Last edited: 9/10/2021

FATTY ACID SYNTHESIS (PART 2)

Metabolism | Fatty Acid Synthesis | Part 2

METABOLISM

OUTLINE

I) RECAPITULATION

II) FAS – FATTY ACID SYNTHASE

- III) SUMMARY
- IV) APPENDIX
- V) REVIEW QUESTIONS
- VI) REFERENCES
- -----

I) RECAPITULATION

- $\bullet \ Glucose \rightarrow \mathsf{Pyruvate} \rightarrow \mathsf{Acetyl}\text{-}\mathsf{CoA}$
- $\bullet \text{ Acetyl-CoA} \rightarrow \text{Krebs cycle} \rightarrow \text{ECT} \rightarrow \text{ATP}$
- \rightarrow High ATP \rightarrow no need to produce more ATP
- \rightarrow Build-up of citrate
- \rightarrow Citrate leaves mitochondria via transporter
- → In cytoplasm citrate is cut into OAA + Acetyl-CoA ∘ By: citrate lyase
- OAA → Malate → Pyruvate → Gluconeogenesis
 Malate → Pyruvate by Malic enzyme, yields NADPH
- Acetyl-CoA → Malonyl-CoA
 - o By: acetyl-CoA carboxylase
 - o Inhibitors: glucagon, NE, E, LCFA
 - Stimulators: insulin, citrate

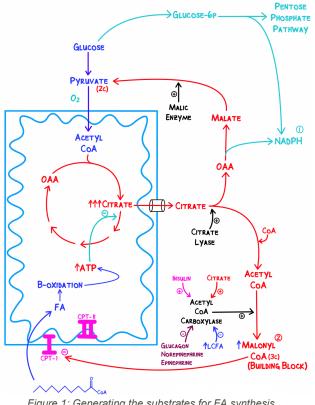


Figure 1: Generating the substrates for FA synthesis, NADPH and malonyl-CoA

(1) Substrates for FA synthesis

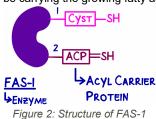
- NADPH
- Malonyl-CoA
- FAS-1 enzyme
- Acetyl-CoA

Medical Editor: Uta Hüning

(2) About the substrates

- NADPH source:
 - Malic enzyme
 - o Pentose phosphate pathway (oxidative phase)
- Malonyl-CoA source:
 - o Citrate build up
 - $_{\odot}$ Citrate split into OAA + Acetyl-CoA by citrate lyase
 - \circ Acetyl-CoA \rightarrow by ACC \rightarrow Malonyl-COA

Remember:

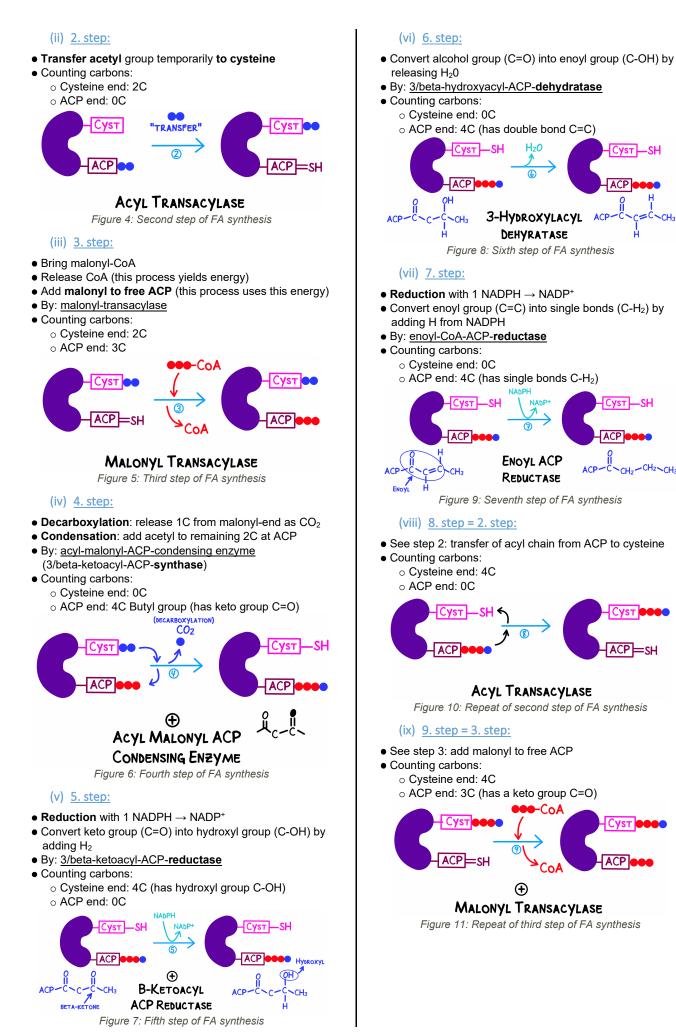

- NADPH = reducing agent for FA synthesis
- Malonyl-CoA = precursor of FA synthesis
- Malonyl-CoA also inhibits FA oxidation (degradation)
 - CAT transporter on mitochondrial membrane (carnitine-acyltransferase)
 - Type 1 (outer membrane)
 - Type 2 (inner membrane)
 - CAT-1 transports FA into mitochondria for oxidation
 - \circ Malonyl-CoA inhibits CAT-1 \rightarrow favors FA synthesis

II) FAS – FATTY ACID SYNTHASE

- FAS 1: in animals, fungi
- FAS 2: in bacteria, archaea, plants [Zhao W. (2008)]

(1) FAS-1 Structure

- Large enzyme complex with different catalytic subunits
- On one end: Cysteine-SH
- On other end: ACP (acyl-carrier-protein) (with 4'-phosphopantetheine group which also has SH)
 ACP will be carrying the growing fatty acyl-chain


(2) FAS-1 Action

- (i) <u>1. step:</u>
- Bring acetyl-CoARelease CoA (this process yields energy)
- Add acetyl to ACP (this process uses this energy)
- By: acetyl-transacylase
- Counting carbons:
 - Cysteine end: 0C
 - o ACP end: 2C

ACETYL TRANSACYLASE Figure 3: First step of FA synthesis

FATTY ACID SYNTHESIS (PART 2)

-Cyst-SH

CH

ACP

Cyst

CP

ACP

Сузт

ACP

-CH2~CH3

(x) <u>10. step = 4. step:</u>

- See step 4: decarboxylase 1C, acyl chain condenses with remaining 2C on ACP end
- Counting carbons:
 Cysteine end: 0C
 - Organization of the constraint of t

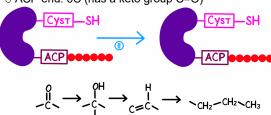


Figure 12: Repeat of fourth step of FA synthesis

- Repeat to add 2C with each round until **palmitate (16C)** or longer FA is formed
- Then cleave FA from ACP
- By: thioesterase

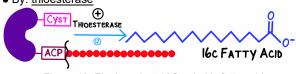


Figure 13: Final product 16C palmitic fatty acid

Remember:

- How many rounds of FA synthesis do we need to form a 16C FA?
- First round adds 4C, every next round adds 2C
- 16-4=12 \rightarrow 12C remaining, 1st + 6 = 7 rounds total

III) SUMMARY

(1) Add Acetyl

- 2C added to ACP
- (2) Transfer Acetyl
- 2C added to cysteine
- (3) Add Malonyl
- 3C added to ACP

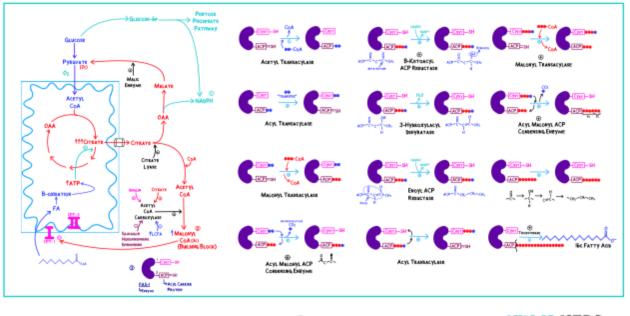
(4) Decarboxylation & Condensation

- Malonyl loses 1C
- 2C acetyl fuses to 2C malonyl-residue on ACP
- Keto group exists C=O (now 4C)

(5) Reduction

- NADPH gives H
- Changes keto group into hydroxy group C-OH (4C)

(6) Dehydration


- H₂O pulled out
- Changes alcohol group into double bond C=C (4C)

(7) Reduction

- NADPH gives H
- Changes double bond into single bond C-C (4C)

IV) APPENDIX

METABOLISM: FATTY ACID SYNTHESIS

METABOLISM · FATTY ACID SYNTHESIS

Brenn By

Figure 14: Overview FA synthesis

V) REVIEW QUESTIONS

1) What is the role of malonyl-CoA?

- a) Stimulation of FA synthesis and FA oxidation
- b) Stimulation of FA synthesis and inhibition of FA oxidation
- c) Inhibition of FA synthesis and FA oxidation
- d) Inhibition of FA synthesis and stimulation of FA oxidation

2) How many carbons are added with each repetition?

- a) 1
- b) 2
- c) 3
- d) 4
- 3) What is the minimum number of carbons before the synthesized FA is released?
 - a) 10
 - b) 12
 - c) 14
 - d) 16
- 4) Arrange the steps of the FAS-1 in the correct order:
 - a) Reduction forming a hydroxy group
 - b) Dehydration
 - c) Decarboxylation, condensation
 - d) Reduction removing a double bond
- 5) How is the final FA released from the ACP end?
 - a) Automatically
 - b) By thioesterase
 - c) By decarboxylation
 - d) By FAS-2

6) How many times do we need to repeat the steps for

- FA synthesis to synthesize a 16C FA?
 - a) 10 times
 - b) 9 times
 - c) 8 times
 - d) 7 times

CHECK YOUR ANSWERS