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ABSTRACT Data center network (DCN) is the backbone of many emerging applications from smart
connected homes to smart traffic control and is continuously evolving to meet the diverse and ever-increasing
computing requirements of these applications. The data centers often have tens of thousands of components
such as servers and switches/routers that work together to achieve a common objective and serve these
applications. Managing such large data centers is a tedious process and demands automation, intelligent
control and decision making within the data center. Recently both the industry and academia have focused
on bringing intelligence to the control, automation, and management of DCNs. Despite the variety of works
that surveyedML for networking, to the best of our knowledge, none has focused on DCN, which makes this
survey original. Readers in the academic and industrial communities will all benefit from a comprehensive
discussion of the ML solutions applied in DCN to address critical essential problems, including workload
forecasting, traffic flow control, traffic classification and scheduling, topology management, network state
prediction, root cause analysis, and network security. Furthermore, this article outlines the challenges and
concludes with the future research venues in adopting ML for automatic, intelligent and autonomous DCNs.

INDEX TERMS Data center network, machine learning applications, survey.

I. INTRODUCTION
Data center network (DCN) hosts multi-tenant and multi-
objective applications with ever-growing compute and com-
munication requirements. The data centers often have
tens of thousands of components such as servers and
switches/routers that work together to achieve a common
objective and serve these applications. In other words, the net-
work is evolving continuously and the dynamics and large
scale of the network impede the application of fixed andman-
ual methods for DCN management and control. Managing
such large data centers is a tedious process and demands for
automation, intelligent control and decision making within
the data center.

Machine learning (ML) analysis is the process of examin-
ing data in a system and deducing knowledge out of it. Recent
developments in ML have made these techniques applicable,
adaptable and robust in countless real-life scenarios, which
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range from mundane to exceptional ones. ML has become
an essential critical facet in many systems including but not
limited to smart homes, healthcare, robotics, edge computing,
cybersecurity, wireless communication, autonomous vehicles
and Internet of Things [1]–[3]. Besides the advancements
in ML techniques, the massive amount of data available for
analysis in today’s world is another factor that contributes to
the resurgence in ML solutions, which not only are capable
of identifying hidden patterns in data, but also able to learn
and understand the systems where data is generated. In addi-
tion, the breakthrough in computing, like graphic and tensor
processing units, is offering adequate storage and processing
capabilities for ML models’ training and inference, whereas
ML models can even run on resource-constrained hardware
through lightweight ML deployment versions.

While ML has been applied in various areas and proved
its capability, it has not been deployed ubiquitously to opti-
mize and manage DCN since the latter is challenged by
the data that can be collected and the control actions that
can be applied on legacy devices in the network. However,
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the developments in networking through software-defined
networking, can alleviate these impediments and encourage
the cognitive ML systems to be built for automating the
management and control of DCN. Applying ML in DCN is
an interesting research area as it can aid in solving many com-
plex DCN problems [4], yet it requires a well understanding
of DCN problems, ML techniques and challenges in relevant
to both networking and machine learning applications.

The primary goal of this work is to provide a holistic
overview of the body of knowledge on ML methods in sup-
port of DCN. We also complement the discussion with key
insights into the ML techniques employed, their efficiency
and limitations, and their challenges in DCN. We further
identify open promising opportunities while we draw our
vision for ML-enabled future DCN. Our contributions are
summarized as follows:

• We provide a comprehensive review of ML approaches
in DCN.

• We discuss the features, techniques, efficiency and fea-
sibility of ML techniques in DCN.

• We identify the key challenges of ML in DCN.
• We propose future research opportunities and draw our
vision pertaining to the future generation of automatic,
intelligent and autonomous DCN.

II. DATA CENTER NETWORKING
A data center network (DCN) [5], depicted in Figure 1,
is a complex arrangement of the constellation of networking
resources such as switches, routers, and interfaces. DCN
interconnects a variety of computing and storage entities in
a data center pool of resources to ensure a high level of
performance, storage and processing of applications, services
and data. DCN holds a pivotal role in a data center, as it
interconnects all of the resources together, hence it has to
be scalable and efficient to connect tens or even tens of
thousands of servers to handle the growing demands of cloud
computing, edge/fog computing and Internet of Things.

Technological advancements require data centers to sup-
port programmability and adaptability, which has been real-
ized in the form of a software-defined network (SDN). SDN
allows the network administrator to dynamically change the
network configuration and workflows to accommodate for
the fluctuating workloads more efficiently and effectively.
SDN has two main components: a data plane that manages
the forwarding and control of flows in the switches and
routers, and a control plane that defines the set of policies on
how to handle data from different flows. An SDN controller
defines the control plane policies for changes in data plane
mapping, while a workflow is in progress, without risking the
connections that bind the network elements together.

A. CHALLENGES IN DCN
1) DATA CENTER TOPOLOGIES
A DCN topology is the key enabler for many applications
and their performance. A key factor in the design of DCN

topology is the deployment cost. As a result, many different
DCN topologies (such as clos [6], Fat-Tree [7], BCube [8],
portland [9] etc.,) have been designed to minimize deploy-
ment cost, provide uniform high bandwidth to its applica-
tions, and to provide performance isolation. For example,
a very common Fat-Tree consists of a three-layer topology
(edge, aggregation and core) and can be built using cheap
switches with uniform capacity. (1) The access layer where
switches are connected to servers and located on top of the
rack, (2) The aggregation layer where aggregation switches
connect to access switches to provide a variety of services
like network analysis and firewall, combining response from
access switches, and (3) The core layer where its switches
provide intra and inter data center connectivity. A key benefit
is that – Fat-Tree has identical bandwidth at any bisection, and
hence all the sources can send data at maximum link rates.
With the emerging applications, it becomes challenging to
design DCN topologies that can meet application demands.
However, with new types of DCN topologies, it gets increas-
ingly complex to automate the management and control of
traffic within the data center.

2) UNPREDICTABLE TRAFFIC MATRIX
A traffic matrix denotes the volume of communication
between all pairs of sources and destinations in a network.
Yet, the traffic matrices inside a data center change rapidly
and unpredictably and are highly divergent. This is an impor-
tant problem to address and a key challenge that complicates
the optimization of the network performance and capacity
planning.

3) MIX OF FLOW TYPES AND SIZES
On account of a variety of multi-tenant applications sharing
the data center infrastructure, a mix of flows with different
types and sizes are produced. Some of these flows might be
short, constrained with a deadline or requiring low latency,
whereas others can be large and throughput-oriented, requir-
ing a high transfer rate. Moreover, the flow sizes might be
unknown for specific applications. Such characteristics com-
plicate the flow scheduling process over a shared link for
the following reason. It needs to achieve a faster completion
time to reduce communication delays and improve applica-
tion responsiveness while taking into account the different
requirements of flows simultaneously.

4) TRAFFIC BURSTINESS
Many applications and services like live video broadcast-
ing and interactive distributed gaming have bursty traffic,
meaning that instant data transmission varies quickly. Nev-
ertheless, the on and off cycles of bursty traffic may incur
undesirable effects on the quality of service of the network,
leading to delays, congestion and even idleness. Spikes in the
trafficmight impose overloading which leads to longer delays
for applications that can only tolerate very small latency like
web browsing. Therefore, it is still challenging to put forward
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FIGURE 1. Data Center Network: comprises of several key elements and various communication interfaces within (Inter-DC) a single data
center and between (Intra-DC) different data centers, each having their own network domains (such as Domain1, Domain2, etc.). Each
Domain consists of the connections between the switches and servers and the flows and packets flowing between sources (s3, s4) and
destinations (d7, d8). Each switch has multiple queues to serve those packets.

FIGURE 2. Data Center Network Topology: Many different DCN topologies (such as CLOS, Fat-Tree, BCube) have been proposed to minimize deployment
cost, provide uniform high bandwidth to its applications, and provide performance isolation.

a responsive control mechanism that can manage the buffer
space usage and deal with bursts quickly.

5) INCAST
Data center network supports heterogeneous applications
such as data storage, computation-intensive, social network-
ing, web and videos data hosting. Although DCN provides
links with high bandwidth, low transmission delays and
switches with a small buffer size, it supports on the other
hand many-to-one communication patterns which can lead to
a large number of incoming flows transmitted simultaneously
to a single end-point. If not appropriately and proactively
controlled, this in turn would overload the switch buffer
leading to congestion, packet loss and higher latency with
throughput reduction.

B. WHY ML IS NEEDED FOR DCNs?
Next Generation DCNs are built to provide greater band-
width, increased throughput, diminished latency, and many

more advanced techniques that can optimize the cost while
maximizing the network usage. Typically, a DCN should
create an infrastructure that is stable, secure, and reliable in
line with the industry regulations and meet with the orga-
nizations/customers/users needs, able to support networking
requirements for modern technologies like cloud comput-
ing, virtualization, big data and IoT, and should be scalable
enough to easily meet the communications needs in peak
scenarios.

These next-generation DCNs urge the need for automation,
intelligence and autonomy. Traditionally, the network design
and management heavily rely on the expertise of the telecom
experts and their extensive understanding and knowledge
of the network topology, consumer’s mobility and the traf-
fic patterns in order to design, construct and configure the
management policies that constantly orchestrate the network.
However, network topology will grow more and more com-
plex, which makes the management process not only tedious
but even non-achievable solely by humans due to unpre-
dictable patterns/behaviors in denser topology. Machine
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FIGURE 3. Machine Learning for Data Center Networking: Applications of
machine learning in DCN are classified into seven areas along with the
different machine learning techniques applied in each.

learning is helping achieve many of these objectives as dis-
cussed in the next section.

III. ML APPLICATIONS IN DCN
Artificial Intelligence (AI) is playing a fundamental role
in assisting operators in rolling out, operating, and man-
aging the DCNs. More and more processes are becoming
AI-based, leveraging continuous measurements from the net-
work and machine learning (ML) models for automated and
intelligent management and optimization of the network.
While AI is certainly becoming a game-changer in build-
ing Next-Generation Data Center Networks, we aim in this
section to touch on the critical areas in DCN that leverage
machine learning. We discuss the machine learning tech-
niques adopted, the data needed for building the learning
models, their technical objective and the main evaluation
results. We provide hereafter a first high-level taxonomy
illustrated in Figure 3, that shows the key technical challenges
in DCN that leverage machine learning and the techniques
adopted for each.

As you see in Figure 3, there are many types of ML/AI
technologies used in DCN. To better understand why a spe-
cific method is suitably applied in a specific DCN prob-
lem, we classify the ML/AI methods into the following
categories:

• Supervised learning: The training data includes the fea-
tures and their corresponding desired results, i.e., labels.

The typical problems in supervised learning are regres-
sion and classification. The former tries to predict a
numeric value and the latter attempts to predict a cate-
gory that the instance falls in. We note that some regres-
sion methods can be applied for classification tasks
(e.g., logistic regression is used in classification), and
vice versa (e.g., decision tree can be used in regres-
sion). The most commonly known supervised learning
methods consist of linear regression, logistic regression,
k-nearest neighbors, support vector machine, decision
tree, random forest, neural network.

• Unsupervised learning: The training data only includes
features, i.e., unlabeled. The typical problems in unsu-
pervised learning are clustering, dimension reduction,
anomaly detection, association rule learning. Clustering
tries to identify groups (or subgroups in hierarchical
clustering) of similar instances. Dimension reduction
tries to reduce the dimension of features without los-
ing much important information. Anomaly detection
detects unusual instances which look different from
normal instances. Association rule learning reveals the
hidden relation between the attributes/features, based on
which it makes predictions. The most popular unsuper-
vised learningmethods are k-Means, hierarchical cluster
analysis, expectation maximization, principal compo-
nent analysis (with or without kernels), locally-linear
embedding.

• Semi-supervised learning: The training data contains
both labeled samples (usually a little bit) and unla-
beled samples (usually a lot). The typical problems
are similar to that of supervised learning. For exam-
ple, unsupervised learning conducts clustering first
with a large amount of unlabeled data where the
grouped results are processed by supervised learn-
ing which has been trained with the limited amount
of labeled data. As most of the semi-supervised
learning combines supervised learning and unsuper-
vised learning methods, the combination naturally has
big flexibility. Some of the semi-supervised learn-
ing methods are SGAN (semi-supervised generative
adversarial network), S3VM (semi-supervised sup-
port vector machine), semi-supervised deep belief
network.

• Reinforcement learning: There is an agent in a contex-
tual environment which can take actions and observe
the outcome of the actions, either a reward or a penalty
(negative reward). By using the accumulative reward
as feedback, the agent gradually improves its strat-
egy (named as a policy) in taking action. The typ-
ical problem suitable for reinforcement learning is
decision-making based on long-term episodic experi-
ence. The well-known methods include the classical
tabular methods (such as policy iteration, value itera-
tion, n-step temporal-difference learning, Sarsa, etc.),
approximation-based methods (such as deep Q-network,
proximal policy optimization, deep deterministic policy
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gradient, etc.), and multi-agent methods (such as Team-
Q, Nash-Q, etc.).

The performance measure of ML/AI methods has many
quantitative metrics. For regression problems, the typi-
cal metric is the root mean square error (RMSE), which
is the standard derivation of the prediction error of the
ML/AI methods. For classification problems, the perfor-
mance measure is not as straightforward as that of regres-
sion problems. The commonly-used metrics are precision =

true positives
true positives+false positives (describing the accuracy of positive

predictions) and recall = true positives
true positives+false negative (describing

the true positive rate). Although we can use a confusion
matrix to list all ratio measure metrics, it is always convenient
to combine precision and recall as onemetric, calledF1 score,
which is defined as F1 = 2

1
precision+

1
recall

. F1 score tries to

solve the tradeoff between precision and recall by favoring
the classification with similar values of precision and recall.

A. WORKLOAD FORECASTING
1) PROBLEM DEFINITION
Accurate forecasting of resource utilization in data centers
allows consumers to dynamically adjust the leased resources
for hosting their applications in a way to maintain the desired
performance and quality of service while minimizing their
expenses. Furthermore, such accurate estimation enables
providers to efficientlymaximize the utilization of data center
resources while minimizing their operational costs. Forecast-
ing future resources needs helps to achieve efficient capac-
ity planning, workload placement, job scheduling, proactive
auto-scaling, and load balancing. On the other hand, an inac-
curate estimation leads to either over or under-provisioning
of data center resources, as depicted in Figure 4, resulting
into wastage of resources, unnecessary power consumption
and violations of the service level agreement. A leading chal-
lenge in workload forecasting is the presence of multi-tenant
co-hosted applications characterized by nonlinear, dynamic
and time-varying nature [10]. For instance, at any time, mil-
lions of requests could be generated, whereas at the next
instance of time, very few requests or even none might
be issued, resulting in sudden peaks and rock bottoms in
workload patterns. Therefore, a workload forecasting method
becomes a significant research problem where the estima-
tion strategy must be capable of accurately estimating future
resource needs while adapting to dynamic workload demands
in a data center environment.

2) LITERATURE
Iqbal et al. proposed a method that can adaptively and auto-
matically identify the appropriate model for resource utiliza-
tion estimation [10]. It trains a classifier through different
scenarios and a corresponding resource estimator for each,
in order to learn the best regression model to produce the
workload prediction. Classical machine learning classifica-
tion and regression methods have been adopted for both clas-
sifier and resource utilization predictor modules respectively.

FIGURE 4. DCN topology configuration and management are tightly
coupled with the accuracy of workload forecasting. Inaccurate workload
forecasting results in under and over-provisioning of resources.

FIGURE 5. Adaptively estimate resource utilization by choosing the most
accurate ML model. Various prediction models (such as linear regression
(LR), support vector machine (SVM), Kriging (KR), gradient boosting tree
(GBT), etc.) are trained by the historical resource utilization data,
followed by a random decision forest to choose the most accurate model
to be used.

In details as shown in Figure 5, the historical resource utiliza-
tion data divided by sliding windows are used to train differ-
entMLmodels, such as linear regression (LR), support vector
machine (SVM), Kriging (KR), gradient boosting tree (GBT),
etc. Both the feature vectors in the aforementioned models
and the corresponding best-fitting model name are stored in
the training dataset. When the current resource utilization
data comes, the feature vector is extracted followed by a
model selector which applies random decision forest (RDF)
to identify the most accurate model to be adopted. At last,
the predicted resource utilization is estimated by the most
accurate model. Their key observations showed the signif-
icant effect of the window size selection on the estimation
accuracy and more noticeably how hard it is to forecast in the
presence of bursts.

The work by Li et al. focused on predicting the total
volume of future incoming and outgoing traffic on the
inter-data center link which is typically conquered by ele-
phant flows [11]. The authors applied wavelet transform for
the decomposition of raw time series in order to capture
both the time and frequency features, whereas elephant flows
were added as separate feature dimensions. To mitigate the
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FIGURE 6. Traditional Congestion (Flow) Control: Reactive management
strategy of adjusting packets sending rate after the congestion in the
switch queue.

significant cost entailed by collecting all elephant flows at
high frequencies, information of such flows (including the
total traffic and sublink traffic for both incoming and out-
going directions, a sample of elephant flows) was collected
at lower frequencies and interpolated to fill in the missing
values. A simple artificial neural network (ANN) with one
input layer, one hidden layer, and one output layer was used to
build the prediction model to handle the non-linearity of pat-
terns where the training optimizer is the classical stochastic
gradient descent (SGD). Predicting incoming and outgoing
traffic volume is done through the same model by incor-
porating information about both categories at the training
stage. Tested on the inter-DC link at Baidu Internet Company,
the combination of ANN and wavelet transform model was
able to reduce the internet service provider’s peak bandwidth
billed utilization by around 9%.

B. TRAFFIC FLOW CONTROL
1) PROBLEM DEFINITION
Data center traffic has diverse communication patterns and
requires efficient flow control mechanisms. Current DCN
flow control protocols are mainly a part of the congestion
control solutions such as TCP, DCTCP, DCQCN. An impor-
tant challenge in this space is the incast problem, which is
created when several hosts send data to a single receiver host.
This sudden arrival of flows creates congestion at the switch
buffer of the receiver link, as illustrated in Figure 6. While
various traffic control techniques are designed to rapidly react
to incast flows, they still fail to proactively identify and avoid
such events leading to packets and goodput loss. Hence the
need to design a proactive technique that predicts the network
state by forecasting the future trafficmatrices and accordingly
adjusts the rates at the sending hosts.

2) LITERATURE
While there is no existing system to compare congestion
control solutions for data center networking, Ruffy et al. pro-
posed a data center emulator, called Iroko, in this regard [12].
Particularly, it allows studying the needs and limitations of
reinforcement learning in data center network to support
not only different topologies but also a variety of conges-
tion control algorithms under different deployment scenarios.

FIGURE 7. The architecture of the Iroko emulator to testify the
reinforcement learning-based (such as REINFORCE, PPO, DDPG, etc.) and
classical congestion control methods (such as TCP, PCC, DCTCP, etc.) under
the same network traffic condition.

The emulator as shown in Figure 7 consists of a traffic
generator based on specific network topology and traffic
pattern, monitors to observe the network performance and
RL reward, and an agent to enforce the congestion con-
trol policy. It supports centralized arbiters which operate
as reinforcement learning (RL) policies for congestion con-
trol (such as REINFORCE, PPO, DDPG, etc.) as well as
decentralized host-level congestion control approaches which
are traditional TCP algorithms (such as DCTCP, TIMELY,
or PCC). The mentioned arbiters aim to find the optimal fair
bandwidth allocation while minimizing switch queues. The
performed experiments show that DCTCP remains unbeaten
as it is highly optimized with continuous kernel support,
yet all tested RL-based algorithms (i.e., DDPG, PPO, and
REINFORCE) show promising results as they were able to
beat TCP New Vegas minimizing the queue buildup on the
congested link.

Nougnanke et al. proposed lately a framework for incast
performance prediction in data center networks [13]. This
framework aims to infer incast completion time at run-time,
where such information can be eventually used by any flow
optimization algorithm or smart adaptive buffering method
to adjust system parameters dynamically and hence achieve
efficient performance for many-to-one communication traf-
fic. The prediction model is constructed offline based on
historical data. Each sample in this historical dataset repre-
sents a combination of features and a target value, where
the learning is done in a supervised fashion. The features
include:

• congestion algorithm used
• queuing discipline at the switch level
• number of competing senders
• bottleneck bandwidth
• round-trip-time
• server request unit
• minimum retransmission timeout

The target attribute is the incast completion time. The
built model is then deployed as real-time incast performance
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FIGURE 8. AuTO achieves data center-scale traffic optimization by
running peripheral systems on the end-hosts locally for the minimum
delay of short flows. Deep reinforcement learning algorithms (a deep
deterministic policy gradient algorithm and a policy gradient algorithm)
provides thresholds for MLFQ (multi-level feedback queuing) for short
flow and rates, routes, etc. for long flows.

inference agent. The inferred incast traffic information is
then used in the control plane for the smart buffering algo-
rithm or traffic flow optimization algorithm. Several clas-
sic machine learning algorithms have been investigated as
the inference agent, including Linear Regression, Support
Vector Regressor, Decision tree, Random Forest, and Multi-
layer Perceptron, where only Random Forest gave good
results.

Another interestingwork by Chen et al. proposed two-level
architecture, named AuTO, for automatic traffic optimization
in DCN [14]. The proposed architecture consists of a periph-
eral system and a central system mimicked from animals’
nervous system as shown in Figure 8.

The idea is to make short flow operations on the end-
host (i.e., application server) and use deep reinforcement
learning (DeepRL) methods to make traffic optimization
decisions for long flows. The peripheral system makes local
traffic optimization decisions in order to reduce the delay
for short flows. Specifically, it applies multi-level feedback
queuing (MLFQ) to schedule flows based on local informa-
tion of bytes sent. Whereas the central system is composed
of two deep reinforcement learning (DeepRL) agents: one for
controllingMLFQ and the other for determining rates, routes,
and priorities for long flows. The results show that the AuTO
is able to achieve up to 48.14% performance improvement as
compared with heuristic methods (i.e., shortest-job first and
least-attained-service-first).

C. TRAFFIC CLASSIFICATION AND SCHEDULING
1) PROBLEM DEFINITION
Data center traffic has diverse communication patterns and
is a mix of varying flow sizes that have different objectives
as shown in Figure 9. More specifically, some flows (mice)
are latency-sensitive such as web search and online gaming,
and some flows (elephant) are more throughput-oriented like
virtual machine migration and data backup.

To meet the requirement of these flows, network devices
in modern data centers are designed with a shallow
buffer in order to minimize the queuing delay of packets,
which satisfies the low latency constraint of some appli-
cations. Nonetheless, such practice does not meet with the

FIGURE 9. Traffic Classification and Scheduling: It is challenging to
classify/identify and schedule flows having different requirements while
minimizing the flow completion time (FCT).

applications requiring high bandwidth for which DCN needs
a great capacity to handle bursty traffic and avert packet drop.
Therefore, it is important to identify the latency-sensitive
traffic from the throughput-sensitive traffic. One suchmethod
is based on the flow size classification, where mice flows
are separated from the elephant flows. Furthermore, efficient
data center transmission control schemes should be able to
schedule flows in a way to minimize the flows completion
time (FCT) by handling both, the low latency requirement of
user-interactive flows and the high transfer rate needed by the
throughput-hungry streams while ensuring full utilization of
the network.

2) LITERATURE
Wang et al. presented a machine learning-based classifica-
tion approach to detect elephant flows in packet-switched
optical data center networks (PSON) for intra data center
network [15]. Taking into consideration of not only accuracy
but also computational performance, the proposition used
supervised learning, i.e., C4.5 decision tree [16] and Naïve
Bayes Discretization (NBD) [17] for flow classification. The
chosen feature set includes:
• packet length (minimum,maximum,mean, and standard
deviation)

• time between inter-arrival packets (minimum, maxi-
mum, mean, and standard deviation)

According to the experiments, C4.5 and NBD can achieve
95% and 90% recall with window sizes larger than 30 and
50, respectively. The resulting classification is then used to
schedule flows based on a priority-aware algorithm.

Differently, an interesting work by Zhu et al. [18], bears
that the flow information is not known as a prior and hence
proposed a deep learning-based architecture, called Smart-
Trans, to classify traffic and predict the flow size rank. The
proposed solution also includes multilevel priority queues
that allow differentiated scheduling. On one hand, the flow
classification output lets latency-insensitive flows give way
to latency-sensitive ones, and on the other hand, the flow
size forms an important aspect that affects the flow com-
pletion time, hence both factors are used in the scheduling
technique. Considering the packets transmitted in sequence,
recurrent neural network (RNN) was adopted to describe the
sequential information, as shown in Figure 10. Specifically,
each packet is divided by 4 bytes and each byte is embedded
to a number between 0 and 255. As a special case of RNN
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FIGURE 10. Design of the traffic classification and flow size trank
prediction neural network (TCFSNN) treats IP packet communication as a
natural language processing with 256 vocabularies (by embedding each
byte to be a number in 0-255). GRUs (gated recurrent unit) are used to
keep long short-term memory when processing the packets.

unit, a gated recurrent unit (GRU) was used for its better
performance in mitigation of gradient vanishing. The output
of eachGRU is concatenated to feed to another GRU followed
by softmax and linear fully connected network to finally
output traffic classification flow and flow size, respectively.
When a flow is recognized, the first three packets of it are
fed into the aforementioned network. Promising results have
been shown with good performance on traffic classification
(F1-score: >99%) under different workloads and load levels
in various scenarios (browsing, email, FTP, P2P, Youtube,
Spotify).

Estrada-Solano et al. [19] proposed NELLY, which lever-
ages incremental learning from software-defined network-
ing (SDN) to identify elephant flows of great magnitude in
the network accurately in a reasonable time while generating
low control overhead. NELLY aims to address the inaccu-
racy, high overhead and poor scalability of flow detection
in software-defined data center networks. The proposition
operates as a software component deployed in each and every
server in the data center network. The proposed architecture
consists of two subsystems namely an analyzer and a learner,
as shown in Figure 11. For the analyzer, the following infor-
mation from the outgoing packet is monitored and filtered:
source IP, source port, destination IP, destination port, IP pro-
tocol, size, and time. A flow ID together with the above info
is stored in the flow repository. The classifier leverages the
flow size classification model for on-the-fly detection and
marking of elephant flows and mice flows. For the learner,
the collector pulls records from the flow repository. The
tagger simply compares the actual size of the flows with a
threshold so that they can be tagged as either mice or elephant
flow. The trainer applies incremental learning algorithms in
order to build and update the flow size classification model.
Different incremental learning algorithms were considered
and compared in this work for classifying flows. According to
true positive ratio and false positive ratio in the experiments,
the top-5 best models are AHOT (adaptive Hoeffding option
tree), ARF (adaptive random forest), Hoeffding tree, OAUE
(online accuracy updated ensemble), OzaBag (Oza and
Ressel’s Bagging).

FIGURE 11. NELLY uses incremental learning to detect elephant flows at
the server in DCN. The analyzer applies a classifier to identify and mark
the elephant flows. The learner uses an incremental learning method to
update the flow size model.

FIGURE 12. Topology Management: A key challenge in topology
management is dynamically adding new links and/or removing corrupted
and underutilized links.

D. TOPOLOGY MANAGEMENT
1) PROBLEM DEFINITION
Different topologymodels for data center networks have been
designed to provide rich connectivity among the network
devices and satisfy all applications requirements. The net-
working community has come up with various techniques
for improving and managing their performance. Such tech-
niques include topology improvements through flexible links
or cutting out corrupted or underutilized ones as shown
in Figure 12. These techniques are formalized as optimization
models solved with greedy heuristics to create approximation
solutions. This is because finding the optimal location to add
augmenting links, or the set of links to be removed under var-
ious and rapidly changing circumstances is complex and even
of non-deterministic polynomial-time hardness. Nevertheless
these heuristics are mostly domain-specific and need to be
redesigned for any minor change in the application pattern or
network details and even for hardware dissimilarities, which
raise the need for automated intelligent techniques for topol-
ogy management in DCN.

2) LITERATURE
A work by Salman et al. proposed a machine learning-based
architecture for topology management [20]. The proposition
replaces domain specific rule-based heuristics with DeepRL
agent. The DeepRL agent interacts with the environment
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FIGURE 13. DeepConf RL agent utilizes a convolutional neural network
model to generate/deploy RL policy. Convolutional layers extract
high-level features from network topology and traffic matrix, followed by
a Concat layer to combine the features together for fully connected and
Softmax layers.

(network) according to its state (topology)with actions (select
links to activate), receive rewards (based on link utilization
and flow duration), and update its policy (i.e., state-action
mapping). More specifically,
• state space: the network topology (represented as a
sparse matrix where entries correspond to the activated
links).

• action space: different possible link combinations (rep-
resented as a vector where elements indicate the
possiblity of the corresponding link to be picked
up).

• reward: maximize link utilization and minimize the
average FCT (flow completion time), i.e.,

R =
∑
f ∈F

∑
l∈f

bf
df

(1)

where F denotes all completed flows and l denotes the
used links by f . bf is the total number of the transmitted
bytes of flow f . df is the total duration of flow f .

A network simulator is used to train offline the agents which
encapsulate the data center functionality. The learning model
utilizes a convolutional neural network (CNN) having the net-
work topology and traffic matrix as input state and the policy
that dictates the links that should be activated in the network
topology as output, as shown in Figure 13. The convolutional
layers extract the spatial features in the network topology
matrix and traffic matrix, followed by concatenated together
for fully connected layers and softmax to compute the final
probability vector (policy vector). Such anML-based solution
demonstrated its effectiveness with the ability to learn in a
reasonable number of episodes and its capability to learn a
solution close to the optimal one across different data center
topologies.

E. NETWORK STATE PREDICTION
1) PROBLEM DEFINITION
Performing measurements and monitoring is an essential
aspect in order to understand the performance of the network
and debugmany issues that can come across distributed appli-
cations in the data center. The main problem as illustrated
in Figure 14 is how to accurately spot and measure events
of interest, at the scale of a data center network consisting
of thousands of nodes connected with high link rates and

FIGURE 14. Network State: Predicting network state like queue size,
delay and link utilization from the flows between senders (s1, s2) and
destination (d1, d2) needs to be accurate, at data center scale, and in
near real-time.

hence variable phenomena frequency, and in a near real-time
manner.

2) LITERATURE
Geng et al. proposed SIMON for accurate and scalable net-
work telemetry in data centers [21]. It reconstructs network
states such as link utilization, packet queuing delays in net-
work switches, flow-level queue and link compositions. The
system uses a machine learning inference algorithm (Lasso,
Least Absolute Shrinkage and Selection Operator Regres-
sion) in order to obtain the related variables. As Lasso tries to
minimize the cost function in the form of

J (θ ) = MSE(θ )+ α
n∑
i=1

|θi| (2)

where θ is the parameter to be inferred; MSE stands for mean
squared error; α is a hyperparameter, it requires BGD (bunch
gradient descent) to iteratively to approach the optimum solu-
tion, which leads to a scalability limitation for large systems.
Furthermore, neural networks are also designed to acceler-
ate the afore-mentioned reconstruction. In detail, the neural
network is a three-layer ReLU (rectified linear unit [22])
neural networkwith only one hidden layer. For example, if we
denote D as probe delays and Q as queue sizes, the estimate
of queue sizes Q̂ is

Q̂ = M × ReLU (LD+ b)+ l (3)

where (L, b) and (M , l) are the network parameters in
the hidden layer and output layer respectively (as shown
in Figure 15). The proposed neural network-based accel-
eration approach is shown to accelerate measurement by
a factor of 5000x to 10000x, allowing it to run in near
real-time.

F. ROOT CAUSE ANALYSIS
1) PROBLEM DEFINITION
Troubleshooting network failures (e.g., Latency, packet
reordering, Sporadic packet drops and Bandwidth throttling)
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FIGURE 15. A neural network for network measurement reconstruction
(e.g., estimate delays by feeding the queue lengths). (L, b) and (M, l ) are
the weights and biases of the neurons. More specifically, the neurons in
the middle layer use ReLU (rectified linear unit) as their activation
function.

FIGURE 16. Root Cause of Network Failures: Various failures (highlighted
in red) can occur in DCN at different layers like links, switches, servers
and racks and the root cause of these failures is to be identified. A failure
can be as simple as a link or as worse as the entire rack. It is challenging
to automatically find the root cause and location of these
failures.

to identify their root cause, depicted in Figure 16, has become
a more critical mission with the increase of data rates.
It involves real-time monitoring of wide-ranging metrics and
data sources including packets. However, to find the root
cause and accelerate the resolution of a problem, assessing the
network metrics is not enough but rather a clear interpretation
of the correlation between the user experience, the behavior
of the network and the underlying problems in the network,
is needed. An ideal situation would be the ability to rapidly
pinpoint the most potential source failure, yet the whole
process is time-consuming and expensive and spans over
different IT teams and subsystems. Furthermore, the same
symptoms of a particular problem might be observed yet the
actual cause might differ which makes the troubleshooting
process even more complex.

2) LITERATURE
Arzani et al. proposed NetPoirot, which train random forest
models on historical network data to identify anomalies and
root causes of failures, correspondingly [23]. It is a single
node solution where end-hosts independently run pre-trained
classification models on local TCP statistics aiming to local-
ize the root cause of a failure to a remote server, a local
client, or network after which more adequate management

FIGURE 17. NetPoirot uses random forest (composed of several decision
trees) as an ensemble learning method to decide the root cause by
majority vote. When a new instance with features comes, only Decision
Tree 3 recognizes the root cause as server cause while the rest recognizes
it as network cause. Based on the Law of Large Numbers, the output from
the random forest is network cause.

techniques can be used. Specifically, in the training phase,
a fault injector is triggered to inject various kinds of failures
to either the local machine (end-host) connecting with remote
servers which results in different failures including server
issues (such as high I/O on server, slow reading, etc.), client
issues (such as high CPU load, high memory load, etc.),
and network issues (such as packet loss, random connection
drops, high latency, etc.). Once the features (either in the
form of raw value or statistic metric) and their corresponding
labels (server, client, or network) are prepared, the subsets
of the training data are fed into decision trees to compute
the splitting thresholds in features which leads to decision-
making (cause of failures) in the leaf node. In the deployment
phase, an ensemble method based on decision trees, called
random forest, is applied which makes root cause decision
by considering the voting score from multiple decision trees
generated in the training phase. The Law of Large Num-
ber guarantees the higher accuracy and recall of random
forest compared with a single decision tree. As an exam-
ple shown in Figure 17, most of the decision trees output
network cause which leads to the final decision of the ran-
dom forest as network cause according to the majority vote
criterion.

G. NETWORK SECURITY
1) PROBLEM DEFINITION
Data centers host a vast amount of user data and therefore
the network security is a key requirement for any DCN to
protect the usability and integrity of both the network and
user data. DCNs often face targeted attacks from malicious
entities and traditional firewalls are not capable of handling
emerging threats. Moreover, encrypted traffic makes deep
packet inspection even harder for the network operators to
identify such attacks automatically. Therefore, DCNs require
sophisticated intrusion detections systems (such as shown
in Figure 18) that can detect malicious entities, generate
signatures for the malicious traffic and install rules (based on
inferred signatures) using SDN controllers to prevent these
attacks in real-time.
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FIGURE 18. Security: An IDS detects malicious entities, generates
signatures for the malicious traffic, and install rules (based on inferred
signatures) using SDN controllers to prevent these attacks in real-time.

2) LITERATURE
ProHacker uses a non-parametric semi-supervised machine
learning approach to infer protocol formats [24]. It works
in two stages as shown in Figure 19. During the offline
stage, it collects the network traffic and then analyses the
collected traffic to learn keywords. To learn keywords, it splits
input data into n-grams and applies a heavy hitter algorithm
to identify important (recurring) keywords. It then builds
a protocol language model using a hierarchical Pitman-Yor
process on the learned keywords. The output of this function
is a language model corresponding to each protocol type
found in the network trace. Next, it applies ensemble learning
based approach to train several weak classifiers using a small
amount of labeled data and protocol keywords. During the
online stage, it extracts the keywords from the real traffic
and uses the pre-trained classifiers (from the offline stage)
to detect malicious traffic. Even though the proposed scheme
is lightweight and fast, it requires a large amount of traffic to
extract the keywords accurately.

SANTaClass uses an unsupervised machine learning tech-
nique to generate protocol signatures [25]. It takes network
traffic as an input and generates application protocol sig-
natures at the output (See Figure 19). First, it uses a com-
mon substring matching algorithm to first identify protocol
keywords, and then use these keywords to separate known
flows from unknown flows using a trie-like data struc-
ture. Next, it generates protocol signatures for the unknown
traffic by first identifying common terms in the proto-
col set, and refining them by removing short and unre-
lated terms. Lastly, it uses the generated signatures to iden-
tify traffic in real-time. The proposed mechanism works
well for encrypted traffic and achieves an accuracy of up
to 80%.

Deep packet is a deep learning based network traffic clas-
sification framework that can handle traffic belonging to
various applications. Deep packet can also identify encrypted
traffic and can distinguish between VPN and non-VPN net-
works. The core of this framework is two deep neural network
structures i.e., stacked autoencoder (SAE) and convolutional
network (CNN). The key difference from the above methods
is that it does not require feature (or keyword extraction).
Instead, it pre-processes packets based on the link layer and
TCP headers and truncates irrelevant data from the packet.
Next, it feeds the data to SAE and CNN which classify the
input traffic to one of the categories.

FIGURE 19. Prohacker Signature Generation uses a common substring
matching algorithm to first identify protocol keywords and then applies
the keywords to generate protocol signatures.

H. DISCUSSION
Table 1 summarizes the ML techniques and their objec-
tives in solving DCN challenges. Several interesting obser-
vations can be concluded from this Table. First, it is hard
to create ground truth data for the ML techniques. Many
of these works employ classical supervised learning tech-
niques, which require data labeling, to solve particular DCN
problems. This is challenging in a dynamic and continuously
evolving environment like DCNs. Second, it is hard to collect
the training dataset for supervised learning. Many of these
works shed the light on the non-availability or accessibility to
real DCN datasets needed for the machine learning analysis.
Third, these solutions require a high level of accuracy for the
monitoring tools to get the right insights of the features at
the adequate granularity necessary for the ML techniques.
Lastly, the time to collect the telemetry data, process the
data and make decisions should be very little (on the order
of microseconds). Despite these challenges, many of these
works present interesting results that show the potential of
machine learning in making DCN better and more efficient.
In contrast to these works, Fu et al., [26] make an interesting
observation that ML cannot provide an accurate prediction of
resources without losing any of the simplicity or generality
aspects of existing networking solutions.

IV. CHALLENGES FOR ADOPTING ML IN DCN
1) DECISION MAKING LATENCY
While DCN traffic is a mix of mice and elephant flows,
short flows constitute the majority of the traffic and hence
they can be easily gone before any control or optimiza-
tion decision is made rendering most decisions useless.
Hence the challenge of achieving all of fine-grained traf-
fic monitoring, data preparation, models training and infer-
ence rapidly and the challenge of choosing the appropriate
machine learning architecture that can meet such require-
ments, where decisions ideally should be taken on orders of
microseconds.

2) DATA AVAILABILITY
Training data is the backbone of supervised machine learning
without which it will be impossible for the model to learn
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TABLE 1. Taxonomy of ML-based solutions for DCN.
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and predict. However, one of the important challenges for
ML in DCN is the unavailability of real or realistic data
center networking data sets for the academic research and
industrial communities since the topology and the traffic
patterns are often considered as private and proprietary and
the industry cannot expose their customers’ data for privacy
preservation. Another important aspect is the granularity of
data that can be collected at different levels whether on the
hosts, controllers, switches, or more fine-grained per-flow
information.While data differ from one level to another, there
is a need for a knowledge-sharingmechanism in order to build
ML models that can efficiently learn and adapt to different
scenarios.

3) COMPUTATIONAL RESOURCES
Adopting data plane or control plane to run machine learning
are both effective solutions, yet each raises its own chal-
lenges. Deploying switch-based machine learning is limited
to the hardware capability whereas the server-based approach
questions the significant latency entailed and bandwidth
needed to communicate the data needed for the machine
learning analysis. Another challenge that we shed the light
on is whether to adopt online or offline analysis and the
frequency of the latter which affect all of the computa-
tional needs, freshness and efficiency of the machine learning
models.

4) PRIVACY
Data center networking tools facilitate communication and
information exchange between their connected components
and both internal and external networks. While data centers
networks usually offer built-in security guarantees, privacy
remains a critical aspect especially in environments in which
raw data needed for training machine learning models are
inconvenient to share neither between network elements in
the same domain nor in intra-DC communication. Hence the
challenge of the need for the data to build efficientMLmodels
and the risks that will be put on the line by allowing such data
to leave its host.

V. VISION AND OPEN RESEARCH DIRECTIONS
Regardless of the hurdles machine learning has to overcome,
ML is likely to make its way in data center networking and
become one of its core pillars. Hereafter, we present our
vision while we discuss some open directions where and how
ML can be a potential game-changer in the direction of future
DCN automation, autonomy and intelligence.

A. VISION
The need for decentralized and scalable solutions is even
more significant. The fact that traffic has to be evaluated
in real-time and monitored data has to be communicated
with a central entity for analysis and decision making, leads
to a slow learning curve, network overload, and latency.
Additionally, optimizing a network of tens of hosts is
already a substantial task, since each node is an independent

actor with unpredictable behavior, which impedes scala-
bility. Therefore, we envision that any ML solution for
DCNs should consider divergence in its architecture and the
aspects that are usually omitted or left as after-thoughts in
the proposed solutions. We discuss all these aspects in the
sequel.

B. ML APPLICATION SCENARIOS
Many ML algorithms have been proposed to work in DCNs.
However, many of these ML solutions need to be customized
and enhanced to cater to the constraints posed by the DCN
consumers, users, network operators, cloud service providers,
etc. For instance, ML can help with operations, but it might
also be applied under the hood without network operators
being aware of it. For traffic control, existing works have
proved the sensitivity and effect of the training window size
on the accuracy of the machine learning model, yet none
has proposed automatic and adaptive techniques to set the
window size effectively. Moving window size for the training
set is one of the potential tracks to investigate in these areas
for its significant effect on the ML model estimation error.
Reinforcement learning (RL) has shown its potential with
very promising results for traffic control. In spite of the traffic
volatility in DCN, an agent is able to learn a reasonable set of
parameters to define traffic control policy. A major challenge
for RL algorithms is that the decisions have to be made on
a scale of milliseconds or even microseconds, the tolerance
for error in data center network is small and, compared to a
traditional TCP algorithm, the RL agent needs to cope with
a significant delay in its actions on a local host. Reducing
the reaction granularity and allowing more complex actions
such as providing a series of actions for the next few sec-
onds are some of the promising research directions in this
space.

ML for traffic optimization is currently the most investi-
gated area, however, typically these methods rely on clas-
sifying a flow as mice or elephant. Currently, there is no
reliable and accepted method for defining the threshold value
that differentiates between mice and elephant flows in DCNs.
Proposing an adaptive automatic method to select the appro-
priate threshold value for the traffic and routing requirements
is still an open research direction to explore.

On the other hand, the ML works for topology manage-
ment, state reconstruction and root cause analysis in DCN
have shown very encouraging results as well, yet very limited
works have been advanced in these areas which open the door
for countless further enhancements.

Collecting network traces in a privacy-preserving manner
is a critical task. While few data sets are available [27]–[29],
there are no adequate data sets that are publicly available
for the evaluation of ML solutions for many other areas in
DCN explored in this work, which pushed researchers to
create their own data sets or use simulated data making them
unreliable for real evaluation as shown in Table 1. This creates
an interesting track for the industry to consider, yet definitely
not to forget about their customers’ privacy.
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FIGURE 20. Federated Learning (FL)-Enabled DCN: our vision of re-architectured machine learning deployment for DCN.

C. ML ARCHITECTURE FOR DCN
1) WHAT, WHEN AND HOW OF ML TECHNIQUES
The chaotic and opaque nature of data center networks makes
it unpredictable, hence there is a need to investigate applica-
tions of reinforcement learning more thoroughly rather than
relying on supervised learning techniques that require some
manual intervention to build good solutions. Applying ML
analysis requires continuous monitoring to capture observa-
tions, and data transfer over the network to train ML models,
which if not efficiently handled, can cause latency in the net-
work and bottleneck on the communication links. Therefore,
we envision that any ML architecture should consider when,
whether online or offline, and how frequently to perform
training and inference tasks to guarantee model freshness
without causing additional overhead on the network. None of
the existing works consider or clearly justifies these aspects
despite their criticality.

2) ML DEPLOYMENT MODEL
While the debate is always whether to apply centralized
or decentralized ML analysis, we envision more advanced
paradigms to apply machine learning in DCN. We believe
that ML analysis should be done close to the generated data
in order to avoid latency and overhead and save bandwidth.
This is very important for DCNs, where the decisions (such as
scheduling or forwarding) have to be done ideally in the order
of microseconds. While centralized architecture cannot meet
these requirements, decentralized deployment can. However,
distributed architectures lack a global view of the network
and impose the need for data coordination. Direct distributed
coordination between agents can in turn impose significant
overhead on links and nodes in the network. From our per-
spective, Federated Learning (FL) [36] is the most suitable

paradigm for the learning process in DCNwhich is capable of
addressing these challenges and meeting these requirements.
We give in Figure 20 a generic overview of the proposed
re-architected ML deployment which depicts our vision of
future generation networking in data centers as FL-enabled
DCN. In this architecture, metrics tailored to the specific
problem at hand, are monitored through the monitors in the
network and the gathered data is then communicated with the
local ML engine for model training. Model parameters (Betas
in Figure 20) from local agents are then communicated with
the central entity for aggregation rather than raw data, which
minimizes the overhead of data communication on the links
and reduces the associated bandwidth usage overheads. This
also offers a significant reduction in latency over the network.
Further, it provides a certain level of privacy whereby data
is never communicated with external entities in intra-DC
communication. The new enhanced model is then exchanged
by the central entity with the local agents for knowledge
sharing and a global network-wide view of the network.
Local agents can be used for real-time fast analysis needed
for instance to meet mice flows requirements whereas the
central analysis can be dedicated for decisions that tolerate
higher latency and require a global view of the network.
Furthermore, such architecturemeets well with the scalability
need in DCN. Additional improvements on the model can be
further applied by each of the local agents until a certain level
of convergence is achieved. However, identifying the conver-
gence level tailored for each DCN problem is a challenging
task.

3) NETWORK TELEMETRY
Building an efficient network telemetry solution is important
for DCNs. Monitoring is a critical aspect for designing and
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deploying appropriate and effective management solutions
for data center network. Currently, passive probes continu-
ously monitor and trace desired performance metrics (such
as the status of the queue, packets and byte counters and
statistics on latency) in the network. While such passive
monitoring is effective and straightforward, the information
provided is local and does not cover the paths in the network
or dropped packets, which does not provide network-wide
vision. On the other hand, some protocols also use messages
in the control plane to identify bandwidth, delays and packet
loss.

Network telemetry has become even more essential for
network with the continuous increase in DCN scale and
with the evolution of network technologies like 5G. Fur-
thermore, the constant flow of critical data through the data
center network has raised the need for continuous mon-
itoring and tracing to detect current or potential failures,
anomalies, and congestion and to respond to them in a
timely manner. Such criticality raises the value of investing
in network telemetry. Particularly, measurements methods
and metrics granularity, which play important role in the
ML analysis as they ensure the availability of the needed
data for model training and inference, are critical aspects
to examine and important promising directions. In its turn,
machine learning has also proven to be an efficient means
to accelerate the reconstruction of the network state like
link utilization, packet queuing delays in network switches,
flow-level queue and link compositions, yet still not exten-
sively studied, which makes it a promising open track to
explore.

Another dimension is to build lightweight distributed
telemetry blocks that can become part of future architec-
tures by default and assist in timely information collection
(over long times) and processing (quick) across the network.
Such a system can act as an end-to-end closed-loop system
that collects and processes telemetry data to take certain
actions. Different use cases require solutions at different
timescales. For example, traffic engineering needs to make
decisions at the minutes level compared to the link level
flow control that requires decision making at microsecond
to millisecond timescale. This requires building lightweight
blocks for ML-based telemetry that collects information over
a long time but is able to take actions quickly (at different
timescales) to adapt to any changes or events in the network.
Monitoring generates a huge amount of data and collects it at
a central node. Processing this data and making decisions in
real-time is a tedious task.

4) SECURITY AND PRIVACY
Recent studies demonstrate that machine learning models are
themselves an easy target for security and privacy threats [37].
This includes poisoning of training data, which can lead to
either diminished accuracy or error attack. Another type of
attack is a well-designed backdoor in the training set which
is able to trigger critical consequences in the ML agent.
Also, an adversarial example or a well-crafted disorder in

the test input can lead to the wrong model. Further, sensitive
training data can be recovered through stealing the model,
an inference or an inversion attack. Such threats can lead to
critical consequences in the ML engines and eventually in the
network especially in security and privacy critical applica-
tions. Considering users and customers as separate entities,
DCN typically belongs to a single authority and therefore,
privacy might not be a critical aspect in inter-DC commu-
nication. However, data shared in intra-DC communication
to train ML models are still subject not only to security but
also privacy attacks. Protecting both the parameters of the
model from the service provider’s perspective, and the data
privacy from the user’s perspective has gained increasing
attention in recent years. Differential privacy techniques have
been proposed where noise is injected at various levels, yet
this can still hurt the model and lead to a higher error rate.
Additionally, fair accuracy can only be maintained with a
small number of ML agents involved, which questions the
scalability of such techniques in the scale of DCN. On the
other hand, cryptographic methods have been also advanced
and considered as loss-less, yet still need improvements as
they introduce high overhead to the training and can lead to
performance degradation of the ML model and some might
not be able to defend against poisoning attacks. Designing
robust security and privacy-preserving methods for machine
learningwith the least loss of accuracy possible is a promising
direction.

An interesting research direction is establishing a mecha-
nism that can evaluate the security and privacy of machine
learning systems. So far, very little work has been done
to evaluate the robustness of the ML systems against
security and privacy attacks. Also, there is no unified
method and metrics to evaluate the performance of existing
defenses.

VI. CONCLUSION
Undeniably, future DCN will have to support the explo-
sive growth in the volume of traffic entailed by smart
connected devices and multi-tenant applications and ser-
vices with remarkable capabilities that meet their needs.
Yet the exceptional scale and volatility will undoubtedly
increase the complexity of network operations and man-
agement, urge the need for automation, intelligence and
autonomy. Over the last past decades, ML has proved its
capability in different domains including networking. In this
article, we provide a comprehensive branch of perception
on the applicability of ML solutions to support data cen-
ter network operations and management including work-
load forecasting, traffic control and optimization, topology
management, network state prediction, failures analysis, and
security.

We review the existing literature works that proposed ML
approaches for addressing these DCN problems and explore
their proposed techniques while studying their requirements
and analyzing their feasibility and performance. Although
ML has shown promising results in addressing these
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problems, yet many challenges are still there impeding the
efficient application ofML-based solutions. We also examine
and discuss these challenges in this article along with some
opportunities while we draw our vision pertaining to the
intelligent and autonomic operation and management of
future data center networks.

We believe that our findings offer fundamental insights
into the future research progress and field advancement and
motivate the need for more research with advanced and
re-architected solutions to the realized future vision of intel-
ligent automatic DCN.
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