Distribution independent statistics for symmetric random walks: an intuitive proof

Robert Cordery, Fairfield University Claude Zeller, C. Zeller Consulting LLC

Applications of random walks

- Diffuse light scattering:
	- random media (paper, skin)
	- atmospheres
- Brownian motion
- Critical phenomena
- Games of chance (like the stock market and options)
- Markov Chain Monte Carlo

Fluctuation theory: partial sum statistics

- Fluctuation theory addresses walks with independent, identically distributed (IID) random steps
	- Developed 1949 1960 by Andersen, Baxter, Darling, Feller, Spitzer, Wendel and others algebraic meth
	- Proved results with a variety of combinatoric and algebraic methods
	- Showed that many statistics are (surprisingly) independent of the step size probability distribution
- We found a simple pairing of walks that yields intuitive proofs of many fluctuation theory results
	- Explains why order statistics and first passage statistics for continuous step distributions look "combinatoric"

Random walks on the reals

Step lengths > 0 from a continuous pdf Step lengths from a symmetric continuous pdf

Random walks on the reals

 $\left(-1\right)^{k}$ S_{k} 1 $1)^{k} s_{k}$ *n k* $\text{CUS of } k_A$
 $n = \sum_{k=1}^{n} (-1)^k s_k$ *k* Iternating sign walk
 $z_n = \sum_{k=1}^n (-1)^k s_k$

rgths > 0 from a continuous p

Alternating sign walk Symmetric step distribution

Step lengths > 0 from a continuous pdf \angle Step lengths from a symmetric continuous pdf

Distribution independent statistics

For an *N-*step walk with real IID steps (either alternating or random sign)

- Statistics independent of the step size distribution:
	- **On** Step with first passage to a negative value
	- **O** Step with highest peak (lowest valley)
	- **O** Step with k^{th} highest peak (k^{th} lowest valley)
	- Number of positive steps
- But not distribution of the height of highest peak

Distribution independent statistics

For an *N-*step walk with real IID steps (either alternating or random sign)

• Statistics independent of the step size distribution:

Focus of talk **D** Step with first passage to a negative value

- **O** Step with highest peak (lowest valley)
- **O** Step with k^{th} highest peak (k^{th} lowest valley)
- Number of positive steps
- But not distribution of the height of highest peak

Statistics averaged over permutations of steps are independent of the set of lengths

- IID steps implies the probability of a finite walk is independent of permutations of steps (so called "symmetrically distributed")
	- Symmetrically distributed is more general than IID,
		- Coordinates near the surface of a hypersphere
- *N*-step walk \rightarrow permutations of a finite set of lengths
- \bullet For each set of lengths A_N , we average over permutations
	- Our main result is that averaging these statistics over permutations gives a result independent of A_N
	- Except for a constraint on the lengths of measure 0
	- Averaging over sets of lengths is thus average of a constant

Constructing walks from permutations

- Given a fixed set A_N of N steps with real lengths
- Construct the set W_N of all alternating (zigzag) walks from permutations of these steps
	- There are *N!* such walks
	- There are $2^N N!$ For symmetrically distributed step length
- Constrain the lengths so that no sub-walk with an even number of steps starts and ends at 0
	- This is a constraint of measure 0
- Claim: the fraction of walks that have first passage to a negative value on step $k \leq N$ is independent of A_N

Changing one set of lengths into another

- We change step lengths one at a time
- Small length changes do not affect first passage statistics
- At a critical length some walk returns exactly to 0
- Past that length, the first passage for this walk changes
- These are the only walks that could change first passage statistics
- However ...

Pairing walks around a critical value

- When a length change causes one even sub-walk w_0 to return to 0, many others also return to 0:
	- Permutations of the upward steps
	- Permutations of the downward steps
	- Exchanging the upward and downward steps

Pairing walks around a critical value

- When a length change causes one even sub-walk w_0 to return to 0, many others do also:
	- Permutation of the upward steps
	- Permutation of the downward steps
	- Exchanging the upward and downward steps
- In particular, the time reversed sub-walk *wr* 0 goes from 0 to 0
- Pair each critical walk that begins with w_0 with a walk with the same tail but begins with $w^r_{\ 0}$

Pairing walks around a critical value

- As a step is changed through a critical value
	- If w_0 ends higher than it's start, then the time reversed walk w^r_{0} ends lower than it's start
- First passages of the paired walks beginning with w_0 and w^r ₀ exchange step number
- The total number of first passages at each step is unchanged

Pairing walks works for other statistics

- Order statistics (location of *k th* highest peak or valley) are distribution independent
- Location of k^{th} passage
- For symmetrically distributed step size average over $2^N N!$ permutations and step sign choice

Distribution independent statistics are combinatoric

- We can use any set of lengths satisfying the constraint
- A good choice is $\{2^k | k = 1 \cdots N\}$
- The steps are positive as long as every negative step is preceded by a longer positive step
- First passage at the k^{th} step requires the k^{th} step be longer that all previous steps and negative
- The fraction with first passage at step k is $\frac{C_{k-1}}{22k-1}$ $\frac{C_{k-1}}{2^{2k-1}}$, where $C_m =$ 1 $m+1$ $2m$ \overline{m} is the *m*th Catalan number