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Abstract—Multiaccess edge computing (MEC) is a promis-
ing solution to the computation-intensive, low-latency rendering
tasks of the metaverse. However, how to optimally allocate lim-
ited communication and computation resources at the edge to
a large number of users in the metaverse is quite challenging.
In this article, we propose an adaptive edge resource allocation
method based on multiagent soft actor–critic with graph con-
volutional networks (SAC-GCN). Specifically, SAC-GCN models
the multiuser metaverse environment as a graph where each
agent is denoted by a node. Each agent learns the interplay
between agents by graph convolutional networks with a self-
attention mechanism to further determine the resource usage
for one user in the metaverse. The effectiveness of SAC-GCN is
demonstrated through the analysis of user experience, balance
of resource allocation, and resource utilization rate by taking a
virtual city park metaverse as an example. Experimental results
indicate that SAC-GCN outperforms other resource allocation
methods in improving overall user experience, balancing resource
allocation, and increasing resource utilization rate by at least
27%, 11%, and 8%, respectively.

Index Terms—Attention mechanism, extended reality (XR),
graph convolutional network, multiagent reinforcement learning.

I. INTRODUCTION

THE METAVERSE, regarded as the next generation of the
Internet, has gained a lot of attention from both academia

and industry. It is commonly defined as a set of virtual worlds
in which people can work, play, and socialize through their
respective avatars [1]. It integrates the most cutting-edge tech-
nologies, such as cloud/edge computing, artificial intelligence,
extended reality (XR), digital twins, and blockchains [2]. The
current metaverse systems can roughly be classified into two
categories.

1) Multiplayer Online Games: Minecraft allows players
using their avatars to explore, interact with, and modify
a dynamically-generated 3-D world made of blocks [3].
Roblox, a 3-D sandbox game, offers a programmable
environment for players to design their worlds which
they can share with others [4].
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2) Social Activity Oriented Metaverse Systems: Meta cre-
ated Horizon World, a popular virtual reality (VR)
platform, to enable users to move around in a variety
of worlds that host events, games, and social interac-
tions [5]. Baidu also built Xirang where users interact
and socialize with others using avatars in a virtual
planet [6].

However, there are still many challenging problems
remained to achieve the future metaverse where millions of
users’ virtual avatars live in a set of virtual worlds con-
necting closely to the physical world. For example, the
metaverse requires a large amount of computation resources
to render 3-D virtual worlds in a seamless manner. Due
to the limited computation resources of XR headsets, the
computation-intensive rendering task cannot be solely con-
ducted on them [7]. Though remote rendering by powerful
cloud servers can solve the insufficient computation resources
problem, the metaverse users expect ultralow latency of
20–30 ms which cannot be satisfied by the current cloud-
based infrastructures [8], [9]. Multiaccess edge computing
(MEC) [10], which places powerful servers close to users, is a
promising method to meet the high requirements of the meta-
verse for both communication and computation resources [11].

In our vision, the thing–edge–cloud collaborative architec-
ture of MEC is the key to enabling the metaverse, as shown
in Fig. 1, which comprises three layers: 1) the thing layer;
2) the edge layer; and 3) the cloud layer. In the thing layer,
multiple users wear XR headsets to experience diverse 3-D vir-
tual worlds in the metaverse, such as Decentraland, Horizon,
and Minecraft [12]. XR headsets measure users’ movement
and transmit the data to the edge layer via the mice uplink
flow. Users then receive rendered scenes of the metaverse by
the large elephant downlink flow [13]. The edge layer is an
intermediate layer between the thing layer and the cloud layer
where edge servers are directly connected to cell towers [14].
The edge servers mainly execute foreground rendering which
has fewer requirements for graphical details but more require-
ments for stringent latency. Note that the edge layer may
render both foreground and background in simple scenar-
ios. The edge layer connects the thing layer and the cloud
layer by transmitting user data from the thing layer to the
cloud layer and delivering synchronization information from
the cloud layer to the thing layer. The cloud layer consists
of the most powerful computing and storage units in the
data center. Even though the edge servers are capable of
processing data rapidly, they still require the cloud layer to
handle computation-intensive latency-tolerant operations, such
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Fig. 1. Thing–edge–cloud collaborative architecture of MEC to provide multiple users with remotely rendered metaverse scenes. To enable human-centric
resource allocation, agents that represent users are denoted as nodes and their interactions are described by dashed lines (explained in Section IV).

as user information storage, user state synchronization, and
background rendering [15], [16].

Metaverse users can benefit from the thing–edge–cloud col-
laborative framework. However, how to adaptively allocate
edge resources to multiple users in the metaverse has many
challenges due to the following reasons. First, users’ requests
for resources change with their movements. A fast movement
requires more computation resources to generate the respond-
ing scenes and more network resources to deliver the packets
of these scenes. Second, the resource conditions are diffi-
cult to be predicted due to variable central processing unit
(CPU) utilization rates, network bandwidths, delays, and jit-
ters. Third, the target of resource allocation is to improve
the overall Quality of Experience (QoE) of users while keep-
ing the balance of resource allocation among users. In the
case of limited resources, if some users move faster they are
provided more resources, which is determined by the QoE def-
inition. Meanwhile, the balance of resource allocation would
also be considered together for fairness. The tradeoff between
the two targets makes obtaining the optimal resource allocation
strategy even more challenging.

In this article, we address the above challenges in a human-
centric way. First, the main target of our proposed method
is to improve human experience which is defined by four
human-related factors: 1) user-received scene quality; 2) frame
choppiness; 3) latency; and 4) metaverse frame instability
(more details will be given in Section III). Previous user
studies have proven that these factors play key roles in
determining human experience in the metaverse [17], [18].
Second, to treat each metaverse user fairly, we add balance

factor of resource allocation in the reward function. Moreover,
our RL-based method is trained and tested with user data
from a real metaverse resource allocation system rather than
simulated data. The main contributions of our work are as
follows.

1) We propose a thing–edge–cloud collaborative framework
of MEC to enable the metaverse at the network edge
and formulate the problem of edge resource allocation
as a decentralized partially observable Markov decision
process (Dec-POMDP).

2) To solve the Dec-POMDP problem, we propose a
method based on multiagent soft actor–critic with
graph convolutional networks (SAC-GCN). In SAC-
GCN, each agent adaptively determines the usage of
communication and computation resources for one user
in the metaverse. The former is presented as the bit
rate of the rendered metaverse scenes, while the latter is
described as the usage percentage of CPU.

3) To the best of our knowledge, this is the first time that
combines SAC with graph convolutional networks to
deal with the highly dynamic metaverse environment
where agents keep moving and their neighbors change
quickly. The environment is modeled as a graph where
each agent is represented by a node. Edges are also
added to neighboring nodes to indicate their mutual
influence. Moreover, graph convolutional networks and
self-attention mechanism are proposed to promote better
cooperation between agents.

4) We propose a smart edge resource allocation system
for the metaverse where multiple users can access the
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metaverse wearing untethered VR headsets with adap-
tive communication and computation resources based
on their requests. We also compare the performance of
SAC-GCN with other resource allocation methods using
a virtual city park as a case study. Experimental results
indicate that SAC-GCN outperforms other resource
allocation methods in improving overall user expe-
rience, balancing resource allocation, and increasing
resource utilization rate by at least 27%, 11%, and 8%,
respectively.

The remainder of this article is organized as follows.
Section II reviews the related work. Section III formulates
the resource allocation as a Dec-POMDP and defines state
space, action space, and reward in our considered scenario.
Section IV describes the proposed SAC-GCN. Section V
demonstrates the architecture of the resource allocation system
and the performance of SAC-GCN using a virtual city park
in the metaverse as an example. Experimental results are ana-
lyzed in Section VI followed by a conclusion in Section VII.

II. RELATED WORK

In this section, we first briefly discuss the relationship
between Internet of Things (IoT) and the metaverse. We then
review the resource allocation problem in MEC as an enabler
technology for the metaverse at the edge. We also discuss
the state-of-the-art multiagent deep reinforcement learning
(MADRL) methods.

A. Internet of Things and the Metaverse

IoT plays an important role in the architecture of the meta-
verse. First of all, the synchronization of data between the
real world and the virtual world is essentially fundamental
for the metaverse ecosystem [19]. Due to the recent rapid
development of IoT, a large number of IoT sensors are being
deployed to collect data from the real world which could
be further shared with the virtual world. Han et al. [20]
proposed a dynamic hierarchical framework to synchronize
metaverse with the collected data from a group of IoT devices
based on optimal control theory. Second, IoT devices, such as
VR and mixed reality (MR) headsets, are the most popular
interfaces for users to interact with the metaverse [21]. These
IoT devices detect users’ movements and recognize their ges-
tures and voices to enable various modalities of interactions
in the metaverse. For example, by wearing HoloLens 2 [22],
an MR headset manufactured by Microsoft, user is able to
collaborate on persistent 3-D objects with eye contact, facial
expressions, and gestures [23].

B. Resource Allocation for MEC

MEC, as an emerging network paradigm, can provide exten-
sive computation resources and reduce service time as well.
However, intelligent resource allocation schemes are needed
when dealing with the computation-intensive and latency-
sensitive metaverse. Inspired by the success of deep reinforce-
ment learning (DRL) methods in sequential decision making,
researchers have applied them to the edge resource alloca-
tion problem. Wang et al. [24] proposed DRLRA to smartly

allocate network resources and computing resources based on
deep Q-network (DQN). The proposed method is deployed
on a software-defined networking (SDN) [25] controller to
collect the overview of the MEC environment, aiming to
reduce the service time and balance resource consumption
across the MEC servers. Liu et al. [26] jointly considered the
task offloading problem and resource allocation at the edge
and proposed a multiagent DQN-based framework to reduce
system costs. It is noted that edge resource allocation for the
metaverse has bigger challenges due to its high requirements
for the computation-intensive rendering and ultralow latency
streaming especially for a large number of users.

C. Multiagent Deep Reinforcement Learning

MADRL algorithms are designed for the complex systems
where multiple agents operate in a fully/partially shared-
information environment. Each agent learns to make its own
decisions by interacting with the environment and other agents
at the same time. They are considered to be one of the
promising solutions to the NP-hard problems. However, due
to the nonstationarity of the environment, the main chal-
lenge in MADRL, it is quite difficult to make multiple agents
learn and collaborate. Lowe et al. [27] proposed a cen-
tralized training and decentralized execution framework for
the multiagent version of deep deterministic policy gradi-
ent (DDPG). They employed a fully observable critic for
each agent to deal with the global information during the
training process. Jiang et al. [28] modeled the multiagent
environment as a graph and employed graph convolutional
networks to facilitate communication between nearby agents.
Yang et al. [29] proposed the mean field reinforcement learn-
ing method to solve the “curse of dimensionality” caused by
a large number of agents.

III. PROBLEM FORMULATION

In the MEC-enabled metaverse, multiple users share the
communication resources of the cell towers and the computa-
tion resources of the edge servers. How to intelligently allocate
the resources to users can be seen as a multiagent game where
each agent determines how many resources a user should take.
In general, multiagent games can be placed into three groups:
1) fully cooperative; 2) fully competitive; and 3) a mix of the
two, depending on the types of settings they address [30]. We
set all the agents with a shared target which is to improve
the overall QoE while balancing the resources allocated to
each user. Therefore, all the agents collaborate to optimize this
long-term target in a fully cooperative manner. As each agent
only observes part of the environment, and all the agents have
the same target, the problem can further be formulated as a
Dec-POMDP, which is a special case of a partially observable
Markov game (POMG) designed for cooperative interaction.

A Dec-POMDP can be defined as a tuple (S,A, P, R,O,

N ,�, γ ) [31]. At each time step t, the global state of
the environment is denoted by st ∈ S . Each agent i ∈
N = {1, 2, . . . , N} obtains its individual observation oi

t ∈ Oi

according to the observation function �(oi
t|st) : S → Oi.
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The agent then chooses an action ai
t ∈ Ai based on its pol-

icy π i(ai
t|oi

t) : Oi × Ai → [0, 1]. All the actions selected
by the agents at time step t form a joint action at ∈
A := A1 × A2 × · · · × AN . The transition probability
P(st+1|st, at) : S×A×S → [0, 1] denotes the probability from
the current environment state st to the next environment state
st+1 after the joint action at is executed. The reward function
R(st, at) : S ×A→ R describes the shared reward from the
environment given the agents’ joint action at, where R repre-
sents the set of real numbers. γ ∈ (0, 1] is a discount factor
which determines how much the agents value the rewards in
the future compared to those in the current state. In the follow-
ing sections, we define state space, action space, and reward
for the metaverse resource allocation problem.

A. State and Observation Space

The observation of the environment for each agent includes
the network condition Ni

t and CPU performance Ci
t. The

network condition can be represented by a six-parameter tuple:
Ni

t = (xi
t, yi

t, lit, jit, pi
t, ni

t), where xi
t is the last selected tar-

get bit rate; yi
t is the actually received bit rate; lit is the

average round trip latency; jit is the network jitter; pi
t is the

number of lost packets; and ni
t is the number of negative

acknowledgment messages. The CPU performance is denoted
by Ci

t = (zi
t, ui

t, ei
t, di

t), where zi
t is the last chosen number to

limit CPU usage for agent i; ui
t is the percentage of overall

available CPU; ei
t is the rendered frame rate at the edge server;

and di
t is the average delay for rendering a frame. Thus, the

local observation is represented as the combination of these
two sets of parameters

oi
t =

(
Ni

t , Ci
t

)

= (
xi

t, yi
t, lit, jit, pi

t, ni
t, yi

t, ui
t, ei

t, di
t

)
. (1)

We assume that the global state can be obtained by collecting
all the agents’ local observations. Therefore, the global state
is defined as st = (o1

t , o2
t , . . . , oN

t ) ∈ S , where S is the global
state space.

B. Action Space

An agent in our considered scenario executes actions
to determine how many communication and computation
resources a user is supposed to take. For communication
resources, the options that an agent can choose from for the
transmitting bit rate of the rendered frames are in the range
[bmin, bmax] Mbps. An agent’s consumption of computation
resources is controlled by throttling the CPU usage of the pro-
cess that the agent targets. The options for the throttling usage
percentage are in the range [lmin, lmax]. We define the action of
agent i as a tuple: ai

t = (ai,m
t , ai,p

t ), where ai,m
t ∈ [bmin, bmax]

and ai,p
t ∈ [lmin, lmax] represent the actions for communication

and computation resources, respectively. Note that ai,m
t and

ai,p
t both are positive numbers which means that the action

space is a two-dimension continuous action space. Similar to
the global state, the joint action is the combination of actions
of all agents: at = (a1

t , a2
t , . . . , aN

t ) ∈ A, where A is the action
space.

C. Reward Design

Dec-POMDPs utilize shared rewards to evaluate the
performance of joint actions and to guide agents to make
better decisions in terms of long-term cumulative reward.
When designing the reward function for N users in the meta-
verse, three important factors that need to be considered are
overall QoE [32], balance of communication resource allo-
cation, and balance of computation resource allocation. The
last two factors represent balance of resource allocation in the
metaverse.

1) Overall QoE: We propose a time-step-based QoE model
defined as follows:

QoEt = α

T∑

t=1

q
(
yi

t

)

︸ ︷︷ ︸
Metaverse Scene Quality

−β

T∑

t=1

|f i
t − f i

target|
︸ ︷︷ ︸
Choppiness Penalty

− γ

T∑

t=1

p
(
lit
)

︸ ︷︷ ︸
Latency Penalty

− δ

T−1∑

t=1

|q(
yi

t+1

)− q
(
yi

t

)|
︸ ︷︷ ︸

Instability Penalty

. (2)

For the time step t, αq(yi
t) represents the overall level of sat-

isfaction with the metaverse scene quality of agent i, where yi
t

is the average received bit rate and α is the satisfaction level
factor. The higher the bit rate, the better the scene quality and
the more enjoyable the viewing and interaction of metaverse
would be. Other items in the equation are used to penalize the
negative impact of other major factors. β|f i

t − f i
target| donates

the choppiness penalty generated by lost frames where f i
t and

f i
target are the received frame rate and the target frame rate and
β is the choppiness penalty factor. γ p(lit) is used to penalize
the turnaround latency with lit being the average latency within
time step t and γ being the latency penalty factor. The insta-
bility penalty for the changes in scene quality from time step
t to time step t+ 1 is represented by δ|q(yi

t+1)− q(yi
t)| with δ

as the instability factor. Because the marginal improvement in
perceived quality decreases at higher bit rates, we use the loga-
rithmic function to represent q(yi

t), where q(yi
t) = log(yi

t/yi
min)

and yi
min is the minimum value of the bit rate of all the time.

A user’s satisfaction level decreases more as the total latency
increases, and higher latency significantly reduces QoE with
sickness. Therefore, we use an exponential function to denote
p(lit) = elit/limin , where limin is the minimum value of the latency.
The overall user experience at time step t is represented by
the sum of the QoE score QoEi

t for each agent i

Qt =
N∑

i=1

QoEi
t. (3)

2) Balance of Communication Resource Allocation: The
obtained communication resources for agent i at time step t
are presented as the bit rate of the metaverse scene yi

t. We use
variance of the bit rates to denote balance of communication
resource allocation

Vcomm
t =

∑N
i=1

(
yi

t −
∑N

i=1 yi
t

N

)2

N − 1
. (4)
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3) Balance of Computation Resource Allocation: The
obtained computation resources for agent i at time step t are
denoted as the percentage of CPU usage ui

t. We use variance
of the CPU usage to denote balance of computation resource
allocation

Vcomp
t =

∑N
i=1

(
ui

t −
∑N

i=1 ui
t

N

)2

N − 1
. (5)

Finally, the time-step-based reward function is designed to deal
with the tradeoff between overall user experience and balance
of resource allocation, denoted as rt = w1 ·Qt +w2 ·Vcomm

t +
w3 · Vcomp

t .
Given the definitions of state space, action space, and reward

in our Dec-POMDP model, the target is to find the optimal
joint policy π∗ which guides the agents to execute a joint
action at at any state st to maximize the expected discounted
return Gt, defined as follows:

π∗ = argmax
π

Eπ [Gt] = argmax
π

Eπ

[ ∞∑

k=0

γ krt+k+1

]

(6)

where γ k is the discount factor and rt+k+1 is the reward for
the time step t+ k+ 1. The value of the global state s can be
calculated by the state value function

Vπ (s) = Eπ [Gt|st = s]. (7)

Here, π is the current policy. The global state-action value
function (Q-function) is defined as follows:

Qπ (s, a) = Eπ [Gt|st = s, at = a]. (8)

Based on the above formulation, our Dec-POMDP problem
can be solved by either model-based reinforcement learning
methods or model-free reinforcement learning methods. The
model-based methods are based on the state transition prob-
ability P(st+1|st, at) which denotes the probability from one
state st to the next state st+1 with action at. Due to the com-
plexity of our environment, it is difficult to obtain the transition
probability, thus making model-based methods inapplicable to
our problem. On the other hand, the model-free methods rely
on past experience without making any assumptions about
the environment. Therefore, the model-free RL methods are
suitable for handling the above-formulated problem in our
case.

IV. MULTIAGENT SOFT ACTOR–CRITIC WITH

GRAPH CONVOLUTIONAL NETWORKS

Soft actor–critic differs from other RL methods in that
it aims not only to maximize discounted cumulative reward
but also to maximize entropy, which is used to measure the
randomness in the policy [33]. In this section, we propose
SAC-GCN, a multiagent version of SAC with graph convolu-
tional networks and self-attention mechanism, to deal with the
resource allocation problem in the metaverse.

A. Multiagent Soft Actor–Critic

The objective of SAC-GCN is to find the optimal joint pol-
icy π∗ to maximize the expected discounted return and its
entropy simultaneously

π∗ = argmax
π

Eπ

[ ∞∑

k=0

γ k
(

rt+k+1 + αH(π(·|st+k))

)]
(9)

where the entropy term H(π(·|st)) is calculated by
H(π(·|st)) = Ea[− log(π(a|st))] and the temperature parame-
ter α determines the importance of the entropy value compared
to the reward. The soft state value function is denoted as
follows:

Q(s, a) = Eπ

[
Vπ (s)+ α

∞∑

k=1

γ kH(π(·|st+k))|st = s, at = a
]

(10)

where Vπ (s) is the expected future rewards defined in (7).
The soft state value function is then given based on the soft
Q-function [33]

V(s) = Ea∼π(·|s)
[
Q(s, a)− α log(π(a|s))|st = s, at = a

]
. (11)

The multiple agents of SAC-GCN are organized by the cen-
tralized training and decentralized execution framework, in
which agents are trained in a centralized offline manner and
execute online with decentralized information. Specifically,
during the training process, the centralized critic of each agent
in SAC-GCN can obtain global states and joint actions from
all the agents. The policy of the agent is then updated by the
centrally learned value function. Once the training is finished,
decisions are made solely on the actor’s observations. For each
agent i in SAC-GCN, we maintain two Q-networks (parame-
terized by φi

1 and φi
2) to avoid overestimation of Q-function

values and two target networks (parameterized by φ
i
1 and φ

i
2)

to stabilize the training process [34]. The target networks are
updated in a soft manner

φ
i
j ← τφi

j + (1− τ)φ
i
j, j = 1, 2 (12)

where τ is the step size. The policy network of agent i is
parameterized by θ i and all the policy parameters are packed
together as the joint policy denoted as θ = (θ1, . . . , θN). Due
to the independence of each θ i, the distribution of the joint
action under θ is calculated by

πθ (at|st) =
n∏

i=1

πθ i
(
ai

t|oi
t

)
. (13)

To obtain the optimal tradeoff between the expected dis-
counted return and the expected entropy at each state, we
employ the soft state value (11) as the target of our policy πθ i

max
θ i

Eat∼πθ

[
Qφ(st, at)− α log

(
πθ i

(
ai

t|oi
t

))]
(14)

where the expected value is approximated by sampling.
However, direct sampling from the distribution πθ i(·|oi

t) which
is parameterized by the target function is not differentiable.
Thus, the target function is unable to be updated by backprop-
agation in neural networks. We follow the reparameterization
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Fig. 2. Structure of the neural networks in SAC-GCN, where “EL” and “CL” represent the encoder layer and the convolutional layer, respectively. Each
agent has a centralized critic dealing with joint states and actions during training and a decentralized actor taking actions based on local observations in the
execution process. The convolutional graph networks with multihead attention are employed to obtain the critic’s final inputs.

trick in [33] and obtain the samples by a squashed Gaussian
policy

ãθ i
(
oi

t, ξ
i
t

) = tanh
(
μθ i

(
oi

t

)+ σθ i
(
oi

t

)	 ξ i
t

)
, ξ i

t ∼ N (0, 1) (15)

where μθ i(oi
t) and σθ i(oi

t) are the mean and standard deviation
of a Gaussian distribution generated by the policy network.
The target of the policy network is then given by samples
from the replay buffer B

Jπ

(
θ i) = Est∼B,ξi∼N

[
min
j=1,2

Qφj(st, ãt)− α log
(
πθ i

(
ãi

t|oi
t

))]

(16)

where ãi
t represents ãθ i(oi

t, ξ
i
t ) in (15) and ãt is the joint

sampled action by a Gaussian policy, denoted as ãt =
(ã1

t , ã2
t , . . . , ãN

t ).
In the Q-network, the loss function is to minimize the

temporal difference error, defined as follows:

JQ
(
φi

1,2

) = E
(st,st+1)∼B,

(
ξ i

t ,ξ
i
t+1

)
∼N

[(
Qφi

1,2
(st, ãt)− y′

)2
]

(17)

where the target is given by

y′ = rt + γ

(
min
j=1,2

Qφj
(st+1, ãt+1)− α log

(
πθ i

(
ãi

t+1|st+1
)))

.

(18)

Here minj=1,2 Qφj
(st+1, at+1) denotes the minimum of the two

target Q-networks. With the defined target functions for the
value network (17) and the policy network (16), the param-
eters are updated by gradient descent and gradient ascent,
respectively.

B. Graph Convolutional Networks

During the above training process of SAC-GCN, the central-
ized critics are fed with global states from all agents making
it hard to get valuable information. To tackle this problem, we
employ graph convolutional networks to explore the hidden
graph of agents. More specifically, the multiagent metaverse
environment is modeled as a graph where each agent can be
represented as a node. The nodes’ features are derived from
local observations which are the conditions of communication
resources and computation resources at the edge. In the meta-
verse, one user’s movement/interaction would likely impact
its neighboring users, whose resource requests would accord-
ingly change. Therefore, we add edges between a node and
its neighboring nodes in the graph to represent their mutual
influence.

Each agent of SAC-GCN consists of three components:
1) an encoder layer; 2) a convolutional layer; and 3) SAC
networks, as shown in Fig. 2. The encoder layer encodes the
local observation and action to obtain a high-dimensional rep-
resentation which is further used as the feature of a node. The
convolutional layer takes the features from all the nodes within
the same neighborhood as input and outputs a latent represen-
tative feature vector to represent these nodes. We construct a
feature matrix F where the feature vectors of all the nodes
are organized row by row to represent the multiagent envi-
ronment. An adjacency matrix A is also built where the first
row is the one-hot representation of the index of node i fol-
lowed by the same representation of the indexes of neighboring
nodes. Take agent 3 as an example (shown in Fig. 2), the adja-
cency matrix starts with the one-hot representation of number
3 ([0, 0, 1, 0, 0]) followed by that of neighboring agent 2 and
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agent 4. The final input of the critic i is then calculated by
A×F with the self-attention mechanism discussed in the next
section.

C. Self-Attention Mechanism

The self-attention mechanism is employed within the con-
volutional layer for agents to give different attention to
neighboring features. The intuition behind this is that in the
multiuser metaverse environment, the impacts of actions taken
by other agents are different for a specific agent. For example,
when deciding how to adjust the target bit rate, an agent should
pay more attention to the agents with more network resources.
To apply the self-attention mechanism, we first transform the
feature of node i to a “Query” calculated by Q = Wqei, where
ei is the encoded feature of node i. Each neighboring node j
is then transformed to a “Keyj” and a “Valuej” by Kj = Wkej

and Vj = Wvej, respectively. The similarity between the Query
and Keyj is calculated using the cosine similarity denoted as
follows:

S
(
Q, Kj) = Q · Kj

||Q|| · ||Kj|| . (19)

The attention weight for Keyj is obtained by the softmax
function

αj = exp
(
S
(
Q, Kj

))

∑
j exp

(
S
(
Q, Kj

)) . (20)

Finally, the neighboring feature for a node is calculated by a
weighted sum of the values using the above attention weights

Attention(Q, K, V) =
∑

j

αjVj. (21)

Moreover, to obtain better performance, multiple attention
heads [35] with multiple sets of parameters (Wk, Wq, Wv) are
employed to perform attention allocation multiple times in par-
allel. We then concatenate outputs from all heads to a single
vector as the final representation of the neighboring feature
for node i.

A detailed description of the proposed SAC-GCN can be
found in Algorithm 1. At each iteration, we first randomly
obtain a batch from the replay buffer B for each agent. We then
apply GCN with multihead attention to calculate the inputs of
the centralized critic based on (21). The parameters of the
Q-networks, the policy networks, and the target Q-networks
are updated in steps 15–17, respectively. Since we employ the
offline centralized training and online decentralized execution
mechanism, there is no extra delay during execution once the
training process is finished. Therefore, the well-trained SAC-
GCN model can be used for the delay-sensitive metaverse.

V. CASE STUDY: RESOURCE ALLOCATION IN

VIRTUAL CITY PARK METAVERSE

In this section, we describe a case study of how to adaptively
allocate communication and computation resources for users
in a virtual city park metaverse. In more detail, we describe
the architecture of our smart resource allocation system, fol-
lowed by the three evaluation baselines that we use. The offline

Algorithm 1 SAC-GCN

1: Initialize two soft Q-networks with parameters φi
1, φi

2 and
a policy network with parameters θ i, for each agent i

2: Initialize two target networks with φi
1 ← φi

1 and φi
2 ← φi

2,
for each agent i

3: for episode e = 1, 2, . . . do
4: for time step t = 1, 2, . . . , T do
5: Obtain the original observation oi

t for each agent and
current global state st

6: for each agent i do
7: Take an action ãi

t generated by Eq. (15)
8: Receive shared reward rt and observe oi

t+1
9: end for

10: Obtain joint action ãt, and next global state st+1
11: Store the tuple sample (st, ãt, rt, st+1) into the replay

buffer B
12: for each agent i do
13: Get a random batch of samples from B
14: Apply attention mechanism (Eq. (21)) to get the

inputs of each critic ht and ht+1 based on global
states st and st+1

15: Update Q-networks by minimizing the loss func-
tion (Eq. (17)) with st replaced by ht and st+1
replaced by ht+1

16: Update policy networks by maximizing the target
function (Eq. (16)) with st replaced by ht

17: Update target Q-networks by Eq. (12)
18: end for
19: end for
20: end for

training results of these DRL methods are demonstrated in
the end.

A. System Setup

The proposed resource allocation system is built on a desk-
top computer with the Windows 10 operating system, an Intel
Core i9-11900F processor as its CPU, 64 GB of random-access
memory (RAM), and an NVIDIA GeForce RTX 3090 graphics
processor. The virtual city park1 in the metaverse is designed
with unreal engine (UE). As shown in Fig. 3, the desktop com-
puter connects to a TP-Link TL-WR1043ND Wi-Fi router by
an Ethernet cable. We run multiple instances of UE simulta-
neously to provide users with different scenes. With the unreal
pixel streaming (UPS) plugin of UE, the frames rendered by
the GPU-enabled desktop can be transmitted to remote users
with VR headsets (Meta Quest 2 in our case) through WebRTC
peer-to-peer communication protocol [36].

Here is how the resource allocation system works. UPS
first finds the IP addresses of the users’ VR headsets through
WebRTC servers, and then creates a wireless communication
session between UPS and VR headsets. The communica-
tion session allows users’ inputs, such as movement and
commands, to be transmitted to the UE instances as mice

1https://www.unrealengine.com/marketplace/en-US/product/city-park-
environment-collection
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Fig. 3. Architecture of our proposed resource allocation system for the metaverse. Two resource allocation servers, ABR and ACU, are responsible to
control the users’ consumption of network resources and CPU resources, respectively. Moreover, with this system, different scenes of the virtual city park are
displayed to users wearing VR headsets.

flows through the uplink traffic, while rendered frames are
transmitted back to the users as elephant flows through the
downlink traffic. The instances of UE and the adaptive bit
rate (ABR) server are connected by Socket.io2 which enables
real-time bidirectional event-based communication. Therefore,
the ABR server receives the network information from UE and
determines the bit rate selection for each user. Regarding com-
putation resource allocation, the adaptive CPU usage (ACU)
server detects the CPU performance and employs BES3 to
throttle the CPU usage for the instances of UE individually.
In addition, Clumsy,4 a Windows network controller, is used
to simulate the dynamics of the network by controlling delay,
bandwidth, and random packet loss rate.

In our experiments, the default settings of the virtual city
park are demonstrated as follows: bandwidth = 300 Mb/s,
network delay = 20 ms, packet loss rate = 0.5%, resolution =
2048×1080, frame rate = 60 fps, and available CPU percent-
age = 80%. Moreover, we explored the impact of one specific
parameter with a wide range of values. In more detail, we set
delay between 10 and 200 ms, packet loss rate between 0.5%
and 8%, bandwidth between 50 and 400 Mb/s, and available
CPU between 10% and 90%.

B. Evaluation Baselines

To demonstrate the effectiveness of the proposed SAC-GCN
in resource allocation for the metaverse, we compared it with
the following methods.

2https://socket.io/
3https://mion.yosei.fi/BES/
4https://github.com/jagt/clumsy

1) DQN: It is one of the representative DRL methods
which combines the advantages of Q learning and neural
networks [37]. Specifically, it employs neural networks
to replace the Q table to make it able to deal with a
large number of states. Previous research has demon-
strated the effectiveness of DQN for solving the problem
of resource allocation at the edge [24], [38].

2) Independent SAC (ISAC): This method is a totally decen-
tralized form of multiagent SAC where each agent is an
independent learner taking the rest of the agents as part
of the environment. Despite its various theoretical short-
comings, ISAC is appealing compared to MASAC as
each agent only requires its local observations without
the communication and scalability problem.

3) GCC With Greedy (GCC-G): It employs Google con-
gestion control (GCC) [39] to control the bit rate while
allowing the instances of UE to greedily utilize the com-
putation resources without any limitation. This is similar
to the way that real-time communication tools powered
by WebRTC work.

4) BBR With Greedy (BBR-G): It is also a congestion con-
trol algorithm developed at Google. BBR determines
the maximum bandwidth by sending more data than the
capacity of the network, and when the delay increases
after increasing the volume of data sent, the maximum
bandwidth is determined. The minimum delay is calcu-
lated by sending data below the network capacity. The
RTT obtained is the minimum delay when the delay does
not drop after decreasing the sending volume. Similar to
GCC-G, it also allows the instances of UE to greedily
use the computation resources.
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TABLE I
PARAMETER SPECIFICATIONS IN THE EXPERIMENTS

Fig. 4. Cumulative reward versus episode (40 s for an episode) for different
DRL methods during the offline training process.

C. Offline Training

As mentioned previously, for each agent in SAC-GCN
(Fig. 2), the neural network consists of two encoding layers
and a convolutional layer apart from the actor network and
the critic network. Both the soft-Q networks and the policy
network have an input layer, two hidden layers activated by
the rectified linear unit (ReLU) function, and an output layer.
All the key parameters we set up during the implementation
of SAC-GCN are summarized in Table I. To ensure fairness,
all the methods are configured with the same parameters.

Unlike other typical RL problems, there is no clear defini-
tion of an “episode” in the metaverse. We empirically set a
period of time (i.e., 40 s) as an episode during which agents
take actions every second. We train each method under differ-
ent network conditions and rendering settings in order to adapt
to the dynamic metaverse environment. The learning curves
of the three DRL methods in terms of cumulative reward are
demonstrated in Fig. 4. We notice that at the beginning of the
training, the cumulative rewards of three methods are all low
without obvious difference between them. This is due to the
fact that these DRL methods cannot learn a stable and effi-
cient policy for resource allocation with a small amount of data

by interacting with the environment. As the number of train-
ing episode increases, the cumulative rewards of SAC-GCN
and ISAC are higher than that of DQN. Our explanation is
that they take a greater variety of actions during exploration
with a higher entropy of the strategy, which accelerates the
learning process and minimizes the risk of a local optimum.
Moreover, the globally learned strategy based on the central-
ized training and decentralized execution structure improves
the performance of SAC-GCN compared to ISAC. Therefore,
SAC-GCN reaches the highest cumulative reward at the end.

VI. ONLINE EXPERIMENTAL RESULTS AND ANALYSIS

We compared the performance of our proposed SAC-GCN
with the four evaluation baselines for resource allocation
(Section V-B): 1) DQN; 2) ISAC; 3) GCC-G; and 4) BBR-G.
The performance metrics in our experiments are listed as
follows.

1) Overall User QoE: The sum of QoE score for each user
in the metaverse, where the definition of QoE is given
in the reward function of SAC-GCN (Section III-C).

2) Balance of Resource Allocation: Balance of communi-
cation resource is represented by variance of users’ bit
rates and balance of computation resource is denoted by
variance of users’ CPU usage percentages.

3) Resource Utilization Rate: Communication resource uti-
lization rate is calculated by the sum of users’ bit rates
divided by the assigned total bandwidth and computa-
tion resource utilization rate is determined by the sum
of users’ CPU usage percentages divided by the total
available CPU.

Note that the values of overall QoE, variance of resource
allocation, and resource utilization rates are all normalized
between 0 and 1, respectively.

A. Overall User Quality of Experience Analysis

We first evaluated the performance of all resource allocation
methods regarding overall QoE under various network delays
[shown in Fig. 5(a)]. It is noted that the network delay is the
extra time we add before the packets are transmitted which
does not include the time spent on the network transmission
itself. The overall QoE scores of all methods show a similar
downward trend as the network delay increases. Furthermore,
the QoE scores decrease more with the increase of the network
delay. It is because the motion-to-photon (MTP) latency, which
describes the time between the movement of a tracked object
and its corresponding image displayed on the screen, gets
higher with the increasing extra network delays. The high
MTP latency may cause a significant loss of performance
with cybersickness in the interactive metaverse. By employing
graph neural networks with the the self-attention mechanism,
agents of SAC-GCN pay more attention to neighboring agents
with high delays when making decisions. Thus, SAC-GCN can
always choose appropriate bit rates for each user to alleviate
the impact of high delays on QoE. We observe that SAC-
GCN outperforms the other methods under different network
delays especially when the delay gets large. For example, when
the network delay is 100 ms, SAC-GCN reaches 27%, 37%,
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Fig. 5. Overall QoE score comparison of the five resource allocation methods under different settings: (a) delay (10, 50, 100, and 200 ms), (b) packet loss
rate (0.5%, 2%, 4%, and 8%), (c) bandwidth (50, 100, 200, and 400 Mb/s), and (d) available CPU (10%, 40%, 60%, and 90%).

63%, and 64% improvements over ISAC, DQN, GCC-G, and
BBR-G, respectively.

We then examined the impact of network packet loss rate on
QoE, as illustrated in Fig. 5(b). Note that the network packet
loss rate is manually set by randomly dropping some packets
before they are transmitted and it coexists with the packet loss
caused by network congestion. We observe that the increased
packet loss rate degrades user experience for all the meth-
ods and it gets worse when the packet loss rate is high. It
is because when the packet loss rate is low, it only causes
a small number of frames dropped which is not easy to be
noticed. However, as the packet loss rate increases, user expe-
rience is largely impacted by the choppiness caused by lost
frames. The increased packet loss rate has the biggest influence
on BBR-G. More specifically, the QoE of BBR-G decreases
0.19 when packet loss rate increases from 0.5% to 2%, 0.15
(from 2% to 4%), and 0.26 (from 4% to 8%), which are much
larger than the other three DRL methods. SAC-GCN always
has the best performance when dealing with different packet
loss rates. The reason is that the employed graph convolutional
networks can help agents in SAC-GCN notice the dramatic
changes of packet loss rate for neighboring agents. They can
take quick actions based on the underlying interplay between
agents. Therefore, agents of SAC-GCN are able to coopera-
tively reduce the impact of packet loss rate, thereby reaching
the highest QoE.

The impact of total available network bandwidth on over-
all QoE was studied in Fig. 5(c). It is observed that when
the bandwidth is extremely low (50 and 100 Mb/s), all meth-
ods end up with low QoE scores. The reason is that some
of the packets for the metaverse scenes are either delayed
or dropped in such conditions. Therefore, with insufficient

bandwidth, metaverse users may all suffer from cybersickness
caused by high MTP and choppiness due to a large number of
dropped frames. We also perceive that when the bandwidth is
insufficient (50 Mb/s), SAC-GCN performs worse than ISAC.
Note that ISAC simply assumes that all agents are independent
which makes it lack convergence guarantees and not theo-
retically sound in the multiagent setting. However, agents of
ISAC make decisions only by local information during the
training and inference. Thus, they do not need to wait for
information from other agents relating to communication and
coordination costs (even severe when the bandwidth resource
is very insufficient) which provides a quicker response com-
pared with SAC-GCN. We think this is the reason why ISAC
outperforms SAC-GCN in this case. As the bandwidth grows,
the performance of all methods increases to varying degrees.
When the total bandwidth is sufficient for all users (400 Mb/s),
all methods achieve high QoE.

B. Resource Allocation Balancing Analysis

We compared the performance regarding balancing commu-
nication resource allocation for metaverse users under different
network bandwidths shown in Fig. 6(a). We notice that the
variance of network resources decreases as the network band-
width increases for each method. The reason is that with
limited resources, the important factors of QoE, such as frame
rate and latency, are easily impacted by obtained network
resources. Thus, it is hard to maximize overall QoE while
reducing imbalance of resource allocation in these conditions.
Moreover, SAC-GCN and DQN have lower variances com-
pared to ISAC, GCC-G, and BBR-G in all settings. The reason
is that the strategies of SAC-GCN and DQN are centralized
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Fig. 6. Comparison of resource allocation balancing under different settings:
(a) impact of network bandwidth on balance of network and (b) impact of
available CPU percentage on balance of computation allocation.

learned where the information of other users’ states are con-
sidered. Moreover, the self-attention mechanism employed by
SAC-GCN also helps agents pay more attention to other agents
with higher bit rates which further lowers the variance of
network resources.

The performance of all methods in terms of balancing com-
putation resource allocation was studied in Fig. 6(b). Similar
to network resources, the variance of computation resources
of these four methods all show a similar downward trend
as the available CPU resources increases. In addition, ISAC,
GCC-G, and BBR-G always have higher variance since they
do not utilize the information from other users when making
decisions.

C. Resource Utilization Rate Analysis

The comparison regarding communication resource utiliza-
tion rate was conducted under various bandwidths [shown in
Fig. 7(a)]. To ignore the influence of the other resources, we
provide sufficient 90% available CPU resources for each band-
width. Similar to communication resources, when studying
computation resource utilization rate, we also supply sufficient
network resources (400-Mb/s bandwidth) for various available
CPU resources [shown in Fig. 7(b)].

We observe that there is no clear relationship between
resource utilization rate and amount of available resources
when resources are insufficient to support all the metaverse
users. However, the utilization rates of all methods go down
to similar values as more resources are supplied. Since GCC-
G and BBR-G employ the greedy algorithm for computation
resources, the CPU utilization rates are almost 100% with
insufficient CPU. Although this improves the utilization rate,

Fig. 7. Comparison of the five resource allocation methods regarding resource
utilization rate: (a) network resources and (b) CPU resources.

it may cause other critical problems, i.e., high imbalance of
CPU resource allocation. We also observe that our proposed
SAC-GCN outperforms other methods most of the time. For
other time, it is relatively as good as others regarding network
and CPU utilization rate. For example, it reaches 10%, 15%,
32%, and 41% improvements over ISAC, DQN, GCC-G,
and BBR-G for network resource utilization rate, when the
network bandwidth is 200 Mb/s. Moreover, it has 8% and 12%
improvements for CPU resource utilization rate compared to
that of ISAC and DQN when the available CPU is 60%. This
verifies the effectiveness of SAC-GCN for improving resource
utilization rates with limited resources.

D. Discussion

According to the above analysis, we summarize that the
DRL-based methods (SAC-GCN, ISAC, and DQN) have much
better performance than congestion control methods (GCC-
G and BBR-G) in terms of improving overall QoE for users
in the metaverse. It is because the trial and error exploration
process and the feedback from the environment enable their
quick response to the varying multiuser metaverse environ-
ment. Thus, these DRL methods can always make better use
of the available resources by choosing the appropriate bit rate
and corresponding CPU usage percentage for each user. When
the resources are insufficient, such as an increase in network
delay or the packet loss rate, the change of overall QoE is
much more stable compared to that of GCC-G and BBR-G.
As for balance of resource allocation, due to the lack of a cen-
trally learned strategy, ISAC cannot perform well in balancing
obtained resources for each user, which makes it inappropri-
ate for this problem. On the contrary, our proposed SAC-GCN
employs the centralized training and decentralized execution
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framework where multiple agents are trained with global states
in a centralized manner. Moreover, it uses GCN with the
self-attention mechanism to assist agents to capture more
important information in the complex and varying multiagent
environment, which further enhances the cooperation between
multiple agents. In addition, our SAC-GCN empowered meta-
verse resource allocation system can be further improved by
incorporating more human-related factors [40]. For example,
eye movement, which can be easily detected by eye trackers
on HMDs, is reliable to reflect users’ attention. If the system
can adaptively allocate different communication and computa-
tion resources to different parts of the metaverse scenes based
on users’ attention, users will get the same QoE with less
resources consumed.

VII. CONCLUSION

In this article, we address the problem of edge resource
allocation for multiple users in the metaverse, including
communication and computation resources. To maximize the
tradeoff between user experience and balance of resource
allocation, we formulate the resource allocation problem as
a Dec-POMDP and propose SAC-GCN, an MADRL-based
method, where each agent determines the usage of com-
munication and computation resources for one user in the
metaverse. To evaluate the performance of SAC-GCN, we
design a resource allocation system and carry out many exper-
iments using a virtual city park as a case study. Results
demonstrate the effectiveness of SAC-GCN regarding improv-
ing overall QoE, balancing resource allocation, and increasing
resource utilization rate compared to other methods.
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