finns en verkstadsanläggning inom det närområde där tåg lämpligen underhålls. Vidare skriver regeringen att användning och utlyftning av fastigheterna bör göras så att det främjar konkurrens i tillhandahållandet av tjänster. Regeringen avser också att noggrant följa utvecklingen av järnvägens servicefunktioner och återkomma med förslag till strukturella eller andra åtgärder som kan behöva vidtas för att åstadkomma förutsättningar för en väl fungerande konkurrens inom denna del av järnvägsmarknaden.

Jernhusens planering inför avregleringen

Jernhusen skriver att en lyckad avreglering och ett effektivt transportsystem bygger på att alla trafikoperatörer får tillgång till ändamålsenliga underhållsdepåer. Jernhusen vill främja konkurrens genom att ändra nuvarande avtalsformer och framöver teckna en långsiktig avsiktspåförklaring med tågoperatörerna som på så sätt kan

Enligt skrivelsen planerar Jernhusen att effektivisera användningen av depåerna genom att anpassa och utrusta dessa för en viss typ av underhåll. Underhållet delas in i tre nivåer enligt följande:

Nivå 1 – trafiknära service i form av städning, vattentryckning, fekalietömning, enklare förebyggande och avhjälpande underhåll samt fordonsuppförrättning med tågvärme.

Nivå 2 – trafiknära underhåll som kräver specialutrustning.

Nivå 3 – tungt underhåll av modulära delsystem eller hela fordonet.

Jernhusens huvudprincip är att operatören ska kunna hyra depåkapacitet och upphandla underhåll för en längre tid. Alternativa lösningar kommer att erbjudas för att tillska kapacitet till fler operatörer som etablerar sig på marknaden.

Internationella erfarenheter

I andra europeiska länder har frågan om depåer och fordonsunderhåll lösts på olika sätt. I både Spanien och Storbritannien ägs byggnader och infrastruktur av statliga aktörer (ADIF och Network Rail) som upphandlar driften av underhållsdepåer och verkstäder med långa koncessionstider, i Spanien gäller till exempel 30 år. Underhållet av tågen (både lättare och tyngre underhåll) upphandlas av operatörerna för kortare perioder än vad som gäller för driften av depåerna. I Spanien innebär koncessionen för underhållsdepåerna att förvaltaren måste upplåta utrymme till andra underhållsleverantörer.
7.3.2 Möjlig depåstruktur för höghastighetsfordon

Hur stor depåkapacitet som behövs är beroende av hur mycket tid som krävs för underhåll, vilket i sin tur beror av specifika underhållsplans olika intervall och omfattning. Utifrån ovanstående antaganden, avsnitt 7.2, om behovet av fordon för trafiken på höghastighetsbanan (115 fordonsenheter) samt utvecklingen inom underhållsbranschen mot mer tillståndsbaserat underhåll har jag låtit ta fram en skiss till möjlig depåstruktur för höghastighetsnätet. Utformningen av depåer och verkstäder styrs också av olika former av certifikat, behörigheter och TSD (teknisk specifikation för driftskompatibilitet).

Enligt Euromaint kan varje enskilt spår inom en depå hantera ungefär åtta höghastighetsfordon vilket betyder att behovet av verkstadsspår i systemet uppgår till cirka 200. Fördelningen av verkstadspårkapacitet mellan olika depåer bör utgå från trafikrörelserna. Varje depålösning bör vidare kapacitets- och flödesimuleras för att ge förutsättningar för adekvat underhållsplanering.

En huvuddepå för höghastighetsfordon skulle enligt det skissrade upplägget kunna placeras i Stockholmsområdet med kapacitet att genomföra förebyggande och avhjälpande underhåll, revisioner, ombyggnader, garantiarbeten, lackering med mera. Depån bör ha kapacitet för cirka 80 fordon vilket kräver en total yta om ungefär 440 000 m² för optimalt upplägg. Deldepåer med förmåga att utföra förebyggande och avhjälpande underhåll samt garantiarbetet skulle kunna placeras i Malmö och Göteborg. Varje depå bör ha kapacitet för cirka 50 fordon vilket kräver en yta om ungefär 300 000 m². Dessutom behövs sannolikt en eller flera servicedepåer i systemet. Dessa kan eventuellt samordnas med andra befintliga verkstadslösningar. En servicedepå bör dimensioneras för cirka 25 fordon vilket kräver ungefär 200 000 m² yta. Ytorna behövs för att anläggningarna ska kunna nå full effektivitet.

Eftersom det saknas lämpliga och lediga markytor för etablering av en ny underhållsdepå i centrala Stockholm skulle godsbangården i Tomteboda kunna vara ett exempel på lämpligt etableringsområde. Områdets storlek innebär att en komplett depåanläggning kan ges en optimal utformning och det i omedelbar närhet till Stockholms C. Uppsala kommun har också planerat för en möjlig depå norr om Gamla Uppsala, i anslutning till Ostkustbanan. Dessa alternativ ska ses som exempel på möjliga platser för placering av
depåer. Frågan om depåer för fordon och fordomsunderhåll är enligt min bedömning en angelägenhet för operatörerna, tillsammans med fastighetsägare, underhållsleverantörer och kommuner.

7.4 Utveckling av stationer och mötesplatser

Jag har låtit utreda möjligheten att utveckla stationer och omstigningsplatser i anslutning till höghastighetsnätet. Studien har omfattat förutsättningarna för genomförande av de reseterminaler som behövs för höghastighetsnätets resenärer och potentialen för stadsutveckling på de orter som berörs enligt höghastighetsalternativet. Analysen ligger till grund för förslagen kring hantering av stationer i kapitel 8.

7.4.1 Stationer utmed höghastighetsbanan

Ett genomförande av höghastighetsalternativet kommer att medföra nya bansträckningar och i flera fall nya reseterminaler. Exempel på helt nya tågstationer är Skavsta och Landvetter. De terminaler som anges här är tänkbara stationer med stationsuppbehåll för höghastighetstågen i olika kombinationer. Därutöver kommer ett antal andra tåglinjer att samordnas och anslutas till höghastighetsnätet, vilket betyder att fler stationer berörs av en utbyggnad med höghastighetsbanor. Vilka stationer som kommer att trafikeras med vilken typ av trafik bestäms i slutändan av operatörerna.

Även där terminallägena är ungefär samma som förut planerar kommunerna i vissa fall nya lösningar, det gäller till exempel Norrköping och Linköping. I de flesta fall är det aktuellt med nyboganation eller betydande uppraderingar och kompletteringar av stationer och resecentrumområden.

De stationer som berörs kan delas in i olika kategorier efter resandeintensitet, se nedan. För varje station anges huvudsaklig inriktning på de åtgärder som behövs.
Stora terminaler

Norrköping Nybyggnad i anslutning till det nuvarande stationsläget.

Linköping Nybyggnad i nytt förskjutet läge.

Jönköping Sannolikt nybyggnad i nytt läge.

Göteborg Nybyggnad, uppradering och komplettering. Nybyggnadsdelen i anslutning till överbyggnad av centralbangården.

Helsingborg Nybyggnad och uppradering. Förstoring av befintlig station inom Knutpunkten.

Lund Nybyggnad och uppradering. Val av lösning beroende på banans läge i markplanet eller i tunnel.

Malmö Nybyggnad, uppradering och komplettering.

Medelstora terminaler

Södertälje Syd Uppgradering och komplettering.

Borås Nybyggnad och uppradering. Val av lösning blir beroende av linjesträckningen genom staden.

Värnamo Nybyggnad, uppradering och komplettering. Val av lösning blir beroende av linjesträckningen genom staden.

Hässleholm Uppgradering och komplettering.

Även stationer i anslutning till flygplatserna Arlanda, Skavsta och Landvetter ingår i det skisserade trafikupplägg som beskrivs i avsnitt 6.5.2.

En sammanställning av åtgärdsbehov, planeringsläge och förutsättningar för genomförande för direkt berörda reseterminaler utmed höghastighetsbanan finns i bilaga 4.

Resandeflöden

Tabell 7.2 Resandeflöden 2030

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Miljoner resande per år</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stockholm C</td>
<td>89</td>
</tr>
<tr>
<td>Göteborg C</td>
<td>48</td>
</tr>
<tr>
<td>Malmö C</td>
<td>29</td>
</tr>
<tr>
<td>Lund</td>
<td>17</td>
</tr>
<tr>
<td>Linköping</td>
<td>11</td>
</tr>
<tr>
<td>Helsingborg</td>
<td>7</td>
</tr>
<tr>
<td>Norrköping</td>
<td>7</td>
</tr>
<tr>
<td>Jönköping</td>
<td>5</td>
</tr>
<tr>
<td>Borås</td>
<td>1,8</td>
</tr>
<tr>
<td>Västervik</td>
<td>1,5</td>
</tr>
<tr>
<td>Hässleholm</td>
<td>1,2</td>
</tr>
<tr>
<td>Södertälje Syd</td>
<td>1,0</td>
</tr>
<tr>
<td>Ulricehamn</td>
<td>0,4</td>
</tr>
<tr>
<td>Ljungby</td>
<td>0,2</td>
</tr>
</tbody>
</table>

Källa: Westin Real Management AB.
7.4.2 Stationernas funktion

De nya reseterminalerna bör utformas i samklang med vad de nya höghastighetstågen står för i form av modernitet och effektivitet. Terminalerna ska kunna bidra till att höja attraktionen för resor med höghastighetståg. Detta kan uppnås genom en ny nivå för kvalitet vad gäller både utformning och drift. För att höja tågens attraktionskraft och fånga in nya resenärsgrupper bör de nya terminalerna utmed höghastighetsnätet erbjuda tilltalande, bekväma, effektiva och säkra lösningar. Stationerna bör planeras utifrån resenärernas behov, vilket bland annat betyder att de ska vara tillgängliga för personer med funktionsnedsättning, vara enkla att nå med andra färdmedel och ha ett väl utvecklat serviceinnehåll.

Erfarenheter från internationella höghastighetsprojekt är att reseterminalernas funktion, utformning och lokaliserings tillmäts stor betydelse och anses ha en avgörande betydelse för trafiksyste- mets attraktivitet. Det har därför satsats mycket stora resurser på terminalernas utformning och man väljer oftast centrala lägen.

7.4.3 Stadsutveckling

Reseterminalerna för de nya höghastighetstågen har potential att bli viktiga platser i städerna.

I de flesta fall kommer stationerna att vara centralt placerade i städerna. För de tre storstäders centralstationer handlar det om en naturlig utveckling och ombyggnad av redan existerande terminaler. För Norrköping och Linköping planeras nybyggnader i centrala lägen. Bland de stora terminalerna är det sannolikt endast i Jönköping det inte kommer vara möjligt att utveckla terminalen nära dagens centrala stationsläge. I de mindre orterna är det troligt att stationerna kommer att hamna i utkanten av tätorten.

Enligt min bedömning finns sammanlagt goda förutsättningar att genomföra ett väl fungerande system med terminaler för höghastighetstågen. Planer och utvecklingsmöjligheter för vissa stationer beskrivs i bilaga 4.
Exploateringsmöjligheter

Genom att vara en plats där många människor rör sig kommer terminalerna att vara attraktiva för etablering av andra verksamheter. Stationerna kan komma att fungera som dynamisk motor för utveckling av fullödiga resecentrum med såväl allmänna som kommersiella servicefunktioner. Det finns också en stor potential för nybyggnation i resecentrums närområden. I vissa fall kan det handla om att på längre sikt utveckla hela stadsdelar vilket kommer att leda till att resecentrumen så småningom kommer att ligga i städernas absoluta kärna. En sådan utveckling kan ses i de framtidsplaner som finns för städer som Norrköping, Linköping och Helsingborg.

Kommunerna ligger i många fall långt framme i sin planering inför möjligheten att höghastighetståg ska börja trafikera respektive stad. Det framgår tydligt av de diskussioner som förts med företrädare för kommuner och regioner att man fäster stor vikt vid att planerna för höghastighetstågen ska bli förverkligade.

På nationell nivå innebär detta att det kommer att finnas en rad städer med tydlig framtidsutveckling som binds samman med högeffektiva kommunikationer. Det bör ge goda förutsättningar för regionförstoring och god ekonomisk utveckling. Omfattande planer för exploateringar finns på de flesta av de berörda orterna och det finns enligt min bedömning en stor utvecklingspotential i dessa områden. Varje aktuell ort har analyserats med avseende på möjlig fastighetsutveckling vid själva stationsområdet och dess närområde. Ett tidsperspektiv på 20–30 år ger följande möjliga utbyggnadspotential för de platser som analyserats:

<table>
<thead>
<tr>
<th>Tabell 7.3 Utbyggnadspotential reseterminaler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bruttoarea, m²</td>
</tr>
<tr>
<td>Bostäder</td>
</tr>
<tr>
<td>Kontor</td>
</tr>
<tr>
<td>Handel</td>
</tr>
<tr>
<td>Industri</td>
</tr>
<tr>
<td>Totalt</td>
</tr>
</tbody>
</table>

Källa: Westin Real Management AB.
Bostadsarean motsvarar ungefär 31 000 lägenheter för 75 000 boende, och kontorsarean motsvarar omkring 100 000 arbetsplatser. Investeringsvolymen på de planerade exploateringsåtgärderna uppgår sammanlagt till närmare 200 miljarder kronor. Även om inte alla dessa planer genomförs tyder detta ändå på att det är kring de viktiga kommunikationspunkterna i städernas centrala delar som städernas framtida utveckling kommer att ske. Det betyder samtidigt att trafikunderlaget för höghastighetstågen stärks.

7.4.4 Huvudmannaskap och finansiering

Det saknas i dag en tydlig gemensam modell för utveckling av resandeterminaler och det förekommer olika lösningar på huvudmannaskapsfrågan. Lösningarna är ofta ortspecifika eftersom förhållandena kring reseterminalerna varierar med de lokala förutsättningarna. Stationerna är inte sällan en betydelsefull och integrerad del av den omgivande staden och kommunerna har ofta en aktiv roll i utvecklingen av reseterminaler. Lösningarna blir därför ofta beroende av kommunala initiativ och ambitionsnivå.

De funktioner som i typfallet hör till en station är

- spårområde, plattformar och plattformsförbindelse
- lokal infrastruktur, det vill säga anslutande vägar, angöring, parkering, bussterminal
- väntsal med serviceutrymmen
- lokaler för biljettförsäljning och annan reseanknuten anslutande kommersiell service samt lokaler för annan närliggande verksamhet.

Normalt särskiljs ansvarsmässigt två huvuddelar beträffande stationerna. Spår, plattformar och plattformsförbindelse utgör en del av själva järnvägen och faller normalt under Banverkets ansvar. Terminalbyggnader med väntsal och tillhörande lokaler för resande service och annan kommersiell verksamhet har i de flesta fall en annan huvudman. De större stationerna ägs och förvaltas i dag av Jernhusen AB. Kommunerna ansvarar för den lokala infrastrukturen som kringgärder stationen.

Jernhusen har en samlad kompetens för utveckling av resecentrum och det ingår i Jernhusens uppdrag att ta ett ansvar för termi-
naler inom transportsektorn. Samtidigt är det enligt min mening inte realistiskt att en enda aktör uppför och äger samtliga rese-
terminaler samtidigt som transportmärknaden alltmer rör sig mot
avreglering och decentralisering. Därför kan man utgå från att olika
huvudmän blir aktuella i genomförandet av nya reseterminaler. I
sammhanget bör noteras att regeringen tillsatt en utredning med
uppgift att se över statens fastighetsförvaltning (dir. 2009:45), se
vidare under avsnitt 7.3.1.

Oavsett lösning måste det säkerställas att resenärsperspektivet
tillvaratas på ett konsekvent och relevant sätt och att anläggning-
arna drives professionellt. Detta torde ligga även i operatörernas
intresse.

Modell för huvudmannaskap och finansiering

Det finns olika genomförande- och finansieringsmodeller som kan
vara aktuella. En ytterlighetsmodell skulle kunna vara att finansie-
ringen av samtliga terminaler sker enhetligt och samordnat längs
med hela höghastighetslinjen med höghastighetsbaneprojektet som
huvudman. En annan ytterlighet är att utgå från att planering,
genomförande och finansiering löses enskilt och lokalt för varje
reseterminal utan övergripande krav på utformning eller samord-
nings. Inget av dessa alternativ är dock enligt min mening lämpliga.

Jag anser att de investeringar som behöver göras i resetermi-
nalerna måste balanseras mot intäkter eller inte direkt ekonomiskt
avläsbara nyttor som kan uppstå. De intäktskällor som finns att
tillgå kan delas in i följande huvudgrupper:

1. Offentliga tillskott

Dessa kan utgöras av statsbidrag, Banverkets åtaganden samt
regionala och kommunala tillskott. De kommunala tillskotten
can variera betydligt beroende på intresse och ambitionsnivå att
bidra till satsningen på resecentrum. Regionala och kommunala
tillskott kan baseras på nyttor för kommunen eller regionen
genom tågets och resecentrums inverkan på lokal och regional
tillväxt.
2. Terminalavgifter

De operatörer som trafikerar reseterminalen måste erlägga avgifter för tillgången till terminalen. Alla transportslag som använder terminalen bör betala terminalavgifter. Olika konstruktioner för att bestämma terminalavgifterna kan användas. Till exempel kan terminalavgifter tas ut per tågstop eller grundas på antalet resenärer.

3. Kommersiella intäkter

I ett resecentrum finns normalt lokaler med kommersiell service som är direkt förknippade med resanet, till exempel restauranger eller butiker. Dessa kan ge ett intäktsöverskott som kan tillskrivas resecentrumet genom lokalhyra.

4. Fastighetsnytta

I de större städerna finns stora möjligheter att genomföra fastighetsexploateringar i anslutning till resecentrumen. Detta gäller inte minst de stationer som är aktuella för höghastighetstågen. Delar av exploateringsöverskottet bör kunna tillskrivas resecentrumutbyggnaden.

De ingående funktionerna i en reseterminal har i nedanstående illustration, figur 7.1, delats upp på både kostnads- och intäkts-sidan.

Figur 7.1 Kostnader och intäkter i en reseterminal

![Diagram](image-url)

Källa: Westin Real Management AB.
Modellen bygger bland annat på den ansvarsfördelning för olika funktioner som beskrivs ovan.

Själva terminalhallen inklusive utrymmen för kommersiell service eller annan närservice för resandet får enligt modellen en uppdelad finansiering. En del av det i terminalen investerade kapitalets kostnader måste bäras av operatörerna i form av terminalavgifter eller hyror. Dessa måste täcka driftkostnaderna. Den återstående delen finansieras enligt modellen av kommunen och av intäkter från fastighetsexploateringar.

Skälen till att berörd kommun bör vara med och betala är två. För det första innebär terminalutvecklingen att kommunen får en extra dynamisk möjlighet till utveckling. För det andra har kommunen ofta angränsande mark där planerade exploateringar kan få extra skjuts av terminalutvecklingen.

Min sammanvägda bedömning av de möjligheter till huvudmannaskap, genomförande och finansiering som finns att tillgå och de analyser som genomförts avseende planeringsläget på de ställen där terminaler för höghastighetsståg planeras leder till slutsatsen att följande modell bör tillämpas:

- Infrastrukturförvaltaren tar investerings- och genomförandeansvar för plattformar, plattformförbindelser, plattformsutrustning och väderskydd.
- Kommunerna – och/eller i förekommande fall Jernhusen eller annat fastighetsbolag – förutsätts ta ansvar för planering, finansiering och genomförande av reseterminalerna.
- Kommunerna tar ansvar för anslutande infrastruktur.

Stationsägaren (kommun/fastighetsbolag) kommer att kunna tillgodogöra sig fastighetsnyttan genom värdeökningar på stationsfastigheten och intilliggande områden som exploateras för ny bebyggelse. Operatörerna, liksom övriga som utnyttjar reseterminalen, betalar skåliga terminalavgifter eller hyror som tillförs stationsägaren.

För att säkerställa genomförandet bör huvudmannen för höghastighetsbanorna träffa avtal med berörda kommuner/fastighetsbolag för att på detta sätt reglera sådant som reseterminalernas standard och storlek, utförandenivå, funktionskrav för höghastighetstrafiken, drifts- och underhållsnivå.

Drift av reseterminaler utmed höghastighetsbanorna

Drift, skötsel och underhåll av reseterminalerna med anslutande bebyggelse och anläggningar bör bedrivas på ett enhetligt och professionellt sätt och med rätt kvalitet. Inom EU diskuteras begreppet Station Manager som innebär att en aktör tar helhetsansvaret för drift och skötsel inom ett resecentrum. Terminalavgifterna bör med en sådan huvudmannaskapsfunktion vara kopplade till att utgå endast om driftskvaliteten är fullgörd.

I Italien har man genomfört en radikal förändring av förvaltningen och utvecklingen av de 13 största stationerna genom att en huvudman, GrandiStazione, har fått helhetsansvaret med undantag för trafikinformation och spårområdet upp till platförmånen. Bolaget ansvarar därmed för all skötsel och utveckling av resenärsutrymmen och kommersiella lokaler.

GrandiStazione ägs till 60 procent av det statliga järnvägsbolaget Ferrovie dello Stato (FS) och 40 procent ägs av privata investerare. Franska Société Nationales des Chemins de fer Français (SNCF) äger en mindre del, 1 procent. Denna lösning är det första exemplet på en privatisering av ett europeiskt stationsbolag. Privatiseringen har genomförts bland annat för att klara av de stora investeringar som behövs. De stationer som förvaltas av GrandiStazione är stora befintliga stationer som ska rustas upp och kommersialiseras. Nya stationer som ska uppföras utmed höghastighetsbanorna (se avsnitt 5.5 för en beskrivning av det italienska höghastighetsnätet) ingår däremot inte i bolagets ansvarsområde och genomförs av FS.
GrandiStazione kommer enligt uppgift att ta över driften av dessa när de väl står färdiga.

7.5 Tekniska aspekter

7.5.1 Klimatförhållanden

Klimatets påverkan på geoteknik och grundläggningen för en höghastighetsbana skiljer sig inte från påverkan för en konventionell järnväg. De riktlinjer om frostdjup som finns för olika delar av landet kan tillämpas även för en höghastighetsbana. Vad gäller åtgärder för att förhindra isbildning i tunnlar bedömer Banverket inte att det är någon skillnad mellan tunnlar på en höghastighetsbana och tunnlar längs med en konventionell bana.

För banöverbyggnaden, det vill säga spåren, spelar dock klimatet en viktig roll. Här står valet mellan ballastfritt spår eller spår med ballast. Risken för så kallat ballastsprut ökar med ökad hastighet.
Ballastsprut innebär att stenar från ballasten slungas i väg av is som lossnar från tågen eller att större sjok av is med fastfrusna ballaststenar sugs upp under tåget. I TSD är ballastsprut en öppen punkt vilket innebär att nationella regler ska hantera frågan.

Växlarna på en höghastighetsbana är större än de växlar som finns längs med konventionella banor. Snö och is i växlar är redan i dag ett problem som kan förväntas bli mer omfattande för långa och stora växlar.

Problem med kontaktledningshaverier är större under vintern till följd av bland annat rimfrost på kontaktledningen som leder till att en ljusbåge uppstår. Problem med detta och kontaktledningar som blir stela vid kall väderlek förväntas öka med ökad hastighet.

Även fordonen som ska trafikera höghastighetsbanorna måste anpassas för vinterförhållanden med snö, is, kyla och stora temperaturvariationer. De krav som finns på fordon i TSD tar inte fullt ut hänsyn till nordiska vinterförhållanden. Detta innebär att sådana specifikationer och krav för fordon som ska trafikera ett svenskt höghastighetsnät måste tas fram i ett tidigt skede.

Banverkets slutsats är dock att det med rätt val av tekniska lösningar för höghastighetsbanor och fordon går att förebygga och minimeras många av de vinterrelaterade störningar som är kända från konventionell järnvägstrafik i Sverige.

7.5.2 Undergrund, underbyggnad och tunnel

Undergrunden är den naturliga marken som är belägen under en järnvägsanläggning. Ovanpå undergrunden kommer underbyggnaden. Hur undergrunden dimensioneras är beroende av en banas hastighet i följande avseenden:

- De deformationer som kan tillåtas till följd av sättningar minskar med ökande hastighet.
- Vibrationsproblematiken ökar och fler jordar kan behöva förstärkas med ökade hastigheter.

Detta leder till ökade byggkostnader men också till ett minskat behov av underhåll vid banans drift.

Underbyggnaden, det vill säga den konstruktion som kommer ovanpå undergrunden, påverkas inte av högre hastigheter.
I fråga om tunnlar pågår inom Banverket ett arbete med att bestämma komfortkriterium för tryckändringar i tåg vid passager genom tunnel i hastigheter över 250 kilometer i timmen. Här måste en avvägning göras av kraven på tunneln och krav på fordonen då det gäller att tåla tryckförändringar. Vibrationsmätningar kan komma att krävas i tättbebyggda områden.

7.5.3 Överbyggnad

Banöverbyggnaden består förenklat uttryckt av räler och ballast. Överbyggnaden ska klara att överföra de stora krafterna från tåget ner i underbyggnaden samtidigt som komforten upprätthålls för passagerarna.

Enligt Banverkets bedömning är frågan om ballastfritt spår eller spår med ballast ett av de största teknikvalen vid införandet av höghastighetsbanor. Beslutet är inte enbart en ekonomisk fråga enligt Banverket utan också en fråga om vad som är tekniskt möjligt. I Tyskland, Holland, Japan och Kina byggs nya höghastighetsbanor i stor sett endast med ballastfritt spår. I Frankrike förekommer ballastfria spår endast på sträckor med särskilda förutsättningar som i tunnlar, på broar och på sträckor med höga krav på vibrationsisolering. Fördelar med ballastfritt spår, förutom att man undviker ballastsprut, se avsnitt 7.5.1, är lägre underhållskostnader, större tillgänglighet och tillförlitlighet samt bättre spårlägeskvalitet vilket innebär högre komfort.

7.5.4 Övriga tekniska frågor

Förutom de frågor som behandlats ovan kan det, med utgångspunkt från gällande tekniska specifikationer för driftkompatibilitet, finnas behov av att ta fram svenska regler och specifikationer för
höghastighetsbanor i fråga om fordon, elanläggningar samt signal- och telesystem. Inom dessa områden förutser Banverket inga större komplikationer.

7.6 Linjeföring och landskapsanpassning

Enligt direktiven ska jag utreda förutsättningarna för hur linjeföring och profiler av höghastighetsbanor kan anpassas till landskapets förutsättningar och funktioner. Möjligheten att reducera barriär- och intrångseffekter ska också belysas.

7.6.1 Avgränsning och metodik

I detta skede av planeringen för höghastighetsbanor fokuseras på landskapets storskaliga drag. Landskapet delas grovt in i olika karaktärsområden där landskapets karakter bestäms av samverkan mellan dess naturliga innehåll och människans historiska nyttjande. Därefter följer fördjupade tematiska studier av landskapsekologi, människans landskapsutnyttjande över tid samt terrängens former.
Landskapsanalysen ska
- utgöra ett kunskapsunderlag för placering och avgränsning av lämpliga terrängkorridorer för en ny järnväg
- peka på landskapsavsnitt och strukturer som kräver särskild hänsyn
- fungera som underlag för miljöbedömningar
- fungera som kunskapsprocess för att uppnå gemensam samsyn.

Karaktersområden och fördjupningar

Första steget är en områdesanalys av hela landskapet som det uppfattas i dag. Indelningen bygger på en analys av följande delfaktorer:
- topografi
- övergripande struktur (till exempel sjöar och vattensystem)
- bebyggelse och infrastruktur
- brukningssätt
- kulturmiljöer
- vegetation.

Nästa steg är fördjupade analyser inom tre olika teman:

* Landskapets tidsdjup och kulturhistoriska utveckling*

Denna tematiska analys syftar till att belysa landskapets historiska betydelse. Vilka teman och epoker har präglat landskapet? Hur har människan brukat landskapet under olika tider? Vilka spår kan man se av tidigare bruk?

* Landskapsekologi*

En järnväg påverkar biologisk mångfald utifrån en rad aspekter. De viktigaste är att järnvägen kan orsaka förlust av livsmiljöer, skapa barriärer för spridning och rörelser, störa genom buller, öka trafik-
dödligheten samt medföra förändrad hydrologi i våtmarker och vatten.

I dag är fragmentering den näst viktigaste orsaken till att arter dör ut och infrastruktur som vägar och järnvägar bidrar starkt till detta. Därför är det viktigt att beskriva och värdera de övergripande ekologiska samband som kan påverkas av en framtida järnväg. De landskapsekologiska sambanden studeras genom kartläggning av den biologiska infrastrukturen.

Landskapets form

Fördjupade studier av landskapets form görs främst för att beskriva hur terrängen ser ut i förhållande till den tänkta banan. Indelningen i karaktärsområden bygger på terrängens former, hur marken används och hur den brukas. Viktiga delparametrar är övergripande höjdskillnader (topografi), hur berggrunden ser ut, vilka jordarter som finns, var yt- och grundvatten samt bebyggelse och infrastruktur finns.

De olika delanalyserna ger underlag för en gemensam diskussion och värdering av karaktärsområdena och hur en ny höghastighetsbana kan påverka karaktär, innehåll och funktion. Värderingen ligger till grund för vissa rekommendationer kring till exempel områden som helt bör undvikas, åtgärder som bör vidtas för att åstadkomma bra samspel mellan banan och landskapet och förslag till fördjupade studier av komplexa delområden.

7.6.2 Tekniska och geometriska krav för höghastighetsbanor som påverkar landskapsanpassningen

Geometriska krav

Kopplingspunkter och bytespunkter

Krav på stängsel och avskärmning

Den kanske mest betydande negativa effekten av en ny järnväg är den barriär som kan uppstå utmed sträckningen och den landskapsmässiga fragmentering som detta leder till. Det gäller såväl funktionellt som ekologiskt, kulturhistoriskt, visuellt och känslomässigt.

Konsekvenserna för markägare längs med den nya banan kan bli omfattande och i dag väl fungerande jord- och skogsbruk kan påverkas. Ett sätt att mildra effekterna är att den som ansvarar för järnvägsbygget, i skadebegränsande syfte, använder möjligheten att ansöka om lantmäteriförrättning, se avsnitt 9.1.3.

Internationellt är höghastighetsbanor dessutom ofta försedda med stängsel och andra avskärmningar, som bullerdämpande vallar eller skärmar. Även i Sverige kommer sådana åtgärder vara aktuella vilket påverkar möjligheterna till landskapsanpassning.
Krav på jämnt spårläge

Höga hastigheter ställer stora krav på banans jämnhet. Val av teknik har stor betydelse för banans fragmenterings- och barriär-effekt. Även i detta avseende kan det bli fråga om att ta fram nationella regler och specifikationer.

7.6.3 Beskrivning av landskapet i aktuella områden

Västergötland och Östergötland är tillsammans med Mälardalen viktiga ur historisk synvinkel. I områdena finns spår från järnåldern fram till modern tid. De stora slättskapsområdena har brukats intensivt och rationaliserat och industrialiserad jordbrukslandskap har raderat många spår.

Ur ekologisk synvinkel ingår södra Sverige i två växtgeografiska zoner: norra halvklotets barrskogsbältet som sträcker sig ner till gränstrakterna mellan Skåne och Småland och Mellaneuropas löv- fällande skogar där Skåne, Blekinge och Halland ingår. De mellaneuropeiska lövskogarna tillhör den naturtyp som minskat mest i hela Europa. Mindre än en halv procent återstår vilket betyder att en stor mängd arter är utrotade eller på väg att dö ut. Det är därmed centralt att bevara de skogar som återstår för att värna om...
ekosystemets djur och växter. För barrskogen är inte de aktuella områdena lika viktiga som för de europeiska lövskogarna men på den nationella skalan finns flera värddetrakter som berörs. De viktigaste finns i de kustnära delarna av Sörmland, Kolmården, Hålaveden och Östra Vätternbranten.

Områdets ängs- och betesmarker utgör kärnområden för odlingslandskapets biologiska mångfald. Arter som försvunnit från de stora jordbrukslandskapen finns fortfarande här. Östergötland har en av de största koncentrationerna av hagmarker i Sverige.

På landskapsnivå bör också nämnas de stora öppna myrarna i norra Småland och Västergötland. Vättern, Sommen och sjölandskapet i centrala Småland utgör viktiga system med höga biologiska värden. För viltet, särskilt de större rovdjuren, är sträken från Svealands skogsbygder till Småländs skogslandskap viktiga.

Det finns ett antal områden utmed sträckningen som är känsliga och där det kan komma att krävas särskilda åtgärder samt noggrann planering i kommande skeden. De särskilt känsliga landskap som har identifierats i detta skede listas i bilaga 5.

7.6.4 Exempel på anpassningsåtgärder

Lokalisering utanför känsliga karaktärslandskap

Lokalisering nära stora vägar

En samlokalisering med befintlig barriär kan innebära att störning och fragmentering minimeras. Det gäller åtminstone då den befintliga vägen eller järnvägen går i mindre känslig terräng och har en geometri som i huvudsak överensstämmer med den nya järnvägens. En järnväg som omges av bebyggelse, äldre stationsbyggnader och har en linjeföring med många kurvor är inte lämplig att följa eftersom det skulle förändra hela landskaps karaktär. Moderna motorvägar som E4 och Riksväg 40 har dock för vissa avsnitt en linjeföring och lokalisering som det kan vara lämpligt att följa.

Samlokalisering kan vara svår i kuperad terräng, där vägen svänger mycket i både höjd- och sidled, på grund av de skilda geometriska kraven. Stora oanvändbara restytor skapas mellan väg och järnväg varför en separering kan vara att föredra i dessa fall.

Höjdläge i kuperad terräng

Många delar av höghastighetsbanan kommer att gå tvärs igenom landskapets huvudstrukturer. Banans sträckning genom det kuperade landskapet ner till och upp från Jönköping, Ulricehamn och Borås är specialfall som kräver särskilda studier. Detta gäller även sprickdalslandskapet i Södermanland och Västergötland, passagen
SOU 2009:74 Analyser av höghastighetsalternativet vid Kolmårdsbranten, dalgångarna som leder upp mot Småländska höglandet och norra Skånes åsar.

Landskapsanpassningens mål är att minska fragmenteringen. Val av åtgärd kan styras av topografin. Med stora tydliga höjdskillnader kan lösningen vara bro och tunnel, det vill säga att banan bör ha en medelhög profil i landskapet som illustreras i bild 7.4 nedan. Fördelen är att en sådan lösning möjliggör passager både längs åsar och höjder och längs dalgångar.

Bild 7.4 Skiss kuperad terräng

Källa: Gestaltningssprogram Ostlänken, Atrax Energi AB.

Om höjdskillnaderna är små, som i vissa mosaiklandskap, kan en hög profil med bro och bank vara att föredra. Det beror på att den odlade marken, bebyggelsen och det lokala vägnätet till stor del är samlat i terrängens lågpunkter.

Bild 7.5 Skiss mosaiklandskap

Källa: Gestaltningssprogram Ostlänken, Atrax Energi AB.

Höjdläge i slättlandskap

Östgötaslätten och stora delar av Småland utgör slättlandskap med små höjdskillnader. I öppna bebyggda slättlandskap kan den visuella och känslomässiga barriären dämpas om järnvägen placeras något under marknivån. På så sätt minskar störningen, inga höga
bullervallar behövs och passager över järnvägen behöver inte bli fullt så höga.

Sidläge i kuperad terräng

Bild 7.6 Skiss placering mot sjö eller öppet landskap
7.6.5 Fortsatt planering

En optimerad anpassning av banans linjeföring och profil för begränsning av barriär- och intrångseffekter förutsätter mycket god kunskap om landskapets förutsättningar och funktion. Sådan kunskap finns normalt i planeringsprocessens senare skeden. När man i ett sent skede upptäcker stora värden eller risker som påverkar kostnader och får stora konsekvenser finns begränsade möjligheter att ändra beslut om lokaliserings. Detta riskerar att leda till stora tidskrävande och kostsamma omtag i planeringsprocessen.

Genom att tidigt identifiera karaktärsområden där en god landskapsanpassning kan leda till kraftigt minskade barriäreffekter kan fragmentering och störning minska. I känsliga landskap kan det vara bra att i tidigt skede göra fördjupade studier och utredningar för att minska risken för felaktiga bedömningar av risker, kostnader och konsekvenser. Det är viktigt att kostnader för anpassningsåtgärder uppmärksammas i början av planeringsprocessen.

7.7 Miljöbedömningar och miljöeffekter

Enligt mina direktiv ska jag genomföra relevanta miljöbedömningar med utgångspunkt från 6 kap. 12 § miljöbalken.

Eftersom utrednings- och miljöbedömningsarbetet har bedrivits parallellt har möjligheterna till en integrerad arbetsprocess varit begränsad. Uppdraget och tidplanen har inte medgett samråd med andra än ett fåtal berörda myndigheter.

Miljöbedömningen har i detta skede av planeringen begränsats till att beskriva vilken typisk påverkan och effekter som höghastighetsbanor skulle kunna ha på miljö i Sverige samt att lämna förslag och rekommendationer för att förebygga risker och negativ miljöpåverkan i det fortsatta planeringsarbetet. Höghastighetsbanornas påverkan på miljö, landskap och befolkning behöver utredas vidare.

Miljöbedömningen på denna nivå använder inte detaljer om projektets genomförande, utan en tänkt korridor utmed E4:an har använts för att illustrera typiska miljöeffekter. Vid ett eventuellt beslut om utbyggnad av höghastighetsbanor kommer den fortsatta planeringen att innefatta miljöbedömningar och konsekvensbeskrivningar utifrån mer exakt lokalisering.
Utgångspunkt för miljöbedömningen är de transportpolitiska målen och riksdagens miljökvalitetsmål, som också innefattar särskilda klimatmål. De transportpolitiska målen beskrivs i kapitel 2.

7.7.1 Miljöpolitiska mål

Miljömålssystemet är under översyn och utredningen lämnar sitt betänkande den 30 september 2009. Enligt min bedömning kommer dock de målområden som är av störst betydelse för transportsektorn att kvarstå.

Transportsektorn ska prioritera mål där transportsystemets utveckling är av stor betydelse för måluppfyllelse, särskilt
• begränsad klimatpåverkan
• frisk luft
• bara naturlig förorsking
• god bebyggd miljö
• ett rikt växt- och djurliv.

Även levande sjöar och vattendrag, levande skogar och ett rikt odlingslandskap har relevans för miljöbedömningen i denna utredning.

Miljömålen används ibland i miljöbedömning för att beskriva hur olika alternativ påverkar måluppfyllelse. Frågan om utbyggnad av höghastighetsbanor befinner sig dock än så länge på en sådan övergripande nivå att det inte är möjligt att precisera hur målen kan främjas. Målen betydelse för olika alternativ kommenteras därför inte särskilt. Målen har i stället använts som stöd för de generella slutsatser om hur en utbyggnad av höghastighetsbanor kan bidra till att uppfylla målen.

Klimatmål

Det finns i dag ett stort antal mål inom klimatpolitiken på olika nivåer. De klimatmål som är relevanta för den svenska transportsektorn och därmed för utbyggnaden av höghastighetsbanor beskrivs i det följande.
Internationella mål

Mål på EU-nivå

En väsentlig del i EU:s miljöpolitik är handel med utsläppsrätter. EU:s utsläppshandel, som hittills omfattar tio medlemsländer,

Viktiga mål inom EU:s klimat- och energipolitik:

- 20 procent lägre utsläpp av växthusgaser till 2020 jämfört med 1990 – klimatmålet.
- 20 procent ökad energieffektivitet.
- 20 procent andel förnybar energi – förnybarhetsmålet. I detta mål ingår att andelen biodrivmedel ska vara 10 procent av trafikens energianvändning.

Sverige

Målet ska nås genom inhemska åtgärder, utan användning av utsläppskrediter via vare sig flexibla mekanismer eller kompensation för upptag i så kallade kolsänkor (som upptag av koldioxid i växande skog).

Miljökvalitetsnormer

Landskapsvärden

Infrastruktur berör regelmässigt områden med någon form av skydd, huvudsakligen enligt miljöbalken och plan- och bygglagen. Det finns riksintressen av olika slag i landskapen, kulturreservat, Natura 2000-områden och annat bioskydd, strandskydd och vat-
tenskydd. I den fortsatta planeringen är det nödvändigt att förhålla sig till dessa skydd.

7.7.2 Miljöbedömningens syfte

Beslutsprocessen om en eventuell utbyggnad av höghastighetsbanor är en form av planering och jag har bedömt att det är rimligt att utgå från miljöbalkens syften för miljöbedömning. Miljöbedömningen ska därmed bidra till underlag som möjliggör en bedömning av om och hur höghastighetsbanor stödjer eller motverkar en hållbar utveckling.

Syftet för miljöbedömningen beskrivs ofta som tredelat. Det är

• en process som syftar till att integrera miljöhänsyn när förslag identifieras, utformas, beslutas och implementeras
• en process som syftar till att ge allmänhet, organisationer, myndigheter med flera möjlighet att påverka de förslag som läggs fram
• en process som syftar till att ta fram dokumentation som kan fungera som underlag för samråd och beslut.

Denna utredning har inte haft förutsättningar att nå samtliga syften eftersom utrednings- och miljöbedömningsarbetet har bedrivits parallellt. Både uppdraget och tidsplanen har begränsat möjligheterna till en integrerad arbetsprocess och till samråd med andra än ett fåtal berörda myndigheter. Miljöbedömningen har därför begränsats till bedömning av effekterna av förslag och rekommendationer för att förebygga risker och negativ miljöpåverkan i det fortsatta planeringsarbetet.

För att precisera syftet för denna miljöbedömning är en viktig utgångspunkt miljöbalkens 6 kap. 12 §. Inom ramen för en miljöbedömning ska myndigheten upprätta en miljökonsekvensbeskrivning där den betydande miljöpåverkan som planens genomförande kan antas medföra identifieras, beskrivs och bedöms. Rimliga alternativ med hänsyn till planens syfte och geografiska räckvidd ska också identifieras, beskrivas och bedömas. Miljökonsekvensbeskrivningen ska sammanfatta planens innehåll, syften och förhållande till andra planer och program, beskriva miljöförhållandena i områden som kan påverkas betydligt och miljöns sannolika utveckling om planen inte genomförs (nollalternativ). Vidare ska
beskrivas relevanta miljöproblem och hur miljökvalitetsmål och andra miljöhänsyn beaktas i planen.

Sammanfattningsvis syftar miljöbedömningen för denna utredning till att beskriva vilken typisk påverkan och effekter som höghastighetsbanor skulle kunna ha på miljö i Sverige samt att lämna rekommendationer till fortsatt beslutsfattande och planering.

7.7.3 Avgränsning av miljöbedömningen

Miljöbedömningen ska avgränsas i omfattning och detaljeringsgrad. Det handlar om vilka miljöaspekter, sakfrågor, som bör studeras samt vilka systemgränser i tid och rum som bör användas, med hänsyn till den typ av planering som det handlar om. Avgränsningen har också påverkats av de osäkerheter som finns kring höghastighetsbanornas miljöegenskaper och om förhållanden i den miljö som påverkas.

Utbyggnad av höghastighetsbanor tar ett antal år och ytterligare tid behövs innan den fulla effekten uppträder. Miljöbedömningen använder så långt möjligt året 2030 som tidsmässig avgränsning. Skälet är att inom denna tid är det möjligt att bygga och trafikera höghastighetsbanorna och förändringarna i den påverkade miljön kan överblickas.

Höghastighetsbanor innebär omfattande utbyggnad av nya spårsträckningar, men även ändrade förutsättningar för trafikering på befintliga spår. Utbyggnaden kan antas påverka vissa områden särskilt mycket. Miljöbedömningen fokuserar på typiska effekter, som
direkt eller indirekt kan uppstå i de områden i Sverige som berörs av nya höghastighetsbanor. Miljöbedömningen fokuserar också på banornas effekter på övriga spår, övrig tågtrafik och på andra transporter. Det innebär att i första hand effekter i Syd- och Mellansverige omfattas.

Prioriterat är miljöutmaningar för transportpolitiken som är särskilt viktiga att belysa på en strategisk och övergripande nivå. Liksom i den nationella investeringsplaneringen koncentreras miljöbedömningen till tre teman:

- klimat och energi
- landskap och bebyggelse
- hälsa och befolkning.

Inom klimat och energi är energianvändning och koldioxidutsläpp särskilt viktiga. Även bygg- och anläggningsfasen bör beaktas, liksom effekten av så kallad marginaleffekt.

Inom landskap och bebyggelse är utgångspunkten att dela in landskap (inklusive bebyggelse) i karaktärområden. Se närmare avsnitt 7.6 om landskapsanpassning. Särskilt viktiga inom temat landskap och bebyggelse bedöms kulturhistoria och kulturav, biologisk mångfald och stads- och landskapsbild vara.

Inom hälsa och befolkning tas socioekonomiska effekter, buller och vibrationer, luftkvalitet, elektromagnetiska fält samt säkerhet upp.

Miljöbedömning använder traditionellt mål samt reglering av miljökvaliteter som vägledning för att bedöma påverkan och effekter, se avsnitt 7.7.1. Det har som nämnts inte funnits tid att utvärdera och bedöma konsekvenser med stöd av målen. Bedömningssbranderna har i stället bidragit till avgränsningen av relevanta miljöaspekter samt för att formulera rekommendationer för fortsatt planering och miljösäkring av genomförandet.

Avgränsning av alternativ

I miljöbedömningen används ett av de föreslagna stråken som illustration av typiska effekter, nämligen E4-sträckningen från Jönköping via Värnamo och Ljungby till Åkarp.

Som underlag för att utvärdera förslag ska den framtida utvecklingen om inte höghastighetsbanor byggs, så kallade nollalternativ,
beskrivs. Som utgångspunkt för nollalternativ används redan beslutade investeringar.
Utredningsalternativet att uppradera och bygga ut stambanorna, se avsnitt 6.2, betraktas i miljöbedömningen som en variant av nollalternativ. Det saknas dock underlag för närmare analyser av skillnaderna mellan nollalternativet och stambanealternativet respektive utbyggnad av höghastighetsbanor ur ett miljöperspektiv.

Underlag och metoder

Det parallella arbetet i delutredningarna innebär som tidigare nämnts att det inte har varit möjligt att integrera miljöbedömningen i processerna. Kontaktar har dock skett löpande mellan delutredningarna. Även den pågående nationella åtgärdsplaneringen, inklusive dess miljöbedömning, har gett betydelsefullt underlag. Även de förstudier och utredningar som gjorts för Götalandsbanan har gett viktigt underlag. Samråd har hållits med centrala förvaltningsmyndigheter för att få stöd i avgränsning och få underlag om prioriterade frågor.

7.7.4 Klimatpåverkan och energianvändning

Klimateffekter i noll- respektive höghastighetsalternativet

Effekter på utsläpp från persontransporter beror på graden av överflyttning av resor från flyg, långväga busstrafik och personbilstrafik. I höghastighetsalternativet ökar resandet med tåg kraftigt men utsläppen ökar endast i begränsad omfattning på grund av tågtrafikens höga energieffektivitet och eldrift baserad på fossilfria källor. Utsläppen från persontrafiken beräknas till omkring 0,45–0,6 miljoner ton mindre i alternativet med höghastighetståg jämfört med nollalternativet. Minskningen är ungefär lika stor från minskat
flygresande som minskat bilresande medan det minskade resandet
med långväga busstrafik endast ger ett marginellt bidrag. Minsk-
ningen motsvarar cirka 3–5 procent av dagens nationella koldioxid-
utsläpp från persontrafiken.

I alternativet med höghastighetsbanor minskar utsläppen av
koldioxid från godstransporter med uppskattningsvis 0,3–0,5
miljoner ton per år, jämfört med nollalternativen (utfallet beror
delvis på hur stor andel av godstransporterna med järnväg som
utförs med eldrift, den högre siffran förutsätter en hög andel). Det
motsvarar cirka 2–3 procent av hela transportsektorns nuvarande
utsläpp (2007).

Dessa beräkningar bygger på prognostiserad framtida trafik och
emissionsfaktorerna bygger på uppskattningar och antaganden.
Siffrorna ska därför ses som en fingervisning om Götalands- och
Europabanans effekter, inte som ett faktiskt utfall.

Som jämförelse kan nämnas att utsläppsberäkningar också har
gjorts i samband med framtagandet av samhällsekonomiska kalky-
ller inom ramen för utredningsarbetet, se kapitel 6. Resultaten av
dessa visar på en reduktion av koldioxidutsläppen i samma stor-
leksordning som ovan. Beräkningarna indikerar också minskade
utsläpp av andra hälso- och miljöpåverkande föroreningar.

Klimatteffekternas påverkan på den samhällsekonomiska
calkylen beror bland annat av värdningen av koldioxidutsläppen.
På grund av investeringens långa livslängd kan värdningen komma
att ändras, vilket påverkar kalkyresultatet.

Marginalel

Trots den kraftiga ökningen av tågets transportarbete i höghastig-
hetsalternativet är tågtrafikens bidrag till koldioxidutsläppen
mycket litet i exemplet ovan. Orsaken till detta är tågets energief-
fevitivitet och dagens användning av i huvudsak fossilfri el för
framdriften. Naturvårdsverket rekommenderar som möjligt inter-
vall ett kalkylvärde av 160 kg per megawattimme (MWh)–500 kg
per MWh för koldioxidutsläpp från elproduktion 2030. Det högre
kalkylvärdet tillsammans med övriga redovisade antaganden om
tågets energiförbrukning och trafikprognoser resulterar i att kol-
dioxidutsläppsminskningarna med höghastighetsalternativet
potentiellt reduceras från cirka 1 miljon ton per år till cirka 0,6
miljoner ton per år jämfört med nollalternativen.
Energinvändning

Enligt Energimyndigheten motsvarar transportsektorns energianvändning en fjärdedel av Sveriges totala energianvändning och uppgick år 2008 till 128 terrawattimmar (TWh). 95 TWh var inrikestransporter. Järnvägens energianvändning uppgår till 2,8 TWh per år. Figur 7.2 illustrerar energianvändningen fördelad på olika trafikslag.

Figur 7.2 Energinvändning per trafikslag, inrikes transporter år 2008

![Diagram](image.png)

Källa: Statens energimyndighet.

Förutom till framdrift använder järnvägstrafiken elektricitet även till exempelvis belysning, signaler och växelvärme, medan diesel används i vissa spår- och vägfordon i järnvägssystemet. Vägfordon och arbetsredskap som används vid underhåll av järnvägen använder bensin och diesel.

Fördelat på person- och godstrafik uppgick energianvändning på statens spåranläggningar till 936 respektive 974 gigawattimmar (GWh) per år 2006. Omräknat till personkilometer och bruttotonkilometer motsvarar detta 0,0976 kilowattimmar (kWh) per personkilometer respektive 0,044 kWh per tonkilometer (Banverket). Figur 7.3 och 7.4 illustrerar energianvändning per transportkilometer för olika trafikslag.
Nya höghastighetsbanor möjliggör en överflyttning av resande till tåg från andra, mer energikrävande transportslag såsom bil, buss och flyg. Detta innebär en minskning av den totala energianvändningen.

Framtidens tåg kan komma att kräva mer energi eftersom hastigheterna är högre och luftmotståndet därigenom större. Samtidigt förbättrar teknikutvecklingen tågens prestanda och energieffektivitet. Enligt en studie från Kungliga Tekniska högskolan...
(KTH) bedöms energiförbrukningen för tågtransporter på grund av troliga förbättringar 2025 för långväga persontransporter vara cirka 0,052 kWh per personkilometer och för godstransporter vara cirka 0,038 kWh per tonkilometer (Andersson, E. & Lukaszewicz, P., Energy Consumption and Related Air Pollution for Scandinavian Electric Passenger Trains, Report KTH/AVE 2006:46).

Tabell 7.4 Energianvändning persontrafik 2008

<table>
<thead>
<tr>
<th>Energianvändning med 30 % reduktion kWh/pkm</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tåg</td>
<td>0,052</td>
</tr>
<tr>
<td>Flyg</td>
<td>0,462</td>
</tr>
<tr>
<td>Bil</td>
<td>0,231</td>
</tr>
<tr>
<td>Buss</td>
<td>0,091</td>
</tr>
</tbody>
</table>

Källa: Banverket.

Tabell 7.5 Energianvändning godstrafik 2008

<table>
<thead>
<tr>
<th>Energianvändning med 30 % reduktion kWh/pkm</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tåg</td>
<td>0,038</td>
</tr>
<tr>
<td>Sjöfart</td>
<td>0,056</td>
</tr>
<tr>
<td>Lastbil</td>
<td>0,364</td>
</tr>
</tbody>
</table>

Källa: Banverket.

I figur 7.5 och 7.6 visas den beräknade förändringen i energianvändning som höghastighetsbanor förväntas ge genom överflyttning från andra trafikslag. För persontrafiken beräknas en minskning på cirka 1 350 GWh medan en minskning på cirka 2 440 GWh förväntas för godstrafiken. Det bör noteras att alla beräkningar av detta slag innehåller antaganden om framtiden och stora osäkerheter och att de snarare är en uppskattning av storleksordningarna, än en detaljerad prognos för energiförbrukningen.
Figur 7.5 Förändring i energianvändning mellan färdmedlen som en följd av höghastighetståg i Sverige

![Diagram showing energy use change for travel modes in Sweden due to high-speed trains]

Källa: Atrax Energi AB.

Figur 7.6 Förändring i energianvändning mellan färdmedlen som en följd av en utvecklad godstrafik på järnväg i Sverige

![Diagram showing energy use change for travel modes in Sweden due to developed freight rail]

Källa: Atrax Energi AB.

I figurerna ovan ingår inte byggnation, drift, underhåll, tillverkning och skrotening. Vid en jämförelse av energieffektiviteten för väg- och järnvägstransporter där endast framdriften inkluderas är järnvägstransport cirka fem gånger så energieffektiv som vägtransport. Om infrastrukturens energianvändning inkluderas (byggnation, drift, underhåll och rivning) reduceras detta förspräng till cirka två

Detta visar att sett till järnvägssystemet som helhet, trafikering och infrastruktur, så står järnvägsinfrastrukturen för en förhållandevis stor del av energiförbrukningen. Trots detta visar räkneexempen ovan att tillkomsten av höghastighetsbanor i Sverige har stor potential att reducera energianvändningen i transportsektorn. För att hålla nere järnvägens miljöpåverkan och minska de stora mängder energi som krävs för uppbyggnaden är det viktigt att välja rätt vad gäller järnvägssträckning, utformning, material och byggnedmetod.

Sammanfattning av klimatpåverkan

Transportsektorns andel av de svenska utsläppen av växthusgaser är i dag cirka 30 procent. Järnvägstransporterna står här för en till två procent. Effekterna på växthusgatsutsläppen av höghastighetsalternativet beror på graden av överflyttning av resor från andra trafikslag. Enligt beräkningar uppskattas höghastighetståg på kort sikt kunna minska transportsektorns koldioxidutsläpp (för både gods- och persontrafik) med i storleksordningen 1 miljon ton per år, vilket motsvarar cirka fem procent av transportsektorns nuvarande utsläpp, eller 7,5 procent med hänsyn till flygets större klimatpåverkan (utsläpp i stratosfären). Effekterna på längre sikt kan bli större, bland annat på grund av minskat bilinnehav längs med höghastighetsbanorna.

Vid bedömning av olika transportslags energiförbrukning bör inte endast framdriften beaktas, utan även byggnation, drift, underhåll, tillverkning och skrotning. Med ett sådant perspektiv sjunker järnvägens energieffektivitet relativt vägtransporters från att vara 5 gånger så effektivt till 2–3 gånger så effektivt.
7.7.5 Landskap och bebyggelse

Höghastighetsbanorna kommer att påverka såväl landskapet som bebyggelseutvecklingen på olika sätt. I detta skede av planeringsarbetet är det inte möjligt att närmare beskriva vilken påverkan som kan förväntas. I utredningen har i stället landskap och områden som är extra känsliga för de ingrepp som en ny järnväg innebär identifierats. I de städer som berörs ska den nya banan samspela med bebyggelseutvecklingen. Här kan en ny bana innebära såväl en möjlighet som en svårighet för planering och stadsutveckling.

Kulturhistoria och kulturarv

En analys av höghastighetsbanornas tänkta påverkan på kulturhistoria och kulturarv är svår att genomföra eftersom det är svårt att bedöma hur framtidens människor kommer att se på dagens kulturmiljö och det historiska kulturarvet. I miljöbedömningen har jag därför valt att fokusera på bebyggelsens historiska betydelse. I det följande diskuteras vilka typiska effekter höghastighetsbanorna kan ha på kulturhistoriska miljöer och annat kulturarv.

I några orter kan det bli aktuellt att anordna stationer och resecentrum i perifera lägen, till exempel i Nyköping, Värnamo, Ulricehamn och Bollebygd.

Precis som alla andra järnvägar (och vägar) kommer höghastighetsbanorna att fragmentera landskapet. Fragmentering och barriäreffekter är i princip negativa effekter, men betydelsen av effekterna varierar kraftigt. Förutom att lokaliserings- och utformningsspelar roll, kan effekterna punktvis förebyggas eller lindras genom passager, tunnlar eller överdäckningar.

Exempel på landskap som kan vara känsliga för påverkan av höghastighetsbanorna anges i bilaga 5.

Ekologi och biologisk mångfald

gäller för kulturmiljöerna, se bilaga 5, kan i stor utsträckning också vara relevanta när det gäller risker för den biologiska mångfalden. Därutöver finns ett antal områden som är av särskilt biologiskt intresse. Dessa återfinns också i bilaga 5.

Stads- och landskapsbild

I miljöbedömningen har analyserats hur höghastighetsbanorna kan komma att relatera till stads- och landskapsbilden. Hur höghastighetsbanorna kan komma att påverka stads- och landskapsbild beror av lokaliserings och utformning av banorna samt på andra förändringar av markanvändning och bebyggelse.

Några exempel på känsliga områden är

- Stockholm, särskilt innerstaden
- Trosaåns och Nyköpingsåns dalsträckor
- Kolmården, Getåravin och passagen mot Malmölandet
- Linköping
- Hålavedens mosaiklandskap
- Östra Vätternbranten
- Jönköping
- Dumme mosse och Komosse
- Åtradalen och Viskadalen
- Borås
- Rävlanda-Bollebygd
- Store mosse
- det sjörika landskapet söder och öster om Värnamo
- odlingslandskapet vid sjön Hinden
- sjön Bolmen med omgivningar av lövskog
- kustzonen vid Öresund.
Jämförelse med nollalternativet

Även om höghastighetsbanorna inte byggs ut kommer tågtrafiken att öka. Genom en sådan satsning som stambanealternativet som beskrivs i avsnitt 6.4 kommer utbyggnad och andra infrastrukturåtgärder att påverka såväl kulturmiljö som biologisk mångfald och landskapsbild.

7.7.6 Hälsa och befolkning

Miljörelaterade hälsoproblem förknippade med spårbunden trafik är främst ljudrelaterade. Luftföroringar, elektromagnetiska fält samt ljusstörning kan i vissa fall också vara av betydelse, men buller och vibrationer dominerar som miljörelaterade hälsorisker.

Överflyttning till tåg från personbil och flyg förväntas bidra med en minskning av utsläppen av kolväten, svavel- och kväve-oxider.

Socioekonomiska effekter och folkhälsa

En järnväg innebär emellertid i den mindre skalan en barriär för människors rörelsemönster och möjlighet att nyttja näraliggande omgivningar. För att mildra järnvägens barriäreffekter kan planskilda passager i form av broar eller tunnlar över eller under järnvägen byggas. Graden av konsekvens är beroende av antal planskilda passager, deras placering och utformning samt hur många

Störst förändring kommer att uppstå med de sträckningar på landsbygden som ligger förhållandevis långt ifrån befintlig infrastruktur, eftersom denna i sig är en så kraftig barriär. I lägen långt ifrån dagens barriärer kommer en ny barriär att upplevas som stor, även om befintlig vägstruktur behålls med hjälp av broar och tunnlar.

Buller från höghastighetsbanor

Transportsektorn orsakar i dag stora bullerproblem i Sverige. Ungefär två miljoner personer utsätts för bullernivåer från väg, järnväg eller flyg högre än riktvärden 55 decibel, dB(A) Leq (medelljudnivå), utanför sin bostad. Cirka 410 000 personer utsätts nattetid för bullernivåer från järnväg högre än riktvärden 45 decibel, dB(A) L max (maximal ljudnivå) inomhus.

Sömnstörningar anses vara en av de allvarligaste hälsoeffekterna av tågbuller. För att undvika sömnstörningar bör ljudnivån understiga Leq 30 dB(A) och L max understiga 45 dB(A). Risken för att väckas ökar med antalet bullerhändelser.

Buller från tågtrafik uppfattas ofta som mindre störande än buller från vägtrafik vid samma ljudnivå och sambanden med ohälsa är inte lika dokumenterat som för vägtrafikbuller. Järnvägsbuller är normalt mer högfrekvent än vägtrafikbuller vilket innebär att det inte leds lika långt och dämpas lättare. Det leder i sin tur till att ljudnivån inomhus blir lägre, även om bullret utomhus har samma nivå som från vägtrafik.

Höghastighetsbanan innebär dock dels en ny ljudkälla där den byggs, dels ger den högre hastigheten en högre andel högfrekvent ljud. Vilka skyddsåtgärder som är lämpliga för dessa fordon och banor bör utredas i detalj.

Rent allmänt bör skyddsåtgärder genomföras så att gällande riktvärden för buller (maximal ljudnivå 45 dBA inomhus nattetid samt maximal ljudnivå 70 dBA på uteplats) klaras.

Trots dessa åtgärder kommer tagen att upplevas störande särskilt utomhus vilket kan påverka natur- och kulturmiljöer och fri- luftsupplevelser. Omfattning och möjliga åtgärder bör studeras i kommande järnvägsplaneringsprocess.
De prognostiserade överflyttningseffekterna av trafik gör att frågan om framtidiga bullerstörningar blir mycket komplex och de totala effekterna vad gäller buller har inte varit möjlig att bedöma inom utredningens ram.

Vibrationer från höghastighetsbanor

Risken för störande vibrationer på grund av den nya järnvägen bedöms vara liten och inte lokaliseringsstyrande eftersom problemen bedöms kunna förebyggas med lämpliga byggnoder. Dock bör i det fortsatta arbetet utredas hur järnvägens underbyggnad lämpligast utformas liksom geotekniska förhållanden i utredningsområden. Detta bör göras i ett tidigt skede av planeringen.

Höghastighetsbanornas effekt på luftkvaliteten

Utsläpp av luftföroreningar är i dag ett problem både globalt och inom särskilt utsatta områden, som storstäder. Sverige har bland annat genom de nationella miljömålen åtagit sig att minska trafikens klimatpåverkan.

Tåg är ett bra transportmedel ur luftkvalitetssynpunkt. Överföring av transporter från andra trafikslag till tåg ger generellt en positiv effekt för luftkvaliteten och möjligheten att klara miljökvalitetsnormer ökar.

Det sker en spridning av partiklar från järnvägen i huvudsak i form av metaller från slitage i samband med järnvägstrafik och drift. Några källor är bromsar, hjul och räls samt kontaktledning och strömmättagare. Halten av de partiklar som sprids från järnvägen ligger under den norm för luftkvalitet som finns för att skydda människors hälsa (VTI rapport 538, 2006). Halterna på stationer i
tunnlar är däremot högre. Forskning pågår för att ta reda på om de är skadliga för människors hälsa.

Höghastighetsbanor och elektromagnetiska fält

Kring den strömförande utrustningen kommer elektromagnetiska fält att alstras, i första hand i anslutning till tågens drivmotorer. Påverkan från elektromagnetiska fält har debatterats flitigt under senaste åren främst av mobiltelefon, men även risker med exponering av elektromagnetiska fält i närheten av kraftledningar och transformatorstationer har uppmärksammat. De flesta studier som utförts har fokuserats på de högfrekventa och växlande magnetiska fälten då det är dessa som tros ge upphov till skadliga effekter. Resultaten från de studier som gjorts är motstridiga och det är svårt att se tydliga samband mellan magnetiska fält och negativa hälsoeffekter.

Banverket tillämpar den försiktighetsprincip som Internationella strålskyddskommissionen (ICRP) och övriga ansvariga myndigheter formulerat vilket innebär att Banverket ska ”planera, projektera och bygga statens spåranläggningar så att magnetfältet begränsas”. Denna försiktighetsprincip bör gälla även vid byggnation av höghastighetsbanor.

Den tekniska standarden för bana och fordon är ännu inte fastställt men troligen kommer de elektromagnetiska fälten som genereras av framtidens järnväg att vara i samma storleksordning som i dagsläget eller något lägre.

Järnvägens påverkan på människors exponering för elektromagnetiska fält bedöms vara liten och några hälsokonsekvenser bedöms inte uppkomma.

Vid kommande detaljprojektering bör dock förhållandena närmast omkring de strömförande ledningarna och transformatorerna kartläggas och de åtgärder som behövs beslutas i samråd med berörda miljömyndigheter. Man bör även göra en beräkning av de magnetiska fält som kan uppkomma i närheten av banan intill bebyggelse eller där folk stadigvarande vistas.
Höghastighetsbanor och risk och säkerhet

Olycksrisken i samband tågtransporter är mycket låg i jämförelse med andra trafikslag. Exempelvis är risken att omkomma i en tågolycka cirka 10 gånger lägre än i en vägtrafikolycka mätt per personkilometer.

Trots en stadigt ökande tågtrafik minskar antalet olyckor på det svenska järnvägsnätet. På höghastighetsbanorna kommer det inte att finnas några plankorsningar vilket reducerar riskerna ytterligare jämfört med dagens standard.

Höghastighetsbanorna dimensioneras inte för traditionella godståg, vilket innebär att transporter av tungt farligt gods inte planeras ske på banan.

Trots att sannolikheten för att en olycka inträffar är mycket låg för järnvägstransporter sker det olyckor. Genom att identifiera och bedöma risker i tidiga skeden ökar möjligheterna att genomföra kostnadseffektiva åtgärder för att reducera identifierade risker.

Den minskade vägtrafik som förväntas bli resultatet av höghastighetsbanorna påverkar också risk- och säkerhetsfrågorna. Någon bedömning av överflyttningseffekterna har inte gjorts inom ramen för utredningen av miljöeffekterna.

Jämförelse med nollalternativet

Järnvägsnätet kommer att byggas ut och kompletteras i befintliga lägen vilket innebär mindre barriäreffekter i nollalternativet. Även en utbyggnad av befintlig järnväg kommer att ge positiva effekter på folkhälsan enligt ovan.

Med en utbyggd kapacitet i befintliga sträckningar finns en risk för att bullerstörningarna förvärras i lägen som redan i dag har höga tågbullernivåer om inte åtgärder genomförs. Banverket har tagit fram ett åtgärdsprogram enligt förordningen om omgivningsbuller (2009–2013) för att minska bullerstörningarna från järnvägs-
trafiken. Åtgärdsprogrammet omfattar de järnvägssträckor som 2006 trafikerades av mer än 60 000 tåg. Åtgärdsprogrammet hanterar inte detaljerade åtgärder i enskilda kommuner eller för enskilda fastigheter, utan syftar till att sprida information om buller från järnväg, de möjligheter som finns att begränsa bullret samt informera om planerade bullerskyddsåtgärder.

En utbyggd kapacitet för person- och godstrafik kan leda till ökade vibrationer i redan utsatta lägen om inte åtgärder vidtas.

Nollalternativet innebär en ökad kapacitet i järnvägsnätet vilket leder till en viss överflyttning från andra trafikslag till järnvägs-transporter. Det leder i sin tur till minskade utsläpp av luftföroringar. Överflyttningseffekten (och minskningen av utsläpp) blir dock inte i samma storleksordning som i höghastighetsalternativet.

De elektromagnetiska fält som genereras av en järnvägstrafik i nollalternativet bedöms vara i samma storleksordning som i dagligheten eller öka något.

Slutsatser hälsa och befolkning

De finns positiva socioekonomiska effekter och effekter på folkhälso i båda alternativen genom förbättrade kommunikationer och en ökad rörlighet. Barriäreffekter uppträder i en ny lokaliserings nollalternativet. En höghastighetsbanan kan orsaka en annan typ av högfrekvent buller som dock inte sprids på långa avstånd men i en ny lokaliserings. Den speciella typ av buller höghastighetståg orsakar behöver utredas vidare. En utbyggnad i nollalternativet kan förvärva situationen både när det gäller buller och vibrationer för redan störda.

När det gäller luftföroringar innebär höghastighetsalternativet en större överflyttningseffekt från andra trafikslag till järnvägs-transporter än nollalternativet och därigenom till minskade utsläpp av luftföroringar. Frågan är dock komplex och utsläppen behöver kvantifieras mer noggrant.

Beträffande risk och säkerhet samt elektromagnetiska fält är skillnaden mellan alternativen svår att bedöma men slutsatsen är att risken är av mindre betydelse varför den inte påverkar valet mellan alternativen.
7.8 Koppling till det europeiska höghastighetsnätet

7.8.1 Kopplingen via Danmark

Integrationen i Öresundsregionen och den ökade efterfrågan på godstrafik och höghastighetstrafik genom Danmark kräver på sikt ytterligare en fast förbindelse över Öresund för att klara kapacitetsefterfrågan. En sådan förbindelse kan till exempel etableras mellan Helsingborg och Helsingör genom nya spår för både person- och godstrafik.

Förbindelsen mellan Helsingör och Köpenhamn utgörs i dag av en dubbelspårig järnväg, Kystbanen, som trafikerats med regionaltåg. Det är mycket tätt mellan stationerna på linjen vilket drar ned medelhastigheten på banan. Restiden Helsingör–Köpenhamn är 45 minuter.

Det finns i dag inga ambitioner, varken på regional eller nationell nivå, att upgradera Kystbanen eller bygga någon alternativ järnväg mellan Helsingör och Köpenhamn. Det finns dock samarbetsprojekt för att förbättra transportinfrastrukturen i Öresundsregionen. Där diskuteras olika lösningar både vad gäller fasta förbindelser och utbyggnader på båda sidor om sundet. Se vidare avsnitt 3.3.3.
Kastrup som viktig knutpunkt

Köpenhamn–Fehmarn

Nuvarande förbindelse från Köpenhamn till Rödby är bara delvis elektrifierad och på sista delen från Vordingsborg till Rödby är banan enkelspårig. I avtalet med Tyskland om förbindelsen över Fehmarn bält ingår att banan ska elektrifieras och till stor del utrustas med dubbelspår, se vidare avsnitt 4.7.2. Storstörömsbron kommer dock att förbliva enkelspårig vilket betyder att den också fortsättningsvis kommer att vara en flaskhals för tågtrafiken.

7.8.2 Kopplingen till Tyskland

Genom den fasta förbindelsen kommer restiden med tåg mellan Köpenhamn och Hamburg att minska med en timme från dagens 4,5 timmar till 3,5 timmar. Avståndet är 360 kilometer vilket innebär en medelhastighet på 100 kilometer i timmen.

Fehmarn–Lübeck–Hamburg

Från Lübeck till Hamburg finns elektriferat dubbelspår som är under uppradning till hastighetsstandarden 160 kilometer i timmen. Uppgradering och andra åtgärder som dubbelspår på vissa sträckor ska enligt plan färdigställas under 2009, se vidare avsnitt 4.7. På sträckan finns omfattande regionaltrafik och godstrafik som begränsar möjligheterna att köra höghastighetståg med de restider som eftersträvas.

Vid Hamburg Hauptbahnhof finns anknytningar till det tyska höghastighetsnätet med förbindelser mot bland annat Berlin, Hannover, Bremen och Köln.
Lübeck–Berlin

7.8.3 Godstrafiken

Utbyggnaden av nya spår mellan Skandinavien och Tyskland har även som syfte att öka kapaciteten för gods på järnväg.

7.8.4 Slutsatser kopplingen till det europeiska höghastighetsnätet

Det kommer att vara möjligt att köra genomgående höghastighetståg genom Danmark och Tyskland. Utsikterna att köra höghastighetståg i hastigheter över 250 kilometer i timmen är dock enligt min bedömning små. Däremot kan trafik i upp till 160 kilometer timmen ske med uppradering och kapacitetsförstärkning av befintliga banor genom Danmark och norra Tyskland.
Förslag till modell för genomförande och finansiering

8.1 Organisatorisk modell

Eftersom projektet befinner sig i ett mycket tidigt planeringsskede är de bedömningar och förslag som redovisas i detta avsnitt översiktliga och gjorda utifrån ett övergripande och principiellt perspektiv.

Mina bedömningar och förslag:

- Staten bör bilda ett projektbolag som samordnar de statliga insatserna och svarar för planering, projektering, upphandling och framtida förvaltning av avtal som avser höghastighetsbanorna. Bolaget bör bära statens risker i projektet och hantera bidrag från EU, regioner och kommuner.

- Projektbolaget bör upphandla byggande, drift och underhåll av banornas olika etapper av ett eller flera privata infrastrukturbolag.

- Infrastrukturbolagen bör svara för detaljprojektering, byggande, drift och underhåll av banorna.

- I det fall staten väljer att finansiera projektet via anslag eller lån till projektbolaget kan upphandling ske direkt via funktionsentreprenader utan bildande av särskilda infrastrukturbolag.

- Mark för byggande av banorna bör förvärvas av projektbolaget.

- Banverket bör på uppdrag av projektbolaget tilldelas kapacitet på höghastighetsbanorna inom ramen för det ordinarie tågplanearbetet.
Operatörerna bör betala en banavgift och en särskild avgift till projektbolaget som också fastställer storleken på avgifterna.

Godstransportoperatörerna bör betala en särskild banavgift till Banverket för att få tillgång till den kapacitet som frigörs på stambanorna.

Fordon för persontrafik på höghastighetsbanorna bör anskaffas och bekostas av respektive operatör.

Stationerna längs med banorna bör ägas och förvaltas av Jernhusen AB, andra fastighetsbolag eller av lokala aktörer som exempelvis kommuner. Stationerna bör organisatoriskt ligga utanför projektet. Detta förutom spår, plattformar, plattformsförbindelser och informationssystem som bör ingå i projektet.

Depåer för fordonsunderhåll bör inte ingå i projektet utan betraktas som en del av operatörernas ansvar.

Den totala anläggningskostnaden för projektet så som det avgränsats i avsnitt 6.5.1 beräknas uppgå till cirka 125 miljarder kronor.

Det bör noteras att eftersom projektet befinner sig i ett mycket tidigt planeringsskede är mina bedömningar och förslag översiktliga och gjorda utanför ett övergripande principiellt perspektiv. Förändringar i de antaganden jag har gjort påverkar också resultatet väsentligt. De känslighetsanalyser som redovisas i avsnitt 8.2.4 utgör därför en viktig del av den totala analysen.

I nedanstående figur lämnar jag förslag till hur en projektorganisation för att planera, bygga, driva och finansiera höghastighetsbanor skulle kunna utformas. Av figuren framgår ansvarsfördelningen mellan de olika parterna och de finansiella strömmar...
som genereras inom projektorganisationen. Följande aktörer ingår i modellen:

- staten via projektbolaget
- Banverket
- infrastrukturbolagen
- tågoperatörerna
- stations- och depåägarna.

Figur 8.1 Förslag till övergripande organisation för projektet med infrastrukturbolag
Finansieringen av projektet utgörs av avgifter från gods- och persontrafikoperatörer, privatfinansiering, medfinansiering från regioner och EU, anslag från staten alternativt lån via Riksgälden eller via obligationer med statlig garanti, se vidare avsnitt 8.2.5.

En tanke med organisationens rollfördelning är att riskerna i projektet ska bäras av den aktör som i störst utsträckning kan kontrollera och påverka den aktuella risken.

Om staten väljer att finansiera projektet via anslag eller lån kan projektbolaget upphandla byggnande direkt av befintliga entreprenörer i form av funktionsupphandlingar. Modellen skulle då kunna se ut som i figur 8.2 nedan. Vilken modell som väljs kommer sannolikt att bero på vilken riskfördelning som kan uppnås och kostnaden för denna.
I det följande beskrivs de olika aktörernas roller kortfattat. En utförligare beskrivning av vissa av aktörernas roller och samverkan mellan dessa återfinns senare i detta kapitel.

Staten

Banverket

Banverket administrerar banavgifterna från höghastighetsbanorna på uppdrag av projektbolaget. På uppdrag av projektbolaget sköter Banverket också kapacitetstilldelningen på höghastighetsbanorna inom ramen för det ordinarie tågplanearbetet.

Projektbolaget

Det statligt ägda projektbolaget driver och håller samman de statliga insatserna. Bolaget svarar för planering, projektering och upphandling av byggande, drift, underhåll och förvaltning av höghastighetsbanorna. Bolaget bär volymrisken för variationer i operatörernas banavgifter. I planerings- och projekteringsarbetet ingår att bolaget förvärvar den mark som behövs för banorna.

Bolaget är infrastrukturförvaltare vad gäller tilldelning av kapacitet och avgiftssättning samt äger infrastrukturen.

Bolaget har ett begränsat eget kapital och är därför beroende av statsliga garantier för att ta upp lån. Projektbolagets intäkter kommer från

- banavgifter och särskilda avgifter från operatörerna på höghastighetsbanorna
- ersättning från Banverket via anslag från staten.

De totala banavgifterna på höghastighetsbanorna beräknas till 0,33 kronor per personkilometer.

Antalet årsanställda i projektbolaget beräknas till cirka 250 personer fram till och med det att banorna tas i drift. Typen av kompetens som behövs inom bolaget kommer att variera under projektets gång. Initialt kommer merparten av bolagets anställda att arbeta med planeringsfrågor. Därefter kommer upphandlingsfrågorna att dominera och avslutningsvis inriktas arbetet mot att förvalta ingångna avtal.
Infrastrukturbolag
Infrastrukturbolag är det eller de bolag som av projektbolaget får i uppdrag att detaljprojektera, bygga, medfinansiera, underhålla och svara för driften av höghastighetsbanorna.
Beroende på vad som är fördelaktigast ur risksynpunkt kan det totala projektet delas upp i ett antal etapper. Efter färdigställandet svarar infrastrukturbolagen genom avtal med projektbolaget för drift och underhåll av banorna under en 30-årsperiod.
Infrastrukturbolagens finansiering utgörs av
• ägarkapital
• extern bankfinansiering
• lån från projektbolaget.
Bolagen behöver eget kapital och aktieägarlån motsvarande cirka 15 procent av balansomslutningen exklusive statlig finansiering vilket motsvarar cirka 7 miljarder kronor i 2008 års penningvärde. Avkastningskravet uppgår då till 12–14 procent.
Infrastrukturbolagens kostnader utgörs främst av kostnader för den egna organisationen samt kostnader för drift och underhåll av banorna samt av kapitalkostnader. Bolagen svarar för de reinvesterings som krävs under avtalstiden.

Tågoperatörer
Flera operatörer bedriver trafik på höghastighetsbanorna. Dessa finansierar allt rullande material genom till exempel leasing. Basat på anskaffningskostnaden för rullande material antas en kapitalstruktur med 25 procents ägarkapital. Den genomsnittliga vinstmarginalen uppgår till knapp 7 procent under hela avtalsperioden fram till 2054, givet att nivån på banavgifterna är 0,33 kronor per personkilometer.

Stations- och depåägare
Merparten av stationsanläggningarna ligger utanför själva projektet vad gäller investeringskostnaden. De delar som ingår i projektet är de som i dag är Banverkets ansvar, det vill säga plattformar, platt-

Depåerna drivs och finansieras helt av kommersiella aktörer och operatörerna slutar avtal med dessa.

8.2 Ekonomi och finansiering

Två grundmodeller har analyserats för finansieringen av höghastighetsbanorna:

- All finansiering exklusive medfinansiering från EU och kommuner/regioner sker direkt via staten eller indirekt via projektsbolaget.
- Den statliga finansieringen kompletteras med privat finansiering.

Mina bedömningar och förslag:

- Valet av alternativ, givet att det inte finns några restriktioner från statens sida att finansiera höghastighetsbanorna, avgörs av vilka risker staten kan flytta över till de privata aktörerna. Nuvärdet av den ökade kostnaden vid en privat finansiering beräknas till 16 miljarder kronor.
- En betydande andel av projektet kan privatfinansieras samt bekostas av trafikintäkter.
- Den finansiering jag föreslår baseras på medverkan från flera parter.
- Medfinansieringen från operatörerna bör utgå från de banavgifter som dessa kan bära. Beräkningar visar att intäkter från banavgifter möjliggör en finansiering på cirka 43 miljarder kronor.
- Medfinansieringen från berörda kommuner och regioner bör baseras på nyttan, främst i form av kortare restider. Min bedömning är att medfinansieringen från berörda kommuner och regioner kan uppgå till 19 miljarder kronor.
Medfinansieringen från EU har bedömts till 4 miljarder kronor.

Sammantaget bedöms den privata finansieringen och medfinansieringen från EU, kommuner och regioner uppgå till 53 procent av den totala investeringskostnaden.

Den statliga finansieringen, via anslag till Banverket, bedöms uppgå till 59 miljarder kronor vilket motsvarar 47 procent av den totala investeringen.

En upplåning via projektbolaget i enlighet med minna förslag påverkar enligt min bedömning inte summan av statens skulder.

Banavgifterna och en särskild avgift för att bekosta investeringen uppgår till 30 procent av persontrafikoperatörernas intäkter och beräknas uppgå till 0,33 kronor per personkilometer.

Tågoperatörerna finansierar sitt behov av rullande material. Den preliminära investeringskostnaden beräknas till 29 miljarder kronor.

Det finns betydande intäktsmöjligheter från trafiken på höghastighetsbanorna efter 2054 som inte har beaktats i kalkylen.

8.2.1 Generella antaganden för beräkningar

Följande generella antaganden ligger till grund för de beräkningar som har genomförts:

- Samtliga belopp avser, om inte annat anges, penningvärdet i juni 2008.
- Pristillväxten uppgår under hela perioden till 2 procent per år i enlighet med Riksbankens långsiktiga inflationssål.
- De prognsöver framtidiga trafikvolymer som ligger till grund för beräkningarna redovisas i avsnitt 6.5.2.
Prognoserna baseras på biljettpriser motsvarande nuvarande rea

ga genomsnittssintäkter per personkilometer för fjärrtåg. Genomsnittsintäkten uppgår till 1,11 kronor. Intäkterna på vissa internationella banor är betydligt högre.

Avtalstiden med infrastrukturbolagen är 30 år från det att full trafik etablerats 2025.

Banavgiften är utformad som en avgift per personkilometer och uppgår till 0,33 kronor per personkilometer. Detta motsvarar circa 30 procent av biljettintäkternas per kilometer.

Det finns stora intäktsmöjligheter från trafiken på höghastighetsbanorna efter 2054 som inte beaktas i kalkylen. Baserat på 2054 års intäkter uppgår detta värde före reinvesteringar till cirka 23 miljarder kronor (diskonterat nuvärde) baserat på 5,4 procents kalkylränta, och efter reinvesteringar till cirka 15 miljarder kronor.

Reinvesteringar i banorna fram till 2054 täcks av den årliga underhållskostnaden på 500 miljoner kronor.

8.2.2 Projektbolaget

Det statligt ägda projektbolagets ansvar omfattar planering, förprojektering, markåtkomst och anlitande av infrastrukturbolag. Under avtalsperioden hanterar projektbolaget kontrakt och avtal med tågoperatörer, samt agerar beställare och avtalspart gentemot infrastrukturbolagen. Projektbolaget fortsätter verka efter kalkylperioden, det vill säga efter 2054.

Intäkter

Banavgifterna för höghastighetsbanorna är baserade på vilken kostnad tågoperatörerna kan bära enligt de antaganden som redovisas i avsnitt 8.2.1. När all trafik är i gång, det vill säga 2025, beräknas dessa banavgifter årligen totalt inbringa 4,3 miljarder kronor (2025 års penningvärde).

Utöver banavgifter från persontrafik antas den utökade godstrafiken på stambanan – som möjliggörs till följd av att trafik flyttar över till höghastighetsbanorna – vara med och bidra med en spåravgift på 0,03 kronor per bruttotonkilometer. År 2025, när all
trafik är i gång, beräknas denna avgift totalt inbringa cirka 500 miljoner kronor årligen (i 2025 års penningvärde). Avgift och trafikvolym baseras på de prognoser som beskrivits i avsnitt 6.5.2.

Enligt gällande svensk lagstiftning och bakomliggande EG-direktiv är det infrastrukturförvaltaren som tar ut avgifter för utnyttjande av järnvägsinfrastrukturen. Det är även infrastrukturförvaltaren som, inom ramen för bestämmelserna i 7 kap. järnvägslagen, avgör nivån på avgifterna. Med beaktande av detta har det inom ramen för denna utredning inte varit möjligt att belysa om och på vilket sätt avgifterna i så fall skulle kunna komma projektbolagen till del.

Kostnader

Projektbolagets kostnader består i driftfasen i huvudsak av en årlig tillgänglighetsbaserad ersättning till infrastrukturbolagen. Ersättningen ska täcka infrastrukturbolagens kostnader för drift av banorna samt bolagens kapitalkostnader och vinstmarginal.

Investering och finansiering

Projektbolaget ombesörjer finansiering för den del av den totala investeringskostnaden för höghastighetsbanorna som inte medfinansieras av EU, regioner och infrastrukturbolagen. Detta under förutsättning att staten inte väljer att finansiera via anslag eller lån.

Projektbolaget kan till exempel finansieras med lån från Riksgälden eller utgivande av obligationer, EU-bidrag, regional medfinansiering samt eget kapital.

Valet mellan de båda alternativa avgörs av vilka risker som staten kan flytta över till infrastrukturbolagen samt om de ökade finansieringskostnader som detta medför kan motiveras med den uppnådda risköverföringen. Detta gäller under förutsättning att det inte finns några restriktioner vad det gäller statens förmåga att finansiera höghastighetsbanorna. Jag uppskattar att nivån för den valda finansieringslösningen blir cirka 16 miljarder kronor högre än vid en helt statlig finansiering. Detta om jag beaktar de antaganden jag gjort och skillnaden i kostnaden för offentlig och privat finansiering.

Som nämnts ovan baseras den finansieringslösning jag föreslår på att den privata medfinansieringen maximeras utifrån vad som kan bäras av banavgifter från operatörerna. Den privata finansieringen skulle dock kunna vara större om det kan motiveras från ett riskfördelningsperspektiv. Om privat finansiering ska användas bör storleken på denna fastställas när investeringens storlek, finansieringskostnaderna och projektets risker kan fastställas.

Initiativet antas projektbolaget ha en låg andel eget kapital, förslagsvis 1 miljon kronor, vilket innebär att det krävs statliga garantier för projektbolagets verksamhet.

8.2.3 Infrastrukturbolagen

I den modell jag föreslår sluter ett eller flera infrastrukturbolag avtal med projektbolaget. Uppgiften för infrastrukturbolagen är att på uppdrag av projektbolaget detaljprojektera, bygga samt driva och underhålla höghastighetsbanorna på projektbolagets mark. Infrastrukturbolagen medfinansierar investeringen.

Intäkter

Intäkterna baseras på den ersättning som projektbolaget betalar för höghastighetsbanornas tillgänglighet. Nivån på ersättningen är i förväg fastställd och garanterad av projektbolaget. Den tillgänglighetsbaserade ersättningen som projektbolaget betalar ska vara tillräcklig för att infrastrukturbolagen ska få en rimlig avkastning med hänsyn till de risker bolagen bär.

Projektbolaget antas lämna en ersättning till infrastrukturbolagen som motsvarar anläggningens planenliga restvärde vid avtalsperiodens slut. Restvärdet beräknas uppgå till knappt 15 miljarder kronor (2054 års penningvärde).

Kostnader

Avskrivningstiden för banan är initialt satt till i genomsnitt 40 år. Vissa delar bedöms ha mycket lång avskrivningstid, till exempel skrivs inte marken av alls, medan andra delar som spår- och elanläggningar bedöms ha kortare livslängd.

Den årliga underhållskostnaden för banorna uppskattas till cirka 500 miljoner kronor.

Bolaget betalar schablonskatt på 26,3 procent. Totalt under perioden bedöms skatten uppgå till knappt 30 miljarder kronor (löpande penningvärde).

Finansiellt resultat för infrastrukturbolagen

Av figur 8.3 nedan framgår hur infrastrukturbolagens intäkter förväntas utveckla sig under perioden 2023–2054. Intäkterna redovisas uppdelade på banavgifter från tågoperatörer som bedriver persontrafik på höghastighetsbanorna samt banavgifter från godstrafik. De senare avser de avgifter som Banverket förväntas ta ut för den frigjorda kapaciteten på Västra och Södra stambanan.
Finansiering och avkastningskrav

Vid privat finansiering av offentlig infrastruktur, så kallad offentlig–privat samverkan (OPS) uppgår det egna kapitalet, inklusive aktiekapital och aktieägarlån, i det privata bolaget i allmänhet till cirka 15 procent. Denna andel antas också gälla för infrastrukturbolagen.

Räntekostnaden för de externa lån en beräknas ligga 1,5 procentenheter över räntan på statsobligationer med en löptid på 30 år. Detta är en nivå som har kunnat observeras i liknande projekt. Det bör dock noteras att det i dagsläget inte är möjligt att få privat finansiering på längre löptid än cirka 5–10 år och det med betydligt högre lånmarginaler. Marknadsvillkoren för upplåning via kommersiella banker antas via upplåningsstiftelser ha återgått till en lägre nivå än vad som är aktuellt för närvarande. I nyligen genomförda OPS-projekt har upplåningsmarginalen uppgått till 2,5–4 procentenheter.
Avkastningskravet för bolaget behöver ligga i ett intervall mellan 12 och 14 procent. I mina beräkningar ingår ett avkastningskrav för infrastrukturbolagen på 13 procent.

Bidrag till finansiering av höghastighetsbanorna

Baserat på intäkter och kostnader samt avkastningskrav enligt ovan bör finnas utrymme för infrastrukturbolagen att bidra med finansiering av omkring 66 miljarder kronor av en investering på totalt cirka 169 miljarder kronor (löpande penningvärde inklusive aktiverade räntekostnader under byggtiden).

I 2008 års penningvärde innebär det att infrastrukturbolagen kan stå för knappt 43 miljarder kronor av den totala investeringen som beräknas till 125 miljarder kronor. Detta motsvarar cirka 34 procent av investeringskostnaden. Återstående summa, det vill säga 82 miljarder kronor, finansieras med hjälp av medfinansiering från kommuner, regioner och EU samt genom statlig upplåning. Tillsammans utgör medfinansieringen och den privata finansieringen 53 procent av det totala investeringsbeloppet.

Av nedanstående figur framgår hur finansieringen av infrastrukturbolagen kan utvecklas under perioden uppdelt på bank- och ägarfinansiering via aktieägarlån.

Figur 8.4 Infrastrukturbolagens finansiering i form av aktieägarlån och banklån, miljarder kronor

![Infrastrukturbolagens finansiering i form av aktieägarlån och banklån, miljarder kronor](image)

Källa: Öhrlings PricewaterhouseCoopers.
8.2.4 Operatörer

 För att kunna bedöma tågoperatörernas betalningsförmåga till banavgifter för att nyttja höghastighetsbanorna har jag beräknat operatörernas intäkter och kostnader. Intäkterna har redovisats under generella antaganden ovan. Här redovisas de antaganden som jag gjort om operatörernas kostnader och organisation.

Kostnader

Driftskostnaderna för tågoperatörerna består i huvudsak av kostnader för personal, underhåll av fordon, stationsavgifter och elkostnader. Därutöver tillkommer kostnader relaterade till anskaffning och finansiering av fordon.

Personalkostnader, elkostnader samt övriga kostnader har uppskattats med utgångspunkt från jämförelser med andra tågoperatörer, i huvudsak operatörer i konventionell trafik.

Anskaffningskostnaden för rullande material beräknas uppgå till cirka 29 miljarder kronor. Detta belopp är baserat på uppgifter från Bombardier Transportation Sweden AB och Alstom Transport AB och avser inköp av totalt 115 tåg med en genomsnittskostnad på cirka 250 miljoner kronor per tåg. Av dessa är 40 höghastighetståg och 75 interregionala snabbtåg, baserat på trafikprognoserna.

Fordonsinvesteringen finansieras genom leasingavtal som har en löptid motsvarande tågens livslängd, det vill säga 30 år. Leasingräntan antas vara 6,0 procent vilket motsvarar räntan på en 30-årig statsobligation med ett tillägg på 2 procentenheter. Restvärdet antas vara noll efter leasingperiodens slut. Löpande underhåll samt renovering av tåg finansieras av tågoperatörerna.

Underhållskostnaderna för rullande material uppgår till ungefär samma årliga belopp under tågens totala livslängd, och bedöms i genomsnitt uppgå till cirka 1 miljard kronor per år för hela fordonssflottan. Jag har antagit att mindre renoveringar och underhåll finansieras med egna medel, men att större renoveringar, som så kallade mid-life refurbishment, finansieras med externa lån.

Stationsavgifterna har beräknats utifrån den modell som beskrivits i avsnitt 7.4.4. Kostnaden per stationsstopp har beräknats till 400 kronor (2009 års priser). Det totala antalet stationsstopp har baserats på antaganden om antalet stopp per sträcka (9 stycken på
sträckan Stockholm–Göteborg, 10 stycken på sträckan Stockholm–Malmö) och antal tåg per timme och sträcka (två per timme i högtrafik, ett per timme i lågtrafik). Vid 8 timmars hög- respektive lågtrafik blir antalet tågstopp totalt 460 per dygn och antalet stationsstopp 166 500 per år.

Operatörerna betalar schablonskatt på 26,3 procent. Totalt under perioden bedöms den skatt operatörerna betalar uppgå till knappt 19 miljarder kronor i löpande penningvärde.

Nivån på banavgifterna för att använda höghastighetsbanorna beräknas som skillnaden mellan ovanstående intäkter och kostnader efter antagande om ett rimligt avkastningskrav. Nivån baseras på personkilometer vilket innebär en mindre framtreden del av modell än nuvarande system som baseras på bruttotonkilometer. Detta eftersom passagerarantalet antas vara lägre under de inledande åren.

Operativa avgifter

Med ovanstående förutsättningar bedöms operatörerna ha möjlighet att betala en banavgift motsvarande 0,33 kronor per personkilometer.

För den del av trafiken som går på befintliga banor, det vill säga närmast Stockholm, Göteborg och Malmö, gäller ordinarie banavgifter.

I avsnitt 2.6.2 har jag redogjort för banavgifter i övriga Europa. Jag kan konstatera att banavgifterna för höghastighetsbanor varierar mellan de olika länderna. De högsta avgifterna uppgår till 13,6 euro per tågkilometer.
Kapitalstruktur

Finansiellt resultat

Givet de banavgifter och övriga förutsättningar som jag beskriver ovan får operatörerna en genomsnittlig vinstmarginal (före skatt) på knappt 7 procent. Detta motsvarar en avkastning på eget kapital på knappt 15 procent.

Det är svårt att fastställa ett rimligt, marknadsmässigt avkastningskrav innan avtalsfrågor och slutliga kommersiella villkor är fastställda. Avkastningen är också beroende av kapitalstrukturen. Den beräknade avkastningen på 15 procent baseras på antagandet om finansiering via leasing, med ett begränsat ägarkapital. Om jag räknar med en mer traditionell finansiering av rullande material sjunker avkastningen på eget kapital till knappt 12 procent. I detta ligger ett antagande att två tredjedelar av investeringen lånefinansieras samtidigt som balansräkningen belastas med hela värdet av det rullande materialet.

Av nedanstående figurer framgår dels intäkter och resultat (efter finansnetto, exklusive kostnader för banavgifter), dels banavgifter i absoluta tal samt som andel av totala intäkter.

Som framgår av figur 8.6 medför den modell jag föreslår (banavgift baserad på personkilometer) initialt lägre banavgifter som sedan successivt växer i takt med trafikökningen.
Figur 8.5 Beräknade intäkter och beräknat resultat för tågoperatörer under perioden 2023–2054, miljarder kronor

Källa: Öhrlings PricewaterhouseCoopers.

Figur 8.6 Beräknade banavgifter för tågoperatörer under perioden 2023–2054, i procent av omsättning, miljarder kronor

Källa: Öhrlings PricewaterhouseCoopers.

Känslighetsanalyser

För att illustrera de finansiella effekterna av alternativa nivåer på banavgifterna på höghastighetsbanorna har jag låtit genomföra en känslighetsanalys. Resultaten av analysen sammanfattas i tabell 8.1 nedan. Övriga parametrar, förutom banavgifternas andel av de totala intäkterna, är oförändrade.
Tabell 8.1 Känslighetsanalys för olika nivåer på banavgifterna

<table>
<thead>
<tr>
<th>Banavgifter, procent av intäkter</th>
<th>25%</th>
<th>30%</th>
<th>35%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genomsnittlig vinstmarginal före skatt</td>
<td>11,8%</td>
<td>6,6%</td>
<td>0,5%</td>
</tr>
<tr>
<td>Avkastning eget kapital (IRR)</td>
<td>18,8%</td>
<td>14,7%</td>
<td>10,3%</td>
</tr>
</tbody>
</table>

Källa: Öhrlings PricewaterhouseCoopers.

Som framgår av tabellen har analyser genomförts med nivåer på banavgifter i intervallet 25–35 procent av operatörernas intäkter. Om banavgifterna motsvarar 25 procent av intäkterna, uppnås en genomsnittlig vinstmarginal före skatt på cirka 12 procent och en avkastning på eget kapital på cirka 19 procent för operatörerna.

Om banavgifterna uppgår till motsvarande 35 procent av intäkterna sjunker den genomsnittliga vinstmarginalen före skatt till knapp 1 procent, vilket ger en avkastning på eget kapital på cirka 10 procent.

Eftersom avkastningen är beroende av kapitalstrukturen och sättet att finansiera rullande material, bör det påpekas att nivåerna och effekterna av variationer i banavgifterna är osäkra.

Känslighetsanalyser har även genomförts av variationer i biljettpris och driftskostnader. Om tågoperatörerna kan få ett biljettpris som i genomsnitt är 10 procent högre än de jag antar och dessa intäkter i sin helhet slussas vidare till infrastrukturbolaget, ökar den privata medfinansieringen av projektet från 66 miljarder kronor (löpande penningvärde inklusive aktiverade räntekostnader under byggtiden) till 90 miljarder kronor. Om intäkterna blir 10 procent lägre får detta motsvarande negativa effekt på den privata medfinansieringen.

Tågoperatörernas kostnader antas till största delen vara relativt fasta vilket gör att motsvarande effekt även kan förväntas vid mindre förändringar i trafikvolymen.

Om tågoperatörernas driftskostnader har överskattats med 15 procent och effekten i sin helhet slussas vidare till infrastrukturbolagen, ökar utrymmet för den privata medfinansieringen till 83 miljarder kronor.

På motsvarande sätt kan den privata medfinansieringen öka till 83 miljarder kronor om investeringskostnaden för inköp av tåg överskattats med 20 procent.
8.2.5 Sammanfattning av finansieringen av hela projektet

Som tidigare nämnts finns det två huvudalternativ för den totala finansieringen av höghastighetsbanorna. Det ena alternativet innebär att all finansiering, exklusive medfinansiering från EU, regioner och kommuner, sker på traditionellt vis av staten, direkt eller indirekt via projektbolaget. Om detta alternativ väljs bedömer jag att det inte behövs några infrastrukturbolag utan att byggande och underhåll i stället genomförs som funktionsentreprenader.

Det andra alternativet är att den statliga finansieringen kompletteras med privat medfinansiering. I denna finansieringsmodell sker privat upplåning via infrastrukturbolagen och projektbolagets finansiering minskar i motsvarande mån. Modellen baseras på att den privata medfinansieringen maximeras med hänsyn till hur stor andel av investeringarna som kan bäras av banavgifter från tågoperatörerna.

Under förutsättning att det inte finns några restriktioner vad gäller statens förmåga att finansiera höghastighetsbanorna, avgörs valet mellan dessa alternativ av vilka risker staten kan flytta över till infrastrukturbolagen och om de ökade finansieringskostnaderna som detta medför kan motiveras med den uppnådda risköverföringen. Nuvärdet av finansieringskostnaderna för finansieringslösningen med delvis privat kapital beräknas bli cirka 16 miljarder kronor högre än vid en helt statlig finansiering.

En bedömning av hur stort inslaget av privat medfinansiering bör vara går att göra när mer detaljerade analyser av investerings- och finansieringskostnaderna samt projektriskerna har tagits fram.

Medfinansiering av privata parter

De banavgifter som tågoperatörerna betalar bedöms ge infrastrukturbolagen möjlighet att ta lån under byggtiden motsvarande 56 miljarder kronor i löpande penningvärde inklusive räntor. Vidare förväntas bolaget kunna förränta drygt 3 miljarder kronor i eget kapital och drygt 6 miljarder kronor i aktieägarlån.

En projektfinansiering av ett så stort enskilt projekt har aldrig tidigare prövats och erfarenheter från Storbritannien visar att möjligheterna för privat finansiering historiskt uppgått till motsvarande cirka 24 miljarder kronor. I det nuvarande finansiella läget antas möjligheten att finansiera delar av investeringen med privata medel att uppgå till 12–18 miljarder kronor. Givet storleken på finansieringsbehovet krävs ett stort antal banker och andra aktörer, till exempel pensionsstiftelser och livbolag. Utöver de nordiska bankerna kommer det att krävas att ett flertal internationella banker deltar i finansieringen.

Flertalet av de banker som är aktiva när det gäller finansiering av större infrastrukturprojekt är inte aktiva på den nordiska marknaden, vilket försvårar möjligheten att få finansiering. Det faktum att
dessa banker i dag inte är exponerade mot den nordiska marknaden kan dock påverka deras vilja att medverka i positiv riktning.

Följande förutsättningar har identifierats som centra för att skapa möjligheter för att nå den beräknade privata lånefinansieringen:

- Europeiska investeringsbanken (EIB) och Nordiska investeringsbanken (NIB) ställer upp med en grundfinansiering med lång löptid.

- Ett stort antal privata affärsbanker och livförsäkringsbolag ställer upp med resterande finansieringsbehov. Löptiden för dessa lån, möjlichen med undantag för livbolagens lån, löper i nuläget på kortare tid än EIB:s och NIB:s lån. Finansieringen kan ske genom att
 - lånet beviljas för hela projektet, det vill säga att både Götalandsbanan och Europabanan finansieras tillsammans
 - finansieringen delas upp i mindre delprojekt.

För privat finansiering krävs att staten från början garanterar att samtliga etapper genomförs samt att riskerna fördelas på ett lämpligt sätt mellan staten och den privata parten.

Refinansieringen av lån för mindre delprojekt bör normalt sett vara enklare än den ursprungliga finansieringen genom att byggriskerna inte längre är aktuella. En refinansiering till lägre ränta är därför att förvänta i normalfallet. En statlig refinansieringsgaranti kan dock behövas för att säkerställa att refinansiering kan ske vid onormala förhållanden på kreditmarknaderna.

Medfinansiering från regioner och kommuner

Medfinansiering av stationer baseras på den princip som tillämpats tidigare, det vill säga att staten har huvudansvaret för banorna och att kommuner, regioner och fastighetsägare svarar för stationsanläggningen.

Förslaget till medfinansiering av banorna baseras på en samhällsekonomisk bedömning av vilka nyttor som skapas i de aktuella regionerna baserat på bland annat de restidsvinster som uppkommer till följd av etableringen av höghastighetstrafik.

Vid byggandet av Citybanan i Stockholm bidrar regionerna utanför Stockholmsområdet med 20 procent av infrastrukturkostnaden exklusive stationer. Jag har i mina beräkningar av den regionala medfinansieringen av höghastighetsbanornas infrastruktur uppskattat bidraget från kommuner och regioner till 15 procent exklusive kostnader för stationer.

Medfinansiering genom EU-bidrag

Projekt som gäller etablering av höghastighetsbanor i Europa har, fram tills nu, fått omfattande stöd från EU. Detta har särskilt gällt projekt som legat centralt i Europa och där flera länder varit inblandade. Mot bakgrund av att det här projektet inte ligger centralt i Europa och endast är nationellt, det vill säga inte bedrivs tillsammans med något annat EU-land, har jag valt en lägre stödnivå i beräkningarna.

Jag har valt att beräkna EU-stödets storlek till 3 procent eller knappt 4 miljarder kronor. Det bör dock understrykas att beräkningens osäker och att stödet helt kan falla bort i ett nytt system.
Statlig finansiering

Den del som inte täcks av EU-bidrag, medfinansiering från regioner och kommuner samt privat medfinansiering beräknas uppgå till 59 miljarder kronor.

För att attrahera kapital och byggningskonsortier för de olika delprojektten bör staten i ett tidigt skede fatta beslut om att hela projektet ska genomföras, samt garantera sin del av finansieringen för samtliga delprojekt.

8.3 Risker och riskhantering

En central fråga i genomförandemodellen är vilka risker som finns i projektet och hur dessa via avtal kan fördelas mellan berörda parter. Hur riskerna fördelas mellan staten och de privata parterna kommer att påverka respektive parts kostnader och därmed också ersättningsbehovet. En optimal riskfördelning, där den part som är bäst lämpad att hantera en viss risk också bär den aktuella risken, minimerar den totala riskkompensationen.

Efterhand som projektet utvecklas ökar också möjligheterna att bedöma vilka risker som kan överföras till den privata sidan och vilka som bör hanteras av staten.

8.3.1 Tågoperatörer

Banavgifterna är begränsade till en fast avgift per personkilometer, vilket innebär att volymrisken avseende banavgifter
(intäkter till projektbolaget) inte ligger på tågoperatörerna. Projektbolaget tar risken att banavgiften inte blir tillräcklig för att täcka kostnaderna för den tillgänglighetsbaserade ersättningen till infrastrukturbolagen.

De prognoser som gjorts för trafikvolymerna på höghastighetsbanorna innebär en stor tillväxt. Den prognostiserade utvecklingen stöds av svenska och internationella erfarenheter av volymtillväxt vid förbättrad tågtrafik.

Biljettpriserna per personkilometer motsvarar nuvarande priser i Sverige. Internationellt ligger priserna på en högre nivå.

Kostnaden för investeringar i rullande material är baserad på aktuella priser från tillverkarna. Enligt min uppfattning kan dessa bli lägre till följd av teknikutvecklingen. Potential kan därför finnas att minska investeringsbehovet, vilket skulle öka tågoperatörernas lönsamhet och därmed öka deras möjligheter att betala banavgifter.

Risker relaterade till anskaffnings- och underhållskostnader för rullande material kan reduceras eller elimineras genom avtal med leverantörer av rullande material. Jag konstaterar också att fordonens utformning sker inom ramen för de europeiska bestämmelserna om driftskompatibilitet. Detta borde enligt min uppfattning reducera restvärdesrisken.

Ett tänkbart upplägg kan också vara att tågoperatörerna betalar en årlig avgift till leverantören av rullande material som under avtalsperioden förbinder sig att ansvara för tillgängligheten till tåg, inklusive nödvändigt underhåll.

8.3.2 Infrastrukturbolag

Intäkterna från banorna behöver vara garanterade av det statliga projektbolaget så att riskerna i infrastrukturbolagen minskar. Detta möjliggör en högre belåningsgrad i infrastrukturbolagen.

Bolaget kommer även att bära en betydande risk när det gäller finansieringskostnaderna och den refinansiering som kommer att behöva ske under avtalsperioden.

Viss risk finns också när det gäller underhållskostnaderna efter som drifterfarenhet av höghastighetsbanor saknas i Sverige. Förhållanden i Sverige skiljer sig något från flertalet andra länder i Europa när det gäller banunderhåll främst på grund av de vinterförhållanden som råder under en betydande del av året.

8.3.3 Staten

Med tanke på projektets totala byggkostnad skulle de samlade kostnaderna för riskerna bli mycket stor. Mot bakgrund av den betydande byggrisken samt de osäkerheter som finns vid uppförandet av nya höghastighetsbanor, är min nuvarande bedömning att den privata parten inte kan åläggas samtliga risker förknippade med uppförandet. En sådan lösning skulle samtidigt bli dyr för staten, då den privata parten skulle kräva betydande riskkompensation.

Staten bör därför bära följande risker:

- Finansieringsrisker för statens del av finansieringen. Ökar investeringskostnaderna till 150 miljarder kronor så ökar den årliga finansieringskostnaden till 4,9 miljarder kronor. Om investeringskostnaden sjunker till 100 miljarder kronor blir den årliga finansieringskostnaden 2,0 miljarder kronor.

• Tillstånds- och miljörisker. Staten kan bäst påverka dessa risker och få privata aktörer vågar ta på sig dem.

I det nuvarande tidiga utredningsläget är det osäkert hur man bedömer storleken på bidragen när det gäller finansieringen av höghastighetsbanorna från tågoperatörer, regioner och EU samt finansieringsbehovet totalt sett.

Jag har antagit att infrastrukturbolagen bär en betydande del av byggriskerna och alla driftrisker. Detta skulle enligt de antaganden som jag redovisat innebära att nuvärden av finansieringskostnaderna ökar med cirka 16 miljarder kronor jämfört med en helt statlig finansiering. Denna merkostnad kan bli både högre och lägre beroende på finansieringsförutsätningarna vid upphandlingen av infrastrukturbolagen. Merkostnaden bör jämföras med kostnaden för de risker som staten överför till bolagen.

8.3.4 Sammanfattning av riskfördelning

Av nedanstående tabell framgår hur riskfördelningen skulle kunna bli mellan den offentliga sektorn (huvudsakligen staten), infrastrukturbolagen och tågoperatörerna.

En betydande positiv effekt för staten är att staten disponerar över marknadsvärdena av banorna vid kalkylperiodens slut. Detta värde torde vara väsentligt högre än det bokförda värde som beaktats i kalkylen.
Tabell 8.2 Omfattningen av de risker som bärs av offentlig sektor, infrastrukturbolag och tågoperatörer

<table>
<thead>
<tr>
<th>Risker</th>
<th>Offentlig sektor</th>
<th>Infrastrukturbolag</th>
<th>Tågoperatör</th>
</tr>
</thead>
<tbody>
<tr>
<td>Underhållskostnad av banan</td>
<td>Låg</td>
<td>Medel</td>
<td>Låg</td>
</tr>
<tr>
<td>Risk avseende anskaffning, drift och underhåll av rullande material. Risken kan minskas genom avtal med leverantörer</td>
<td>Låg</td>
<td>Låg</td>
<td>Hög</td>
</tr>
<tr>
<td>Trafikrisken (volym och pris)</td>
<td>Hög</td>
<td>Låg</td>
<td>Hög</td>
</tr>
<tr>
<td>Risk avseende att färdigställa banan i tid och till rätt kostnad</td>
<td>Medel</td>
<td>Hög</td>
<td>Medel</td>
</tr>
<tr>
<td>Risk avseende finansiering och refinansiering av infrastruktur</td>
<td>Hög</td>
<td>Hög/medel</td>
<td>Låg</td>
</tr>
<tr>
<td>Risk avseende finansiering och refinansiering av rullande material</td>
<td>Låg</td>
<td>Låg</td>
<td>Hög</td>
</tr>
<tr>
<td>Risker relaterade till markinlösen</td>
<td>Hög</td>
<td>Låg</td>
<td>Låg</td>
</tr>
<tr>
<td>Tillstånds- och miljörisker</td>
<td>Hög</td>
<td>Låg</td>
<td>Låg</td>
</tr>
</tbody>
</table>

Källa: Öhrlings PricewaterhouseCoopers.

8.4 Kapacitetstilldelning på banorna

Mina bedömningar och förslag:

- Projektbolaget bör vara infrastrukturförvaltare när det gäller tilldelning av kapacitet och avgiftssättning.
- Banverket bör på uppdrag av projektbolaget sköta kapacitetstilldelningen på höghastighetsbanorna inom ramen för det ordinarie tågplanearbetet.
- Trafikoperatörer bör få rätt till kapacitet för åtminstone 10 år eller längre mot bakgrund av de mycket omfattande investeringarna i rullande material.

Projektbolaget kommer i det förslag till organisation som beskriver ovan bli den som är infrastrukturförvaltare för höghastighetsbanorna vad gäller kapacitetstilldelning och avgiftssättning.

Bolaget bör ge Banverket i uppdrag att inom ramen för det ordinarie tågplanearbetet fördela kapaciteten på höghastighetsbanorna. Mot bakgrund av det tänkta trafikupplägg som beskrivits i avsnitt 6.5.2 är det av stor vikt att trafiken på höghastighetsbanorna
Förslag till modell för genomförande och finansiering

SOU 2009:74

blir en del av det totala järnvägssystemet. På en avreglerad marknad kommer det att vara upp till operatörerna att planera trafikupplägget för den egna trafiken men genom tågplanearbetet kommer en samordning att ske mellan olika operatörer.

I avsnitt 2.5 har jag tidigare redogjort för de förslag om att öppna marknaden för persontrafik på järnväg som riksdagen beslutat om under våren 2009. Här redogörs också för regeringens överväganden kring formerna för kapacitets tilldelning och hur denna process bör utvecklas.

Av 6 kap. 19 § järnvägslagen framgår att ett tågläge ska tilldelas för en tågplaneperiod i taget. Infrastruktur förvaltaren ska upprätta en tågplan en gång per kalenderår.

Som nämnts ovan, avsnitt 7.2, är mitt förslag att den enskilde operatören ska stå för att införa fordon. För att det vara möjligt för operatörerna att hantera den risk som denna investering innebär är det enligt min mening uppenbart att rätten att trafikera banorna måste sträcka sig längre än en tågplaneperiod.

I 6 kap. 21 § järnvägslagen finns en regel om ramavtal. Av denna framgår att ett avtal mellan ett järnvägsföretag och en infrastruktur förvaltare om att utnyttja infrastruktur och som sträcker sig över mer än en tågplaneperiod inte kan gälla ett specifikt tågläge. Ett sådant avtal får heller inte utesluta andra sökandes rätt att utnyttja infrastrukturen.
Min sammantagna bedömning är att givet att man inte tilldelar operatören ett specifikt tågläge eller på annat sätt utformar ramavtalet så att det hindrar andra operatörer från att använda den aktuella infrastrukturen bör det vara möjligt för infrastrukturförvaltaren att teckna ramavtal för en längre period med operatörerna.
Mina bedömningar och förslag:

- Ett särskilt projektsbolag samordnar planering, finansiering, upphandling, byggande, avtalshantering och trafikstart.
- Byggande av en ny höghastighetsbana påverkar både person- och godstrafiken men på olika sätt. Effekten för persontrafiken uppstår omedelbart när en etapp är klar medan effekten för godstrafiken och den fulla avlastningseffekten kommer först när systemet är klart.
- Utbyggnaderna bör delas upp i ett antal block om 100–160 kilometer nya dubbelspår för höghastighetstrafik enligt nedanstående preliminära uppdelning:
9.1.1 Den fysiska planeringsprocessen

Den fysiska planeringsprocessen för järnvägar som anläggs i ny sträckning regleras av lagen om byggande av järnväg samt miljöbalken. Ett syfte med planeringsprocessen är att förankra planeringen av järnvägar i den regionala och kommunala planeringen samt ge möjligheter till insyn och påverkan för dem som berörs i olika skeden. Planeringsprocessen syftar även till att väga olika allmänna och enskilda intressen samt att åstadkomma ett effektivt och rättssäkert plan genomförande.

Planeringen av järnvägen ska ske genom ett antal lagreglerade planeringsskeden: förstudie, järnvägsutredning, eventuell tillåtlighetsprövning och järnvägsplan. Av figur 9.1 nedan framgår planeringsprocessens olika delar.

Figur 9.1 Den fysiska planeringsprocessen

Källa: Banverket.

Förstudie

Förstudien syftar till att klargöra förutsättningarna för den fortsatta planeringen. I förstudiearbetet identifieras och prövas tänkbbara alternativ för att få fram lösningar som anses vara genomförbara. Förstudien ska innehålla en översiktlig beskrivning av de
olika förslagens förmodade miljöpåverkan. Vid utarbetandet av förstudien ska också den som avser att bygga en järnväg enligt miljöbalken samråda med berörda länsstyrelser, kommuner och ideella föreningar (som enligt sina stadgar ska ta till vara naturskydds- eller miljöskyddsintressen) samt med den allmänhet som kan antas bli särskilt berörd. Efter samråd ska länsstyrelsen, inom vars område järnvägsprojektet i huvudsak ska utföras, pröva projektets miljöpåverkan. När förstudiarbetet leder till flera alternativa sträckningar ska en järnvägsutredning genomföras.

Järnvägsutredning

I arbetet med järnvägsutredningen prövas, analyseras och utvärderas de alternativ som bedömts genomförbara i förstudien. Alternativen och deras konsekvenser ska redovisas i syfte att utgöra underlag för val av alternativ. Även i arbetet med järnvägsutredningen ska samråd enligt miljöbalken ske med bland annat länsstyrelsen, tillsynsmyndighet (Transportstyrelsen) och enskilda som är särskilt berörda. Järnvägsutredningen ska innehålla en miljökonsekvensbeskrivning (MKB) som ska godkännas av berörd länsstyrelse. Godkänd MKB ställs ut för granskning, vanligtvis tillsammans med hela den genomförda järnvägsutredningen.

Tillåtlighetsprövning

Större järnvägsprojekt ska tillåtlighetsprövas av regeringen enligt 17 kap. miljöbalken, innan en järnvägsplan kan tas fram. Prövningen utgår från den lösning som väljs i järnvägsutredningen. Tillåtlighetsprövningen bör ske i ett tidigt skede av planeringsprocessen då lokaliseringen av järnvägen inte blivit för låst och innan alltför stora resurser lagts ner på projektering. Tillåtlighetsärenden handläggs inom Miljödepartementet och bereds gemensamt med berörda departement.

Järnvägsplan

I järnvägsplanen redovisas detaljlokaliseringen av spåren, vilka skyddsåtgärder som ska utföras och vilken mark och vilka fastigheter som berörs. Järnvägsplanen ska innehålla en MKB som god-

Planering och byggande av järnvägar omfattas även av miljöbalken. Vid planering och byggande ska därför de allmänna hänsynsreglerna i 2 kap. och hushållningsreglerna i 3 och 4 kap. miljöbalken tillämpas, se även avsnitt 7.7.

Planeringsprocessen för byggande av järnväg är som synes komplex och det finns flera exempel på järnvägsprojekt där planeringsarbetet och beslutsprocessen från begäran om tillåtlighetsprövning till lagakraftvunnen järnvägsplan tagit sex till åtta år.

9.1.2 Möjligheter att effektivisera planeringsprocesserna

I min utredning har jag studerat planeringsprocesserna för att finna möjligheter till effektivisering inom ramen för gällande lagstiftning. Tydligt är att planeringsprocesserna behöver förenklas och samordnas på olika nivåer. I det följande diskuterar olika möjliga åtgärder för att åstadkomma en mer effektiv planeringsprocess för höghastighetsprojektet.

Nationella ställningstaganden

För att planeringsprocessen av en utbyggnad av höghastighetsbanor ska kunna ske på ett optimalt sätt behövs ett nationellt politiskt ställningstagande om projektet. Helt avgörande för att projektet ska kunna genomföras är ett samlat beslut om utbyggnad av höghastighetsbanor. Finansieringen av projektet måste också klargöras i samband med detta beslut.

För att stärka genomförandet behövs också ställningstaganden om

- höghastighetsbanans ändamål, för att stärka implementeringen och få till stånd en tidig debatt om förutsättningarna
- miljöambitionerna i höghastighetssystemet, för att hålla ihop beslutsprocesserna i genomförandet.

En avgörande punkt för genomförande av utbyggnad av höghastighetsbanor är att ändamålen för banan fastställs. Ändamålen avgærsar miljöbalkens lokaliseringskrav (endast platser där projektets ändamål kan nås behöver övervägas) och utgör utgångspunkt för avvärningar och rimlighetsbedömningar i övrigt. Ändamålen ges delvis av direktiven till denna utredning, till exempel att höghastighetsbanan ska bidra till att uppfylla de transportpolitiska målen. Det finns dock en risk för målkonflikter vid planering av transportinfrastruktur. Arbetet med åtgärdsplaneringen har till exempel visat att ökad tillgänglighet kan motverka mål för klimat
och miljö. För att tidigt kunna påverka planeringen behövs besked om prioritering vid målkonflikter, antingen genom ställnings-
tagande från riksdagen eller genom regeringens uppdrag till trafikverken. Enligt Naturvårdsverket kan regeringen inte uppdra åt
myndigheterna att komma överens på ett sätt som åsidosätter krav
på prövning enligt miljöbalken annat än genom att riksdagen lag-
stiftar om att miljöbalken inte ska tillämpas i detta fall.

Överhuvudtaget är det avgörande för att utbyggnaden av hög-
hastighetsbanor ska kunna genomföras på relativt kort tid att
staten aktivt och kraftfullt stödjer projektet. Helst bör statens
aktiviteter organiseras så att alla nivåer, det vill säga regeringen och
departementen, centrala myndigheter och länsstyrelser, kan prio-
ritera projektet både vad gäller tid och resurser. En möjlighet är till
exempel att regeringen tydligare ålägger centrala och regionala
myndigheter att medverka aktivt i hela planeringsprocessen. På det
sättet skulle myndigheternas krav och synpunkter kunna komma
fram mycket tidigare i processen och beaktas medan det finns goda
möjligheter till revideringar.

Parallella processer

Möjligheterna att snabba på planeringsprocessen utan ändringar i
lagstiftningen har utretts bland annat inom ramen för Ostlänken-
projektet (Det är möjligt att med fyra år tidigarelägga Ostlänken,
till 2010 – både ett järnvägs- och samhällsbygge, rapport 2006). De
förslag som regeringens förhandlingsman presenterade bygger på
idén att ersätta de linjära processerna eller planeringsmomenten
med parallella processer. Detta både i stat och kommun samt mel-
lan staten och kommunerna. Bedömningen var att förslagen skulle
kunna korta tiden fram till byggstart med cirka fyra år. Förutsätt-
ningen var att Banverket och berörda länsstyrelser tillfördes extra
ekonomiska och personella resurser. För kommunerna innebar för-
slagen god framförhållning och väl utformade detaljplaner för att
minimera överklaganden till regeringen. På den statliga sidan skulle
Banverket arbeta med parallella processer och med kontakter i
Regeringskansliet främst när det gällde tillåtlighetsprövningen.
Länsstyrelserna föreslogs tidigarelägga sina insatser inom miljö-
och kulturhistoria samt utveckla tidig information till allmänheten.
Ökade informella kontakter inom och mellan länsstyrelserna samt
med andra berörda statliga myndigheter föreslogs också.
Nödvändigheten att arbeta med parallella planeringsprocesser följes upp i avtalet om medfinansiering av Citybanan från december 2007. I avtalet angavs att den, genom Banverket, åtar sig att slutligen järnvägsutredningen och att utarbeta underlag för regeringens tillåtlighetsprövning enligt miljöbalken. De kommunala partierna i Södermanland och Östergötland åtog sig i gengäld att fortsätta sitt planarbete och medverka i fortsatta diskussioner om finansiering (Regeringsbeslut N2008/91IR (delvis), N2002/12356/IR, N2003/1514/IR (delvis)).

När det gäller Ostlänken kan jag konstatera att den fysiska planeringsprocessen och den ekonomiska planeringen inte har gått
hand i hand. Den fysiska planeringen har kommit långt men det saknas en finansieringslösning för projektet.

Samordnad planering

Parallella processer förutsätter en samordnad planering i ett tidigt skede. Ett sätt att samordna arbetet skulle kunna vara att arbeta med partsgemensamma styr-, arbets- och informationsgrupper genom hela planeringsprocessen. I grupperna ska berörda kommuner, länsstyrelsen och eventuella andra aktörer vara represente-rade. Varje part har sin egen projektorganisation och genomför erforderliga planeringsåtgärder inom den del av planeringsproces-sen som man har ansvar för. Samtidigt har parterna en väl organise-rad samverkan som gör det möjligt att

• tidigt skapa en gemensam bild av mål och restriktioner för planeringen
• gemensamt formulera ändamål med investeringen, projektmål och processmål
• löpande hålla de berörda aktörerna informerade om respektive planeringsprocess och tidsplaner
• gemensamt identifiera konflikt- och/eller samordningsområden
• genomföra gemensamma samrådsaktiviteter (informationsin-satser, möten, utställningar).

Övriga åtgärder inom ramen för gällande lagstiftning

Förstudien bör enligt min bedömning kunna göras enklare än i dag. Syftet med förstudien bör inte vara att ge svar på exakt vad som ska genomföras. I stället bör förstudien klara lägga förutsättningarna för den fortsatta planeringen och utgöra ett underlag för att bedöma projektets påverkan på miljön.

Järnvägsutredningen bör också kunna koncentreras tydligare på att behandla de frågeställningar som är aktuella i projektet och i det geografiska område som berörs.

I samband med järnvägsplanearbetet finns många formella steg där små misstag kan vålla stora dröjsmål. De formella delarna bör kunna organiseras och hanteras på ett betydligt mer rutinmässigt sätt än i dag.

Regeringens tillåtlighetsprövning bör kunna effektiviseras genom till exempel utökade resurser för handläggning av tillåtlighetsärenden. Utökade resurser hos andra offentliga planeringsinstanser och miljödomstolar skulle också kunna korta leddiden i många delar av planeringsprocessen. Vad gäller överklagningsärenden visar en rapport från WSP Sverige AB (Effektivisering i fysisk planering. Förslag till åtgärder för effektivisering av processen för fysisk planering, med fokus på väg och järnväg i storstadsmiljö, 2009-02-04) att det inte är själva överklaganderätten som problemen utan att det saknas tillräckliga resurser för att hantera överklagningsärendena.

För nämnda rapport gjordes djupintervjuer i syfte att fånga in de faktorer som orsakar ineffektivitet i den svenska planeringsprocessen. Enligt rapporten är det inte i första hand lagstiftningen som orsakar utdragna processer, utan det att implementeringen av lagarna hos respektive aktör ofta är mer tidskrävande än lagen kräver. Myndigheternas handläggningstider, tillgång till resurser och krav på mer information i detaljfrågor upplevs av intervjupersonerna som en viktig orsak till de långa leddiderna. För att effektivisera de praktiska tillämpningen presenterar rapportförfattarna ett antal förslag som bland annat innefattar åtgärder för att koncentrera resurser på ett mer ändamålsenligt sätt, mer systematisk återanvändning av beslutsunderlag, bättre fungerande projektstart och användande av metoder för strukturerade dialoger i olika skeden.
Av de förslagna åtgärderna är vissa enligt min mening av särskilt intresse för planeringen av höghastighetsbanor:

- tydlig projektplanering
- effektivare hantering av överklagningsärenden
- återanvändning av till exempel miljökonsekvensbeskrivning (MKB)
- samordna aktörer i en tillfällig organisation
- framtagande av gemensamma planeringsförutsättningar.

Flera av dessa förslag handlar om effektivisering i själva projektarbete. Inom ramen för denna utredning har frågan om projektorganisation och projektplanering genomlysts särskilt, se avsnitt 9.1.5 och 9.2.

Miljöanalyser och beskrivning av miljökonsekvenser förekommer i flera av de beslutsprocesser som ingår i dagens planeringsystem. Värdefull tid finns att vinna genom effektivare MKB-hantering som att samordna MKB i olika delar av samma projekt och se till att sektorsmyndigheterna kommer in tidigare i processen. Det finns till exempel möjlighet att återanvända samma MKB-dokument till detaljplan och järnvägsplan, vilket gjordes i planeringsarbetet för Citybanan i Stockholm. Där så är möjligt bör enklare planeringsverktyg, som till exempel detalj- och arbetsplaner, väljas.

Genom att utreda flera utformningsalternativ som konsekvensbeskrivs i järnvägsplanen kan processen för val av linjesträckning också göras mer effektiv. För att undvika tidsödande och kostsamma omtäg sent i planeringsprocessen på grund av bristande kunskap om landskapet, bör landskapsanalyser av aktuella delsträckor genomföras tidigt i processen. I sammanhanget bör nämnas att det finns nya tekniska möjligheter för att analysera landskapet och hantera komplexa miljö- och landskapsfrågor. I exempelvis Australien har ett system, the Quantum System, tagits fram för att optimera linjedragning för nya väg- och järnvägsbyggen. Systemet bygger på avancerad IT-teknik som genom en mängd indata kan ta fram flera optimerade alternativ för linjedragning. För de föreslagna linjesträckningarna ger systemet information om plankorsningar, omfattning av underbyggnader, arealer med mera. För varje alternativ summeras volymer och kostnader för underbyggnad, längd och kostnader för vallar, kulvertar, viadukter och
tunnlar. De framtagna alternativen kan sedan utgöra underlag för den fortsatta planeringen.

The Quantm System har använts vid planering av höghastighetsbanor i bland annat USA, Australien, Portugal och Frankrike. I det franska fället användes systemet för att identifiera linjedragningar som kunde möta olika krav och minska barriäreffekterna på en del av den framtida linjen LGV PACA i sydöstra Frankrike (planerad byggstart 2017).

Enligt företaget som utvecklat systemet kan analyserna bidra till att kostnaderna för underbyggnad och anpassningsåtgärder kraftigt reduceras vid väg- och järnvägsbyggnationer.

Särskild projektlag

För att väsentligt korta ner planeringsprocessen skulle en lösning kunna vara lagändringar på området. Lagen om byggande av järnväg utreds för närvarande. En annan åtgärd är alternativet att riksdagen stifter en särskild lag för höghastighetsprojektet. Liknande exempel finns i Danmark där folketinget stifter så kallade anläggningslagar för stora infrastrukturprojekt.

Ett argument för en särskild projektlag är att utbyggnaden av höghastighetsbanor är ett samhällsbyggnadsprojekt av stort intresse för hela landet och därför bör prövas av en enda samlad instans som tar hänsyn till olika allmänna och enskilda intressen, miljöbalkens krav och som godkänner och villkorar genomförandet. Vid beslut om att fullfölja projektet skulle beslutet gälla i samtliga kommande prövningsinstanser som miljödomstolar och prövning enligt plan- och bygglagen.

Förslag att införa anläggningslagar enligt dansk modell lyfts emellanåt i olika sammanhang, och frågan har bland annat utretts av WSP och Lagtolken AB på uppdrag av Regionplane- och trafikkontoret i Stockholms län (RTK), Länsstyrelsen i Stockholms län, Vägverket, Region Stockholm, Banverket och Stockholms stad (Effektivisering i fysisk planering, Förslag till åtgärder för effektivisering av processen för fysisk planering, med fokus på väg och järnväg i storstadsmiljö, 2009-02-04). I rapporten konstateras att planerings- och beslutsprocessen i Danmark i mycket liknar den svenska planeringsprocessens förstudie. Processens steg liknar också den svenska planeringen i de fall då det krävs tillåtlighetsprövning. De viktigaste skillnaderna mellan det danska och svenska
systemet är att man under processen i Danmark utformar en lag för genomförandet av projektet i stället för att endast ge tillåtighet, och att möjligheterna att överklaga är kraftigt begränsade. Den fastställda anläggningslagen kan endast överklagas till EG-domstolen.

Rapporten pekar dock på två viktiga förutsättningar som skiljer sig åt mellan systemen. För det första bygger det danska systemet på en annan beslutstradition med nationellt utformade riktlinjer för planering som står i kontrast till det svenska med kommunalt planmonopol och mindre statlig styrning. För det andra finns en gammal tradition i Sverige att medborgarna får delta i planeringen och överklaga i sak, medan den danska processen begränsar överklaganderätten till procedurfrågor. Sammantaget bedöms det danska systemet, enligt rapporten, innebära så grundläggande förändringar av svensk beslutstradition att det inte kan anses möjligt att genomföra inom överskådlig tid.

En särskild projektlag undanröjer inte heller problem att nå den mest optimala linjesträckningen då linjens närmare placering avgörs av skyddade områden som Natura 2000. Dessa har EU-status och påverkas inte av beslut i riksdagen.

I direktiven till Kommittén om effektivisering av planeringsprocessen för transportinfrastruktur ingår inte att utreda möjligheten att stifta speciallagar för stora projekt. Frågan får därför anses vara mindre aktuell i dagsläget.

Sammanfattning av möjligheter till effektivisering

Enligt min bedömning är ett tydligt nationellt ställningstagande från riksdag och regering den enskilt viktigaste åtgärden för att åstadkomma en mer effektiv planeringsprocess. Genom att tydligt ålägga statliga aktörer centralt och regionalt att aktivt stödja och prioritera projektet kan planeringen enklare samordnas. Arbetet med samordning och samverkan mellan olika parter och olika processer är också viktigt för att effektivisera den fortsatta planeringen. För att de olika aktörer som är berörda av höghastighetsprojektet faktiskt ska kunna arbeta parallellt krävs att arbetet samordnas redan i ett tidigt skede. Genom parallella planeringsprocesser och utökade resurser på olika nivåer, till exempel vid överklaganden, kan planeringsstiden kortas. Förändringar i tillämpningen av gällande lagstiftning, som att förenkla förstudier och
koncentrera utredningsarbete till särskiljande faktorer, kan bidra till att ledtiderna sannolikt kortas ytterligare.

Enligt min bedömning bör samtliga ovan diskuterade åtgärder beaktas i det fortsatta planeringsarbetet.

9.1.3 Markåtkomst

En förutsättning för att bygga ut järnvägsnätet är att tillgången till den mark som behövs för utbyggnaden, både permanent och under byggtiden, säkerställs. Försenad markåtkomst kan orsaka stora förserningar i ett järnvägsprojekt. Även om åtkomsten till mark utgör en mindre kostnad i sammanhanget kan det få stor betydelse för genomförandet av projektet. Kontakter med fastighetsägare i ett tidigt skede kan vara avgörande för en effektiv och framgångsrik marklösenverksamhet. Det är också viktigt att ordna tillträde till fastigheter för förundersökningar och projektering redan i utrednings- och projekteringsfasen.

Markåtkomst i järnvägsprojekt

Banverkets policy för markåtkomst vid järnvägsbygande (Handbok Marklösen, BVH 1700) ger vägledande riktlinjer och reglerar Banverkets marklösenverksamhet. Markåtkomstfrågorna finns med tidigt i processen och ingår enligt Banverket som naturlig del i förstudier och järnvägsutredningar (Banverket, Markåtkomst för järnvägsbyggande – PM med anledning av utredningen om höghastighetsbanor, 2009-06-10).

Banverkets policy är att genom förhandling försöka uppnå frivilliga överenskommelser om förvärv av mark eller rättighet. Frivilliga förvärv av mark eller rättigheter som ska vara bestående följs vanligtvis upp med lantmäteriförrättning, för att genomföra förändringar i fastighetsindelningen och ge sakrättsligt skydd. Vid förvärv av del av en fastighet finns krav på att den frivilliga överlätelsen följs upp med fastighetsbildning. I vissa fall får marklösen
dock ske genom lantmäteriförrättning utan föregående förhandling mellan Banverket och berörd markägare. Det gäller till exempel vid intrång i ett stort antal fastigheter med likartade förhållanden eller om det är fråga om marginella intrång.

Lantmäteriet förordrar lantmäteriförrättning för markåtkomst vid byggande av järnväg. Enligt Lantmäteriet ger detta en effektiv tillgång till mark som behövs för infrastrukturbyggen där möjligt ges att anpassa fastighetsindelningen till de nya förhållanden. På så sätt kan de skador som en uppdelning av marken innebär minimeras.

Oavsett om markåtkomsten sker genom inlösen eller lantmäteriförrättning är det expropriationslagstiftningens regler om ersättning som gäller. Det pågår en översyn av expropriationslagen och Utredningen om expropriationsersättning lämnade sitt slutbetänkande Nya ersättningsbestämmelser i expropriationslagen m.m. (SOU 2008:99) i november 2008. Utredningen föreslår förändringar som om de genomförs kommer att innebära en generell höjning av ersättningsnivån vid expropriation.

Markåtkomst för tillfälligt utnyttjande

Under planeringstiden och vid byggandet av järnvägen kan mark som inte ägs av infrastrukturhållaren behöva tas i anspråk tillfälligt. Dels behövs tillträde till mark för undersökningar och provtagningar i planerings- och projekteringsfaserna, dels behöver projektet tillfälligt under byggtiden tillgång till mark för tillfartsvägar, arbetsområden med mera. I första hand försöker Banverket komma överens med berörda markägare om sådant tillfälligt nyttjande och om villkoren för detta. Om överenskommelse inte kan nås finns möjlighet enligt lagen om byggande av järnväg att ta ärendet till länsstyrelsen.

Markåtkomst permanent

Den mark som permanent ska användas för järnvägsanläggningen ska infrastrukturhållaren (normalt Banverket) inneha med ägande-rätt eller servitutsrätt. När en järnvägsplan är fastställd kan markåtkomst ske genom lantmäteriförrättning eller genom inlösen i fastighetsdomstol. Enligt Banverkets handbok Markinlösen ska
Förslag kring planering, projektering och byggnation

SOU 2009:74

lantmäteriförrättning vara huvudalternativet. Vid köp av del av fastighet krävs, som tidigare nämnts, lantmäteriförrättning även om markförvärvet sker genom frivilliga avtal.

Banverkets policy är som framgår ovan att genom förhandling försöka uppnå frivilliga överenskommelser. Kontakter med markägare och markförhandlingar påbörjas tidigt i projekten. Enligt Banverket innebär detta att möjligheter till justeringar med hänsyn till önskemål från markägare och till skadebegränsade åtgärder då är större än om sådana frågor uppmärksammats först senare i plane-

ringsprocessen.

Lantmäteriförrättningen ger möjlighet till fastighetsbildnings-
beslut och förtida tillträde så snart järnvägsplanen vunnit laga kraft. Utbyggnaden av järnvägen kan därmed påbörjas utan att alla ersättningsfrågor är utklärade. Normalt fortsätter Banverkets markinlösare förhandlingarna med markägaren under byggtiden för att nå fram till en överenskommelse om ersättning som kan läggas till grund för förrättningslantmätarens ersättningsbeslut i lantmäteriförrättningen. I de fall överenskommelse inte kan nås be-
slutar förrättningslantmätaren om vilken ersättning som ska betalas ut – grundad på en värdering enligt expropriationslagens bestäm-
melser. Detta sker vanligtvis då järnvägsutbyggnaden är färdig-
ställd. Då kan även slutliga fastighetsgränser bestämmas, och mindre justeringar göras vid behov med hänsyn till terrängen.

Vid lantmäteriförrättningen ska förrättningslantmätaren beakta både samhällets och enskildas intressen. I första hand bör lösningar åstadkommas i samförstånd men lagstiftningen ger förrättningslantmätaren befogenhet att ta beslut utan att parterna enats.

Samtliga beslut kan överklagas till fastighetsdomstol. Från 1 november 2008 har möjligheterna att överklaga till högre instanser begränsats genom att det krävs prövningsstillstånd i hovrätten.

Vidareutveckling av processer kring markåtkomst

Förutom den utredning som pågår om effektivisering av plane-
ringsprocessen för trafikinfrastruktur har Banverket och Lant-
mäteriet startat ett gemensamt projekt för att vidareutveckla och förbättra Lantmäteriets och Banverkets gemensamma processer för byggande av järnväg. Ovanstående beskrivning av nuvarande pro-
cess kan alltså komma att revideras.
9.1.4 Blockindelning för genomförande

Min utgångspunkt är att utbyggnaden av höghastighetsbanor ska hållas ihop som en helhet för att optimera planering, finansiering byggande och nyttjande av banan. Inom ramen för detta projekt bör ett antal block väljas för att genomförandet ska kunna planeras på ett effektivt sätt. Vid val av block bör ett antal aspekter beaktas, nämligen:

- om blockens ändpunkter möjliggör trafikering under delar av utbyggnaden
- om det finns eget trafikunderlag för det aktuella blocket
- terrängens förutsättningar
- teknisk svårighetsgrad, behovet av broar, tunnlar, passage genom tätorter
- möjligheterna till utnyttjande av byggresurser
- hur långt studie- och planarbetet kommit för respektive block.

Erfarenheter från bland annat Svealandsbanan och Botniabanan pekar på att det kan vara lämpligt med utbyggnad i block om 10–20 mil med flera entreprenadetapper. Detta antagande bekräftas i flera europeiska höghastighetsprojekt.

Ett förslag till hur en blockindelning inom det sammanhållna projektet skulle kunna se ut redovisas i figur 9.2 nedan. De definierade blocken har en längd på mellan 100 och 160 kilometer med undantag för sträckan Borås–Almedal som är 50 kilometer.
Figur 9.2 Förslag till blockindelning

1. A Järna–Linköping
 B Almedal–Borås

2. A Linköping–Jönköping
 B Jönköping–Markaryd
 C Markaryd–Åkarp

3. Jönköping–Borås

Källa: Swepro Project Management AB.

9.1.5 Projektororganisation

I utredningsarbetet har frågan om organisering av projektet utretts och diskuterats. Två huvudalternativ har identifierats, nämligen att

- betrakta hela utbyggnaden som ett projekt
- dela utbyggnaden i olika autonom projek.

Utbyggnaden av höghastighetsbanor är omfattande och det är fullt möjligt att genomföra det som flera projekt och i flera organisationer. Ett uppdelat organisationskoncept är dock enligt min uppfattning tydligt förknippat med risk för suboptimeringar, felprioriteringar och intern konkurrens. Därför förordas ett projekt med en projektororganisation. Mina förslag kring organisationsstruktur (kapitel 8) utgår därför från en sammanhållen lösning med en projektororganisation: projektbolaget.

Projektbolaget ansvarar för planeringsprocess, finansiering samt projekterings- och byggprocesser. Projektbolaget har huvudmannaskapet för drift och underhåll av höghastighetsbanorna. Projektbolaget svarar bland annat för utredningar och planer, marknärsen, tillståndsförfrågor samt att finansieringen är säkerställd. Projektbolaget upphandlar lämpliga entreprenörer, antingen direkt eller via
privata infrastrukturbolag, som svarar för detaljprojektering, byggande, underhåll och drift under 30 år. I det fall man skapar privata infrastrukturbolag bildas sannolikt ett bolag per block. Ansvaret för att samordna infrastrukturbolagen och genom avtal hantera eventuella gränsdragningsfrågor vilar då på projektbolaget.

Jag vill även uppmärksamma behovet av vidare analys av hur respektive projekt ska avgränsas. Enligt min bedömning är huvudalternativen att antingen ansvara för helheten, det vill säga bana, el, signal, säkerhet och underbyggnad, eller att dela upp projektet så att till exempel en entreprenör är ansvarig för el- och signalytor och en annan för bana och underbyggnad. Internationellt förekommer båda modellerna.

Resursbehov

En uppskattning av resursbehovet i projektet är att det, förutom företagsledning och administration, krävs cirka 250 årsarbetare inom projektbolagets organisation för att bedriva verksamheten på ett effektivt sätt. Bedömningen grundar sig på erfarenheter av svenska järnvägsprojekt och internationella höghastighetsprojekt.

Vidare finns, såvitt jag kan bedöma i dag, tillräckligt utbud av arbetskraft inom planering, bygg- och projektleiding i Europa för en utbyggnad av höghastighetsbanor. Bedömningen grundar sig på att höghastighetsprojekt av samma storlek eller större har genomförts i flera andra europeiska länder under senare år. För Sveriges del finns också möjligheten att utnyttja internationella erfarenheter.
Utbyggnaden av de olika blocken bör samordnas av en eller flera styrgrupper där samtliga ekonomiska intressenter är representerade (stat, kommuner, regioner, trafikoperatörer, fastighetsexploateringsföretag). Viktiga funktioner i projektbolaget är samråd och information, planering och bygg- och projektleiding.

Samråd och information

Genom ett transparent informationsarbete kan tid och resurser användas mer effektivt i planeringsprocessen. Projektbolaget bör därför ha en informationstab bestående av flera erfarna kommunikatörer med god kompetens för olika informations- och kommunikationskanaler.

Samråd kan organiseras i olika typer av grupper: referensgrupper med olika berörda sakkunniga (statliga myndigheter, kommunal förvaltning, politiska organisationer), arbetsgrupper bestående av instanser med teknisk kunskap (Banverket, Tågoperatörerna, Statens geotekniska institut med flera) och informationsgrupper.

Källa: Swepro Project Management AB.
(information till och från allmänheten inom respektive geografiska område).

Planering

Bygg- och projektledning

9.2 Projekteringsprocess

9.2.1 Projektledning

Under byggtiden är projektbolaget byggherre med de uppgifter som byggherrerna normalt har, nämligen att

- säkerställa finansiering
- företräda slutkonsumenter – de blivande tågresenärerna
handlägga alla frågor med myndigheter, närboende och samhälle
uppträda som beställare gentemot aktörerna i bygg- och anläggningsbranschen
överta anläggnningen vid godkänd slutbesiktning efter provdrift
svara för ägande och förvaltning, det vill säga upplåta bankkapacitet till tågoperatörerna via Banverket.

Genom ett sammanhållet projekt inom projektföretaget kan en ändamålsenlig projektledningsprocess väljas för hela utbyggnaden av höghastighetsnätet.

9.2.2 Genomförande

För en utbyggnad av höghastighetsbanor kommer de tidiga strategiska övervägandena om projektledning, systemkrav och hantering av yttre förutsättningar, som till exempel tillåtlighetsprövning, att vara avgörande för genomförandet av projektet. Val av genomförandeform påverkas av bland annat tillgång till leverantörer och entreprenörer, konkurrensförutsättningar, konjunkturläge, tillgång till resurser, särskilda nationella förhållanden samt språk och kultur för internationella aktörer.

Projektbolagets organisation för genomförande av höghastighetsbanorna måste ha stark egen kompetens inom en mängd olika kompetensområden. För ett snabbt genomförande krävs snabb uppbyggnad av resurser i alla delar av, och funktioner i, planerings- och byggprocessen. En utförandestrategi med fokus på optimal effektivitet i alla faser redan från start behövs. Det betyder att man behöver välja en organisation där flera projektfaser kan genomföras parallellt i olika delar av projektet. Följande faser kommer att löpa parallellt:

• idéfas
• planeringsfas
• projekteringsfas
• genomförandefas
• avslutningsfas eller övertagande.
För att säkerställa en helhetssyn för hela projektet krävs också en struktur som stödjer beställarfunktionens deltagande i varje fas under hela projektiden. En sammanhållen projektspecifikation utformas tidigt så att en tydlig och komplett projektram kan definieras i projektplanen.

De olika blocken bör ha egen projektledning som deltar i processen från start till slutförande. En övergripande projektledningsorganisation samordnar arbetet. Förutom gemensamma resurser såsom sekretariat och kommunikation ska projektledarna ha tillgång till en grupp av byggledare för mark, berg, tunnel, byggnader, bana, signal, el, tele samt experter för planering, markåtkomst och kostnadsuppföljning. Genom en gemensam teknikgrupp för samtliga block kan man säkerställa att tekniktillämpningen blir den-samma i hela projektet.

Med ovanstående förslag till effektivisering av planeringsprocessen och professionell projektledning är min bedömning, även om osäkerheten i denna bedömning är betydande, att den ordinarie projekttiden enligt figur 9.4 A nedan kan komprimeras till föreslagen modell, figur 9.4 B:

Figur 9.4 Förkortad projekttid

![Diagram](image)

Källa: Swepro Project Management AB.
9.3 **Byggprocess**

Valet av entreprenadformer i projektet blir en fråga som berör såväl planeringen av produktkrav som upphandlingen. Tre frågor är centrala i ett tidigt läge av projektet:

- den successiva hanteringen av produktutformningen
- tiden för färdigställande
- marknad, konkurrens och konjunkturenhållanden.

9.3.1 Entreprenadformer

Inom ramen för den snabba genomförandeformen har två lämpliga entreprenadformer identifierats under utredningen: funktionsentreprenader med eller utan medfinansiering.
Vid funktionsentreprenader utgör de tekniska kraven som beställaren tagit fram underlag för vidare projektering av anläggningen, planering av byggande och planering av drift och underhåll. För funktionsentreprenader finns väletablerade kontrakts- och ersättningsformer. Genom exempelvis någon form av partnerskapsförfarande (offentlig–privat samverkan, OPS) kan det också vara möjligt att fördela riskerna och därmed minska kostnaderna i anbudskalkylen.

De olika blocken kan delas in i ett antal funktionsentreprenader innehållande markarbeten, tunnlar, broar samt ban-, el-, signal- och telearbeten. Storleken på entreprenader kan variera mycket beroende på vad som är lämpligt inom givna förutsättningar samt hur det privata risktagandet organiseras.

För den del som handlar om järnvägsinstallationer, spår och kanalisation samt el-, signal- och telearbeten ska det inte uteslutas att det är lämpligt med större åtaganden i egna funktionsentreprenader där de tekniska systemen hänger ihop. Utformningen av upphandlingen och systemkraven är central för att säkerställa rätt teknisk standard. Det visar inte minst exemplet från Nederländerna, se vidare avsnitt 5.4.

Man kan också tänka sig alternativ med större åtaganden som till exempel ett helt block för både mark-, ban-, el-, signal- och telearbeten. En konsekvens skulle dock kunna bli färre intresserade aktörer och därmed sämre konkurrenssituation. Fördelen skulle kunna vara att det är lättare att uppnå större intresse för att ta ansvar för drift och underhåll eller lämna garantitåtaganden under en längre period och därmed få bättre livscykelperspektiv på det utförda arbetet.

9.3.2 Tidplan

Enligt mitt förslag kan höghastighetsbanorna tas i bruk 2023–2025. Risken för en förlängning av tidplanen ska dock inte under-
skattas med hänsyn till de flerta överklaganden som sannolikt kommer att ske. Den föreslagna tidplanen framgår av figur 9.5.

Figur 9.5 Möjlig tidplan för utbyggnad av höghastighetsbanor

Den långa planeringstiden för det första blocket, Järna–Linköping och Almedal–Borås, beror på att tiden för upprättande av systemkrav med mera för hela projektet ingår i planeringstiden. Denna tidplan gäller under förutsättning att

- staten (regering och riksdag) stödjer projektet aktivt
- förslagen beaktas i sin helhet
- projektbolaget bildas och sätts i drift omgående

Som diskuterats ovan kan processen påskyndas ytterligare med hjälp av ändrad lagstiftning, se avsnitt 9.1.2.
För att få en uppfattning om hur realistisk den föreslagna tidplanen är har tillgängliga uppgifter om genomförandetiderna för ett antal slutförda internationella höghastighetsprojekt samt Botniabanan i Sverige sammanställts inom ramen för utredningen.

Jämförelsen visar att den föreslagna tidplanen är möjlig. Tidplanen förutsätter dock, som tidigare nämnts, att projektbolaget kan påbörja sitt arbete redan vid årsfallet 2009/2010, och att genomförandet sker inom en samlad organisation där erfarenheter från de delar av banan som byggs först kan tas till vara och utnyttjas för en allt mer effektiv planering och byggnation varterefter delprojekten fortskrider.

10 Förslagens konsekvenser

10.1 Höghastighetsbanornas bidrag till transportpolitisk måluppfyllelse

Eftersom projektet att anlägga höghastighetsbanor i vissa delar befinner sig i ett mycket tidigt skede är det svårt att bedöma i vilken utsträckning en investering i banorna skulle bidra till att de transportpolitiska målen nås.

Svårigheten beror dels på att det inte finns någon tydligt fastställd målnivå, dels på att det är svårt att kvantitativt värdera de effekter som uppstår kopplat till de olika målen. Ett tydligt exempel på detta är målet positiv regional utveckling. Ett annat exempel är målet om ett jämställt transportsystem.

10.1.1 Funktionsmålet tillgänglighet

Jag har tidigare redovisat funktionsmålet som efter beslut av riksdagen under våren 2009 lyder:

Transportsystemets utformning, funktion och användning ska medverka till att ge alla en grundläggande tillgänglighet med god kvalitet och användbarhet samt bidra till utvecklingskraft i hela landet. Transportsystemet ska vara jämställt, det vill säga likvärdigt svara mot kvinnors och mäns transportbehov.

För att uppfylla funktionsmålet om tillgänglighet har regeringen angett följande preciseringar:

- Medborgarnas resor förbättras genom ökad tillförlitlighet, trygghet och bekvämlighet.
- Kvaliteten för näringslivets transporter förbättras och stärker den internationella konkurrenskraften.
• Tillgängligheten förbättras inom och mellan regioner samt mellan Sverige och andra länder.

• Arbetsformerna, genomförandet och resultaten av transportpolitiken medverkar till ett jämställt samhälle.

• Transportsystemet utformas så att det är användbart för personer med funktionsnedsättning.

• Barnens möjligheter att själva på ett säkert sätt använda transportsystemet och vistas i trafikmiljöer ökar.

• Förutsättningar för att välja kollektivtrafik, gång och cykel förbättras.

Nedan beskrivs hur en utbyggnad av höghastighetsbanor kan bidra till att respektive målprecisering uppfylls.

Medborgarnas resor förbättras genom ökad tillförlitlighet, trygghet och bekvämlighet

I genomsnitt reser varje person i Sverige över en timma per dag. Vad som upplevs som en bra resa varierar från person till person. Bland det som ofta näms finns faktorer som tillförlitlighet, trygghet och bekvämlighet.

Kvaliteten för näringslivets transporter förbättras och stärker den internationella konkurrenskraften

En utbyggnad av höghastighetsbanor i Sverige möjliggör en långtgående separering mellan den snabbare persontrafiken och den långsammare godstrafiken. Det gör att godstrafiken kan utvecklas på Västra och Södra stambanan som då blir ryggraden i ett robust och effektivt logistiksystem med anslutningar till bland annat Göteborgs, Norrköpings, Trelleborgs och Helsingborgs hamnar samt till andra terminaler. Utbyggnaden kommer också att innebära ett generationsskifte för infrastruktur och rullande material vilket ger en ökad transportkvalitet.

Figur 10.2 Utvärdering mot målpreciseringen "Medborgarnas resor förbättras genom ökad tillförlitlighet, trygghet och bekvämlighet."

Negativ Oförändrad Positiv Starkt positiv

Tillgängligheten förbättras inom och mellan regioner samt mellan Sverige och andra länder

Jämfört med övriga delar av Europa är Sverige glest befolkat och de geografiska avstånden utgör en konkurrensnackdel. Transportsystemets utformning är därför en viktig förutsättning för utveckling och konkurrenskraft. Tillgängligheten inom och mellan Sveriges regioner har under många år utvecklats positivt och en fortsatt utveckling är eftersträvansvärd. Regionförstoring är i huvudsak en arbetskraftsförsörjningsfråga och utvecklingen mot större regioner drivs av en strävan att öka regionens konkurrenskraft.

Med höghastighetstågen blir restiderna mellan stortstadsregionerna konkurrenskraftiga och resor över dagen blir möjliga på ett helt annat sätt än i dag. Med en koppling till Danmark och i förlängningen det europeiska järnvägsnätet möjliggörs tjänsteresor över dagen från till exempel södra Sverige till Hamburg. Hög-

Figur 10.3 Utvärdering mot målpreciseringen ”Tillgängligheten förbättras inom och mellan regioner samt mellan Sverige och andra länder.”

![Negativ Oförändrad Positiv Starkt positiv](image)

Arbetsformerna, genomförandet och resultaten av transportpolitiken medverkar till ett jämställt samhälle

I dagens transportsystem finns strukturella skillnader där resenärens betalningsvilja starkt påverkar hennes eller hans möjligheter. Män har generellt högre lön än kvinnor och kan därför lägga mer pengar på det dagliga resandet. Det ökar deras valfrihet och förklarar bland annat varför män i större utsträckning än kvinnor använder bil och det förklarar också till viss del varför män i genomsnitt pendlar över större avstånd.

Figur 10.4 Utvärdering mot målpreciseringen "Arbetsformerna, genomförandet och resultaten av transportpolitiken medverkar till ett jämstämt samhälle."

<table>
<thead>
<tr>
<th>Negativ</th>
<th>Oförändrad</th>
<th>Positiv</th>
<th>Starkt positiv</th>
</tr>
</thead>
</table>

Transportsystemet utformas så att det är användbart för personer med funktionsnedsättning

Vidare kommer en utbyggnad av höghastighetsbanor att samplaneras med annan samhällsutveckling. I Ostlänkenstråket har den kommunala planeringen av nya resecjenter i koppling till järnvägen redan kommit långt. Planering av bostäder, handel och kontor i stationsnära områden pågår och en delvis ny stadsbild håller på att växa fram. Även planeringen av de nya stadsmiljöerna och hur dessa kopplas till stationerna kommer att utgå från funktionshindrades behov.

Höghastighetsbanorna utgör till stor del ett helt nytt trafiksyste- stem och möjligheterna att anpassa detta för personer med funktionsnedsättningar är därför stora. Bedömningen är därför att utvecklingen mot målpreciseringen om anpassning av transport- systemet så att det är användbart för personer med funktionshinder är positiv.
Barnens möjligheter att själva på ett säkert sätt använda transportsystemet och vistas i trafikmiljöer ökar

Liksom målet för anpassning av trafiksystemet till funktionshindrades behov kommer en utbyggnad av höghastighetsbanor att möjliggöra långtgående anpassningar till barnens möjligheter att säkert använda transportsystemet. Järnvägssystemet är dock en miljö där barn utan vuxet sällskap av naturliga skäl är en mindre målgrupp. Vad som avses med målprecisionering och vilka åtgärder som är rimliga att genomföra måste därför förtydligas i kommande utredningsarbete.

Förutsättningar för att välja kollektivtrafik, gång och cykel förbättras

10.1.2 Hånsynsmålet – säkerhet, miljö och hälsa

Den nya målformuleringen kring hånsynsmålet lyder:

Transportsystemets utformning, funktion och användning ska anpas-
sas till att ingen ska dödas eller skadas allvarligt samt bidra till att
miljöqualitetsmålen uppnås och till ökad hälsa.

Målet har delats upp i två delmål, säkerhet samt miljö och hälsa.
Här har jag dock valt att redovisa dem under en gemensam rubrik.

En utbyggnad av höghastighetsbanorna kommer att följas av
satsningar på anslutande regional och lokal kollektivtrafik och kol-
lektivtrafiks-systemet som helhet kommer därmed att stärkas vilket
bynar resenärens valfrihet. Överflyttning från lastbil, bil och flyg

till tåg minskar utsläppen av klimatgaser samtidigt som det bidrar
till en positiv utveckling mot trafiksäkerhetsmålet.

Den långväga pendlingen in mot storstäderna sker i dag i ett
fåtal tyngre stråk och förutsättningarna för klimatsmarta, effektiva
och säkra transportlösningar är därför goda. Till samtliga tre stor-
stadsregioner begränsas tågtrafiken i dag av de kapacitetsrestriktio-
ner som järnvägen har. En utbyggnad av höghastighetsbanorna
kommer att frigöra kapacitet och minska restiderna radikalt. Där-
igenom ges dagligpendlarna ett starkt alternativ till bil. På längre
avstånd blir det miljövinster genom överflyttning från flyg till tåg.

Dessutom skapas förutsättningar för en utvecklad godstrafik på
befintliga stambanor och därmed kan lastbilstransporter lyftas över
till järnväg.

Regeringen vill att de transportpolitiska målen ska styra mot en
begränsad miljöpåverkan genom en stegvis ökad energieffektivitet i
transportsystemet och ett brutet fossilberoende. År 2030 bör
Sverige ha en fordonspark som är oberoende av fossila bränslen.
Utbyggnaden av höghastighetsnätet kommer i hög grad att bidra
till att detta mål kan uppfyllas.

En så pass stor utbyggnad som höghastighetsbanorna kommer
dock att påverka kultur- och naturmiljöer längs hela sträckan.
Barriär- och intrångseffekter blir sannolikt stora. I det tidiga utredningsskede vi befinner oss i är det svårt att göra en sammanvägd bedömning av hur miljökvalitetsmålen kommer att påverkas.

Den samlade effektbedömningen är därför att utvecklingen mot målpreciseringen säkerhet, miljö och hälsa blir positiv.

Figur 10.7 Utvärdering mot målpreciseringen ”Säkerhet, miljö och hälsa”

10.2 Påverkan på transportsystemet

10.2.1 Påverkan på kapaciteten och trafiken inom järnvägssektorn

Med hjälp av den kapacitet som skapas i och med byggande av höghastighetsbanor kommer helt nya trafikupplägg både för person- och godstrafiken att bli möjliga. Den högre efterfrågan, som prognostiseras till följd av de kortare restiderna, och den utökade bankkapaciteten ger möjlighet att köra tätare turer och differentiera utbudet.

I avsnitt 6.5.2 beskrivs de trafikökningar som prognostiseras med det skisserade trafikupplägget.

10.2.2 Påverkan på övriga trafikslag

I de prognoser som ligger till grund för mina bedömningar förutses flygtrafiken minska med 1,6 miljarder personkilometer som följd av att resenärerna väljer tåg i stället för flyg om restiderna blir tillräckligt korta. Utbudet av flygtrafik förutses minska mycket kraftigt.
Vad gäller biltrafiken beräknas den minska med 4,2 miljarder personkilometer då höghastighetstrafiken etableras. Detta som följd av att tåget blir mer konkurrenskraftigt jämfört med bilen.

Även den långvägiga busstrafiken förutses minska med 0,1 miljarder personkilometer som en följd av att tåget blir mer konkurrenskraftigt.

Den lokala och regionala kollektivtrafiken förutses totalt sett öka något. Här ingår färre regionala bussresor, i de relationer där tåget blir mer konkurrenskraftigt, och fler anslutningsresor till tåg både lokalt och regionalt. För gång- och cykeltrafiken antas påverkan av höghastighetstrafiken bli marginell.

10.3 Ekonomiska konsekvenser

10.3.1 Påverkan på statens utgifter och på statsbudgeten

Utifrån ett antagande att statens andel i projektet skulle uppgå till 59 miljarder kronor av totalt 125 miljarder i enlighet med det förslag som lämnats i avsnitt 8.2.5 skulle projektet få följande ekonomiska konsekvenser för staten.

I juni 2009 uppgick statsskulden till cirka 1 040 miljarder kronor. Ett genomförande av höghastighetsprojektet skulle innebära att den statliga upplåningen ökade med cirka 6 procent.

Baserat på ett lånebelopp om 59 miljarder kronor samt under antagande om en låneränta för staten om 4 procent och en amorteringstid för lånet om 30 år, uppgår den årliga kapitalkostnaden (räknat som en annuitet) till cirka 3,4 miljarder kronor.

Detta kan jämföras med Banverkets totala intäkter som 2008 uppgick till 23,5 miljarder kronor, varav knappt 19 miljarder kronor utgjordes av anslag. Det skulle betyda att anslagen till Banverket skulle behöva höjas med cirka 18 procent för att täcka kapitalkostnaderna för höghastighetsbanorna.

Figur 10.8 Fördelning av statens utgifter under perioden 2008-2025, miljarder kronor

![Diagram of government expenditures from 2008 to 2025](image-url)

Källa: Öhrlings PricewaterhouseCoopers.

10.3.2 Påverkan på kommunernas ekonomi

Enligt förslaget till finansiering av en utbyggnad av höghastighetsbanor i kapitel 8 uppgår medfinansieringen från berörda kommuner och regioner till totalt 19 miljarder kronor. Som nämnts i avsnitt 2.3.2 påverkar möjligheterna till medfinansiering av statlig infrastruktur inte den grundläggande ansvarsfördelningen mellan statliga, regionala, kommunala och privata aktörer. Att lämna bidrag till statlig infrastruktur är en frivillig uppgift för kommuner och landsting.

Bidrag till finansiering av infrastruktur som ägs av någon annan än kommunen eller landstinget ska enligt dagens lagstiftning redovisas som en kostnad i bidragsgivarens resultaträkning. Det innebär att sådana bidrag ska redovisas i sin helhet redan när den ekonomiska händelsen ägt rum, det vill säga när avtalen undertecknats.

I propositionen Redovisning av kommunal finansiering till statlig infrastruktur (prop. 2008/09:228) som lämnades till riksdagen i juni 2009 föreslår regeringen ändringar i lagen (1997:614) om...
Förslagens konsekvenser

kommunal redovisning som innebär att bidrag till statlig infrastruktur ska redovisas som en tillgång i kommunens eller landsdingets balansräkning. När beslut fattats av kommunen eller landsdinget aktiveras bidraget i balansräkningen och det upptagna bidraget skrivs av under 15 år.

Om förändringen träder i kraft bedöms kommunernas och lanstingens förutsättningar och möjligheter att bidra till finansieringen av höghastighetsbanorna att förbättras.

En förutsättning för medfinansiering är att berörda kommuner och landsting gör bedömning att de kostnader som uppstår till följd av engagemanget i banorna ryms inom ramen för det egna balanskravet.

Storleken på medfinansieringen från landsting och kommuner kommer att baseras på en avvägning mellan den nytta och den kostnad som höghastighetsprojektet innebär utifrån ett lokalt och regionalt perspektiv.

10.3.3 Påverkan på sysselsättning i olika delar av landet

En satsning på höghastighetsbanor innebär regionala effekter i form av ett ökat antal arbetsplatser och ökade inkomster till följd av den ökade tillgänglighet som höghastighetsbanan ger. Det är osäkert hur stora dessa effekter blir och i vilken utsträckning de redan ingår i den samhällsekonomiska kalkylen som mäter nytan för resenären. Till viss del är också de regionala effekterna ett resultat av omlokalisering och ger därmed inget tillskott i kalkylen då de motsvaras av en negativ effekt i andra delar av landet.

Trots osäkerheten har utredningen gjort en skattning av hur stora dessa regionala effekter är, enligt den metod, Samlokmodellen, som används av trafikverken för att uppskatta hur åtgärder i transportsystemet påverkar befolkning, sysselsättning och inkomster genom förändringar i tillgängligheten. Modellens grundläggande antagande är att företagens lokaliseringsårverkas av tillgängligheten till arbetskraft och arbetskraftens lokaliseringsåverkas av tillgängligheten till arbetsplatser.
Samlok beräknar med andra ord tillgängligheten till arbetskraft och arbetsplatser, lokaliseringseffekter på befolkning och sysselsättning samt inkomsteffekter.

Modellen utgår från ett antal samband där ökad tillgänglighet är den drivande faktorn:

- Sysselsättningen, mätt i antal arbetsplatser och arbetstillfällen, påverkas positivt av ökad tillgänglighet till arbetskraft och minskad restid till storstädernas utbud.

- Befolkningen, mätt i arbetskraftens storlek, påverkas positivt av ökad tillgänglighet till arbetsplatser, förkortad restid till regionala centrum samt förkortad restid till storstädernas funktioner och utbud.

- Inkomstnivån påverkas positivt av ökad tillgänglighet; individer kan byta tidsvinster mot ökad pendlingssträcka till bättre betalda jobb, bättre matchning mellan arbetsgivare och arbetstagare kan ge produktivitets höjande effekter.

Bild 10.1 visar hur höghastighetsbanorna beräknas påverka tillgängligheten till arbetsplatser i respektive kommun. Motsvarande bild för förändrad tillgänglighet till arbetskraft visar ett mycket likartat mönster.
Höghastighetsbanorna beräknas ge de största tillgänglighetsförbättringarna för
- Tranås, +28 procent
- Nyköping, +20 procent
- Oxelösund, +16 procent
- Ulricehamn, +14 procent.
För följande 15 kommuner ökar tillgängligheten med mellan 5 och 10 procent: Boxholm, Mjölby, Trosa, Valdemarsvik, Söderköping, Nässjö, Ydre, Aneby, Norrköping, Jönköping, Alvesta, Mullsjö, Linköping, Gnosjö och Borås.

Omkring 60 procent av den totala tillgänglighetsförbättringen beräknas ske i ovan nämnda tjugotal kommuner. Totalt för dessa kommuner beräknas tillgängligheten till arbetsplatser öka med i snitt cirka 9 procent. Med andra ord ökar arbetsmarknaden i dessa kommuner med ungefär 9 procent som en följd av höghastighetsbanorna.

Höghastighetsbanorna kommer även att ge lokaliseringseffekter (omflyttning av arbetsplatser och befolkning) genom att attraktiviteten för olika områden påverkas i termer av till exempel pendlings- och boendekostnader. Effekter på befolkningens lokaliseringssmönster måste rimligen uppfattas som omlokaliseringseffekter. Vad gäller sysselsättningseffekter är det däremot möjligt att sysselsättningens nivå kan påverkas av förstorade arbetsmarknader. Till exempel kan personer som tidigare varit arbetslösa få möjlighet till anställning.

De beräknade lokaliseringseffekterna av höghastighetsbanorna visas i figur 10.10. Den samlade effekten på befolkningen 20–64 år beräknas bli störst i följande regioner:

- Östergötlands län, 4 100 personer
- Jönköping län, 3 000 personer
- Västra Götalands län, 1 500 personer
- Södermanlands län, 1 300 personer.

Totalt för alla berörda regioner beräknas lokaliseringseffekten på befolkningen 20–64 år omfatta 12 000 personer.
Den beräknade effekten på sysselsättningen, mätt i antalet arbetsplatser och arbetstillfällen, omfattar totalt 10 300 personer. Effekten regionala fördelning är i princip densamma som för befolkningseffekten. Även inkomsteffekten (höjd inkomst som en följd av förbättrat tillgänglighet) följer samma mönster, se vidare kapitel 6.

Sysselsättningen i byggsektorn påverkas även under byggtiden. Enligt förslaget kommer byggstart att ske under 2014 och den sista etappen avslutas 2025. Utbyggnaden av höghastighetsbanor kommer därmed att innebära stor påverkan på sysselsättningen i berörda delar av byggsektorn.

10.4 Miljökonsekvenser

Beskrivningen av miljökonsekvenser utgår i första hand från den miljöbedömning som jag har låtit genomföra inom ramen för utredningen, se kapitel 7.

I detta skede av planeringen för en utbyggnad av höghastighetsbanor är det inte möjligt att peka på exakt vilka konsekvenser banan kommer att få för miljön. Som framgår av avsnitt 7.7 har miljöbedömningen syftat till att beskriva den typiska påverkan och
effekter som höghastighetsbanor skulle kunna ha på miljön samt att lämna rekommendationer inför den fortsatta planeringen.

10.4.1 Klimateffekter

Vid en utbyggnad med höghastighetsbanor förväntas resandet med tåg öka kraftigt. Utsläppen från järnvägstrafiken ökar dock i begränsad omfattning eftersom tågen är energieffektiva och eldriften baseras på fossilfria källor. Med höghastighetsalternativet minskar utsläppen av koldioxid från persontransporter totalt med vad som motsvarar 3–5 procent (0,45–0,6 miljoner ton per år) av dagens koldioxidutsläpp från persontrafiken. Utsläppen av koldioxid från godstrafiken minskar med uppskattning av 0,3–0,5 miljoner ton per år, jämfört med nollalternativet. Det motsvarar cirka 2–3 procent av hela transportsektorns nuvarande utsläpp.

Beräkningarna avser de direkta effekterna på transportarbetet och koldioxidutsläppen under ett år. På lång sikt kan påverkan bli större, till exempel kan lokaliseringen av bostäder och arbetsplatser påverkas. Till viss del är effekterna också beroende av omvärldsfaktorer som exempelvis den ekonomiska utvecklingen och utvecklingen av bränslepriser.
Klimatbelastningen vid bygandet av höghastighetsbanorna beräknas motsvara utsläpp om cirka 2,9 miljoner ton koldioxid under banans anläggningsid, se avsnitt 7.7.4. Dessa utsläpp kommer enligt beräkningarna vara kompenserade efter knappt tre års trafikering av höghastighetsbanan.

Energianvändningen i transportsektorn förväntas minska som en följd av höghastighetstågen genom överflyttning från andra trafiksälen. För persontrafiken beräknas en minskning på cirka 1 350 gigawattimmar (GWh) medan en minskning på cirka 2 440 GWh förväntas för godstrafiken. Detta kan jämföras med järnvägssektorns nuvarande energianvändning som uppgår till 2,8 terawattimmar (TWh) per år. I beräkningarna ingår inte byggnation, drift, underhåll, tillverkning och skrotning.

10.4.2 Påverkan på biologisk mångfald

Påverkan på den biologiska mångfalden har i miljöbedömningen studerats med utgångspunkt i den biologiska strukturen på landskapsnivå. Utgångspunkten är att höghastighetsbanorna fragmenterar landskapet och skapar barriäreffekter. Banans lokaliseringsöppet och på vissa ställen kan effekterna förebyggas eller lindras genom olika åtgärder.

Hur höghastighetsbanorna kommer att påverka den biologiska mångfalden och vilken betydelse det har gårdock inte att avgöra i detta skede. De exempel på känsligt landskap som gäller för kulturmiljöerna, se nedan, kan i stor utsträckning också vara relevanta när det gäller risker för den biologiska mångfalden. Därutöver finns ett antal områden som är av särskilt biologiskt intresse, se bilaga 5.

Karaktärområdena utmed banans planerade sträckning har olika förmåga att inordna den nya järnvägen i landskapets struktur. Det finns ett antal områden utmed sträckningen som är extra känsliga och där det kan komma att krävas särskilda åtgärder för att lindra banans negativa inverkan.

Eftersom planeringen av en utbyggnad av höghastighetsbanor har kommit olika långt i olika delar av bansträckningen varierar underlaget för miljöbedömningen. På de delar där det finns fastlagda korridorer är lokaliseringen (på landskapsnivå) redan avgjord. På andra delar kan man med väl avvägd lokaliserings helt undvika känsliga landskap.
Sammantaget finns enligt min bedömning goda möjligheter att i detta tidiga skede ta hänsyn till banans inverkan på miljön och vidta olika anpassningsåtgärder i samband med utbyggnaden. Samtidigt är det ofrånkomligt att banan innebär ett stort ingrepp i naturen.

10.4.3 Päverkan på hälsa och befolkning

Förbättrade järnvägskommunikationer innebär nya möjligheter att genom en ökad rörlighet få tillgång till arbetsmarknader längre från bostaden, vilket också stimulerar den ekonomiska utvecklingen i den region man bor. De förbättrade kommunikationerna bedöms sammantaget innebära en positiv påverkan på folkhälsan.

En järnväg innebär emellertid i viss mån en barriär för människors rörelsemönster och möjlighet att nyttja näraliggande omgivningar. För att mildra järnvägens barriäreffekter kan planskilda passager i form av broar eller tunnlar över eller under järnvägen byggas.

Höghastighetsbanan innebär en ny ljudkälla där den byggs, och den högre hastigheten ger en högre andel högfrekvent ljud.

Buller från tågtrafik uppfattas dock ofta som mindre störande än buller från vägtrafik vid samma ljudnivå och sambanden med ohälsa är inte lika dokumenterat som för vägtrafikbuller. Att järnvägsbuller normalt är mer högfrekvent än vägtrafikbuller innebär också att det inte leds lika långt och dämpas lättare.

Generellt bör det finnas möjligheter att i planeringen av banans läge beakta exponeringen av buller i omgivningen. Genom förebyggande åtgärder som bullerskydd och anpassning av lokaliserings bör bullereffekterna av höghastighetstågen bli relativt små.

En utbyggd höghastighetsbana kan på sikt leda till ökat tågbuller även på befintliga banor genom ökad regional trafik och överflyttning av godstrafik såvida inte skyddsåtgärder genomförs.

Tågtrafik ger under vissa förhållanden upphov till vibrationer som kan förstärka den upplevda störningen från tågbuller. Risken för störande vibrationer på grund av den nya järnvägen bedöms dock vara liten och påverkar inte lokaliseringen eftersom problemen kan förebyggas med lämpliga byggmetoder.

Ur luftkvalitets synpunkt är tåg ett bra transportmedel. Överföring av transporter från andra trafiklag till tåg ger generellt en positiv effekt för luftkvaliteten och möjligheten att klara gällande miljökvalitetsnormer ökar.
Risk och säkerhet

Olycksrisken i samband med andra trafikslag. Trots en stadigt ökande tågtrafik minskar antalet olyckor på det svenska järnvägsnätet. På höghastighetsbanorna kommer det inte att finnas några plankorsningar vilket reducerar riskerna ytterligare jämfört med dagens standard.

Höghastighetsbanorna dimensioneras inte för godståg, vilket innebär att transporter av tungt farligt gods inte planeras ske på banan. Dock kommer en utbyggnad av höghastighetsbanor sannolikt innebära en ökning av godstrafiken på de befintliga banorna. Vilka konsekvenser en sådan ökning kan komma att innebära ur säkerhetssynpunkt har inte varit möjligt att analysera inom ramen för denna utredning.

För höghastighetsbanorna finns ett antal frågeställningar och osäkerheter som till stor del beror på de höga hastigheter som kommer att gälla. Dessa bör utredas vidare inom den kommande planerings- och projekteringsprocessen.

Lokaliseringen påverkar ett antal faktorer med betydelse för risk- och säkerhet, exempelvis:

- förekomst av skyddsobjekt
- översvämningsrisker
- ras- och skredrisker
- tillgänglighet till spår
- konflikter med andra trafikslag
- konflikter i tätort och vid bebyggelse
- tunnlar.

Den minskade vägtrafik som förväntas bli resultatet av höghastighetsbanorna påverkar också risk- och säkerhetsfrågorna. Någon bedömning av överflyttningseffekterna har inte gjorts inom ramen för denna utredning.
10.5 Övriga konsekvenser

10.5.1 Påverkan på natur- och kulturmiljöer

Höghastighetsbanorna kommer att påverka såväl landskapet som bebyggelseutvecklingen på olika sätt. I detta skede av planeringsarbetet har det inte varit möjligt att närmare beskriva vilken påverkan som kan förväntas. Utredningen har i stället identifierat landskap och områden som är extra känsliga för de ingrepp som en ny järnväg innebär.

Den kanske mest negativa effekten av en ny järnväg är den barriär som kan uppstå utmed sträckningen och den landskapsmässiga fragmentering som detta leder till. Fragmentering och barriäreffekter är i princip negativa effekter, men betydelsen av effekterna varierar kraftigt. Förutom att lokaliserings- och utformning spelar roll, kan effekterna förebyggas eller lindras på olika sätt.

En utbyggnad av höghastighetsbanor kommer att ha en strukturerande effekt på bebyggelse och stadsutveckling. Hur detta påverkar kulturhistoria och kulturarv är dock svårbedömt.

Konsekvenserna för markägare längs med den nya banan kan bli omfattande och i dag väl fungerande jord- och skogsbruk kan påverkas. Ett sätt att mildra effekterna är att den som ansvarar för järnvägsbygget, i skadebegränsade syfte, använder möjligheten att ansöka om lantmäteriförrättning i skadebegränsade syfte, se även avsnitt 9.1.3.

10.5.2 Påverkan på andra faktorer enligt kommittéförordningen

Min bedömning är att förslagen inte påverkar små företags förutsättningar i förhållande till stora företag. Förslagen påverkar inte heller brottsligheten eller övriga faktorer som nämns i kommittéförordningen. Konsekvenser för jämställdheten mellan kvinnor och män behandlas i avsnitt 10.1 om transportpolitisk måluppfyllelse.
Särskilda yttranden

Särskilt yttrande
av Peter Andersson

Byggnaget av höghastighetsbanor är en betydande investering där osäkerheterna är stora när det gäller effekter, kostnader och finansiering. Det beror bland annat på de långa byggtiderna och på att trafikprognoser långt fram i tiden är mycket osäkra.

I utredarens uppdrag låg bland annat att ställa de samhällsekonomiska och transportpolitiska effekterna av en utbyggnad av separata höghastighetsbanor mot en uppgradering och utbyggnad av befintliga banor.

Särskilt yttrande
av Lars Hultkrantz

Gunnar Malm har haft i uppdrag av regeringen att utreda förutsättningarna för höghastighetsbanor i Sverige. Uppdraget innebär att "analysera om en eventuell utbyggnad av höghastighetsbanor kan bidra till att uppnå effektiva och hållbara transportlösningar för ett utvecklat transportsystem".

Utredningen visar att ett höghastighetsnät har i förhållande till projektets storlek små effekter på transportsektorns utsläpp av klimatgaser. Dessa effekter ligger dessutom långt fram i tiden och förväntas uppstå som följd av indirekta verkningar (ökat utrymme för godstrafik på andra banor).

Utredningen visar vidare att ett höghastighetsnät i Syd- och Mellansverige måste passera ett stort antal högt skyddsvärda och vissa fall vidsträckta områden. Hur det ska kunna göras på sätt som kommer att kunna tillåtas klarläggs inuti av utredningen och är till stor del okänt.

Vidare saknas den samhällsekonomiska finansieringskostnaden. Utredaren uppskattar att den tillkommande kostnaden vid privat

Vidare är resenärsvolymerna beräknade under förutsättning av en jämfört med dagens biljettpriser oförändrad genomsnittlig prisnivå. Detta är orealistiskt av två skäl. Dels innebär utredarens förslag när det gäller tilldelning av trafikeringsrätt att den eller de operatörer som först får trafikeringsrätt kommer att vara skyddade från konkurrens från andra operatörer under en tioårsperiod. Detta innebär att de får en betydande marknadsmakt. Dels kommer dessa operatörer att kunna erbjuda tjänster av betydligt högre kvalitet än idag eftersom restiderna ju förkortas väsentligt vilket skapar ett
betydande marknadsutrymme för prishöjningar. Detta är något som utredaren uppmärksammar i finansieringsavsnittet men som inte beaktats i den samhällsekonomiska kalkylen trots att det där väsentligt kan reducera intäktts- (nytto-) beloppet. För operatörerna innebär ett högre genomsnittligt kilometerpris högre vinst, men ur samhällsekonomisk synpunkt innebär det minskade rese-
ährsvolymer och därmed att den samhällsekonomiska lönsamheten blir lägre än vad som har antagits.

Utredningen innehåller även i andra delar överväganden och för-
slag mot vilka jag har stora betänkligheter:

Järnvägssektorns organisation. Utredaren föreslår utan närmare
reflektion införande av en väsentligen ny organisation av den svenska
järnvägssektorn. Den nuvarande modellen vilar som bekant på att
huvuddelen av infrastrukturen drivs av en särskild myndighet,
Banverket. I de fall banor ägs och eller drivs av andra aktörer har de
en förhållandevis begränsad trafikering och/eller utgör en relativt
väl avgränsad del av det nationella nätet. Trots det uppkommer
redan i dag vissa samordningsproblem som troligtvis bidrar till ett
mindre effektivt utnyttjande av det nationella nätet (ex vis pendel-
tågens begränsade möjligheter att utnyttja Arlandastationerna).

Utredaren bryter nu med denna modell med sitt förslag att lägga
ansvaret för höghastighetsnätet utanför Banverket. Höghastighets-
nätet är tänkt att knyta samman Sveriges tre storstadsområden och
trafiken på det kommer att vara nära relaterad till trafiken i resten
av det nationella bannätet. Det innebär att det kommer att utgöra
en essentiell del av det nationella nätet och vara starkt integrerat
med detta. Uppdelningen kommer därför att väsentligt försvara
möjligheterna till en samlad och effektiv förvaltning av det nation-
ella bannätet. Detta problem förvärras av att, som utredaren upp-
märksammar, själva den ekonomiska storleken av höghastighets-
nätet kan kräva en uppdelning på flera separata infrastrukturbolag.

Dubbelräknade banavgifter. I finansieringsdelen dubbelräknar
utredaren banavgifter. På höghastighetsnätets intäktssidan läggs
både avgifterna från den personstågstrafik som flyttas över till hög-
astighetsnätet, och som därför inte längre erlägger banavgifter för
utnyttjande av stambanorna, och banavgifterna från den godstrafik
som därmed kan utnyttja stambanorna. En korrekt beräkning inne-
håller endast en av dessa poster.

Val av sträckning till Skåne. De fem uppställda kriterierna fram-
står för mig som delvis godtyckliga. Vad är det för skäl som gör att
det är ett absolut krav att en resa Stockholm-Malmö får ta 155 minut-
er men inte 161 minuter (som alternativ 4 och som tidigare utredningar angivit som förväntad restid)? Vidare är det oklart varför det är ett absolut krav att sträckningen ska bidra till en kapacitetsökning för regionaltrafiken i Skåne. Båda dessa aspekter är mer lämpliga att analysera i en samhällsekonomisk analys där fördelar kan vägas mot nackdelar.

Fordon. Vilka förutsättningar som ska ges för ägande av rullande material har stor betydelse för kostnadskalkylerna, konkurrens situationen (=biljettpriserna) och frågan på vilka villkor trafikeringen på banorna kan upplåtas. Här är en avgörande punkt, som utredaren till stor del förbigår, i vilken utsträckning fordonen har alternativ användning. I den utsträckning de bara kan användas på denna del i det svenska järnvägsnätet och de i praktiken bara kan användas i Sverige är det tveksamt om de kan leasas på de villkor som utredaren antar. Det räcker inte att hänvisa till pågående standardiseringsarbete inom EU för att svara på denna fråga.
Referenser

Offentligt tryck, regeringsbeslut m.m.

Botniabanan. SOU 1996:95.

Grönbok om riktlinjer för de transeuropeiska transportnätverken (TEN-T). Faktapromemoria 2008/09:FPM103.

Konkurrens på spåret. SOU 2008:92.

Kommunal medfinansiering av regionala infrastrukturprojekt. Ds 2008:11.

Nya ersättningsbestämmelser i expropriationslagen m.m. SOU 2008:99.

Prop. 2008/09:228 Redovisning av kommunal medfinansiering till statlig infrastruktur.

Prop. 2008/09:176 Konkurrens på spåret.

Prop. 2008/09:35 Framtidens resor och transporter.
Prop. 2008/09:21 Kommunala kompetensfrågor m.m.
Prop. 2001/02:20 Infrastruktur för ett långsiktigt hållbart transport-
system.
Uppdrag att förvalta Avtal om medfinansiering av Citybanan m.m.,
m.m.. Regeringsbeslut N2008/91/ (delvis), N2002/12356/IR,
N2003/1514/IR (delvis).
Ytspårsutredningen. N2006/9955/IR.
Översyn av politiken för transeuropeiska transportnät (TEN-T).

Rapporter m.m.

Andersson E. och Lukaszewicz P. Energy consumption and related
air pollution for Scandinavian electric passenger trains. Report
Banavgifter i Europa. En kunskapsöversikt. VTI notat 56-2005. VTI,
2006.
Botniabanan AB. Årsredovisning 2008.
Bullerkartläggning enligt förordningen om omgivningsbuller. Resultat
Bundesverkehrswegeplan 2003. Bundesministerium für Verkehr,
Effektivisering i fysisk planering. Förslag till åtgärder för
effektivisering av processen för fysisk planering, med fokus på väg
och järnväg i storstadsområde. WSP Sverige AB, 2009.
Emmelin, I. och Lerman, P. Styrning av markanvändning och miljö.
Ansvarskommitténs skriftserie 2006.
En grön transportpolitik. Aftale mellan regeringen (Vestre og De
Konservative), Socialdemokraterne, Dansk Folkeparti,
Socialistisk Folkeparti, Det Radikale Venstre och Liberal

Inandningsbara partiklar i järnvägsmiljöer. VTI rapport 583. VTI, 2006.

Referenser

Nya tåg i Sverige – affärsmässig analys. SJ AB m.fl., 2008.

Nya underhållsdepåer med kapacitets- och logistiklösningar. Skrivelse. Jernhusen AB.

Regional systemanalys för transportinfrastrukturen i östra Göteborg. Region Blekinge m.fl., 2008.

Samhällsekonomi stora objekt. Banverket m.fl., 2008.

Underlagsrapporter framtagna inom ramen för utredningen

Finansieringslösningar m.m. för höghastighetsbanor i Sverige – analyser av lämpliga finansieringslösningar. Öhrlings PricewaterhouseCoopers, 2009.

Höghastighetsbanor, dir. 2008:156, markåtkomstfrågor m.m. PM. Lantmäteriet, 2009.

Bilaga 1

Kommittédirektiv

Höghastighetsbanor

Dir. 2008:156

Beslut vid regeringssammanträde den 18 december 2008.

Sammanfattning av uppdraget

Uppdraget ska redovisas senast den 15 september 2009.

Bakgrund

Banverket har under våren 2008 gjort en fördjupad studie om förutsättningarna för höghastighetsbanor i samverkan med andra berörda aktörer. Studien, som redovisades den 1 juni 2008, visar att restidsminskningarna på vissa sträckor kan bli betydande. Enligt
studien ger de nya separata banorna också utrymme för betydligt fler godståg dagtid på stambanorna jämfört med i dag.

Behovet av en utredning

En särskild utredare bör därmed analysera om höghastighetsbanor kan bidra till samhällesekonomiskt effektiva och hållbara transportlösningar för ett utvecklat transportsystem med förbättrad kapacitet, framkomlighet och tillgänglighet.

Uppdraget

En särskild utredare tillkallas med uppdrag att utreda förutsättningarna för en utbyggnad av höghastighetsbanor för järnväg i Sverige. Utredaren ska genomföra en nulägesbeskrivning, analysera en eventuell utbyggnad samt föreslå olika handlingsalternativ.
Vidare ska utredaren redovisa kostnaderna för respektive handlingsalternativ, hur finansiering kan ske och hur transportsystemet som helhet påverkas av alternativen. Utredaren ska också jämföra de samhällsekonomiska och transportpolitiska effekterna av en utbyggnad av separata höghastighetsbanor med en uppradering och utbyggnad av befintliga banor.

Utredaren ska i sitt arbete göra följande:

- Genomföra samhällsekonomiska kalkyler och nyttoböcker enligt vedertagna beräkningsmetoder av de olika alternativens kostnadskalkyler. Beräkningarna ska ta hänsyn till regeringens aviserade eller beslutade politik.

- Beskriva olika finansieringslösningar och deras respektive effekter, bl.a. för statsbudgeten, samt presentera en finansieringsmodell. Utgångspunkten för förslagen och finansieringsmodellen ska vara de principer för finansiering som regeringen har föreslagit i propositionen *Framtidens resor och transporter*.

- Analysera olika aktuella sträckor vid en utbyggnad av höghastighetsbanor, eventuell etappindelning och tidsordning för byggnation av etapperna.

- Analysera vilka effekterna blir av en etappvis utbyggnad respektive av en sammanhållen utbyggnad.

- Presentera förslag på genomförandeprocess, tidsplan och kritiska tidsaspekter.

- Utreda marknadsförutsättningar för trafik på banan, principer för trafikeringsrättsregleringar med beaktande av EG-rätt, samt hur fordon ska anskaffas och finansieras.

- Utreda de tekniska aspekterna kring en utbyggnad.

- Utreda förutsättningarna för hur linjeföring och profiler av höghastighetsbanor kan anpassas till landskapets förutsättningar och funktioner på bästa sätt och reducera barriär- och inträngseffekter.
- Sök relevanta internationella erfarenheter från främst övriga Europa men också från andra länder (befolkningsunderlag, befolkningskoncentrationer, resande).
- Klargöra om en utbyggnad kan finansieras med EU-medel och i så fall i vilken omfattning.
- Utreda möjligheterna till sammankoppling med ett europeiskt höghastighetsknot.
- Följa utvecklingen av det Transeuropeiska transportnätet (TEN-T).
- Genomföra relevanta miljöbedömningar med utgångspunkt från 6 kap. 12 § miljöbalken.

De samhällsekonomiska beräkningarna av en eventuell utbyggnad bör spegla ett stort antal aspekter såsom kapacitet inom järnvägs-systemet, marknadspotentialer, nettopåverkan på miljö och klimat under byggtid och drift jämfört med alternativa satsningar, befolkningsunderlag och restider. I arbetet bör även förekommande utbudssrestriktioner såsom tillgång till arbetskraft och konkurrens påverkan beaktas samt en internationell utblick i frågan göras. För att åstadkomma en samlad effektbedömning bör också icke pris-satta effekter, såsom påverkan på natur- och kulturmiljöer beskrivas.

Utredaren ska kontinuerligt samråda med de som arbetar med åtgärdsplaneringen, i syfte att inhämta relevanta referensobjekt till alternativa åtgärder inom transportsystemet i enlighet med den s.k. fyrstegsprincipen för hur olika lösningar på problem och brister i transportsystemet ska övervägas. Dessa alternativa åtgärder och deras effekter, inbegripande den tekniska utvecklingen, bör utgöra jämförelsealternativ till utredningens arbete.

Finansieringsmodellen för en eventuell utbyggnad ska grunda sig på anläggningskalkyler och prognoser enligt vedertagen samhällsekonomisk beräkningsmetodik. Vidare bör utredaren kunna presentera förslag till olika finansiellösningar av en eventuell utbyggnad enligt de principer som regeringen föreslagit i propositionen *Framtiden resor och transporter* och bedöma deras effektivitet. Utredaren ska kunna presentera förslag till hur avgiftssystemet på ett höghastighetsknot kontra det befintliga nätn kan utformas.
Utredaren ska också fördjupa analysen av vilka potentiella resande som skulle välja höghastighetståg i stället för andra färdsätt samt vilken betydelse restid och betalningsvilja samt övriga behov och preferenser har för resenärernas val av färdsätt.

I sitt arbete bör utredaren särskilt beakta och ta hänsyn till det av riksdagen fastställda transportpolitiska övergripande målet och delmålen. Målen är under revidering för närvarande och utredaren bör följa detta revideringsarbete.

Utredaren bör även klargöra vilka möjligheter som finns att finansiera eventuella höghastighetsbanor med EU-medel.

Vid en utbyggnad av höghastighetsbanor är planeringsfasen och genomförandeprocessen viktig. Utredaren ska därför presentera en tidsplan för hur utbyggnaden kan ske, vilka planeringsinitiativ inom ramen för den fysiska planeringen som behöver samordnas i de olika beslutsinstanserna samt hur organiseringen av genomförandet operativt sker mest effektivt. Utredaren bör även ge svar på om en sammanhållen eller etappvis utbyggnad är att föredra. Om en etappvis utbyggnad föreslås bör utredaren specificera tidsordningen mellan etapperna.

Utredaren ska klargöra hur en de svenska höghastighetsbanorna skulle kunna kopplas samman med ett europeiskt system för höghastighetståg kan ske. Internationella erfarenheter bör kunna inhämtas. Utredaren bör därmed bevaka arbetet med revideringen av det Transeuropeiska transportnätet (TEN-T).

Möjligheten att utveckla stationer och omstigningsplatser i anslutning till det nya höghastighetsnätet ska också utredas och dess effekter beskrivas.

Utredaren ska vidare redovisa de förslag till författningsförändringar som utredarens förslag eventuellt kan föranleda.

En viktig aspekt i utredarens arbete är dessutom att inhämta kunskap och erfarenheter från andra större investeringsprojekt.
Tidsplan och rapportering

Utredaren ska redovisa sitt arbete senast den 15 september 2009.
Utredaren ska bedriva arbetet i fortlöpande dialog med berörda myndigheter, regionala och lokala företrädare och andra utredningar. Utredaren ska löpande stämma av med och informera Regeringskansliet (Näringsdepartementet) om hur arbetet fortskrider.
Vidare ska utredaren samråda med andra myndigheter, instanser och organisationer i den utsträckning som är nödvändig.

(Näringsdepartementet)
Genomförda möten och samråd

Nedan följer en förteckning av möten och samråd som har genomförts i samband med utredningsarbetet.

Sverige

Februari

- Europakorridoren. Ett av flera möten.
- Nyköping-Östgötalänken AB.

Mars

- Sveriges Kommuner och Landsting; regionala kontakter, regiondirektörer, självstyrelseorgan och regionala företrädare från traditionella län (landstingens regionala utvecklingsdirektörer/kommunförbundsdirektörer).
- Sveriges Kommuner och Landsting; politiska företrädare, Beredningen för samhällsbyggnadsfrågor och Beredningen för tillväxt och regional utveckling.
April

- EuroMaint AB. Ett av flera möten.
- Konferens om Götalandsbanan i Borås.
- Presentation av utredningen – Öresundskommittén.
- ABC-politikermöte i Uppsala.
- Järnvägsforums seminarium om Effektiv järn- och spårväg.

Maj

- Systemanalys för utbyggnad av höghastighetsbanor. Regionförbundet i Kalmar län, Regionförbundet Jönköpings län.
- Systemanalys för utbyggnad av höghastighetsbanor. Stockholms stad, Regionförbundet Sörmland, Östsm, Länsstyrelsen i Stockholms län, Stockholms läns landsting.
- Interfleet Technology AB.
- Systemanalys för utbyggnad av höghastighetsbanor och presentation av samarbetsprojektet i Öresundsregionen, Infrastruktur- och byutveckling i Öresund (IBU). Region Skåne.
- Luftfartsverket.
- Regionförbundet Jönköpings län.
- Banverket. Ett av flera möten.
- Jernhusen AB. Ett av flera möten.
- Helsingborgs Stad.

Juni

- Sveriges Kommuner och Landsting: regionala kontakter, regiondirektörer, självstyrelseorgan och regionala företrädare från traditionella län (landstingens regionala utvecklingsdirektörer/kommunförbundsdirektörer).
- Representanter för samtliga kommuner i Region Skåne.
• Deltagande i Regionförbundet södra Smålands infrastruktur-seminarium.
• Malmö stad.
• Storstockholms lokaltrafik AB.
• Systemanalys för utbyggnad av höghastighetsbanor. Västra Götalandsregionen.
• Representanter för Norrköpings och Linköpings kommun.
• Systemanalys för utbyggnad av höghastighetsbanor. Region Halland.
• Stockholms stad och Solna stad.
• LFV Arlanda.

Juli
• Myndigheten för tillväxtpolitiska utvärderingar och analyser.
• Tågoperatörerna.

Augusti
• Samråd med Kommittén för effektivisering av planerings-processen för transportinfrastruktur N 2009:03.

Internationellt

Studiebesök Rave.
Lissabon, Portugal.

Studiebesök underhållsdepå.
Madrid, Spanien.

Studiebesök SNCF International och RFF.
Paris, Frankrike.

Studiebesök trafikcenter och underhållsdepå.
Birmingham och Manchester, Storbritannien.
Transportministeriet.
Köpenhamn, Danmark.

Studiebesök resecentrum.
Rom, Italien.

Bundesministerium für Verkehr, Bau und Stadtentwicklung.
Berlin, Tyskland.
Föreslagna åtgärder i stambanealternativet

Västra stambanan

Perioden 2010–2020 (sth 250 och kapacitet)

<table>
<thead>
<tr>
<th>Objekt</th>
<th>Anläggningsk. (mnkr)</th>
<th>Restidsvinst</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flemingsberg, nytt platfformsspår upp “spår 0”</td>
<td>200</td>
<td>00:15</td>
</tr>
<tr>
<td>Hastighetshöjning 250 km/h Flemingsberg–Alingsås</td>
<td>1 500</td>
<td></td>
</tr>
<tr>
<td>Flens bangård</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Kilsmo, förbigångsstation mitten</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Hallsberg rangerbangård, förlängd avg-/ank-bangård (1 000 m)</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>20 förlängda förbigångsspår (1 000 m) Hallsberg–Göteborg</td>
<td>1 000</td>
<td></td>
</tr>
<tr>
<td>Tre nya förbigångsspår (1 000 m) Laxå–Herrljunga</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>Laxå bangård, etapp 1</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Kapacitetspaket Herrljunga–Göteborg (inkl. två förbigångsspår)</td>
<td>1 000</td>
<td></td>
</tr>
<tr>
<td>Sävenäs rangerbangård, planskildhet och förlängd avg-/ank-bangård</td>
<td>1 000</td>
<td></td>
</tr>
<tr>
<td>Fyrsår Floda–Göteborg (25 km)</td>
<td>5 000</td>
<td>00:05</td>
</tr>
</tbody>
</table>

Perioden 2021–2025 (ytterligare kapacitet)

<table>
<thead>
<tr>
<th>Objekt</th>
<th>Anläggningsk. (mnkr)</th>
<th>Restidsvinst</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tredje spår Järna–Gnesta (17 km), inkl. Gnesta bangård</td>
<td>2 800</td>
<td>00:01:30</td>
</tr>
<tr>
<td>Katrineholm, planskild anslutning av Ssb</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>Fyrsår Tälle (H godsbangård)–Vretstorp (10 km)</td>
<td>1 000</td>
<td>00:00:30</td>
</tr>
<tr>
<td>Ny bana (enkelspår) Värmlandsbanan Vretstorp–Hasselfors (14 km)</td>
<td>1 400</td>
<td></td>
</tr>
<tr>
<td>Skövde, bangårdsombyggnad (regionaltåg i mitten)</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>Falköping, triangelspår G–Jö</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>Herrljunga, planskild anslutning av Älvsborgsbanan</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>Fyrsår Floda–Göteborg (18 km)</td>
<td>3 600</td>
<td>00:04</td>
</tr>
</tbody>
</table>

Summa Vsb 2010–2020

<table>
<thead>
<tr>
<th>Objekt</th>
<th>Anläggningsk. (mnkr)</th>
<th>Restidsvinst</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summa Vsb 2010–2020</td>
<td>11 000</td>
<td>00:20</td>
</tr>
</tbody>
</table>

Summa Vsb 2021–2025

<table>
<thead>
<tr>
<th>Objekt</th>
<th>Anläggningsk. (mnkr)</th>
<th>Restidsvinst</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summa Vsb 2021–2025</td>
<td>10 500</td>
<td>00:06</td>
</tr>
</tbody>
</table>

Summa Vsb

<table>
<thead>
<tr>
<th>Objekt</th>
<th>Anläggningsk. (mnkr)</th>
<th>Restidsvinst</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summa Vsb</td>
<td>21 500</td>
<td>00:26</td>
</tr>
</tbody>
</table>

345
Södra stambanan

Perioden 2010–2020 (sth 250 och kapacitet)

<table>
<thead>
<tr>
<th>Objekt</th>
<th>Anläggningsk. (mnkr)</th>
<th>Restidsvinst</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hastighetshöjning 250 km/h Katrineholm–Gripenberg</td>
<td>200</td>
<td>00:10</td>
</tr>
<tr>
<td>Norrköpings personbangård</td>
<td>1 000</td>
<td></td>
</tr>
<tr>
<td>Fyrspar Norrköping–Linköping (40 km)</td>
<td>6 000</td>
<td>00:08</td>
</tr>
<tr>
<td>Hastighetshöjning 250 km/h Gripenberg–Lund</td>
<td>1 600</td>
<td>00:14</td>
</tr>
<tr>
<td>20 förlängda förbigångsspår (1 000 m) Mjölby–Malmö</td>
<td>1 000</td>
<td></td>
</tr>
<tr>
<td>Fyra nya förbigångsspår (1 000 m) Nääsjö–Hässleholm</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>Alvesta bangård, etapp 1</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>Lång förbigångsstation Sösdala–Tjörnarp (6 km)</td>
<td>650</td>
<td></td>
</tr>
<tr>
<td>Fyrspar Arlöv–Lund (11 km)</td>
<td>3 300</td>
<td></td>
</tr>
<tr>
<td>Malmö godsbangård, förlängd (1 000 m) avg-/ank-bangård</td>
<td>500</td>
<td></td>
</tr>
</tbody>
</table>

Perioden 2021–2025 (ytterligare kapacitet)

<table>
<thead>
<tr>
<th>Objekt</th>
<th>Anläggningsk. (mnkr)</th>
<th>Restidsvinst</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tredje plattformsspår Nyköping C</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Fyra nya mötesstationer Järna–Kolmården</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>Dubbelspår Kolmården–Åby (12 km) inkl. stationer</td>
<td>2 500</td>
<td></td>
</tr>
<tr>
<td>Linjeomläggning Åby (3 km, från K)</td>
<td>600</td>
<td>00:01:30</td>
</tr>
<tr>
<td>Mjölby, planskild anslutning av Godsstråket</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>Förbifart Tranås, nytt dubbelspår Sommen–Gripenberg (23 km)</td>
<td>3 500</td>
<td>00:04:00</td>
</tr>
<tr>
<td>Alvesta bangård, etapp 2 (planskildhet Ktk och triangelspår V–Äh)</td>
<td>800</td>
<td>00:01:30</td>
</tr>
<tr>
<td>Fyrspar Hässleholm–Sösdala och Tjörnarp–Lund (61 km), planskildhet</td>
<td>9 700</td>
<td>00:04:30</td>
</tr>
</tbody>
</table>

Summa Ssb 2010–2020 | 14 900 | 00:32 |
Summa Ssb 2021–2025 | 18 000 | 00:11 |
Summa Ssb | 32 900 | 00:43 |

Summa Vsb+Ssb 2010–2020 | 25 900 |
Summa Vsb+Ssb 2021–2025 | 28 500 |
Summa | 54 400 |
Åtgärdsbehov, planeringsläge och förutsättningar för stationer

Stockholm C

Södertälje Syd

Norrköping

Linköping

Linköping är landets femte största stad med 140 000 invånare. Det finns en samsyn i regionen som tar sig uttryck i att Linköping och Norrköping upprättat en gemensam översiktsplan. Det finns även en översiktsplan för staden Linköping och en för blivande rese-
centrum med intilliggande utvecklingsområden. De tre översiktsplanerna är synkroniserade och förs vidare bland annat via samrådsprocesser inför beslut våren 2010.

Linköping är ett av de mest betydelsefulla upptagningsområdena för trafik med höghastighetståg. Trafikeringsmöjligheterna blir i sin tur en viktig faktor för fortsatt utveckling av Linköping och av regionen.

Jönköping

Jönköping utgör ett regioncentrum under stark utveckling och det geografiska läget ger stora möjligheter till fortsatt utveckling om infrastrukturen kan förstärkas. Ökad tillgänglighet genom förbindelse med höghastighetståg skulle sannolikt bli en viktig utvecklingsfaktor.

Staden har ambitiösa planer för fortsatt utveckling i både regionen och staden. I strategin ingår att utveckla attraktiva boendemiljöer, arbetsplatser och utbildningsmöjligheter, samt en fortsatt utbyggnad av infrastruktur. Resecentrum och dess läge påverkar strukturen för en sådan utveckling. De inledande studier som pågår för Götalandsbanan omfattar tre olika lägen för reseterminalen i Jönköping:

- Nuvarande stations läge vid Vätterns strand.
- Söder om stadskärnan, vid Munksjöns västra strand.
- Externt läge cirka 10 kilometer öster om stadskärnan.

Kommunen genomför för närvarande studier av resecentrums läge och möjligheterna till nybyggnation i närområdet. Utvecklingsområdet skulle kunna inrymma både kontor och bostäder.
Ulricehamn

Ulricehamns kommun har i likhet med övriga kommuner längs Götalandsbanan sedan en längre tid varit delaktiv i diskussioner kring banans sträckning. Olika lägen för en ny station i Ulricehamn har undersökts av kommunen som förordnar en station i ett läge så nära stadskärnan som möjligt. Detta skulle innebära att blivande riksväg 40 kommer förläggas i ett sträck norr om järnvägen för att öka tillgängligheten till stationen.

Kommunen arbetar på olika sätt med att förbereda genomförandet, bland annat genom markinlösen. I samband med Banverkets inledande studier avseende Götalandsbanan utreder kommunen närmare banans passage genom staden samt stationens placering och tänkbara utformning.

Området mellan det planerade stationsläget och stadens centrum planeras för ny bebyggelse, främst bostäder men även för handel och kontor.

Borås/Landvetter

Med höghastighetsbanan kommer Borås bli en järnvägsknypunkt med fem olika inkommande järnvägslinjer med möjlighet att byta tåg till olika destinationer. Staden har cirka 100 000 invånare och omkring 17 000 in- och utpendlare.

Oavsett val av stationsläge behövs nybyggnad för ett resecentrum. Kommunen är involverad, tar initiativ till planeringsåtgärder och avsätter resurser för planarbetet.

Cirka 30 minuter från Borås ligger Landvetters flygplats som har omkring 4 miljoner resenärer årligen. Genom att dra järnvägen under flygplatsområdet kan en station under flygplatsen förbindas direkt med flygterminalen genom direkta uppgångar i terminalhallen. Det behövs därmed inte någon särskild terminalbyggnad för tägresenärer.
Göteborg

Göteborgs planering bygger också på insatser för förbättring av infrastrukturen, inte minst avseende järnvägen. Den nya Västlänken som är under planering är en satsning på den regionala tågtrafiken som innebär att arbetsmarknaden utvidgas och regionen förstoras. Västlänken kommer även att avlasta den befintliga stationen och göra det möjligt att utöka kapaciteten vid Göteborgs central. En utbyggnad av Västlänken är en förutsättning för att höghastighetstågen ska få utrymme på Göteborgs C.

Reseterminalen behöver utvidgas för att ansluta till Västlänkens stationsdel och för att ta hand om de ökade passagerarflödena i övrigt. Utvidgningen kan göras i kombination med överdäckning av bangården, vilket skulle kunna ge utrymme för fastighets exploatering för kommersiella ändamål. Nya Göteborg C kommer att bli en viktig länk mellan nuvarande stadskärnor och det nya Gullbergsgassområdet samt Centrala Älvstaden i övrigt. Förutom förbättringar i järnvägsstrukturen kommer även vägnätet att utvecklas vilket sammantaget kan ge området kring stationen mycket god tillgänglighet med olika trafikslag samt med cykel eller till fots.

Värnamo

Parallellt med detta avser kommunen att planera för den nya resecentrumsläggningen.

Eftersom det nya resecentrummet kommer att placeras ett par kilometer från nuvarande station i centrum med regional och lokal trafik, behöver kommunikationerna mellan de två stationerna klaras ut.

Ljungby

Ljungby har 27 000 invånare varav cirka hälften bor i staden Ljungby.

En framtidshöghastighetsbana kommer därmed inte att dras genom de centrala delarna av staden utan i ett läge i dess västra utkant, strax väster om E4. Kommunen studerar för närvarande olika lägen som kan vara lämpliga för resecentrum. Samtliga alternativ är belägna mellan en och tre kilometer från stadskärnan.

Flera av alternativen kommer att kunna ge möjligheter till fastighetsexploateringar. Kommunen äger mark i området och har ambitioner att påbörja fastighetsutveckling samt förvärva ytterligare mark.

Helsingborg

Helsingborg är en viktig kommunikationsknutpunkt med sitt läge vid Öresund. Det finns ett stort engagemang i staden för att ta ett helhetsgrepp på järnvägsfrågorna och banornas dragnings genom staden. Arbetet knyts samman med stadens fortsatta expansion längs Öresund.

Helsingborgs stad har tillsammans med Banverket och andra berörda aktörer tidigare genomfört idéstudier för Västkustbanans sträckning genom Helsingborg, för en koppling till Europabanan och för en anslutning till tunnelförbindelse under Öresund. Utredningarna om tunnelsträckningarna genom staden har konkretiserats.

Med en tunnel söder om Knutpunkten kan man frigöra ett stort exploateringsområde med potential för ett omfattande stadsbyggnadsprojekt.

Hässleholm

Kommunen betraktar stationsområdet som viktigt för stadens framtida utveckling och det pågår planering för bebyggelse av bostäder, arbetsplatser och handel på tillgängliga områden kring stationen.

Lund

Det centrala stationsområdet i Lund har högt kapacitetsutnyttjande vad gäller tågtrafiken inom spårområdet och resenärernas terminalutrymmen. Det finns flaskhalsar i tågsystemet söder om stationen och det är trång kring stationen för angöring, parkering och cykelparkering. Det pågår en uppradering av stationen som ska ge lättningar för de närmaste åren.

Lunds kommun är medveten om kapacitetsproblemen och bedriver utredningar i syfte att finna en mer långsiktigt hållbar lösning. Tågresandet har ökat mer än väntat och i dag betjänar stationen cirka 30 000 resenärer per dygn, vilket antas öka till 50 000 år 2020.
En stor andel är regionala resande men även höghastighetstågen bedöms få en betydande marknad i Lund.

Malmö

Parallelt med byggandet av Citytunneln sker uppgradering och utbyggnad av den befintliga stationen i Jernhusens regi. Uppgraderingen som innefattar ny hall, parkeringshus och nya butiker och restauranger ska vara färdig till sommaren 2011.

Malmö stad har ett stort engagemang för järnvägens utveckling och deltar aktivt i olika planeringssammanhang.
Särskilt känsliga landskapsområden

I denna bilaga listas de landskap som har bedömts som särskilt känsliga för påverkan av de föreslagna höghastighetsbanorna. Fler känsliga områden än de som räknas upp kan finnas.

Landsbygdsområden/rurala landskap

Stockholm–Linköping
- Vagnhärad och Nyköping/Skavsta med känsliga landskap som Tullgarn, Trosaåns dalgång och Nyköpingsåns dalgång.
- Kolmården och förkastning vid Bråviken som har stora kultur-, natur- och friluftsvärden.
- Himmelstalundområdets fornlämningsmiljö söder om Norrköping med omfattande hällristningsområden och passagen av Lövstad Slott och Landsjön.
- Göta kanal, en av landets främsta kanalmiljöer.
- Linköping, stifts- och residensstad och Kinda kanal. Förutom påverkan i staden kan ut- och infarter beröra mycket värdefulla och hårt trängda naturområden och områden av stor betydelse för att förstå Linköpings historia.

Linköping–Jönköping
- I södra Östergötland finns ett övergångslandskap mellan slätt och högland som innehåller fastlandssveriges kanske största sammanhängande ångs- och hagmarksområde. Här är dessutom den ursprungliga bystrukturen, herrgårdarna och vägsystemet intakt sedan hundratals år.
• Hålavedens mosaiklandskap utgör exempel på en levande bygd där det historiska landskapet är läsbart. Detta är ett område som är känsligt för fragmentering och storskaliga moderna inslag.

• Gripenberg–Säby, ett riksintressant herrgårdslandskap, tidigare häradscenrum. Ett upplevelselandskap med stora värden.

• Östra Vätternbranten är biosfärområde, och knutet till ett stor-kuperat, sjörik landskap öster om Vättern. Stora delar av området är känsligt för den fragmentering som en ny bana skulle kunna innebära.

Jönköping–Göteborg

• Ätradalen med sjön Åsunden vid Ulricehamn. Dalgångens kulturhistoriska och ekologiska värden är känsliga för fragmentering, och en okänslig passage kan störa landskapsbilden.

• Viskans källflöden med dalgången mot Timmele i Åtrans dalgång har brukats som färdväg i hundratals år och hyser många historiska spår.

• En ny järnväg genom Borås berör stadslandskapet i hög grad. Stationsläget och kopplingar till andra banor kan innebära stora förändringar av stadsbilden.

• Rävlanda–Bollebygd. Passagen av det öppna kulturlandskapet är känslig.

• Närmast Mölndal kan Kvarnbyn och miljön kring Gunnebo slott beröras.
Jönköping–Skåne

- Lagans dalgång är i sin övre del mindre känslig, förutom passager nära tätorterna. I delen söder om Ljungby är dalgången tydligare, och längs ån finns det odlade kulturlandskapet med rötter i järnåldern (gravfält, runstenar) och medeltida kyrkor.
- Det flacka sjörika landskapet söder och öster om Värnamo innehåller objekt och mindre områden som är känsliga, exempelvis kloster- och herrgårdsmiljön i Nydala.
- Hallandsås och området ner mot Ängelholmslätten berör ett kuperat, mosaikartat landskap utan särskilt utpekade värden, men där ingreppen kan bli stora.
- På Ängelholms- och Helsingborgsslätterna finns ett finmaskigt nät av objekt och linjer som är känsliga.
- Kustzonen vid Öresund med dalgångar kring åarna. Saxtorpsområdet.

Områden av särskilt biologiskt intresse

Stockholm–Linköping

- Tullgarn, Trosaåns och Nyköpingsåns dalgångar.
- Kolmården med sjön Skiren och Getåravinen.
- Eklandskapet vid Linköping.

Linköping–Jönköping

- Övergångslandskapet mellan slätten och höglandet innehåller fastlandsveriges kanske största sammanhängande ängs- och hagmarksområde av mycket stor betydelse för den biologiska mångfalden.
- Hålavedens mosaik av odlingsmarker, myrar och skogar har mycket rik biologisk mångfald.
- Sommen, en riksintressant klarvattensjö med känslig fågelfauna.
- Östra Vätternbrantens biosfärsmöre.
• Vätternsänkan. Kring Vätterns sydspets finns, trots den tätabebyggen, ett finmaskigt nät av historiskt och ekologiskt värdefulla områden, känsliga just därför att de är så trängda av andra anspråk.

Jönköping–Göteborg

• Myrkomplexen Dumme mosse och Komosse är känsliga för störning och förändringar i hydrologin.
• Ätradalen och Viskadalen med ekologiska värden, till exempel värdefulla lövskogsbestånd som är känsliga för fragmentering.
• Rävlanda–Bollebygd: banan löper parallellt med en öst-västlig sprickdal som här möter en nordsydlig.

Jönköping–Skåne

• Kopplingspunkten till Götalandsbanan ligger nära Dumme mosse, som är känslig för störningar och förändringar i hydrologin.
• Store mosse är nationalpark och känslig för störningar och förändringar av hydrologin.
• Det flacka sjörika landskapet söder och öster om Värnamo innehåller objekt och mindre områden som är känsliga, exempelvis kloster- och herrgårdsmiljön i Nydala. Detta landskap är början på ädellövsområdena som ökar i omfattning söderut och helt tar över i Skåne. Dessa miljöer är generellt känsliga.
• Odlingslandskapet vid sjön Hindsen har rötter ända i stenåldern. Här finns också delar med ädellövsområden som behöver studeras mer. Sjön Bolmen omges av mycket lövskog och sjön i sig är intressant. Likaså är Möckeln något av en ”hot spot” när det gäller biologisk mångfald.
• I trakten av Markaryd upp till sjön Bolmen finns ett stråk med omfattande våtmarker.
1. En mer rättssäker inhämtning av elektronisk kommunikation i brottsbekämpningen. Ju.
2. Nya nät för förnybar el. N.
3. Ransonering och prisreglering i krig och fred. Fö.
4. Sekretess vid anställning av myndighetschefer. Fi.
6. Återkrav inom vällårdssystemen. – Förslag till lagstiftning. Fi.
10. Miljöprocessen. M.
11. En nationell cancerstrategi för framtiden. S.
12. Skatt i retur. Fi.
20. Mer järnväg för pengarna. N.
22. En ny alkohollag. S.
23. Olovlig tobaksförsäljning. S.
24. De statliga beställarfunktionerna och anläggningsmarknaden. N.
25. Samordnad kommunstatistik för styrning och uppföljning. Fi.
27. Tä klass. U.
29. Fritid på egna villkor. IJ.
31. Effektiva transporter och samhällsbyggande – en ny struktur för sjö, luft, väg och järnväg. N.
32. Socialtjänsten. Integritet – Effektivitet. S.
33. Skatterabatt på aktieförvärv och vinstutdelningar. Fi.
34. Förenklingar i aktiebolagslagen m.m. Ju.
36. Främliga, Skydda, Övervaka – FN:s konvention om rättigheter för personer med funktionsnedsättning. IJ.
38. Ingen får vara Svarte Petter. Tydligare ansvarsfördelning inom socialtjänsten. S.
39. En ny kollektivtrafiklag + Bilagor. N.
40. En ny modell för arbetsmiljötillsyn. A.
41. Bättre och snabbare insättningsgaranti. Fi.
42. Vattenverksamhet. M.
43. Klinisk forskning – ett lyft för sjukvården. U.
44. Integritetsskydd i arbetslivet. A.
45. Områden av riksintresse och Miljökonsekvensbeskrivningar. M.
46. Försonad årsredovisning och bokföringsbrott, m.m. Ju.
47. God arbetsmiljö - en framgångsfaktor? A
48. Koncessioner för el- och gasnät. N.
49. Bättre samverkan. Några frågor kring samspelet mellan sjukvård och socialförsäkring. S.
50. Nytt pensionssystem för den statsunderstödda scenkonsten. Fi.
52. Staten och imamerna.
Religion, integration, autonomi. U.
54. Uthållig älgförvaltning i samverkan. Jo.
55. Ett effektivare smittskydd. S.
57. Myndighet för hållbart samhällsbygande – en granskning av Boverket. M.
58. Skatteförfarandet. Fi.
59. Skatteincitament för gåvor till forskning och ideell verksamhet. Fi.
60. Återvändandedirektivet och svensk rätt. Ju.
62. Skatt på florerade växthusgaser. Fi.
63. Totalförsvarets plikt och frivillighet. Fö.
64. Flickor och pojkar i skolan – hur jämställt är det? U.
65. Moderniserade skatteregler för ideell sektor. Fi.
68. Lag om stöd och skydd för barn och unga (LBU) + bilaga. S.
69. En ny ransonerings- och prisregleringslag. Fö.
70. Utvärdering av buggning och preventiva tvångsmedel. Ju.
71. EU, Sverige och den inre marknaden – En översyn av horisontella bestämmelser inom varu- och tjänsteområdet. UD.
73. Vägval för filmen. Ku.
74. Höghastighetsbanor – ett samhällsbygge för stäkt utveckling och konkurrenskraft. N.
Statens offentliga utredningar 2009
Systematisk förteckning

Justitiedepartementet

En mer rättssäker inhämtning av elektronisk kommunikation i brottsbekämpningen.[1]
Säkerhetskopiorrs rättsliga status. [5]
Effektiviteten i Kriminalvårdens lokalförsörjning. [13]
Grundlagsskydd för digital bio och andra yttrandefrihetsrättsliga frågor. [14]
Kommunal kompetenskatalog.
En problemorientering. [17]
Två rapporter till Grundlagsutredningen. [18]
Aktiv väntan – asylsökande i Sverige. [19]
Förenklingar i aktiebolagslagen m.m. [34]
Moderna hyreslagar. [35]
Enklare beslutsfattande i ekonomiska föreningar. [37]
Försonad årsredovisning och bokföringsbrott, m.m. [46]
Den nya migrationsprocessen. [56]
Återvändandedirektivet och svensk rätt. [60]
Modernare adoptionsregler. [61]
Signalspaning för polisstyrkans behov. [66]
Utvärdering av buggning och preventiva tvångsmålar. [70]
Insyn och integritet i brottsbekämpningen – några frågor. [72]

Utrikesdepartementet

EU, Sverige och den inre marknaden
– En översyn av horisontella bestämmelser inom varu- och tjänsteområdet. [71]

Försvarsdepartementet

Ransonering och prisreglering i krig och fred. [3]
Totalförsvarspaket och frivillighet. [63]
Försvarsmaktens helikopter 4 – frågan om vidmakthållande eller avveckling. [67]
En ny ransonerings- och prisregleringslag. [69]

Socialdepartementet

En nationell cancerstrategi för framtiden. [11]
En ny alkohollag. [22]
Olovlig tobaksförsäljning. [23]
Socialtjänsten. Integritet – Effektivitet. [32]
Ingen får vara Svarte Petter. Tydligare ansvarsfördelning inom socialtjänsten. [38]
Bättre samverkan. Några frågor kring samspellet mellan sjukvård och socialföräldra. [49]
Ett effektivare smittskydd. [55]
Lag om stöd och skydd för barn och unga (LBU). + Bilaga. [68]

Finansdepartementet

Sekretess vid anställning av myndighetschefer. [4]
Återkrav inom välfärdssystemen.
– Förslag till lagstiftning. [6]
Säkerhetskontroller vid fullmäktige- och nämndssammanträden. [9]
Skatt i retur. [12]
Redovisning av kommunal medfinansiering. [21]
Samordnat kommunstatistik för styrning och uppföljning. [25]
Skatterabatt på aktieförvärv och vinstutdelningar. [33]
Bättre och snabbare insättningsgaranti. [41]
Nytt pensionssystem för den statsunderstödda scenkonsten. [50]
Skatteförfarandet. [58]
Skatteincitament för gåvor till forskning och ideell verksamhet. [59]
Skatt på fluorerade växthusgaser. [62]
Moderniserade skatteregler för ideell sektor. [65]

Utbildningsdepartementet

Ta klass. [27]
Stärkt stöd för studier – tryggt, enkelt och flexibelt. + Bilagor. [28]
Klinisk forskning – ett lyft för sjukvården. [43]
Staten och imamerna. Religion, integration, autonomi. [52]
Flickor och pojkar i skolan – hur jämställt är det? [64]

Jordbruksdepartementet
Den svenska administrationen av jordbruksstöd. [7]
Trygg med vad du äter – nya myndigheter för säkra livsmedel och hållbar produktion. [8]
Det växande vattenbrukslandet. [26]
Skog utan gräns? [30]
Fiskevård i enskilt vatten. En översyn av lagen om fiskevårdsmråden. [53]
Uthållig älgförvaltning i samverkan. [54]

Miljödepartementet
Miljöprocessen. [10]
Vattenverksamhet. [42]
Områden av riksintresse och Miljökonsekvensbeskrivningar. [45]
Myndighet för hållbart samhällsbyggnande – en granskning av Boverket. [57]

Näringsdepartementet
Nya nät för förnybar el. [2]
Mer järnväg för pengarna. [20]
De statliga beställarfunktionerna och anläggningsmarknaden. [24]
Effektiva transporter och samhällsbyggande – en ny struktur för sjö, luft, väg och järnväg. [31]
En ny kollektivtrafikläg. + Bilagor. [39]
Koncessioner för el- och gasnät. [48]
Höghastighetsbanor. Ett samhällsbygge för stärkt utveckling och konkurrenskraft. [74]

Integrations- och jämställdhetsdepartementet
Fritid på egna villkor. [29]
Främja, Skydda, Övervaka – FN:s konvention om rättigheter för personer med funktionsnedsättning. [36]

Kulturdepartementet
Kraftsamling!

Betänkande av Kulturutredningen.
Grundanalys
Förnyelseprogram
Kulturpolitikens arkitektur. [16]
Avskaffande av filmcensuren för vuxna – men förstärkt skydd för barn och unga mot skadlig mediepåverkan. [51]
Vägval för filmen. [73]

Arbetsmarknadsdepartementet
En ny modell för arbetsmiljötillsyn. [40]
Integritetsskydd i arbetslivet. [44]
God arbetsmiljö - en framgångsfaktor? [47]