

Digital Oscilloscope Handheld Oscilloscope Waveform Generator DC Power Supply DC Electronic Load Digital Multimeter Probes & Accessories

SIGLENT TECHNOLOGIES PRODUCT CATALOG

SIGLENT TECHNOLOGIES CO., LTD

CATALOG

Company Profile	
SDS6000A Super Phosphor Oscilloscope	
SDS5000X Super Phosphor Oscilloscope	
SDS2000X Plus Super Phosphor Oscilloscope	
SDS2000X-E Super Phosphor Oscilloscope	
SDS1000X-E Super Phosphor Oscilloscope	24
SDS1000DL+/CML+ Digital Storage Oscilloscope	
SHS800 Handheld Digital Oscilloscope	
SDG6000X Pulse/Arbitrary Waveform Generator	32
SDG2000X Function/Arbitrary Waveform Generator	
SDG1000X Function/Arbitrary Waveform Generator	
SDG800 Function/Arbitrary Waveform Generator	
SPS5000X Programmable Switching DC Power Supply	50
SPD3303 Programmable Linear DC Power Supply	
SPD1000X Programmable Linear DC Power Supply	
SDL1000X DC Electronic Load	59
SDM3065X Digital Multimeter	
SDM3055 Digital Multimeter	
SDM3045X Digital Multimeter	
Probes & Accessories	
Service	

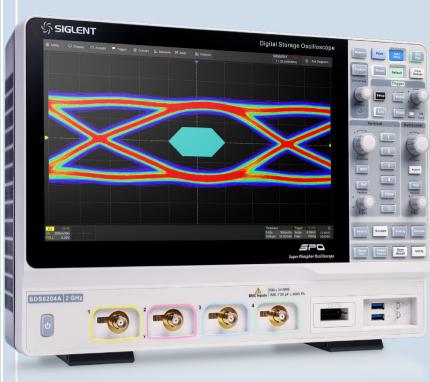
* Spetrum Analyzer, Network Analyzer, RF Signal Generator can be found in SIGLENT RF PRODUCTS CATALOG

SIGLENT TECHNOLOGIES Co., Ltd.

The Best Value in Electronic Test & Measurement.

SIGLENT has been providing test & measurement solutions for almost 18 years from its headquarter in Shenzhen, China. There are more than 300 employees, one third of whom are high-educated R&D engineers.

SIGLENT has many patent technologies. We are dedicated to develop sophisticated and high quality digital oscilloscopes, waveform generators, RF signal generators, handheld digital oscilloscopes, spectrum analyzers, vector network analyzers and DC power supplies, DC Electronic Loads, digital multimeters. We strive to deliver the highest quality of customer service and satisfaction to our customers.


SIGLENT provides the following instruments:

- -Digital Oscilloscope
- -Handheld Oscilloscope
- -Waveform Generator
- -RF Signal Generator
- -Spectrum Analyzer
- -Vector Network Analyzer
- -DC Power Supply
- -DC Electronic Load
- -Digital Multimter
- -Probes & Accessories

SIGLENT sincerely invite you to join Please email : sales@siglent.com

www.siglent.com 2

SDS6000A Super Phosphor Oscilloscope

Key Features

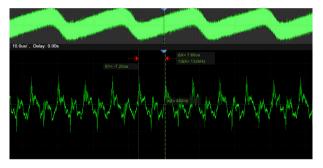
- 4 analog channels, up to 2 GHz bandwidth with 5 GSa/s (10 GSa/s ESR) sample rate at each channel
- Low background noise, supports 0.5 mV/div to 10 V/div vertical scales

SPO technology

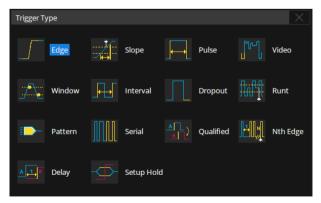
- Waveform capture rates up to 170,000 wfm/s (normal mode), and 750,000 wfm/s (sequence mode)
- Supports 256-level intensity grading and color temperature display modes
- 500 Mpts Record length in total for all 4 channels
- Digital trigger system
- Intelligent trigger: Edge, Slope, Pulse, Window, Runt, Interval, Dropout, Pattern, Qualified, Nth edge, Setup/hold, Delay and Video (HDTV supported). Zone Trigger simplifies advanced triggering
- Serial bus triggering and decoder, supports protocols I2C, SPI, UART, CAN, LIN, CAN FD, FlexRay, I2S, MIL-STD-1553B, SENT and Manchester
- Segmented acquisition (Sequence) mode, dividing the maximum record length into multiple segments (up to 80,000), according to trigger conditions set by the user, with a very small dead time between segments to capture the qualifying event
- History waveform record (History) function, the maximum recorded waveform length is 80,000 frames
- Automatic measurements on 50+ parameters, supports statistics with histogram, track, trend, Gating measurement, and measurements on Math, History and Ref
- 4 Math traces (8 Mpts FFT, addition, subtraction, multiplication, division, integration, differential, square root, etc.), supports formula editor
- Abundant data analysis functions such as Search, Navigate, Digital Voltmeter, Counter, Waveform Histogram, Bode plot, Power Analysis and Eye/Jitter Analysis
- High Speed hardware-based Average, Hi-Res; High Speed hardware-based Mask Test function, with Mask Editor tool for creating user-defined masks
- 16 digital channels (optional)
- 25 MHz function / arbitrary waveform generator, built-in multiple predefined waveforms
- Large 12.1" TFT-LCD display with 1280 * 800 resolution; Capacitive touch screen supports multi-touch gestures
- Interfaces include: USB Hosts, USB Device (USBTMC), LAN(VXI-11/Telnet/Socket), micro SD card, Pass/Fail, Trigger Out, HDMI
- Built-in web server supports remote control over the LAN port using a web browser. Supports SCPI remote control commands. Supports external mouse and keyboard


Characteristics

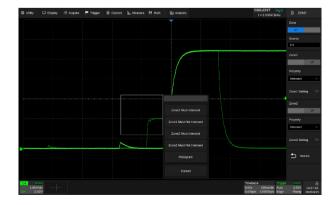
Excellent User Interface and User Experience


- 12.1" display with 1280*800 resolution
- Capacitive touch screen, supporting multi-touch gestures, can move or scale the waveform traces quickly by finger-touch movements, which greatly improves the operation efficiency
- Built-in WebServer supports remote control on a web page over LAN
- Supports external mouse and keyboard

• High Waveform Update Rate


With a waveform update rate of up to 170,000 wfm/s, the oscilloscope can easily capture unusual or low-probability events. In Sequence mode, the waveform capture rate can reach 750,000 wfm/s

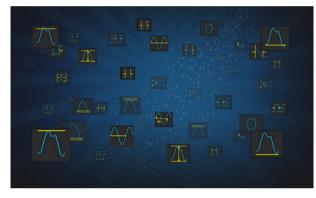
• Deep Record Length


Using hardware-based Zoom technique and record length of up to 500 Mpts, users can select a slower timebase without compromising the sample rate, and then quickly zoom in to focus on the area of interest

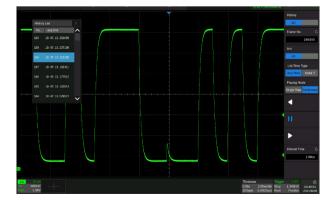
• Multiple Trigger Functions

Edge, Slope, Pulse, Video, Windows, Runt, Interval, Dropout, Pattern, Qualified, Nth edge, Setup/hold, Delay and serial trigger

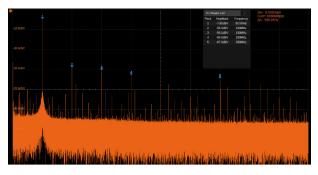
• Trigger Zone


Trigger Zone is available for advanced triggering

• Advanced Math Function

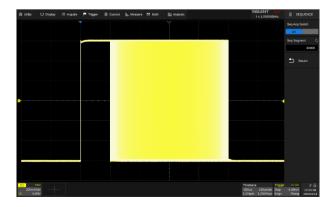

inction													
Basic	A	rithmetic	Fre	q-Analysis	Alge	bra	Formula	a Editor					
2+3*C1+1													
					3ack		Clear					ОК	
					Sauk		Cieai						
FFT	d/dt		Sqrt			C1	C2	СЗ	C4		8	9	
Avg	ERES	Abs	Sign										
Exp	Exp10	Ln	Lg										
Intrp	MaxHold	MinHold									 		

In addition to the traditional (+, -, X, /) operations, FFT, integration, differential, square root, and more are supported. Formula Editor is available for more complex operations. 4 math traces are available.


• Measurements of a Variety of Parameters

Parameter measurements include 4 categories: horizontal, vertical, miscellaneous, and CH delay providing a total of 50+ different types of measurements. Measurements can be performed within a specified gate period. Measurements on Math, Reference, and History frames are supported

History function can record up to 80,000 frames of waveforms. The recording is executed automatically so that the customer can playback the history waveforms at any time to observe unusual events and quickly locate the area of interest using the cursors or measurements. The failed frames of the Mask Test can be stored as history


Hardware-accelerated FFT supports up to 8 Mpts operation. This provides high-frequency resolution with a fast refresh rate. The FFT function also supports a variety of window functions so that it can adapt to different spectrum measurement needs. Three modes (Normal, Average, and Max hold) can satisfy different requirements for observing the power spectrum. Auto peak detection and markers are supported.

Parameter Statistics Function

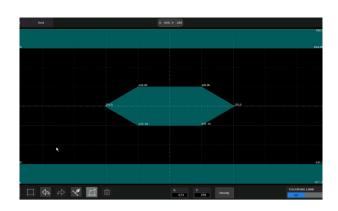
No. (1997) No. (1

Statistics show the current value, maximum value, minimum value, standard deviation, and mean value of up to 12 parameters simultaneously. A histogram is available to show the probability distribution of a parameter. Trend and Track are available to show the parameter value vs. time.

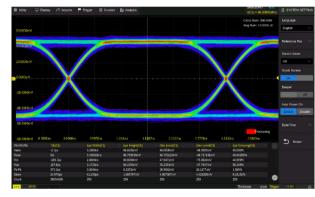
For horizontal parameters such as period, all results are extracted from a frame, instead of just calculating the first one. This accelerates statistics on horizontal measurements much more and enables distribution observation in a frame using Histogram and Track



Sequence Mode


Segmented memory collection will store the waveform into multiple memory segments (up to 80,000) and each segment will store a triggered waveform as well the dead time information. The interval between segments can be as small as $1.3 \ \mu$ s. All of the segments can be played back using the History function

• History Mode


• Hardware-based High Speed Mask Test Function

The oscilloscope utilizes a hardware-based Mask Test function, performing up to 18,000 Pass / Fail decisions each second. It is easy to generate user-defined test templates to provide trace mask comparisons, making it suitable for long-term signal monitoring or automated production line testing

Built-in Mask Editor application helps to create custom masks

	play IT Acquire	Trigger 3	# Cursors	E Analysis				LENT Run (=***	E CLOCK R
5.0%					2.00				PLL
4.0%		A			4.00				
3.0%					5.00				Find Rate M
2.0%									Automotic
1.0%	· · · · · · · · · · · · · · · · · · ·								
-912	-104	503		111					Every
					14.00				
					-0.40	-0.23 0.00		0.40	
					Construction of the local division of the lo				
					ution on a testimation				
					-225.77 <i>0</i> 89				• Ref
					-235 77 dBV				D Ret
furtison Furt	and the second second	hand hope the period	da sandarina da Santa da seria da	and a literature	-245.77.dBv -255.77.dBv -265.77.dBv	and barried over an and a	. Horney and the	land a land	
be For tychologi For tychologi	alamandi Destepatat	hand an a than an Maria an	da tarih si cardi Nasiri ka tarih	ng Kanti Kasila Ng Kanti Kasila	255 7748V 205 7748V 275 7748V 285 7748V	enternetario da Internetario da	deinadaanda In ddialay aa		
pe pe pe pe.05ue	1261768	tradicantla con artes protestanos -102865	4454444444 1709444774 1436046	127 4948	-255 77 48V -205 77 48V -275 77 48V		alder Bernele Standard.		
pe pe pe pe.05ue			44544 4444 1747 1744 1744 4360 18		255 77 dBV 205 77 dBV 275 77 dBV 285 77 dBV 285 77 dBV 15 80 M-Hr	4950 (1967) (1970) (1970) (1970) 496 (1970) (1970) (1970) (1970) (1970) 496 (1970) (19		1 1,40 62MHz	
pe pe pe pe.05ue	Period(C2) 12.6200ms	- TIB(C2) -9.5ps	44 (1997) 1997 (1997) 19360-18		255 77 69V 205 77 69V 275 77 69V 265 77 69V 15 57 69V 15 57 649 15 57 649 13 57 649 14 3 Jus		and will change in some of the answer of the source of the	1 140 6244+2	
pe pe pe pe.05ue	Period(C2) 12.8200ns 12.774892ns	- TIE(C2) -9.5ps 0fs	1360us	- RJ(C2) 37.4ps 37.237ps	255 77 dBV 205 77 dBV 275 77 dBV 265 77 dBV 265 77 dBV 15 57 MHz 15 57 MHz 114 Japs 114 Japs 114 Japs	85.8ps 90.807ps	12.151ps	2000 al a stand 1 1 40 6200 a	
pe production pe	Period(C2) 12.8200ms 12.774692ms 6.0740ms	- TIE(C2) -9.5ps 0fs -293.2ps	43 60us	97.4ps 37.237ps 36.4ps	255 77.45V 265 77.45V 27.45V 265 77.45V 265 77.45V 15 57.44V 15 57.44V 15 57.44V 11 50.449 111.50499 94.205	85.8ps 90.807ps 77.4ps	12.151ps 6.8ps	1 140 621442 ×	
Hangel Looper Response PE 198:05us E	Penod(C2) 12.6200ns 12.774692ns 6.0740ns 45.0640ns	- TIB(C2) -9.5ps 01s -293.2ps 293.0ps	4360ua	RJ(C2) 37.4ps 37.237ps 36.4ps 38.5ps	255 77.45V 205 77.45V 275 77.45V 265 77.45V 15 50%44 15 50%44 11.5%495 111.5%495 94 100 170 600	85.8ps 90.807ps 77.4ps 167.7ps	12.151ps 6.0ps 17.8ps		
pe production pe	Period(C2) 12.8200ns 12.774892hs 6.0740hs 45.0640ns 39.0100ns	- TIE(C2) -9.5ps 0fs -293.2ps 293.0ps 596.2ps	4360us	RJ(C2) 37.4ps 37.237ps 36.4ps 38.5ps 2.1ps	-155 77 899 205 77 899 215 77 899 215 77 899 215 77 899 215 77 899 215 77 899 215 79 894 215 79 894 215 79 894 215 79 894 215 79 894 215 79 894 216 994 209	85.8ps 90.807ps 77.4ps 167.7ps 90.3ps	12.151ps 6.0ps 17.6ps 11.0ps	440 5201-2	
pe production pe	Penod(C2) 12.6200ns 12.774692ns 6.0740ns 45.0640ns	- TIB(C2) -9.5ps 01s -293.2ps 293.0ps		RJ(C2) 37.4ps 37.237ps 36.4ps 38.5ps	255 77.45V 205 77.45V 275 77.45V 265 77.45V 15 50%44 15 50%44 11.5%495 111.5%495 94 100 170 600	85.8ps 90.807ps 77.4ps 167.7ps 90.3ps 9.275ps	12.151ps 6.3ps 17.8ps 11.0ps 2.187ps	140 520442	
pe production pe	Period(C2) 12.8200ms 12.774690ms 6.0740ms 45.0640ms 39.0100ms 6.352075ms 30601874	- TIE(C2) -9.5ps 0fs -293.2ps 293.0ps 596.2ps 596.2ps 41.498ps		RU(C2) 37.4ps 37.237ps 36.4ps 36.5ps 2.1ps 4.295	-155 77 aTV 265 77 aTV 275 77 aTV 275 77 aTV 265 77 aTV 15 70 47V 15 70 47V 11 4 70 47V 11 4 70 47V 11 5 6 4 100 11 5 6 6 70 11 5 6 6 70 11 5 6 6 70 11 5 6 6 70 11 5 6 70 1	85.8ps 90.807ps 77.4ps 167.7ps 90.3ps	12.151ps 6.0ps 17.6ps 11.0ps	1 140 G204+2.	
pe production pe	Period(C2) 12.8200ns 12.774892hs 6.0740hs 45.0840ns 39.0100ns 6.352075ns	- TIE(C2) -9.5ps 0fs -293.2ps 293.0ps 596.2ps 596.2ps 41.498ps		RU(C2) 37.4ps 37.237ps 36.4ps 36.5ps 2.1ps 4.295	-155 77 aTV 265 77 aTV 275 77 aTV 275 77 aTV 265 77 aTV 15 70 47V 15 70 47V 11 4 70 47V 11 4 70 47V 11 5 6 4 100 11 5 6 6 70 11 5 6 6 70 11 5 6 6 70 11 5 6 6 70 11 5 6 70 1	85.8ps 90.807ps 77.4ps 167.7ps 90.3ps 9.275ps	12.151ps 6.0ps 17.0ps 11.0ps 2.187ps 276	and scheme a	
pe production pe	Period(C2) 12.8200ms 12.774690ms 6.0740ms 45.0640ms 39.0100ms 6.352075ms 30601874	- TIE(C2) -9.5ps 0fs -293.2ps 293.0ps 596.2ps 596.2ps 41.498ps		RU(C2) 37.4ps 37.237ps 36.4ps 36.5ps 2.1ps 4.295	-155 77 aTV 265 77 aTV 275 77 aTV 275 77 aTV 265 77 aTV 15 70 47V 15 70 47V 11 4 70 47V 11 4 70 47V 11 5 6 4 100 11 5 6 6 70 11 5 6 6 70 11 5 6 6 70 11 5 6 6 70 11 5 6 70 1	85.8ps 90.807ps 77.4ps 167.7ps 90.3ps 9.275ps	12.151ps 6.0ps 17.6ps 11.0ps 2.187ps 276 رونانیر		ca pe ODEV

Supports eye diagram and jitter analysis/measurement. It can automatically extract the embedded reference clock from serial data and create the eye diagram. Measurement on multiple eye/jitter parameters is provided. Mask test on eye diagrams is supported

• Bode Plot

The oscilloscope can control the isolated USB AWG module or a standalone SIGLENT SDG generator, to scan the amplitude and phasefrequency response of the DUT, and display the data as a Bode Plot. This makes it possible to replace expensive network analyzers in some applications

• Power Analysis (Optional)

The Power Analysis option provides a full suite of power measurements and analysis, which greatly improve the measurement efficiency in switching power supplies and power devices design

• Eye/Jitter Analysis

• Digital Channels / MSO (Optional)

Four analog channels plus 16 digital channels enable users to acquire and trigger the waveforms then analyze the pattern, simultaneously with one instrument

• Serial Bus Decode

Display the decoded characters through the events list. Bus protocol information can be quickly and intuitively displayed in tabular form. I2C, SPI, UART, CAN, LIN, CAN FD, FlexRay, I2S, MIL-STD-1553B, SENT, and Manchester are supported

• Complete Connectivity

USB Host 3.0 x2, USB Host 2.0 x2, USB Device 2.0 (USBTMC) x1, LAN (VXI-11/Telnet/Socket) x1, micro SD card x1, Auxiliary output (Pass/Fail, Trigger Out)x1 and HDMI x1

Specifications

Model	SDS6204A	SDS6104A	SDS6054A			
Bandwidth	2 GHz	1 GHz	500 MHz			
Sampling rate (Max.)	5 GSa/s (10 GSa/s ESR) @ each channe	1				
Analog channels	4 + EXT					
Memory depth (Max.)	500 Mpts/ch(single-channel), 250 Mpts/c	ch (dual-channel) , 125 Mpts/ch (3 or 4 c	hannels)			
Waveform capture rate (Max.)	Normal mode: 170,000 wfm/s; Sequence	e mode: 750,000 wfm/s				
Vertical resolution	8-bit, up to 16-bit in Hi-Res mode					
Trigger type	Edge, Slope, Pulse width, Window, Runt, Interval, Dropout, Pattern, Video, Qualified, Nth edge, Setup/hold, Delay, Serial					
Serial trigger and decode	Standard: I2C, SPI, UART, CAN, LIN					
	Optional: CAN FD, FlexRay, I2S, MIL-STD-1553B, SENT, Manchester (decode only)					
Measurement	50+ parameters, statistics, histogram, tr	end, and track supported				
	4 traces					
Math	8 Mpts FFT, +, -, x, ÷, $\int dt$, d/dt, $$, Ide	entity, Negation, Absolute, Sign, ex, 10x,	In, Ig, Interpolation, MaxHold, MinHold.			
	Supports formula editor					
Data analysis	Search, Navigate, History, Mask Test, Dig	gital Voltmeter, Counter, Waveform Histog	ram, Bode plot and Power Analysis, Eye/			
	Jitter Analysis					
Digital channel (optional)	16-channel; maximum sample rate up to	1 GSa/s; record length up to 50 Mpts				

Waveform generator (optional)	Single-channel external USB isolated waveform generator, frequency up to 25 MHz, 125 MSa/s sample rate, 16 kpts waveform memory
I/O	USB 3.0 Host x2, USB 2.0 Host x2, USB 2.0 Device, LAN, micro SD card, HDMI, External trigger, Auxiliary output (TRIG OUT, PASS/FAIL)
Probe (Standard)	SP3050A, 500 MHz, 1 probe supplied for each channel
Display	12.1 TFT-LCD with capacitive touch screen (1280*800)

Ordering Information

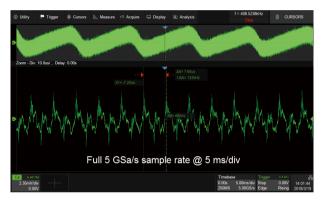
Model	Description	
SDS6204A	2 GHz, 10 GSa/s, 4-CH, 500 Mpts/ch memory	depth, 12.1" capacitive touch screen
SDS6104A	1 GHz, 5 GSa/s, 4-CH, 500 Mpts/ch memory d	lepth, 12.1" capacitive touch screen
SDS6054A	500 MHz, 5 GSa/s, 4-CH, 500 Mpts/ch memor	y depth, 12.1" capacitive touch screen
Standard Accessories		Quantity
USB cable		1
Quick start		1
Passive probe (SP3050A)		1/channel
Certificate of calibration		1
Wireless mouse		1
Power cord		1
Optional Accessories		Part No.
Waveform generator (software)		SDS6000Pro-FG
25 MHz isolated USB function/arb	vitrary waveform generator	SAG1021I
16 digital channels (software)		SDS6000Pro-16LA
16-channel logic probe		SPL2016
Power Analysis (software)		SDS6000Pro-PA
Power Analysis deskew fixture		DF2001A
Eye Diagram/Jitter Analysis (softw	ware)	SDS6000Pro-EJ
I2S trigger & decode (software)		SDS6000Pro-I2S
MIL-STD-1553B trigger & decode	(software)	SDS6000Pro-1553B
FlexRay trigger & decode (softwa	ire)	SDS6000Pro-FlexRay
CAN FD trigger & decode (softwa	re)	SDS6000Pro-CANFD
SENT trigger & decode (software))	SDS6000Pro-SENT
Manchester decode (software)		SDS6000Pro-Manch
500 MHz to 1 GHz bandwidth upg	grade (software)	SDS6000-4BW10
1 GHz to 2 GHz bandwidth upgrad	de (software)	SDS6000-4BW20
STB3 demo signal source		STB3
High-speed active probe		SAP1000, SAP2500
High voltage probe		HPB4010
High-speed differential probe		SAP2500D
High voltage differential probe		DPB1300/DPB4080/DPB5150/ DPB5150A/DPB5700/DPB5700A
Current probe		CPL5100/CP4020/CP4050/CP4070/CP4070A/CP5030/CP5030A/CP5150/CP5500
Rack Mount Kit		SDS6000-RMK
Bag		BAG-S2

SDS5000X Super Phosphor Oscilloscope

Key Features

- 1 GHz, 500 MHz, 350 MHz models with real-time sampling rate up to 5 GSa/s
- SPO technology
- Waveform capture rate up to 110,000 wfm/s (normal mode), and 500,000 wfm/s (sequence mode)
- Supports 256-level intensity grading and color temperature display modes
- Record length up to 250 Mpts
- Digital trigger system
- Intelligent trigger: Edge, Slope, Pulse Window, Runt, Interval, Dropout, Pattern, Qualified and Video (HDTV supported)
- Serial bus triggering and decoder, supports protocols I²C, SPI, UART, CAN, LIN, CAN FD, FlexRay, I²S and MIL-STD-1553B
- Low background noise, supports 0.5 mV/div to 10 V/div voltage scales
- Segmented acquisition (Sequence) mode, dividing the maximum record length into multiple segments (up to 100,000), according to trigger conditions set by the user, with a very small dead time segments to capture the qualifying event
- History waveform record (History) function, the maximum recorded waveform length is 100,000 frames
- Automatic measurement function on more than 70 kinds of parameters, supports statistics, Gating measurement, Math measurement, History measurement and Ref measurement
- Math function (2 Mpts FFT, addition, subtraction, multiplication, division, integration, differential, square root)
- Search and Navigate
- Digital Voltmeter
- High Speed hardware-based Average, ERES (Enhanced Resolution)
- 16 digital channels (optional) with maximum waveform capture rate up to 1.25 GSa/s, record length up to 62.5 Mpts
- 25 MHz function / arbitrary waveform generator, built-in multiple predefined waveforms
- Large 10.1" TFT-LCD display with 1024 * 600 resolution; Capacitive touch screen supports multi-touch gestures
- Supports external mouse and keyboard
- 10 types of one-button shortcuts
- Multiple interfaces: USB Host, USB Device (USBTMC), LAN (VXI-11, telnet, socket, web), Pass / Fail, Trigger Out, 10 MHz In, 10 MHz Out, VGA output
- Built-in web server supports remote control by the LAN port using a web browser
- Supports SCPI remote control commands

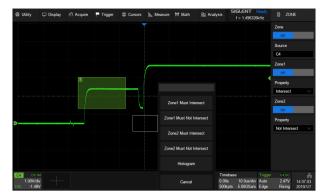
Characteristics


• 10.1" TFT-LCD display with capacitive touch screen

• 10.1" display with 1024*600 resolution

• Capacitive touch screen, supporting multi-touch gestures, can move or scale the waveform traces quickly by finger-touch movements, which greatly improves the operation efficiency.

• Record Length of up to 250 Mpts/ch


Using hardware-based Zoom technique and record length of up to 250 Mpts, users are able to select a slower timebase without compromising the sampling rate, and then quickly zoom in to focus on the area of interest

• Serial Bus Decode

Display the decoded characters through the events list. Bus protocol information can be quickly and intuitively displayed in tabular form. I2C, SPI, UART, CAN, LIN, CAN FD, FlexRay and I2S and MIL-STD-1553B are supported

• Zone Trigger

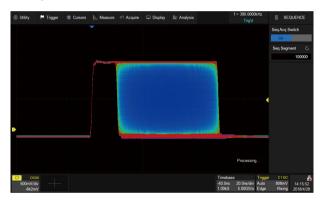
Zone Trigger is available for advanced triggering

• Multiple Trigger Functions

Edge, Slope, Pulse, Video, Windows, Runt, Interval, Dropout, Pattern, Qualified, Nth edge, Setup/hold, Delay and serial trigger

• Measurements of a Variety of Parameters

$\overline{\mathcal{N}}$	Max	$\underline{\bigwedge}$	Min	71	Pk-Pk	∫∕\ Тор	Base
À	Amplitude		Mean		Cycle Mean	Stdev	Cycle Stdev
RMS	RMS		Cycle RMS		FOV		
Д	RPRE	÷t	L@T				
A ₩	Period	€ He}√f	Freq	₅ि	+Width	_→_← -Width	- Rise
ł	Fall	Ц.	BWidth		+Duty	-Duty	Delay
111	т@м						
Source A	C1	~	Source B	C2	~		
۹	Phase	: #:::	FRFR	å:XXX	FRFF	BRFFR	B FFFF
* 557	FRLR	: \$\$	FRLF	: **	FFLR	FFLF	Skew

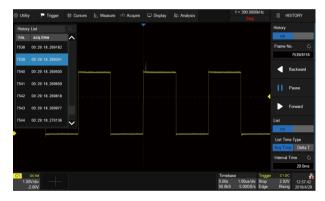

Parameter measurements includes 3 categories: horizontal, vertical and CH delay providing more than 70 different types of measurements. Measurements can be performed within a specified gate period. Measurements on Math, Reference and History frames are supported

• Advanced Math Function

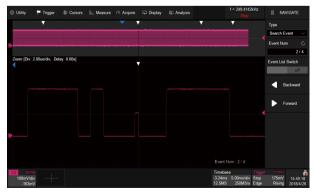
In addition to the traditional (+, -, X, /) operations, FFT, integration, differential, square root and so on are supported. Formula Editor is available for more complex operations. 2 math traces are available.

• Sequence Mode

Segmented memory collection will store the waveform into multiple memory segments (up to 100,000) and each segment will store a triggered waveform as well the dead time information. The dead time between segments can be as small as 2 μ s. All of the segments can be played back using the History function


Parameter statistics function

Statistics shows the current value, maximum value, minimum value, standard deviation and mean value of up to 5 parameters . Histogram is available to show the probability distribution of a parameter


Hardware accelerated FFT supports up to 2 Mpts operation. This provides high frequency resolution with a fast refresh rate. The FFT function also supports a variety of window functions so that it can adapt to different spectrum measurement needs. Three modes (Normal, Average and Max hold) can satisfy different requirements for observing the power spectrum

• History Mode


History function can record up to 100,000 frames of waveforms. The recording is executed automatically, so that the customer can play back the history waveforms at any time in order to observe unusual events and quickly locate the area of interest using the cursors or measurements

• Search and Navigate

The SDS5000X can search events specified by the user in a frame. Events flagged by the Search can be recalled automatically using Navigate. It can also navigate by time (delay position) and history frames

• Digital Voltmeter Function


4-digit voltmeter and 7-digit frequency counter. Any analog channel can be selected as a source. Bar, Histogram and Trend diagrams are supported

• Bode Plot

The SDS5000X can control the USB AWG module or a stand-alone SIGLENT SDG generator, to scan the amplitude and phase frequency response of the DUT, and display the data as a Bode Plot. This makes it possible to replace expensive network analyzer in some applications.

• Web control

With the new embedded web server, users can control the oscilloscope from a simple web page. This provides wonderful remote troubleshooting and monitoring capabilities.

• Power Analysis (Optional)

The Power Analysis option provides a full suite of power measurements and analysis, which greatly improve the measurement efficiency in switching power supplies and power devices design.

• Digital Channels / MSO (Optional)

Four analog channels plus 16 digital channels enable users to acquire and trigger on the waveforms then analyze the pattern, simultaneously with one instrument • Built -in 25 MHz Function / Arbitrary Waveform Generator (Optional)

the SDS5000X can control the SAG1021I USB Function / Arbitrary waveform generator to output waveform with up to 25 MHz frequency and ± 3 V amplitude. Six basic waveforms plus multiple types of arbitrary waveforms are built-in.

• Hardware-based Average and ERES Acquisition

Average and ERES (Enhanced Resolution) acquisition modes are hardware-based, allowing the waveforms to be captured at a faster rate

• Complete Connectivity

USB Host, USB Device (USBTMC), LAN (VXI-11, telnet, socket, web), Pass / Fail, Trigger Out, 10 MHz In / Out and VGA output

Specifications

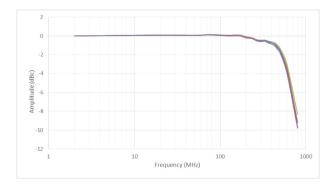
Model	SDS5034X	SDS5054X	SDS5104X		
Bandwidth	350 MHz	500 MHz	1 GHz		
Sampling rate (Max.)	5 GSa/s (interleaving mode), 2.5 GSa/s	(non-interleaving mode)			
Analog channels	4 + EXT				
Memory depth (Max.)	250 Mpts (interleaving mode), 125 Mpts	(non-interleaving mode)			
Waveform capture rate(Max.)	110,000 wfm/s (normal mode), 500,000 wfm/s (sequence mode)				
Trigger type	Edge, Slope, Pulse width, Window, Runt, Interval, Dropout, Pattern, Video, Qualified				
Serial trigger and decode	I ² C, SPI, UART, CAN, LIN, CAN FD, FlexRay, I ² S, MIL-STD-1553B				
Digital channel (optional)	16-channel; maximum waveform capture rate up to 1.25 GSa/s; record length up to 62.5 Mpts				
Waveform generator (optional)	Single channel, frequency up to 25 MHz	, 125 MSa/s sample rate, 16 kpts wavefor	m momory		
I / O	USB Host, USB Device, LAN, Pass / Fail,	Trigger Out, 10 MHz In, 10 MHz Out, VG	A Output		
Probe (standard)	1 probe supplied for each channel				
Display	10.1" TFT-LCD with capacitive touch scr	een (1024*600)			

Ordering Information

Description		Model	
1 GHz, 4 CH, 5 GSa/s (Max.)		SDS5104X	
500 MHz, 4 CH, 5 GSa/s (Max.)		SDS5054X	
350 MHz, 4 CH, 5 GSa/s (Max.)		SDS5034X	
Standard Accessories			
USB cable x1	Quick start x1	Certificate of calibration x1	Power cord x1
Passive probe x2 (2-ch model); x4 (4-	ch model), SP2035A for 350 MHz models a	nd SP3050A for 500 MHz / 1 GHz models	
Optional Accessories			
SDS-5000X-4BW05		350 MHz to 500 MHz bandwidth upgrad	e(4-ch model)
SDS-5000X-2BW05		350 MHz to 500 MHz bandwidth upgrad	e (2-ch model)
SDS-5000X-4BW10		500 MHz to 1 GHz bandwidth upgrade (4-ch model)
SDS-5000X-2BW10		500 MHz to 1 GHz bandwidth upgrade (2-ch model)
SDS-5000X-FG		Waveform generator software	
SAG1021I		25 MHz USB function / arbitrary wavefor	rm generator
SDS-5000X-16LA		16 digital channels (software)	
SPL2016		16-channel logic probe	
SDS-5000X-I2S		I2S trigger & decode	
SDS-5000X-CANFD		CAN FD trigger & decode	
SDS-5000X-FlexRay		FlexRay trigger & decode	
SDS-5000X-1553B		MIL-STD-1553B trigger & decode	
STB3		STB3 demo signal source	
SAP1000		1 GHz active probe	
HPB4010		High voltage probe	
CP4020 / CP4050 / CP4070 / CP4070A	/ CP5030 / CP5030A / CP5150 / CP5500	Current probe	
DPB4080 / DPB5150 / DPB5150A / DP	B5700 / DPB5700A	High voltage differential probe	

SDS2000X Plus Super Phosphor Oscilloscope

Key Features


350 MHz, 200 MHz, 100 MHz models with real-time sample rate up to 2 GSa/s. A 500 MHz bandwidth upgrade option is available for 350 MHz models.

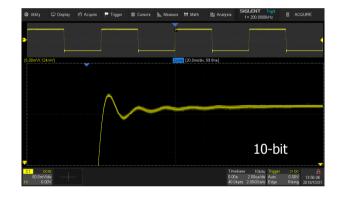
 SPO technology Waveform capture rates up to 120,000 wfm/s (normal mode) and 500,000 wfm/s (sequence mode) Supports 256-level intensity grading and color temperature display modes Record length up to 200 Mpts/ch, 400 Mpts in total for all 4 channels Digital trigger system

- 10-bit mode provides higher resolution and lower noise
- Segmented acquisition (Sequence) mode, dividing the maximum record length into multiple segments (up to 90,000), according to trigger conditions set by the user, with a very small dead time between segments to capture the qualifying event
- History waveform record (History) function for up to 90,000 triggered waveforms (frames)
- Automatic measurement function on 50+ parameters, supports statistics with histogram and trend
- Two Math traces, support 2 Mpts FFT, +, -, x, \div , d/dt, \int dt, $\sqrt{}$, average, ERES, and formula editor
- Abundant data processing and analysis functions such as Search, Navigate, Mask Test, Bode plot, Power Analysis (optional) and Counter
- 16 digital channels (optional)
- Built-in 50 MHz waveform generator (optional)
- Large 10.1" TFT-LCD display with 1024x600 resolution; Capacitive touch screen supports multi-touch gestures
- Multiple interfaces: USB Host, USB Device (USBTMC), LAN (VXI-11/Telnet/Socket), Pass/Fail, Trigger Out
- Built-in web server supports remote control by the LAN port using a web browser; Supports SCPI remote control commands

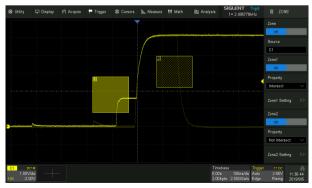
Characteristics

• Competitive Front End Performance

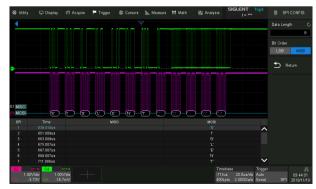
500 MHz bandwidth (at 2 GSa/s sample rate with 500 MHz bandwidth option).



Low noise floor: Only 80 μV rms at 500 MHz bandwidth.


• 10-bit Mode

10-bit mode combined with Zoom shows you more details and less noise on the waveform.



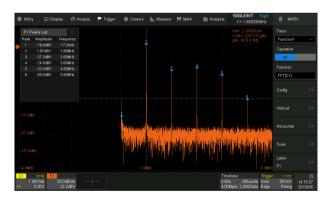
• Trigger Zone

Trigger Zone is available for advanced triggering.

• Serial Bus Decode

In addition to the decoder lanes correlated to the waveform, bus protocol information can be displayed in tabular form. I2C, SPI, UART, CAN, LIN, CAN FD, FlexRay, I2S and MIL-STD-1553B are supported.

• Measurements for All relevant Parameters and Parameter Statistics


Parameter measurements includes 4 categories: Vertical, Horizontal, Miscellaneous and Channel Delay providing a total of 50+ different types of measurements. Measurements can be performed within a specified gate period. Measurements on Math, Reference and History frames are supported.

Statistics shows the current value, maximum value, minimum value, standard deviation and mean value of up to 12 parameters simultaneously. Histogram is available to show the probability distribution of a parameter. Trend is available to show the parameter value vs. time. In addition, horizontal measurements can process up to 1000 signal edges within one single frame, thus greatly improving the test efficiency.

• Advanced Math Function

Basic Arithmetic Freq-Analysis Algebra Formula Editor
I← Back Clear → →I
FFT d/dt J sant C1 C2 C3 C4 7 8 9 /
Avg Eros F1 F2 1 2 3 .

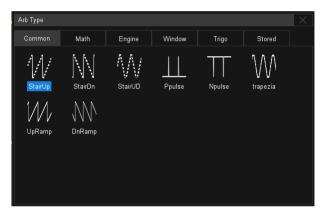
Two Math traces, support FFT, +, -, x, ÷, d/dt, $\int dt$, $\sqrt{}$, average, ERES, and formula editor.

Hardware accelerated FFT up to 2 Mpts. This provides high frequency resolution with fast refresh rate. The FFT function also supports a variety of window functions so that it can adapt to different spectrum measurement needs. Three modes (Normal, Average and Max hold) can satisfy different requirements for observing the power spectrum. Auto peak detection and markers are supported.

• Bode Plot

The SDS2000X Plus can control the built-in waveform generator or any stand-alone SIGLENT SDG device to scan the amplitude and phase response over frequency of passive or active circuits. The data is presented as Bode Plot. This makes it possible to replace expensive network analyzers in less demanding applications.

• Digital Channels / MSO (Optional)

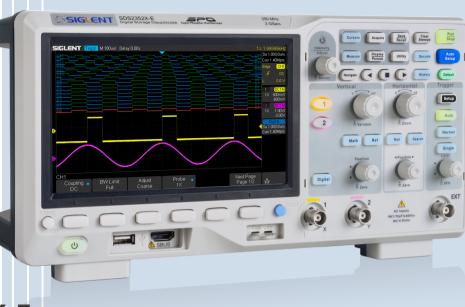

Four analog channels plus 16 digital channels allow the acquisition and triggering of mixed waveforms with one instrument.

• Power Analysis (Optional)

The Power Analysis option provides a full suite of power measurements and analysis, thus improving the efficiency of measurement in switching power supplies and power device designs.

• 50 MHz Built-in Waveform Generator (Optional)

The built-in waveform generator can output waveforms with up to 50 MHz frequency and ± 3 V amplitude. Six basic waveforms together with multiple types of predefined waveforms and as user defined arbitrary waveforms are supported.


Specifications

Model	SDS2354X Plus	SDS2204X Plus	SDS2104X Plus SDS2102X Plus			
Analog channels	4 + EXT		2/4 + EXT			
Bandwidth	350 MHz, (upgradable to 500 MHz)	200 MHz	100 MHz			
Sample rate (Max.)	2 GSa/s (interleaving mode), 1 GSa/s (no	n-interleaving mode)				
Memory depth (Max.)	200 Mpts/ch (interleaving mode), 100 Mp	ts/ch (non-interleaving mode)				
Waveform capture rate (Max.)	Normal mode: 120,000 wfm/s;					
waveloini capture rate (max.)	Sequence mode: 500,000 wfm/s					
Vertical resolution	8-bit. 10-bit mode (with typical 100 MHz bandwidth)					
Trigger type	Edge, Slope, Pulse, Window, Runt, Interval, Dropout, Pattern, Video and Serial					
Serial trigger and decode	Standard: I2C, SPI, UART, CAN, LIN					
Schartingger and decode	Optional: CAN FD, FlexRay, I2S, MIL-STD-	Optional: CAN FD, FlexRay, I2S, MIL-STD-1553B				
Measurement	More than 50 parameters, supports statistics with histogram and trend					
Math	2 traces					
maan	2 Mpts FFT, +, -, x, \div , d/dt, \int dt, $$, avera	ge, ERES, and formula editor				
Data processing and analysis tools	Search, Navigate, History, Mask test, Bod	e plot, Power Analysis (optional) and Coun	iter			

Digital channel (optional)	16-channel; maximum sample rate up to 500 MSa/s; record length up to 50 Mpts/ch
Waveform generator (optional)	Single channel, frequency up to 50 MHz, 125 MSa/s sample rate, 16 kpts waveform memory
Interface	USB 2.0 Host x2, USB 2.0 Device, LAN, External trigger, Auxiliary output (TRIG OUT, PASS/FAIL)
Probe (standard)	SP2035A, 350 MHz, 1 probe supplied for each channel PP215, 200 MHz, 1 probe supplied for each channel
Display	10.1" TFT-LCD with capacitive touch screen (1024x600)

Ordering Information

Model	Description		
SDS2354X Plus	350 MHz, 4-ch, 2 GSa/s (Max.), 200 Mpts, 10.1"touch screen		
SDS2204X Plus	200 MHz, 4-ch, 2 GSa/s (Max.), 200 Mpts, 10.1"touch screen		
SDS2104X Plus	100 MHz, 4-ch, 2 GSa/s (Max.), 200 Mpts, 10.1"touch screen		
SDS2102X Plus	100 MHz, 2-ch, 2 GSa/s (Max.), 200 Mp	ts, 10.1"touch screen	
Standard Accessories	Quantity		
USB cable	1		
Quick start	1		
Passive probe	x2 (2-ch model); x4 (4-ch model)		
Certificate of calibration	1		
Power cord	1		
Optional Accessories		Part Number	
Waveform generator option (software)		SDS2000XP-FG	
16 digital channels (software)		SDS2000XP-16LA	
16-channel logic probe		SPL2016	
Power Analysis (software)		SDS2000XP-PA	
Power Analysis deskew fixture		DF2001A	
I2S trigger & decode (software)		SDS2000XP-I2S	
MIL-STD-1553B trigger & decode (software	2)	SDS2000XP-1553B	
FlexRay trigger & decode (software)		SDS2000XP-FlexRay	
CAN FD trigger & decode (software)		SDS2000XP-CANFD	
100 MHz to 200 MHz bandwidth upgrade (4-ch model) (software)	SDS2000XP-4BW02	
200 MHz to 350 MHz bandwidth upgrade (4-ch model) (software)	SDS2000XP-4BW03	
350 MHz to 500 MHz bandwidth upgrade (4-ch model) (software)	SDS2000XP-4BW05	
100 MHz to 350 MHz bandwidth upgrade (2-ch model) (software)	SDS2000XP-2BW03	
ISFE isolated front end		ISFE	
STB3 demo signal source		STB3	
High voltage probe		HPB4010	
High voltage differential probe		DPB1300/DPB4080/DPB5150/DPB5150A/DPB5700/DPB5700A	
Current probe		CPL5100/CP4020/CP4050/CP4070/CP4070A/CP5030/CP5030A/CP5150/ CP5500	
Bag		BAG-S2	

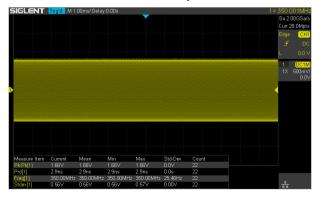
SDS2000X-E Super Phosphor Oscilloscope

Key Features

- 200 MHz, 350 MHz bandwidth models
- Real-time sampling rate up to 2 GSa/s (1 GSa/s per channel, if both channels active)
- Record length up to 28 Mpts
- Intelligent triggers: Edge, Slope, Pulse Width, Window, Runt, Interval, Time out (Dropout), Pattern
- Serial bus triggering and decoding (standard), supports protocols I²C, SPI, UART, CAN, LIN
- \bullet Low background noise with voltage scales from 500 $\mu\text{V/div}$ to 10V/div
- 10 types of one-button shortcuts, supports Auto Setup, Default, Cursors, Measure, Roll, History, Display/Persist, Clear Sweep, Zoom and Print
- History waveform record (history) function (maximum recorded waveform length is 80,000 frames)
- 1 Mpt FFT
- Math and measurement functions use all sampled data points in memory (up to 28 Mpts)
- Math functions (FFT, addition, subtraction, multiplication, division, integration, differential, square root)
- Large 7 inch TFT -LCD display with 800 * 480 resolution
- Supports Multi-language display and embedded online help

Characteristics

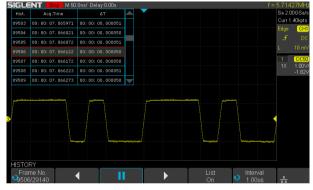
• Maximum sample rate of 2 GSa/s, record Length of up to 28 Mpts


Using hardware-based Zoom technologies and max record length of up to 28 Mpts, users are able to oversample to capture for longer time periods at higher resolution and use the zoom feature to see more details within each signal.

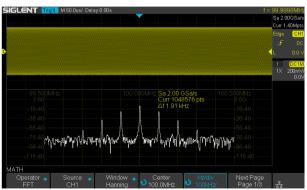
• Serial Bus Decoding Function (Standard)

SDS2000X-E displays the decoding through the events list. Bus protocol information can be quickly and intuitively displayed in a tabular format.

• True measurement to 28 M points

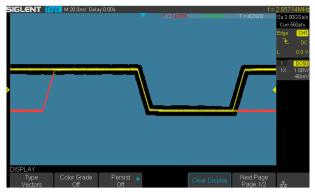

SDS2000X-E can apply automatic measurements on all sampled data points up to 28 Mpts. This ensures the accuracy of measurements while the math co-processor decreases measurement time and increases ease-of-use.

• Waveform Capture Rate up to 400,000 wfm/s



With a waveform capture rate of up to 400,000 wfm/s (sequence mode), the oscilloscope can easily capture the unusual or low-probability events.

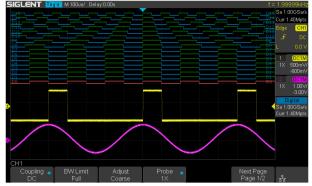
• History Waveforms (History) Mode and Segmented Acquisition (Sequence)


Playback the latest triggered events using the history function. Segmented memory collection will store trigger events into multiple (Up to 80,000) memory segments, each segment will store triggered waveforms and timestamp of each frame.

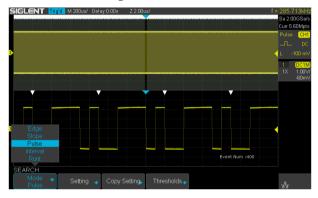
The new math co-processor enables FFT analysis of incoming signals using up to 1 million samples per waveform. This provides high frequency resolution with a fast refresh rate. The FFT function also supports a variety of window functions so that it can adapt to different spectrum measurement needs.

• 1 Mpoint FFT

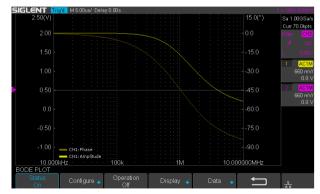
• Hardware-Based High Speed Pass/Fail function


The SDS2000X-E utilizes a hardware-based Pass/Fail function, performing up to 40,000 Pass / Fail decisions each second. Easily generate user defined test templates provide trace mask comparison making it suitable for long-term signal monitoring or automated production line testing.

• USB 25 MHz AWG Module (option)


The optional 25 MHz function/arbitrary waveform generator is operated from the USB host connection. Functions include Sine, Square, Ramp, Pulse, Noise, DC and 45 additional built-in waveforms. The arbitrary waveforms can be accessed and edited by the SIGLENT EasyWave PC software.

16 Digital Channels/MSO (option)



16 digital channels enables users to acquire and trigger on digital input channels and view both digital and analog waveforms simultaneously with one instrument.

• Search and Navigate

The SDS2000X-E can search events specified by the user in a frame. It can also navigate by time (delay position) and historical frames.

SDS2000X-E can control the USB AWG module or an independent SIGLENT SDG instrument, scan a circuits amplitude and phase frequency response, and display the data as a Bode Plot. It can also show the result lists, and export the data to a USB disk.

• Bode Plot

• USB WIFI Adapter (option)

WiFi control of instrumentation can provide a convenient and safe method of configuring and collecting data. This new feature works with a SIGLENT approved WiFi adapter to provide wireless control and communications with SIGLENT SDS2000X-E scopes.

• Real-time update screen in web page

With 100 Mbps LAN, the internal web page can update at a rate of up to 10 times/s, providing a nearly-real time update of waveform data and measurements. When viewed on a PC, the screen can be displayed in full screen mode. With this feature and a PC VGA interface, you can easily use a projector or other video display device to deliver the screen information to a larger audience.

• Web control

With the new embedded web server, users can control the SDS2000X-E from a simple web page. This provides wonderful remote troubleshooting and monitoring capabilities. The web page has PC and mobile styles that include an embedded virtual control panel.

• Complete Connectivity

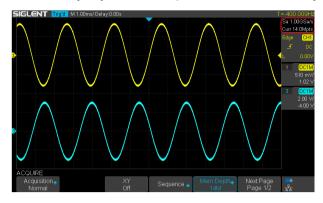
SDS2000X -E supports USB Host, USB Device (USB -TMC), LAN, Pass/Fail and Trigger Out.

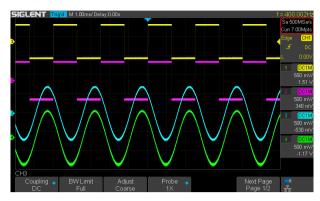
Models and key Specification

Model	SDS2202X-E	SDS2352X-E	
Bandwidth	200 MHz	350 MHz	
Sample Rate (Max.)	2 GSa/s		
Channels	2+EXT		
Memory Depth (Max.)	14 Mpts/CH (not interleave mode) 28 Mpts/CH (interleave mode)		
Waveform Capture Rate (Max.)	110,000 wfm/s (normal mode), 400,000 wfm/s (sequence mode)		
Trigger Type	Edge, Slope, Pulse Width, Window, Runt, Interval, Dropout, Pattern, Video		
Serial Trigger and decoder (Standard)	I ² C, SPI, UART, CAN, LIN		
16 Digital Channels (option)	Maximum waveform capture rate up to 1GSa/s, Record length up to 14 Mpts/CH		
USB AWG module (option)	One channel, 25 MHz, sample rate of 125 MHz, 16 kpts waveform memory sample size		
Bode plot	Minimum start frequency of 10 Hz, minimum scan bandwidth of 500 Hz, maximum scan bandwidth of 120 MHz (dependent on Oscilloscope and AWG bandwidth), 500 maximum scan frequency points		
USB WIFI adapter (option)	802.11b/g/n, WPA-PSK NOTE: To ensure compatibility, we recommend using only SIGLENT WiFi accessories		
I/O	USB Host, USB Device, LAN, Pass/Fail, Trigger Out, Sbus (Siglent MSO)		
Probe (Std)	2 pcs passive probe PP215	2 pcs passive probe SP2035	
Display	7 inch TFT-LCD (800 x 480 pixels)		
Weight	Without package 2.6 Kg; With package 3.8 Kg		

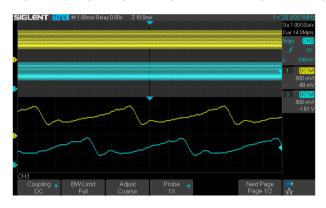
Ordering Information

Product Name	SDS2000X-E Series Digital Oscilloscope		
	SDS2202X-E 200 MHz		
	SDS2352X-E 350 MHz		
	USB Cable -1		
	Quick Start -1		
Standard Accessories	Passive Probe -2		
	Certification of Calibration -1		
	Power Cord -1		
	16 Channels MSO Software	SDS2000X-E-16LA	
	16 Channels Logic Analyzer	SLA1016	
	AWG Software	SDS2000X-E-FG	
	USB AWG Module Hardware	SAG1021I	
	WIFI Software	SDS2000X-E-WIFI	
	USB WIFI Adapter	TL_WN725N	
Optional Accessories	Isolated Front End	ISFE	
	STB Demo Source	STB-3	
	High Voltage Probe	HPB4010	
	Current Probes	CP4020/CP4050/CP4070/CP4070A/CP5030/CP5030A/ CP5150/CP5500	
	Differential Probes	DPB4080/DPB5150/DPB5150A/DPB5700/DPB5700A	
	Rack Mount	SDS1X-E-RMK	


SDS1000X-E Super Phosphor Oscilloscope

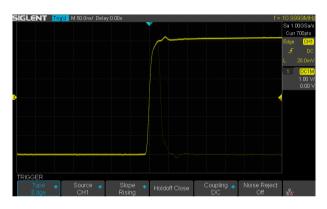

Key Features

- Two channel series have one 1 GSa/s ADC, four channel series have two 1 GSa/s ADCs. When all channels are enabled, each channel has a maximum sample rate of 500 MSa/s. When a single channel per ADC is active, it has sample rate of 1 GSa/s
- The newest generation of SPO technology
 - Waveform capture rate up to 100,000 wfm/s (normal mode), and 400,000 wfm/s (sequence mode)
 - Supports 256-level intensity grading and color display modes
 - Record length up to 14 Mpts
 - Digital trigger system
- Intelligent trigger: Edge, Slope, Pulse Width, Window, Runt, Interval, Time out (Dropout), Pattern
- Serial bus triggering and decoding (Standard), supports protocols I²C, SPI, UART, RS232, CAN, LIN
- Segmented acquisition (Sequence) mode, divides the maximum record length into multiple segments (up to 80,000), according to trigger conditions set by the user, with a very small dead time segment to capture the qualifying event
- 1 Mpts FFT
- Math and measurement functions use all sampled data points (up to 14 Mpts)
- MSO, 16 digital channels (four channel series only, optional)
- Search and navigate (four channel series only)
- USB AWG module (four channel series only, optional)
- USB WIFI adapter (four channel series only, optional)

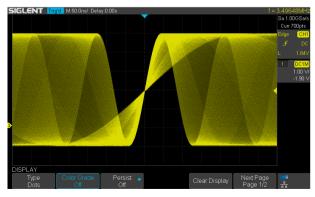

Function & Characteristics

• When all channels are enabled, each channel has a maximum sample rate of 500 MSa/s. When a single channel per pair is active, that channel has sample rate of 1 GSa/s

The four channel series has two 1 GSa/s ADC chips (channel 1 and 2 share one, channel 3 and 4 share another), so that each channel can achieve sample rates up to 500 MSa/s and work on bandwidths of 200 MHz when all channels are enabled.

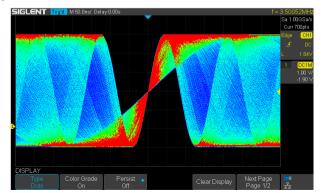


• Record Length of Up to 14 Mpts (single channel/

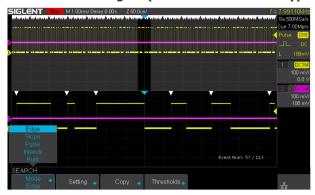

pair mode), 7 Mpts/CH (two channels/pair mode)

Using hardware-based Zoom technologies and max record length of up to 14 Mpts, users are able to oversample to capture for longer time periods at higher resolution and use the zoom feature to see more details within each signal.

Waveform Capture Rate Up to 400,000 wfm/s

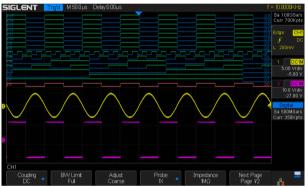


With a waveform capture rate of up to 400,000 wfm/s (sequence mode), the oscilloscope can easily capture the unusual or low-probability events.


• 256 -Level Intensity Grading and Color Temperature Display

SPO display technology provides for fast refresh rates. The resulting intensity-graded trace is brighter for events that occur with more frequency and dims when the events occur with less frequency.

The color temperature display is similar to the intensity-graded trace function, but the trace occurrence is represented by different colors (color "temperature") as opposed to changes in the intensity of one color. Red colors represents the more frequent events, while blue is used to mark points that occur less frequently.


• Search and Navigate (four channel series only)

The SDS1000X-E can search events specified by the user in a frame. It can also navigate by time (delay position) and historical frames.

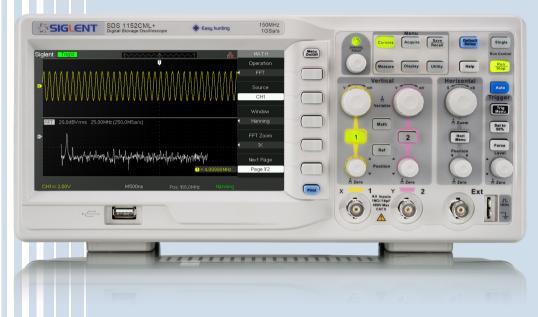
• 16 Digital Channels/MSO (four channel series only, optional)

16 digital channels enables users to acquire and trigger on the waveforms then analyze the pattern, simultaneously with one instrument.

• USB 25 MHz AWG Module (four channel series only, optional)

The four channel series supports a USB 25 MHz function/arbitrary waveform generator that is operated from the USB host connection. Functions include Sine, Square, Ramp, Pulse, Noise, DC and 45 built-in waveforms. The arbitrary waveforms can be accessed and edited by the SIGLENT EasyWave PC software.

• 7 inch TFT-LCD display and 10 one-button menus


• 7 -inch TFT -LCD display with 800 * 480 resolution

• Most commonly used functions are accessible using 10 different one-button operation keys: Auto Setup, Default, Cursor, Measure, Roll, History, Persist, Clear Sweep, Zoom, Print

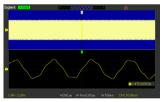
Models and key Specification

Model	SDS1104X-E	SDS1204X -E SDS1202X-E
Bandwidth	100 MHz	200 MHz
Sampling Rate (Max.)	Two channel series have a single 1 GSa/s ADC, four channel series have two 1 GSa/s ADCs. When all channels are enabled, each channel has a maximum sample rate of 500 MSa/s. When a single channel per pair is active, that channel has sample rate of 1 GSa/s	
Channels	4 (four channel series) 2+EXT (two channel series)	
Memory Depth (Max.)	7 Mpts/CH (not interleave mode); 14 Mpts/CH (interleave mode)	
Waveform Capture Rate (Max.)	100,000 wfm/s (normal mode), 400,000 wfm/s (seq	uence mode)
Trigger Type	Edge, Slope, Pulse Width, Window, Runt, Interval, Dropout, Pattern, Video	
Serial Trigger and decoder (Standard)	I ² C, SPI, UART/RS232, CAN, LIN	
16 Digital Channels (four channel series only, optional)	Maximum waveform capture rate up to 1 GSa/s, Record length up to 14 Mpts/CH	
USB AWG module (four channel series only, optional)	One channel, 25 MHz, sample rate of 125 MHz, wave length of 16 kpts	
Bode plot (four channel series only)	Minimum start frequency of 10 Hz, minimum scan bandwith of 500 Hz, maximum scan bandwidth of 120 MHz (dependent on Oscilloscope and AWG bandwidth), 500 maximum scan frequency points	
USB WIFI adapter (four channel series only, optional)	802.11b/g/b, WPA-PSK	
I/O	USB Host, USB Device, LAN, Pass/Fail, Trigger Out, Sbus (Siglent MSO)	
Probe (Std)	4 pcs passive probe PP510	4/2 pcs passive probe PP215
Display	7 inch TFT -LCD (800x480)	
Weight	Four channel series: Without package 2.6 Kg; With package 3.8 Kg Two channel series: Without package 2.5 Kg; With package 3.5 Kg	

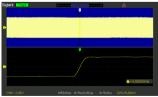
Ordering information				
Product Name	SDS1104X-E 100 MHz Four Channels			
	SDS1204X-E 200 MHz Four Channels			
	SDS1202X-E 200 MHz Two Channels			
	USB Cable -1			
	Quick Start -1			
Standard Accessories	Passive Probe -2/4			
	Certification -1			
	Power Cord -1			
	16 Channels MSO Software (four channel series only)	SDS1000X-E-16LA		
	16 Channels Logic Analyzer (four channel series only)	SLA1016		
	AWG Software (four channel series only)	SDS1000X-E-FG		
	USB AWG Module Hardware (four channel series only)	SAG1021I		
	WIFI Software (four channel series only)	SDS1000X-E-WIFI		
Optional Accessories	USB WIFI Adapter (four channel series only)	TL_WN725N		
	Isolated Front End	ISFE		
	STB Demo Source	STB-3		
	High Voltage Probe	HPB4010		
	Current Probes	CP4020/CP4050/CP4070/CP4070A/CP5030/CP5030A/ CP5150/CP5500		
	Differential Probes	DPB4080/DPB5150/DPB5150A/DPB5700/DPB5700A		

SDS1000DL+/CML+ Series Digital Oscilloscope

Application

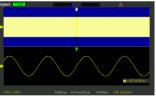

- Electronic circuit design and debugging
- Electrical circuit function test
- Inspect instantaneous signal
- Industrial control and measuring
- Products quality control
- Education and training

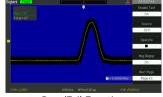
Key Features


- 50 MHz to 150 MHz Bandwidth
- 500 MSa/s~1 GSa/s sampling rate,32 Kpts~2 Mpts memory depth
- 7 inch (8*18 div) color TFT-LCD display
- 6 digits hardware frequency counter, real time counting display
- Waveform record and play back function
- Unique digital filter and data recorder function
- Embedded 12 languages, online help, one key storing and one key printing
- Interface: USB Device, USB Host, LAN, Pass/Fail
- Supports USB-TMC protocol and SCPI programming command control

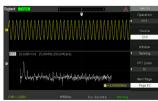
Specifications

Model	SDS1052DL+	SDS1072CML+	SDS1102CML+	SDS1152CML+
Bandwidth	50 MHz	70 MHz	100 MHz	150 MHz
Channels	2 CH +1 EXT			
Real time sampling rate	500 MSa/s	1 GSa/s	1 GSa/s	1 GSa/s
Equivalent sampling rate	50 GSa/s			
Memory depth	32 Kpts	2 Mpts	2 Mpts	2 Mpts
Input impedance	1 MΩ 17 pF	1 MΩ 17 pF	1 MΩ 17 pF	1 MΩ 17 pF
Vertical sensitivity	2 mv~10 v/div	2 mv~10 v/div	2 mv~10 v/div	2 mv~10 v/div
Vertical resolution	8 bit			
Trigger source	CH1, CH2, Ext, Ext/5, AC Line			
Trigger types	Edge, Pulse, Video, Slope, Alternative			
Math operation	+, -, *, /, FFT			
Digital filter	High pass, Low pass, Band pass, Band stop			
Data recorder function	\checkmark	\checkmark	\checkmark	\checkmark
Max input voltage	± 400 V (DC+AC Pk-Pk)			
Internal storage	2 groups of reference waveform, 20 groups of setting,10 groups of waveform			
External storage	Bitmap save, CSV save, Waveform save, Setting save			
Lasting	Turn off, 1 s, 2 s, 5 s, infinite			
Language	English, French, German, Russi	an, Spanish, Simplified Chinese, T	Fraditional Chinese, Portuguese, J	apanese, Korean, Italian, Arabic
Interface	USB Host, USB Device, LAN, Pass/Fail			
Display	7 inch color TFT-LCD	7 inch color TFT-LCD		
Power	AC 100-240 V, 45 Hz-440 Hz, 50	0 VA Max		


Normal Memory (40 kpts)


Zoom Function

Standard Accessories


Long Memory (2 Mpts)

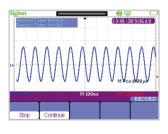
Pass/Fail Function

32 types of auto measurements

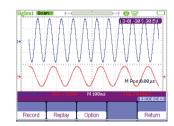
Math Function

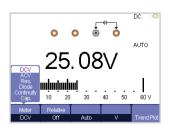
5 parameters display

Embedded Online Help

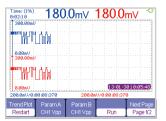


Handheld Oscilloscope


Application


- Automotive electronics, electric automobile test
- Power system strong electricity test
- Plant automation control system

High-performance oscilloscope


- Bandwidth:100 MHz,60 MHz
- Real-time sampling rate:1 GSa/s
- Memory depth:2 Mpts

High precision multimeter

- 6000 counts display
- Accurate measurement of DCV, ACV, DCI, ACI
- Accurate measurement of Resistance, Diode, Capacitance, Continuity

Data recorder function

- 7 M internal storage, up to 18 hours recording time
- USB port, up to 3000 hours
- recording time
- Record, replay function supported

Trend Plot

- 32 measurement trend plot analyzer
- Scope: 800 k/CH points capacity, more than 24 hours recording
- Meter: 1.2 M points capacity 6000 hours recording time at 0.05 Sa/s

Handheld Oscilloscope

Oscilloscope Specification

Model	SHS820	SHS810	SHS806
Bandwidth	200 MHz	100 MHz	60 MHz
Rise time	≤1.75 ns	≤3.5 ns	≤5.8 ns
Real time sampling rate	500 MSa/s	1 GSa/s	
Equivalent sampling rate	50 GSa/s		
Vertical sensitivity	2 mV – 100 V/div		
·	2.5 ns – 50 ns/div		5 ns – 50 s/div
Time base range	Scan:100 ms - 50 s/div		
Memory depth	32 Kpts	2 Mpts	
Triggering	Edge, Pulse, Video, Slope, Alternative		
Vertical resolution	8 bit		
Triggering frequency counter	6 digits		
Data Recorder	7 M points		
Trend plot	800 K/CH		
Interface	USB Device, USB Host		
Math operation	+, -, * , /, FFT		

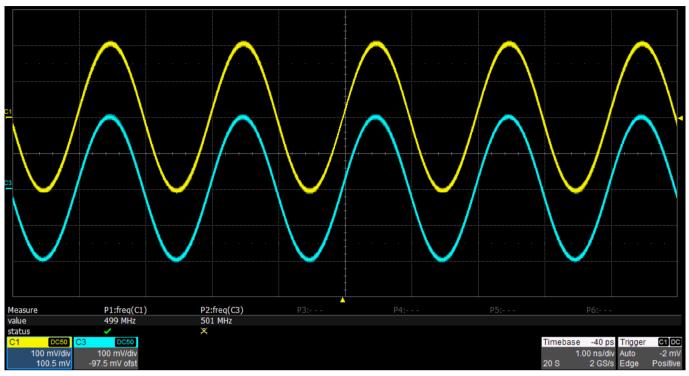
Multimeter Specification

Maximum resolution	6000 Counts	
Item	Range	Accuracy
DC Voltage	60 mv 60 mv – 1000 v	±1%±15 digit ±1%±5 digit
AC Voltage	60 mv 600 mV – 750 V	±1%±15 digit ±1%±5 digit
DC Current	60 mA 6 A – 10 A	±1%±5 digit ±1.5%±5 digit
AC Current	60 mA 6 A – 10 A	±1%±5 digit ±1.5%±5 digit
Capacitance	40 nF 400 nF – 400 μF	±3%±10 digit ±4%±5 digit
Resistance	600 Ω – 60 ΜΩ	±1%±5 digit
Continuity	$<$ 50 Ω Buzzer sounds	
Diode	0 V – 2 V	
Trend plot	1.2 M points	
Measuring mode	Manual/Auto	

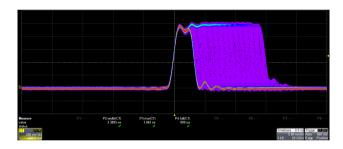
General Feature

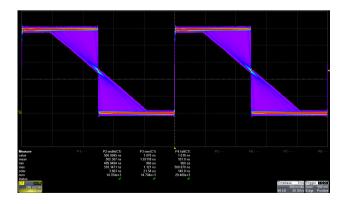
Display	5.7 inch color TFT-LCD, 320*234
Power supply	Charging/Battery
Power mode	Lithium battery: 7.4 V 5000 mAh, Battery lasts >5 hours; DC adapter, 100-240 V 50/60 Hz input, 9 V 4 A output
Net weight	1.5 Kg
Dimension	259.5 mm*163.2 mm*53.3 mm
Accessories	Two passive probes, multimeter pen, USB data cable, DC adapter, manual

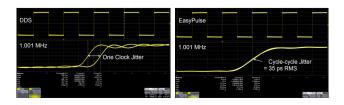
SDG6000X Series Pulse/Arbitrary Waveform Generator



Key Features


- Dual-Channel, 500 MHz maximum bandwidth, 20 Vpp maximum output amplitude, high fidelity output with 80 dB dynamic range
- High-performance sampling system with 2.4 GSa/s sampling rate and 16-bit vertical resolution
- Innovative TrueArb technology, based on a point-by-point architecture, supports any 8 pts~8 Mpts Arb waveform with a sampling rate in range of 1 μSa/s~75 MSa/s
- Innovative EasyPulse technology, capable of generating lower jitter Square or Pulse waveforms, brings a wide range and extremely high precision in pulse width and rise/fall times adjustment
- Multi-function signal generator, meeting requirements in wide range, Continuous Wave Generator, Pulse Generator, Function Arbitrary Waveform Generator, IQ Signal Generator (optional), Noise Generator, PRBS Generator
- Sweep and Burst function
- Harmonics function
- Waveform Combining function
- Channel Coupling, Copy and Tracking function
- 196 built-in arbitrary waveforms
- High precision Frequency Counter
- Standard interfaces include: USB Host, USB Device (USBTMC) , LAN (VXI-11, Socket, Telnet) , GPIB (Optional)
- 4.3" touch screen display for easier operation


Characteristics

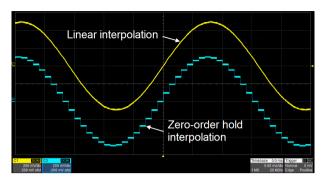

• Continuous Wave

Up to 500 MHz continuous sine wave.

Adjustable Pulse Width

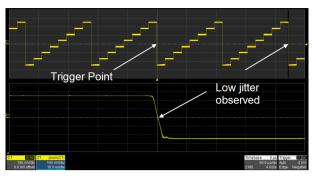
The pulse width can be fine-tuned to the minimum of 3.3 ns with an adjustment step as small as 100 ps, at any frequency.

Adjustable Edge


The rise/fall times can be set independently to the minimum of 1 ns at any frequency with a minimum adjustment step as small as 100 ps.

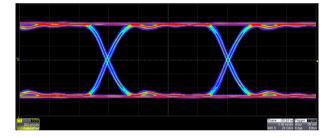
Low Jitter

When a Square/Pulse waveform is generated by traditional DDS, there can be additional jitter if the sampling rate is not an integerrelated multiple of the output frequency. EasyPulse technology successfully overcomes this weakness in DDS designs and helps to produce low jitter Square/Pulse waveforms.


• Arbitrary Waveform *True* Arb

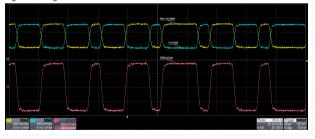
Traditional DDS designs can lead to additional jitter and distortion when sourcing arbitrary waveforms. The SIGLENT TrueArb design minimizes jitter and distortion to help deliver high fidelity arbitrary waveforms.

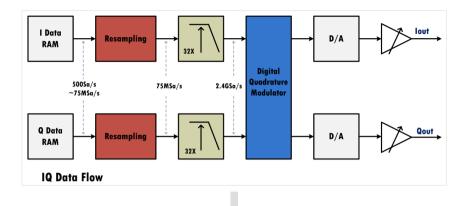
Point by Point Output


TrueArb generates arbitrary waveforms point-by-point. It never skips any point so that it can reconstruct all the details of the waveform, as defined. Two interpolation modes are available: linear and zero-order hold.

Low Jitter

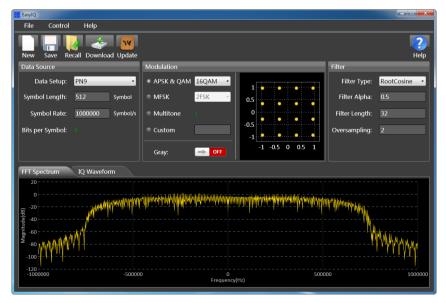
As with EasyPulse, TrueArb effectively overcomes the clock jitter that can effect traditional DDS generators.


• PRBS

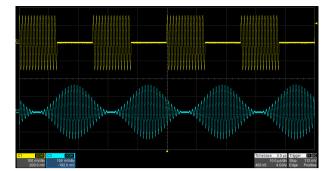

*CH1:PRBS.ON.50Ω CH2:PRBS.ON.50Ω 122.880 000Mbps Bit Rate Amplitude 800.0mVpp Offset 850.0mVdc Length PRBS-30 Rise/Fall 2.0ns Load 50 Ω ON **P** = Output Differential LVTTL LVCOMS TTL/CMOS LVDS ECL LVPECL **ON**

PRBS3 \sim PRBS32 with finely adjustable $10^{\,6}$ bps \sim 300 Mbps bit rate and 1 ns \sim 1us edge.

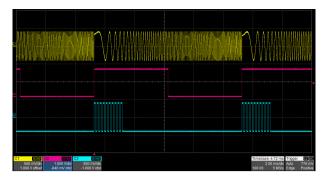
Preset common logic levels such as TTL, LVCMOS, LVPECL and LVDS. An added differential mode provides an easy way to generate differential signals using the both channels.



• IQ (optional)



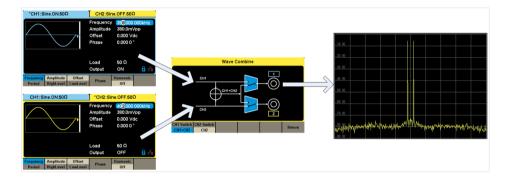
The SDG6000X supports popular modulation types such as ASK, FSK, PSK, and QAM. Proprietary resampling technology provides excellent EVM performance at arbitrary symbol rates between 250 Symb/s ~ 37.5 MSymb/s. Built-in digital quadrature modulator provides the possibility to generate IQ signals from baseband to 500 MHz intermediate frequency.


IQ waveforms can be generated by the PC software EasyIQ.

• Complex Signals Generation

Modulation

Plenty of modulation types, such as AM, FM, PM, FSK, ASK, PSK, DSB-AM, PWM are supported. The modulation source can be configured as "Internal" or "External".

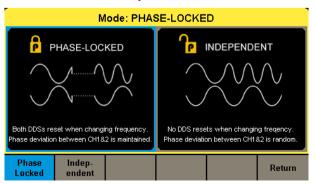


Sweep and Burst

Sweep modes include "Linear" and "Log". Burst modes includes "N cycle" and "Gated". Both Sweep and Burst can be triggered by "Internal", "External" or "Manual" source.

Waveform Combining

The waveform combining function superimposes CH1 and CH2 waveforms internally and provides the combined waveform to a user-selected output. Easily combine basic waveforms, random noise, modulation signals, sweep signals, burst signals, EasyPulse waveforms and TrueArb waveforms.



Harmonics Function

Harmonics function gives you the ability to add higher-order elements to your signal.

*CH1:Sine.ON.50Ω	CH2:Sine.ON.50Ω		
	Frequency 100.000 000kHz	-10	
	Amplitude 0.000dBm	Marker 🥉 🥇	
/*	Offset 0.000 Vdc	200.000 kHz	
	Phase 0.000 0 °	-20.26 dBm s	
	Harm Type All		
	Harm Order 2	-50 8	
	Harm Ampl 20,000dBc	-60 9	
1 2 3 4 5 6 7 8 9 10 F	Harm Phase 0.000 0 ° 🔒 🚠	-70	
Type Order Harmoni	Harmonic Return	10 metalling and an and an and an and a second and a se	nomb. Na

• Two Dual-channel Operation Mode

"Phase-Locked" mode automatically aligns the phases of each output. While "Independent" mode permit the two channels to be used as two independent generators. Independent mode also smoothes parameter (frequency, amplitude) changes made to an active channel.

• Frequency Counter

Counter:0N								
	Frequency	Pwidth	Duty	Freq Dev	,			
Value	9.999 997 OMH:	z 50.2ns	50.2 %	0.300ppi	n			
Mean	9.999 996 8MH:	z 50.2ns	50.2 %	-0.322ppi	n			
Min	9.999 996 6MH	996 6MHz 50.1ns		-0.340ppi	n			
Max	9.999 997 OMH;	z 50.2ns	50.2 %	-0.300ppi	n			
Sdev	0.000 000 0 Hz	0.000 000 s	13 m%	0.010ppn	า			
Num	122	122	122	122				
Ref Fre	eq 🚺	.000 000MHz			6 5			
State	Frequency	Pwidth	RefFreq	Cotun	Clear			
On	Period	Nwidth	TrigLev	Setup	Clear			

8-digit hardware frequency counter with statistics function and input range of 0.1 Hz \sim 400 MHz.

Specifications

Model	SDG6022X	SDG6032X	SDG6052X			
Bandwidth	200 MHz	350 MHz	500 MHz			
Number of channels	2					
Sampling rate	2.4 GSa/s (2X Interpolation)					
Vertical resolution	16 bit					
Arbitrary waveform length	2 ~ 20 Mpts					
Display	4.3" touch screen display, 480 x 272 x RGE	3				
Interface	Standard: USB Host, USB Device, LAN Optional: GPIB (USB-GPIB adaptor)					
Frequency						
Resolution	±1 ppm (25°C)					
Resolution	±2 ppm (0-40°C)					
1st-year aging	±1 ppm (25°C)					
10-year aging	±3.5 ppm (25°C)					

Sine	
	$0 \sim 1 \text{ MHz}$ (included) < -65 dBc
	1~60 MHz (included)< -60 dBc
	60~100 MHz (included) < -50 dBc
Harmonic distortion	100~200 MHz (included) < -40 dBc
	200~300 MHz (included) < -30 dBc
	300 MHz (included)< -28 dBc
Total Harmonic Distortion	10 Hz ~ 20 kHz < 0.075%
Non-harmonic spurious	≤350 MHz < -60 dBc
	>350 MHz < -55 dBc

Pulse	
Frequency	1 μHz ~ 150 MHz (SDG6052X, SDG6032X) 1 μHz ~ 80 MHz (SDG6022X)
Pulse Width	≥3.3 ns
Pulse width accuracy	±(0.01%+0.3 ns)
Rise time (setting range)	1 ns (10% ~ 90%) SDG6052X, SDG6032X 2 ns (10% ~ 90%) SDG6022X
Overshoot	3%,100 kHz, 1 Vpp, 50 Ω load , 2 ns edge
Duty cycle	$0.001\% \sim 99.999\%$ Limited by frequency setting
Duty cycle resolution	0.001%
Jitter (rms) cycle to cycle	<100 ps, 1 Vpp, 50 Ω load

Arbitrary Wave	Arbitrary Wave					
Frequency setting range	1 μHz ~ 50 MHz					
Waveform length	2 pts ~ 20 Mpts					
Compling rate	1 uSa/s ~ 300 MSa/s (TrueArb mode)					
Sampling rate	1.2 GSa/s (DDS mode)					
Vertical resolution	16 bit					
Jitter (rms) cycle to cycle	≤100 ps (1 Vpp, 50 $Ω$ load , TrueArb mode)					

Square	
Frequency	1 μHz~ 120 MHz (SDG6052X, SDG6032X) 1 μHz~ 80 MHz (SDG6022X)
Rise /fall times	2 ns~2.4 ns (10% ~ 90%, 1 Vpp, 50 Ω load)
Overshoot	\leq 3% (100 kHz, 1 Vpp, 50 Ω load)
Duty cycle	10% \sim 90% (Limited by frequency setting)
Jitter (rms) cycle to cycle	<100 ps (1 Vpp, 50 Ω load)
Output	
Accuracy	±(1%+1 mVpp) (10 kHz sine, 0 V offset)
Amplitude flatness	± 0.3 dB (50 Ω load, 0.5 Vpp, compare to 1 MHz Sine)
Output impedance	50±0.5 Ω (100 kHz sine)
Output current	-200 ~ 200 mA
Crosstalk	< -60 dBc (CH1=CH2=0 dBm, Sine, 50 Ω load)
IQ (optional)	
Symbol rate	250 Symb/s \sim 37.5 MSymb/s (Limited by the oversampling factor)
Vertical resolution	16 bit
Modulation type	2ASK, 4ASK, 8ASK, BPSK, QPSK, 8PSK, DBPSK, DQPSK, D8PSK, 8QAM, 16QAM, 32QAM, 64QAM, 128QAM, 256QAM, 2FSK, 4FSK, 8FSK, 16FSK, MSK, MultiTone, custom (Supported by EasyIQ software)
Pattern	PN7, PN9, PN15, PN23, User file, Custom (Supported by EasyIQ software)
Output Range	1 mVrms ~ 0.5 Vrms ($\sqrt{I^2 + Q^2}$, 50 Ω load)
Carrier frequency	500 MHz (IF Output)
PRBS	
Bit rate	1 ubps~ 300 Mbps (SDG6052X, SDG6032X) 1 ubps~ 160 Mbps (SDG6022X)
Sequence length	2 ^{m-1} , m = 3, 4,, 32
Rise/fall times	1 ns ~ 1 us (SDG6052X, SDG6032X. 10% ~ 90%, 1 Vpp, 50 Ω load) 2 ns ~ 1 us (SDG6022X. 10% ~ 90%, 1 Vpp, 50 Ω load)
	2 mVpp ∼ 20 Vpp≤(40 Mbps, HiZ load)
Output Range (Note)	2 mVpp \sim 10 Vpp (40 \sim 240 Mbps (included), HiZ load)

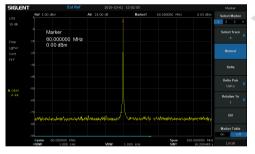
Ordering Information

2 mVpp \sim 5 Vpp (240 Mbps, HiZ load)

Product Description					
SDG6052X	500 MHz, 2-CH, 2.4 GSa/s, 16-bit				
SDG6032X	350 MHz, 2-CH, 2.4 GSa/s, 16-bit				
SDG6022X	200 MHz, 2-CH, 2.4 GSa/s, 16-bit				
Standard Configurations					
Quick start ×1					
Power cord ×1					
Calibration certificate ×1					
USB cable $\times 1$					
BNC coaxial cable x2					
Optional Configurations					
SPA1010	10 W Power Amplifier				
ATT-20dB	20 dB Attenuator				
USB-GPIB	USB-GPIB Adapter				
SDG-6000X-IQ	IQ Signal Generator Function				

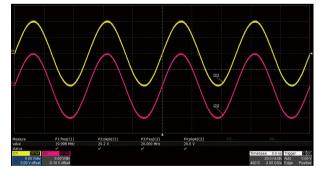
SDG2000X Series Function/Arbitrary Waveform Generator

Key Features


- Dual-channel, 120 MHz maximum bandwidth, 20 Vpp maximum output amplitude, high fidelity output with 80 dB dynamic range
- High-performance sampling system with 1.2 GSa/s sampling rate and 16-bit vertical resolution. No detail in the waveforms will be lost
- Innovative TrueArb technology, based on a point-by-point architecture, supports any 8 pts~8 Mpts Arb waveform with a sampling rate in range of 1 µSa/s~75 MSa/s
- Innovative EasyPulse technology, capable of generating lower jitter Square or Pulse waveforms, brings a wide range and extremely high precision in pulse width and rise/fall times adjustment
- Plenty of analog and digital modulation types: AM、 DSB-AM、 FM、 PM、 PSK、 FSK、 ASK and PWM
- Practical functions: Channel Copy, Channel Coupling, Channel Track, harmonic generator, overvoltage protection function
- Sweep and Burst function, Harmonics mode supported
- High precision Frequency Counter
- Standard interfaces: USB Host, USB Device (USBTMC) , LAN (VXI-11)
- Optional interface: USB-GPIB
- 4.3" touch screen display for easier operation

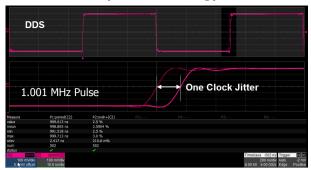
Characteristics

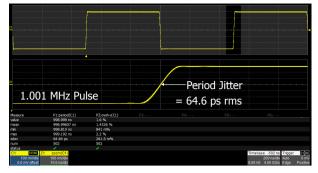
• Excellent Analog Channel Performance


واستغلقا لتواجز ومعتقا والمتعر بالتعر والمحاصر وتبالا	a hallan isa Alan siya karanga kata daga karanga kata daga karanga kata karanga karanga karanga karanga karang		1. pan, in have the addition	segni II. (₁₁ 10, ₁ 1, 11, 11, 11) has be	allahistoryarta.perpetase
21 A falli, laith midhal an a-dhalak saith, a rosaidh a'r a	le <mark>kala</mark> n serimah dapat kepiti kalam athar pelik perciti	frentillan den skillan ber skrev Jett	L s à saladil d'anna an Làbh A	unt tecco comilist. Marii bina ista	 A statistical statistic A statistical statisti A statistical stat
			· · · · ·		
C1 DC50 F2 <f1> 100 mV/div 5.00 dB/div 20.0 MHz/div 891 # -42.28 dBm 43.38 dBm Δy Δy -2.10 dB</f1>					Timebase 0.00 µs Trigger C1 DC 2.00 µs/div Auto -20 mV 10.0 kS 500 MS/s Edge Positive X1 = 0.00 MHz ΔX = 120.05 MHz X2 = X2 = 120.05 MHz 1/ ΔX = 8.330 ns Ns

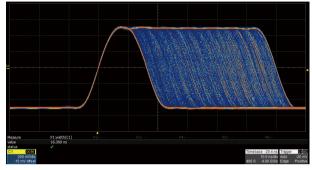
The bandwidth of analog channels proves to be greater than 120 MHz, via doing a frequency response test with white noise.

 High fidelity sine output. Almost no spurious observed @60 MHz, 0 dBm.

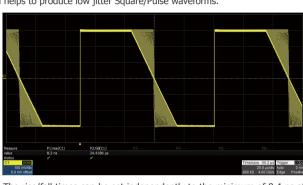

Capacity of outputting large signal at high frequency. Dual-channel, 20 Vpp amplitude can be guaranteed even @20 MHz.



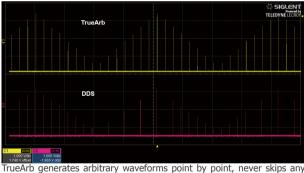
			Bi I	vise floor of acope	a Mapacalaga ta	Nc	oise Floor	of Scope	
				SDG2003X	dard on a set of	SD	G2000X -	2mV outpu	It
			Lobit III in the sys		denself at the New York		hours of the balance		and the second
	a salita wata ang d		in the second		in highly blocks		Annual and a second		-
	and the second		and planted		espiisteriisteloje		(ali teropi qu
. di stationa a		LINE A DOM:				lociate (principa		dainthe inter	
wantahilijinayi		a dag mana ana ang mana ang m Na kang mana ang mana a		indeptition bief		Othe	r Products:	2mV outpu	t
1 0000 1.00 mWdiv 1.3 mV offset	C2 0000 0 1.00 mV/div -2.0 mV ofst	3 0000 1.00 mV/div 3.2 mV offset						Timebase 0 µ 500 µs/di 10.0 kS 2.00 MS/	


Low noise floor, improves signal-noise ratio.

• Innovative EasyPulse Technology



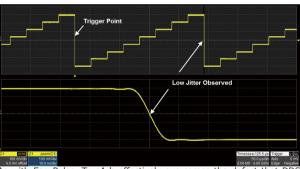
When a Square/Pulse waveform is generated by DDS, there will be a one-clock-jitter if the sampling rate is not an integer-related multiple of the output frequency. SDG2000X EasyPulse technology successfully overcomes this weakness in DDS designs and helps to produce low jitter Square/Pulse waveforms.


The Pulse width can be fine-tuned to the minimum of 16.3 ns with the adjustment step as small as 100 ps.

The rise/fall times can be set independently to the minimum of 8.4 ns at any frequency and to the maximum of 22.4 s. The adjustment step is as small as 100 ps.

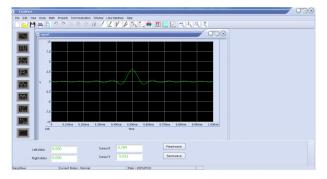
• Innovative TrueArb Technology

For arbitrary waveforms, TrueArb not only has all the advantages of traditional DDS, but also eliminates the probability that DDS may cause serious jitter and distortion.



point so that it can reconstruct all the details of the waveform as defined.

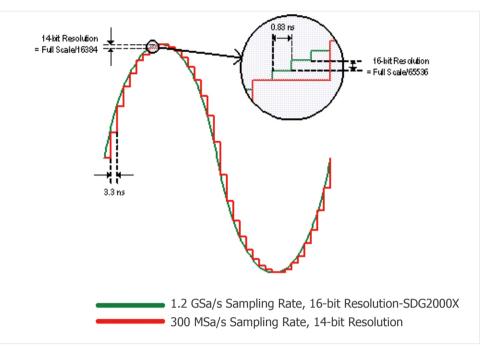
• 4.3" Touch Screen Display



4.3" touch screen display, makes operation much more convenient.

As with EasyPulse, TrueArb effectively overcomes the defect that DDS may cause the one-clock-jitter in arbitrary waveforms.

• Arbitrary Waveform Software EasyWave



EasyWave is a powerful arbitrary waveform editing software that supports several ways to generate arbitrary waveform such as manual drawing, line-drawing, equation-drawing, coordinate-drawing, etc. It is quite convenient for users to edit their own arbitrary waveforms through EasyWave.

Characteristics

• High-performance Sampling System

Benefiting from a 1.2 GSa/s and 16-bit sampling system, SDG2000X achieves extremely high accuracy performance in both time domain and amplitude, which results in more accurately reconstructed waveforms and lower distortion.

Specifications

Product Model	SDG2042X		SDG2082X			SDG2122X			
Bandwidth	40 MHz		80 MHz			120 MHz			
Sampling rate	1.2 GSa/s (4 X Inter	1.2 GSa/s (4 X Interpolation)							
Vertical resolution	16 bit								
Num. of channels	2								
Max. amplitude	±10 V								
Display	4.3" touch screen di	isplay, 480 x 272 x I	RGB						
Interface	Standard: USB Host Optional: GPIB (USB								
Frequency Characteristics									
Parameter	Min.	Тур.	Max.	Unit	Conditio	n			
Resolution			1μ	Hz					
Taikiel e en une a c	-1		+1	ppm	25 °C				
Initial accuracy	-2		+2	ppm	0~40°C				
1 st -year aging	-1		+1	ppm	25 °C				
10-year aging	-3.5		+3.5	ppm	25° C				
Sine Characteristics									
Parameter	Min.	Тур.	Max.	Unit	Conditio	n			
Frequency	1μ		120 M	Hz					
			-65	dBc	0 dBm, 0	0~10 MHz (Included)			
			-60	dBc	0 dBm, 1	10~20 MHz (Included)			
			-55	dBc	0 dBm, 2	20~40 MHz (Included)			
Harmonic distortion			-50	dBc	0 dBm, 4	10~60 MHz (Included)			
			-45	dBc	0 dBm, 6	50~80 MHz (Included)			
			-40	dBc	0 dBm, 8	30~100 MHz (Included)			
			-38	dBc	0 dBm, 1	100~120 MHz (Included)			
Total Harmonic Distortion			0.075	%	0 dBm, 1	10 Hz ~ 20 kHz			
Non-harmonic spurious			-70	dBc	≤50 MH	Ζ			
non narmonic spunous			-65	dBc	>50 MH;	Ζ			

www.siglent.com 42

Square Characteristics

Parameter	Min.	Тур.	Max.	Unit	Condition
Frequency	1μ		25 M	Hz	
Rise/fall times			9	ns	10% \sim 90%, 1 Vpp, 50 Ω Load
Overshoot			3	%	100 kHz, 1 Vpp, 50 Ω Load
Duty cycle	0.001		99.999	%	Limited by frequency setting
Jitter (rms), Cycle to cycle			150	ps	1 Vpp, 50 Ω Load

Pulse Characteristics

Parameter	Min.	Тур.	Max.	Unit	Condition
Frequency	1μ		25 M	Hz	
Pulse width	16.3			ns	
Pulse width accuracy			±(0.01%+0.3 ns)		
Rise/fall times	8.4 n		22.4	S	10% \sim 90%, 1 Vpp, 50 Ω Load, Subject to pulse width limits
Overshoot			3	%	100 kHz, 1 Vpp
Duty cycle	0.001		99.999	%	Limited by frequency setting
Duty cycle resolution	0.001			%	
Jitter (rms) cycle to cycle			150	ps	1 Vpp, 50 Ω Load

Arbitrary Wave characteristics

Parameter	Min.	Тур.	Max.	Unit	Condition
Frequency	1μ		20 M	Hz	
Waveform length	8		8 M	pts	
Sampling rate	1μ		75 M	Sa/s	TrueArb mode
Sampling rate	300			MSa/s	DDS mode
Vertical solution	16			bit	
jitter (rms)			150	ps	1 Vpp, 50 Ω Load, TrueArb mode

Output Characterisics

output characterisies					
Parameter	Min.	Тур.	Max.	Unit	Condition
Range	2 m		20	Vpp	≤20 MHz, HiZ load
(Note 1)	2 m		10	Vpp	>20 MHz, HiZ load
	1 m		10	vpp	\leq 20 MHz, 50 Ω load
	1 m		5	vpp	>20 MHz, 50 Ω load
Accuracy	± (1%+1 mVpp)				10 kHz sine, 0 V offset
Amplitude flatness	-0.3		+0.3	dB	$0{\sim}100$ MHz (Included), 50 Ω load, 2.5 Vpp, compare to 10 kHz Sine
	-0.4		+0.4	dB	100~120 MHz (Included), 50 Ω load, 2.5 Vpp, compare to 10 kHz Sine
Output impedance	49.5	50	50.5	Ω	10 kHz sine
Output current	-200		200	mA	
Crosstalk			-60	dBc	CH1 - CH2/CH2 - CH1

Note 1: The specification will be divided by 2 while applied to a 50 $\boldsymbol{\Omega}$ load.

Ordering Information

Product Description	SDG2000X Series Function/Arbitrary Waveform Generator
	SDG2042X 40 MHz
Product code	SDG2082X 80 MHz
	SDG2122X 120 MHz
Standard configurations	A Quick Start, A Power Cord, A USB Cable, A Calibration Certificate, A BNC Coaxial Cable
Optional configurations	USB-GPIB adapter

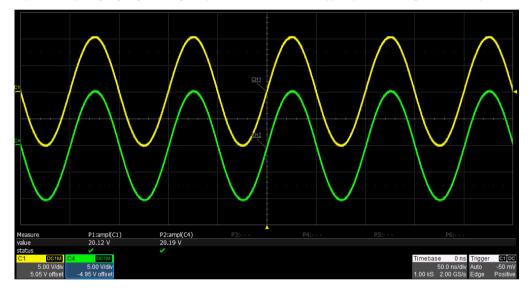
SDG1000X Function/Arbitrary Waveform Generator

Application

- IC test
- Simulate sensor
- Simulate environment signals
- Electrical circuit function test
- Education and training

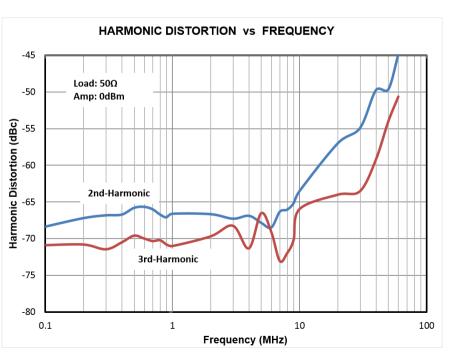
Key Features

- Dual-channel, with bandwidth up to 60 MHz, and amplitude up to 20 Vpp
- 150 MSa/s sampling rate, 14-bit vertical resolution, and 16 kpts waveform length
- Innovative EasyPulse technology, capable of generating lowerjitter Pulse waveforms, brings a wide range and extremely high precision in pulse width and rise/fall times adjustment
- Innovative TrueArb technology, based on a point-by-point architecture, supports any 8 pts~8 Mpts Arb waveform with a sampling rate in range of 1 μSa/s~75 MSa/s
- Special circuit for Square wave function, can generate Square waves up to 60 MHz with jitter less than 300 ps+0.05 ppm of period
- Plenty of analog and digital modulation types: AM, DSB-AM, FM, PM, FSK, ASK, PSK and PWM Sweep and Burst functions
- Harmonics Generator function
- Waveform Combining function
- High precision Frequency Counter
- Standard interfaces: USB Host, USB Device (USBTMC), LAN (VXI-11)
- Optional interface: GPIB
- 4.3" TFT-LCD display

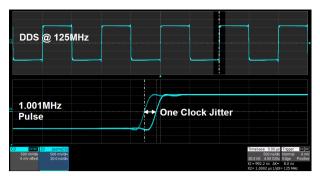

Models and Key Specifications

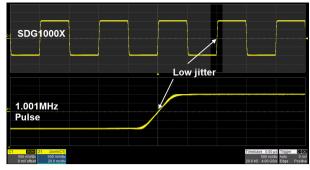
Product Model	SDG1032X	SDG1062X
Bandwidth	30 MHz	60 MHz
Sampling rate	150 MSa/s	
Vertical resolution	14-bit	
Waveform Length	16 kpts	
Num. of channels	2	
Max. amplitude	±10 V	
Display	4.3" display, 480 x 272 x RGB	
Interface	Standard: USB Host, USB Device, LAN Optional: GPIB (USB-GPIB adaptor)	

Characteristics

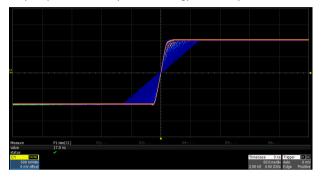

• Identical dual output-channels with high performance

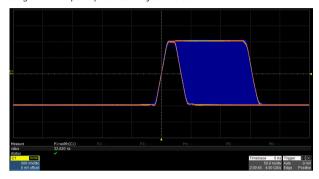
Capable of outputting large signals at high frequencies. dual-channels, 20 Vpp amplitude can be guaranteed at up to 10 MHz.

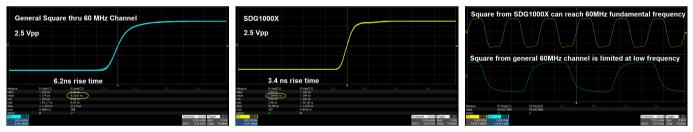


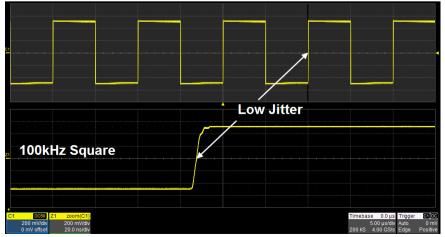

• Low Distortion Output

With 0 dBm output, the THD (Total Harmonic Distortion) is less than 0.075%. Harmonics and spurs are less than -40 dBc throughout the entire bandwidth.




• Innovative EasyPulse Technology


When a Pulse waveform is generated by a common DDS generator, there will be a one-clock-jitter if the sampling rate is not an integer-related multiple of the output frequency. SDG1000X EasyPulse technology successfully overcomes this weakness in DDS designs and helps to produce low jitter Pulse waveforms.

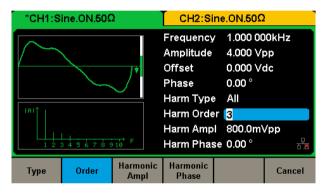


The rise/fall times can be set independently to the minimum of 16.8 ns at any frequency and to the maximum of 22.4 s. The adjustment step is as small as 100 ps. The Pulse width can be fine-tuned to the minimum of 32.6 ns with the adjustment step as small as 100 ps.

• High performance Square Waves

Benefitting from a special square-wave generating circuitry, the Square from the SDG1000X breaks the 60 MHz bandwidth barrier, reaching rise/fall times of less than 4.2 ns, and frequencies up to 60 MHz.

The Square wave exhibits the same excellent jitter performance as the Pulse waveform.

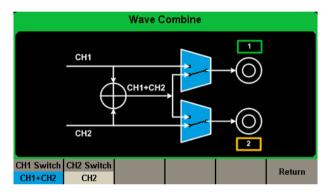

Characteristics

Modulation

*CH1:S	ine.ON. <mark>50</mark> ۵	2 Mod	CH2:Sir	ne.ON.50Ω	2
	\mathbb{N}		Frequency Amplitude Offset Phase	1.000 00 4.000 V) 0.000 V0 0.00 °	op
AM Depth AM Freq		6) 000 Hz	Load Output	50 Ω ON	the second se
Type AM	Source Internal	AM Depth	Shape Sine	AM Freq	

Multiple modulation types: AM, DSB-AM, FM, PM, FSK, ASK, PSK and PWM. The modulation source can be configured as "Internal" or "External".

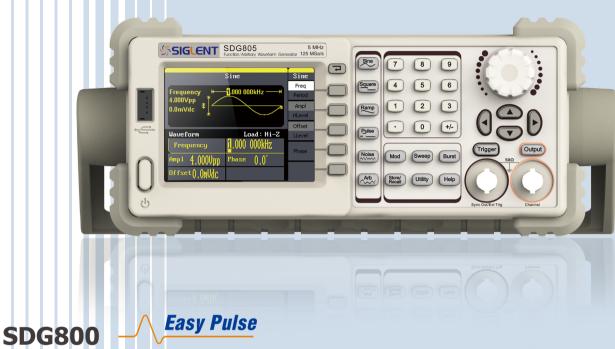
• Harmonics Function


Up to 10 harmonics may be generated. Amplitude and phase of each harmonic can be set independently.

• Frequency Counter

	Counter:ON								
	Frequency	Pwidth	Duty	Freq Dev					
Value	9.999 980 2MI	1z 50.5ns	50.5 %	-1.981ppr	n				
Mean	9.999 980 7M	lz 50.4ns	50.4 %	-1.928ppr	n				
Min	9.999 979 8MI	lz 39.2ns	39.2 %	-2.021ppr	n				
Max	9.999 982 3MI	lz 61.9ns	61.9 %	-1.767ppr	n				
Sdev	515.388 20mH	z 2.4ns	2.4 %	0.049ppn	ì				
Num	46	46	46	46					
Ref Fre	eq 🚺	<mark>0</mark> .000 000MHz			전문				
State	Frequency	/ Pwidth	RefFreq	Catur	Classe				
On	Period	Nwidth	TrigLev	Setup	Clear				

High precision Frequency Counter with an input frequency range of 0.1 Hz $\sim\!200$ MHz.


• Waveform Combining

Capable of combining the waveforms of 2 channels from internal, providing more flexible tools to generate complex waveforms.

Ordering Information

Product Description	
30 MHz, 2 CH, 150 MSa/s, 14 bit	SDG1032X
60 MHz, 2 CH, 150 MSa/s, 14 bit	SDG1062X
Standard configurations	
Quick Start -1	
Power Cord-1	
Calibration Certificate -1	
USB Cable -1	
Optional configurations	
BNC Coaxial Cable	SDG-BNC
20 dB Attenuator	ATT-20dB
USB-GPIB Adapter	USB-GPIB

Function/Arbitrary Waveform Generator

Application

- Simulate sensor
- Simulate environmental signal
- Circuit function test
- IC chip test
- Research and education

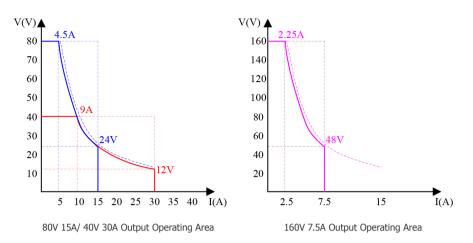
Key Features

- Advanced DDS technology,125 MSa/s sampling rate, 14 bit vertical resolution
- Single channel output, 5 kinds of standard waveforms, built-in 46 kinds of arbitrary waveforms (including DC)
- Complete modulation functions: AM, DSB-AM, FM, PM, FSK, ASK, PWM, linear/logarithmic sweep and burst
- Innovative EasyPulse technology, can output pulse of low jitter, quick rising/falling edge
- Standard interfaces: USB Device, USB Host, support U-Disk storage and software update
- Provide 10 nonvolatile storage spaces for user's arbitrary waveforms
- Be capable of seamlessly connected to SIGLENT Digital Storage Oscilloscope
- Configurable with powerful arbitrary waveform editing software EasyWave

Specifications

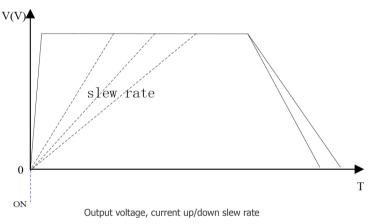
Model	SDG805	SDG810	SDG830			
Maximum output frequency	5 MHz	10 MHz	30 MHz			
Output channels	1					
Sampling rate	125 MSa/s					
Wave length	16 kpts					
Frequency resolution	1 µHz					
Vertical resolution	14 bit					
Waveform	Sine, Square, Ramp, Pulse, Gaussian white noise, Arbitrary waveform, 46 types of built-in arbitrary waveforms					
Sine wave	$1 \ \mu Hz \sim 5 \ MHz$	$1 \ \mu Hz \sim 10 \ MHz$	1 µHz ~30 MHz			
Square wave	1 μHz ~ 5 MHz	1 µHz ~ 10 MHz	1 μHz ~10 MHz			
Pulse	500 μ Hz \sim 5 MHz	500 μ Hz \sim 5 MHz	500 µHz ~5 MHz			
Ramp/Triangular	1 µHz ~ 300 kHz	1 µHz ~ 300 kHz	1 µHz ~ 300 kHz			
Gaussian white noise	>5 MHz bandwidth (-3 dB)	>10 MHz bandwidth (-3 dB)	>30 MHz bandwidth (-3 dB)			
Arbitrary waveform	$1 \ \mu Hz \sim 5 \ MHz$	$1 \ \mu Hz \sim 5 \ MHz$	$1 \ \mu\text{Hz} \sim 5 \ \text{MHz}$			
Modulation function	AM, FM, PM, DSB-AM, FSK, ASK, PWM, St	veep, Burst				
Standard configuration	USB Host & USB Device					
Amplitude (high impedance)	4 mVpp~20 Vpp (≤10 MHz) 4 mVpp~10 Vpp (>10 MHz)					

SPS5000X Programmable Switching DC Power Supply


Main Features

- Rated Output Voltage: 40V, 50V, 80V, 160V
- Rated Output Power: 180W, 360W, 720W, 1080W
- Wide range of output voltage and current, high efficiency power supply
- CV, CC priority mode selection, better protection of equipment under test
- Load transient recovery time (Load change from 50~100%) <1ms
- Adjustable slew rate of output voltage and current
- Setting and readback resolution: 1 mV, 1 mA
- User enabled internal output discharge circuit to accelerate the down programming of the output voltage
- Remote Voltage Sensing
- List function up to 50 steps; can be created from the front panel or by importing list sequence files from a USB memory device
- External analog voltage and resistor control of voltage or current output
- External voltage and current monitoring output
- OVP, OCP, LPP, OTP protection.
- 2.4-inch OLED high brightness liquid crystal display, 170-degree viewing angle
- Standard Interface: USB, LAN, Analog Control Interface
- Optional Interface: USB-GPIB module
- 1/2, 1/3, 1/6 rack mount size
- Embedded Web Server offers remote control through a web browser without the need for the driver or software

Design Features


• Constant Output Power

In constant output power mode, the voltage and current range is switched automatically to maximize the voltage and current without sacrificing the supply's output power. This mode enables the supply to provide a higher output voltage at lower current and a higher output current at lower voltage. Compared to the traditional rectangular output range of most supplies, the SPS5000X series power supply provides a wider voltage and current output range, which greatly increases the utilization of the power supply.

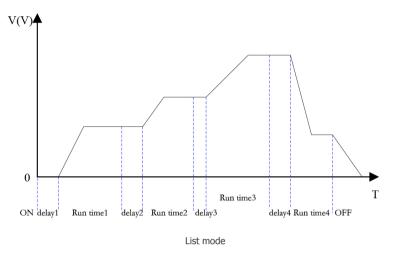
• Adjustable Output Voltage, Current up/down Slew Rate

The SPS5000X series supports custom setting of the rise/fall slew rate of voltage/current to verify the performance of the object under test as the voltage/current changes. This feature can effectively prevent the damage caused by inrush current to the DUT in applications such as the testing of capacitive current absorbing devices.

• CV/CC Priority Mode

When the SPS5000X series power supply is set to CC priority mode, at the power output-on stage, it is able to operate under CC priority to limit the inrush current spike and overshoot voltage effectively when the power output is turned on.

In CV priority mode, the output voltage reaches the set voltage value quickly. In some applications, such as LED testing, when the power output is started, the surge current and overshoot voltage will appear when the voltage reaches the on-state voltage of the LEDs.



CV priority mode

CC priority mode

• Intuitive List Operation Function

By editing the single-step setting value, duration, and slew rate, the List function can generate multiple complex sequences to meet complex test requirements. The user can edit the sequence by 50 steps natively or import the List sequence file via USB for multi-step running. The minimum precision of delay time is 1ms. The minimum running time is 1 second.

• Rich Interface

The power supply includes USB and Ethernet communication interfaces as standard, and a

USB-GPIB converter module as optional. The embedded Web Server enables control and monitor of the power supply directly from a web browser, eliminating the need to install software drivers or applications.

	State	Voltage(V)	Current(A)	Power(W)	Channal Enabled	List	Vset(V)	Iset(A)	Outpu
CH1	CV	29.991	0.000	0.005			30	6	
CH2	CC	0.000	0.000	0.000			0	0	ON
CH3	CC	0.000	0.000	0.000			0	0	Su
Add	Step	сн1 🤇	CH2	СНЗ			Download	Import	Export
	Step	Vset(V)) Is	et(A)	Delay Time(s)	Running Time(s)	Slope(V/s)	Operation
	1	3	4		3	3	3		Delete
	2	3	3		2	3	3		Delete
	3	2	2		2	2	4		Delete
	4	3	3		3	1	1		Delete
	5	2	3		3	1	1		Delete
	6	3	2		1	3	1		Delete
	7	3	2		2	4	1		Delete
	8	2	2		3	3	1		Delete
	9	3	2		2	2	2		Delete
	10	1	3		3	2	2		Delete

Web Server Interface

Specifications

Model	SPS5041X	SPS5042X	SPS5043X	SPS5044X	SPS5045X	units		
Output channel		1		2	3	СН		
Rated output voltage		40						
Rated output current	30	60	90	3	А			
Total rated output power	360	720	1080	720	1080	W		
Power Ratio	3.33							

Model	SPS5051X	SPS5081X	SPS5082X	SPS508	83X	SPS5084X	SPS5085X	units
Output channel	1	1 2 3					СН	
Rated output voltage	50			80				V
Rated output current	10	15	15 30 45 15					А
Total rated output power	180	360	720	20 1080		720	1080	W
Power Ratio	2.77	3.33						
Model	SPS5161X	SPS5162)	SPS51	63X	SPS5164X		SPS5165X	units
Output channel		1			2		3	CH
Rated output voltage			160)				V
Rated output current	7.5	15	22.	5		7.5		А
Total rated output power	360	720	108	0	7	20	1080	W
Power Ratio				3.33	3			

Ordering Information

Product information		Product No
40V/30A 360W	Single channel programmable Switching DC Power supply	SPS5041X
40V/60A 720W	Single channel programmable Switching DC Power supply	SPS5042X
40V/90A 1080W	Single channel programmable Switching DC Power supply	SPS5043X
40V/30A 360WX2	Dual Channel Programmable Switching DC Power supply	SPS5044X
40V/30A 360WX3	Three Channel Programmable Switching DC Power supply	SPS5045X
50V/10A 180W	Single channel programmable Switching DC Power supply	SPS5051X
80V/15A 360W	Single channel programmable Switching DC Power supply	SPS5081X
80V/30A 720W	Single channel programmable Switching DC Power supply	SPS5082X
80V/45A 1080W	Single channel programmable Switching DC Power supply	SPS5083X
80V/15A 360WX2	Dual Channel Programmable Switching DC Power supply	SPS5084X
80V/15A 360WX3	Three Channel Programmable Switching DC Power supply	SPS5085X
160V/7.5A 360W	Single channel programmable Switching DC Power supply	SPS5161X
160V/15A 720W	Single channel programmable Switching DC Power supply	SPS5162X
160V/22.5A 1080W	Single channel programmable Switching DC Power supply	SPS5163X
160V/7.5A 360WX2	Dual Channel Programmable Switching DC Power supply	SPS5164X
160V/7.5A 360WX3	Three Channel Programmable Switching DC Power supply	SPS5165X
Standard Accessories		
USB Cable -1		
Quick Start -1		
Calibration Certificate -1		
Power Cord -1		
Output guard -1		
Optional Accessories		
SPS5000X-SEC		SPS5000X Series cable
SPS5000X-PAC		SPS5000X Parallel cable
SPS5000X-RMK		SPS5000X EIA Standard rack

SPD3303 Programmable Linear DC Power Supply

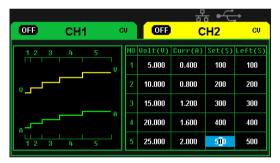
Application

- R&D lab general purpose testing
- Teaching lab experiment
- Automotive electronic test
- Production testing and quality assessment inspection

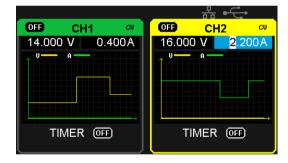
Key Features (SPD3303X/SPD3303X-E)

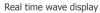
- 3 independent controlled and isolated output, 32 V/3.2 A×2, 2.5 V/3.3 V/5 V/3.2 A×1, total 220 W
- Max 5 digits Voltage, 4 digits Current Display, Minimum Resolution: 1 mV/1 mA
- Supports panel timing output functions
- 4.3 inch true color TFT- LCD 480x272 display
- 3 types of output modes: independent, series, parallel
- 100 V/120 V/220 V/230 V compatible design to meet the needs of different power grids.
- Intelligent temperature-controlled fan , effectively reducing noise
- Clear graphical interface, with the waveform display function
- Internal 5 groups of system parameter save/recall, supports data storage space expansion
- Provides PC software: Easypower , supports SCPI , LabView driver

Key Features (SPD3303C)


- 3 independent high precision output: 32 V/3.2 A×2, 2.5 V/3.3 V/5 V/3.2 A×1, total 220 W
- 4 digits voltage and 3 digits current display, min resolution: 10 mV, 10 mA
- Three output modes: independent, series and parallel
- 100 V/120 V/220 V/230 V compatible design, to meet the need of different power grids
- Smart temperature controlled fan, effectively reduce the noise
- Save/Recall 5 group system specifications, support data storage expansion
- Connected to PC via USB Device, support SCPI command, to meet the control and communication needs

Specifications


Model	SPD3303C	SPD3303X-E	SPD3303X		
	CH1: DC voltage range: 0-32 V, DC currer	nt range: 0-3.2 A			
Channels	CH2: DC voltage range: 0-32 V, DC current range: 0-3.2 A				
	CH3: DC voltage range: 2.5/3.3/5.0 V, DC	current range: 0-3.2 A			
Max output power	220 W				
Resolution	10 mV / 10 mA		1 mV / 1 mA		
Display digits	LED display 4 digits voltage 3 digits current	4.3 inch TFT-LCD display4 digits voltage3 digits current	4.3 inch TFT-LCD display5 digits voltage4 digits current		
Ripple noise	CV/CH3: ≤1 mVrms (5 Hz~1 MHz) CC: ≤3 mArms				
Standard interface	USB Device	USB Device, LAN			
Dimension	225 mm (W)×136 mm (H)×275 mm (D)				
Weight	7.5 kg (SPD3303C) 8 kg (SPD3303X/X-E)				


• Panel displays the timing output

Through front panel operation, 5 groups of timing settings and output control can be displayed, which provides users a simple power programming function. Also a connection can be made with Siglent's EasyPower PC software providing a full range of communication and control requirements.

• Save/Recall setting parameters

SPD3000X series programmable power supply can save or recall 5 groups of setting parameter in internal storage, also supports external storage expansion. You can easily obtain the settings you needed.

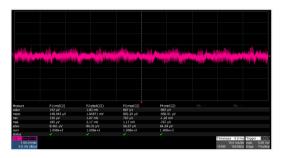
PC Timer

SPD1000X Programmable Linear DC Power Supply

Main Features

- Single path high-precision programmable voltage output:
 - 16 V/8 A, total power up to 128 W
- 30 V/5 A, total power up to 150 W
- Stable, reliable, Low ripple and noise: ≤ 350 uVrms/3 mVpp; < 2 mArms
- Fast transient response time: < 50 µs
- 5 digit Voltage, 4 digit Current Display, Minimum Resolution: 1 mV/1 mA
- Supports front panel timing output functions
- 2.8 inch true color TFT- LCD 240 *320 display
- 2 types of output modes: Two-wire output mode, 4-wire compensation output mode, Maximum compensation voltage 1 V
- 100/120/220/230 V compatible design to meet the needs of different power grids
- Intelligent temperature-controlled fan reduces noise
- Clear graphical interface, with the waveform display function
- Internal 5 groups of system parameter save/recall
- Includes PC software: Easypower, supports SCPI, LabView driver

Design Features


• High-resolution and high-precision output

The SPD1000X power supply features a high measurement resolution of 1 mV/1 mA. This ensures accurate output even with very with small changes in voltage or current. This is impossible for a low resolution power supply.

• 4-wire SENSE compensation mode function

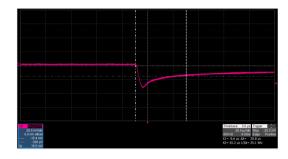
In the 4-wire SENSE compensation output mode: By using a separate measurement circuit, the supply can more accurately compensate for any voltage drops due to high resistance connections or long cables. Maximum compensation voltage is 1 V.

• Low ripple and noise

• Low voltage overshoot

C2 200 CA10 1.000 Way -2.025 V obt		Timebase 0.00 ms Tripper 2000 500 µs/div Normal 2.01 h 10 MS 2.03/s Edge Positive

• Panel displays the timing output

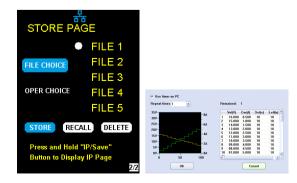

		ZWIFE	•	UV I	
12 3 4 5 12 3 4 5					
₀」╱ ^{┍╱┍} _⋒ 」╱╱ [┍]					
NO	Ų	Ĥ	Set	Left	
1	3.000	1.000	10	10	
2	6.000	2.000	20	20	
3	9.000	3.000	30	30	
4	12.000	4.000	40	40	
5	15.000	5.000	5 <mark>0</mark>	50	

ਰੱਠ

Panel timing output

Real	time	wave
displ	ay	

• Fast transient response time



• 0.01% Load Regulation & 0.2% Line Regulation

• Save/Recall setting parameters

SPD1000X programmable power supply can save or recall 5 groups of setting parameters in internal storage. You can easily recall the settings you need.

Internal Storage

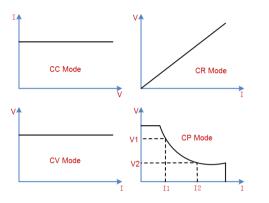
PC Timer

Specifications

All the specifications are guaranteed when the instrument has been working for more than 30 minutes under the specified operating temperature. Unless otherwise noted, the specifications are applicable to all the channels of the specified model.

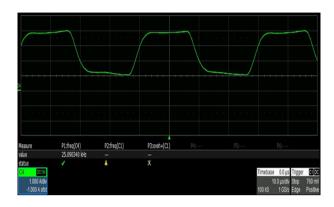
Model		SPD1168X	SPD1305X		
DC Output (0 °C to 40°C)		Output Voltage: 0 to 16 V Output Current: 0 to 8 A	Output Voltage: 0 to 30 V Output Current: 0 to 5 A		
Display		2.8 inch true color TFT-LCD 5 digit voltage/4 digit current			
Resolution		1 mV/1 mA			
Program Accuracy		Voltage: ±(0.03% of reading+10 mV)			
(25 ± 5 °C)		Current: ±(0. 3% of reading+10 mA)			
Program Accuracy		Voltage: ±(0.03% of reading+10 mV)			
(25 ± 5 °C)		Current: ±(0. 3% of reading+10 mA)			
Temperature Coefficient p	er °C	Voltage: ±(0.01% of reading+3 mV)			
(Output Percentage + Off	set)	Current: ±(0.01% of reading+3 mA)			
	Load Regulation	$\leq 0.01\% + 2 \text{ mV}$			
Constant Voltage Mode	Ripple & Noise	\leq 350 uVrms/3 mVpp (20 Hz to 20 MHz)			
	Recovery Time	< 50 µs (50% load change, minimum load 0.5 A)			
	Line Regulation	$\leq 0.2\% + 3 \text{ mA}$			
Constant Current Mode	Load Regulation	$\leq 0.2\% + 3 \text{ mA}$			
	Ripple & Noise	≤ 2 mArms			
Locking Key		Yes			
Memory Save/Recall		5 Sets			
Max Output Power		128 W	150 W		
Power Source		AC 100 /120/220/230 V ± 10% 50/60 Hz			
Standard Configuration In	terface	USB Device, LAN			
Insulation		Case to Terminal \geq 20 MΩ (DC 500 V) Case to AC line \geq 30 MΩ (DC 500 V)			
Operating Environment		Outdoor Usage: Elevation: \leq 2000 m Environment Temperature 0 to 40 °C Relative Humidity \leq 80% Installation Level: II Pollution Level: 2			
Storage Environment		Environment Temperature: -10 to 70 $^\circ C$ Relative Humidity \leq 70%			
Dimension		154.6 (W) × 144.5 (H) × 280(D) mm			
Weight		≈5.5 kg			

SDL1000X Series Programmable DC Electronic Load


Main Feature

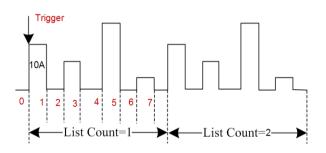
- SDL1020X (Single channel): DC 150 V/30 A, total power up to 200 W
- SDL1030X (Single channel): DC 150 V/30 A, total power up to 300 W
- 4 static modes / Dynamic mode: CC/CV/CR/CP
- CC Dynamic mode: Continuous, pulsed, toggled
- CC Dynamic mode: 25 kHz, CP Dynamic mode: 12.5 kHz, CV Dynamic mode: 0.5 Hz
- Measuring speed of voltage and current: up to 500 kHz
- Adjustable current rise time range: 0.001 A/us~2.5 A/us
- Min. readback resolution: 0.1 mV, 0.1 mA
- Short-circuit, Battery test, CR-LED mode, and factory test functions
- 4-wire SENSE compensation mode function
- List function supports editing as many as 100 steps
- Program function supports 50 groups of steps
- OCP, OVP, OPP, OTP and LRV protection
- External analog control
- Voltage, Current monitoring via 0-10 V
- 3.5 inch TFT-LCD display, capable of displaying multiple parameters and states simultaneously
- Built-in RS232/USB/LAN communication interface, USB-GPIB module (optional)
- Waveform trend chart and ease-to-use file storage and call functions
- Includes PC software: Supports SCPI, LabView driver

Design Features


• Steady state operating mode

The SDL features four operating modes to provide flexible test capabilities. In CC mode, the electronic load will sink a constant current, regardless of the voltage at its terminals. In CV mode, the electronic load will cause a constant voltage to appear at its terminals. In CR mode, the electronic load will behave as a fixed resistance value. As shown in the figure, the electronic load will linearly change the current according to the input voltage. In CP mode, the electronic load will cause a constant power to be dissipated in the load.

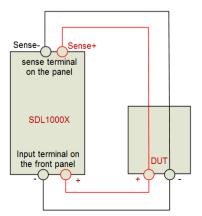
• Dynamic test mode up to 25 kHz (CC)


The transient test allows switching between two different load values. A common application is to test the dynamic characteristics of a DC source or DUT (Device Under Test). The transient test function enables the load to periodically switch between two set levels (Level A and Level B). The highest frequency can be set to 25 kHz in CC mode. The highest frequency can be set to 12.5 kHz in CP modes.

• Simplify complex sequencing using the list operation function

You can generate complex load sequences quickly using the list operation function. Here, you can edit the setpoints, dwell time, and slew rate for each step in the test. *Slew rate can only be edited in CC mode.

List



2A 000 9.76 W 2.438 Ω t2 t3 t4 t5 t1 3 4 Step 2 2.000 Set (A) 2.0002.000 2.000 Time (s) 1.000 1.000 1.000 1.000 Slo(A/us) 0.100 0.100 0.100 0.100 Function I_Range V_Range Page 1/2 ISOV CC ▶ 30A

LOAD SHORT Sense

• 4-wire SENSE compensation mode function

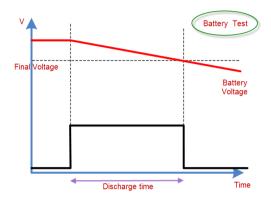
In CC/CV/CR/CW mode, when a load is connected to a power supply, it will cause a large voltage-drop on the connection lines between tested instrument and terminals of load. Using remote sense, you can measure the voltage at the DUTs input terminals, effectively removing the additional error due to the voltage drop in the connection wires.


• Program function

In program (auto-test) mode, you can generate a sequence of tests using different modes, mode parameters and durations. This function is useful for automatically executing a set of tests on a device then display whether the tests passed or failed. Test results are easily viewed by pressing the up and down buttons. The load provides 8 nonvolatile registers to save auto-test file for recall later. Each file contains 1-50 steps to set up. Auto-test function is especially useful in the designing battery charging circuitry.

PROG	LOAD	SH	ORT	Sei	nse					윦
4.9	303 V	4.9	999	5 A	24.0	65 N	N	0.9	86 Ω	
step				2	3		4		5	
mode	+ O		C	C	CC		CC)	CC	-)
Irange	+ 30	A	- 30)A	304	١.	30.	д	30A	-)
Vrange	÷ 150	W.	15	0V	150'	V	150	V.	150V	-)
paus	< OF		0	FF	OFF		OF	F	OFF	-)
short	< OF		0	FF	OFF		OF	F	OFF	-)
Ton	€ 10.0	00s	1.0	00s	1.00)s	1.00	IOs 🛛	1.000s	-)
Toff	÷ 1.00)0s	1.0	00s	1.00)s	1.00	IOs 🛛	1.000s	-)
Tdly	÷ 1.00)0s	1.0	00s	1.00)s	1.00	IOs 🛛	1.000s	-)
_										
Step	s	toraq	е	т	riq				Resul	t
5		.0.49	Ŭ		.9				1.000	•

• OCPT/OPPT Mode


Over-current protection (OCPT) mode prevents drawing too much current from the DUT. After the input voltage reaches the Von point, the DC load will start to draw a current from the source after a delay time. The current value will increase by a certain step size at regular intervals. Simultaneously, the DC load will compare the input voltage to the OCP voltage:If it is lower, then the present current value will be compared to see if it is in the current range you have set. Within the range, the OCP test will evaluate Pass or Fail. If it is outside of the set range, the DC load will to increase drawing current and compare the voltage again.

Overpower-protection (OPPT) mode: When the input voltage has reached the Von point, the load will draw power after a delay time. The power value will increase by a step size at regular intervals. Simultaneously, the DC load will judge whether the input voltage is lower than OPP voltage you have set, if it is, then the present current value will be compared to see if it is in the current range you have set. Within the range, the OPP test will Pass or Fail. If it is outside of the set power, the load will continue to increase the power draw within the cut-off current range and compare OPP voltage with the input.

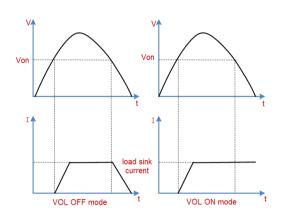
• Battery discharge function

The SDL1000X can also provide insight into battery performance by analyzing the discharge characteristics of the DUT. The SDL features three stop conditions for the discharge test: Voltage, capacity or time. The discharge process is immediately terminated if the stop conditions are met. This provides more control over the test termination and an extra layer of safety during critical tests. Throughout the test process the battery voltage, discharge current, discharge time and discharged capability is displayed clearly on the LCD panel.

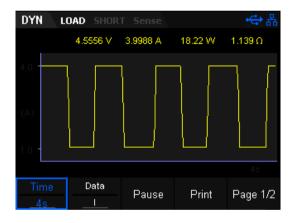
• CR-LED Mode

The SDL1000X includes a CR-LED mode specifically for LED driver testing. Basing on the traditional CR mode, CR-LED mode adds a diode breakover voltage setting. When the input voltage is above this set value, the DC load start to work. Thus, it can emulate the actual characteristics of an LED.

DC Electronic Load


• Voltage Rise/Fall speed test

The electronic load is also equipped to directly measure voltage rise and fall times. It can calculate the time from one voltage to another without the need for additional measurement instrumentation. With an SDL1000X, you can save money and improve efficiency.


• Voltage threshold function

The SDL1000X can be set to turn on or off if the input voltage is at, above, or below a set value. By defining these thresholds, you control when the load is active. Which minimizes test time and increases safety.

• Waveform trend chart function

The electronic load includes a waveform display function and supports the following operations for the waveform: Pause, recording, and capturing the waveform. You can quickly observe the trends of parameter changes as they occur throughout the test.

• External analog control

The load allows the user to control current or voltage through external analog terminals (EXT PRG). Input a 0-10 V analog to adjust 0-100% rated voltage and current. It is very useful for those applications that need to change the input value with external signals.

• Save/Recall setting parameters

The load allows you to save different types of files to the internal and external memories. You can recall and read them when necessary.

• Multiple protection modes

The SDL1000X series Programmable DC Electronic Load provides five protection types: OVP, OCP, OPP, OTP and LRV. When OVP/OCP/OPP/ OTP/reverse voltage protection (LRV) occurs, the load will immediately turn off the input and stop sinking. Then, a prompt message is displayed.

SDM3065X Digital Multimeter

Application

- Research Laboratory
- Development Laboratory
- Detection and Maintenance
- Calibration Laboratory
- Automatic Production Test

Main Feature (SDM3065X/SDM3065X-SC)

- 4.3" TFT-LCD, 480*272
- Real 61/2 digits readings resolution (2,200,000 counts)
- 1Gb Nand flash size, Mass storage configuration files and data files
- True-RMS AC Voltage and AC Current measuring
- Supports double display, Chinese and English Menu
- File management (support for U-disc and local storage)
- Built-in cold terminal compensation for thermocouple
- Comes with easy, converient and flexble any sensor measurement control software: EasyDMM
- Standard interfaces: USB Device, USB Host, LAN (Optional Accessories: USB- GPIB Adapter)
- Scanner Card SC1016 (Only for SDM3065X-SC)
- Built-in Hlep system makes information acquisition easier
- Support remote control operation via SCPI commands. Compatible with commands of other main stream multimeters
- Supports intelligent management system for laboratory based on BS framework and LAN

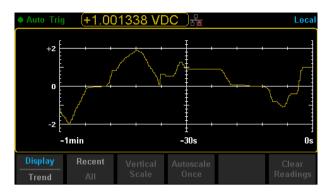
Digital Multimeter

Special Features

• Histogram

• "Analog" Bar Display

Auto Trig	B <mark>≊</mark>	Local
DC Voltage		
+2.1	199047	VDC
	Manual 2V	
-2	0	+2
Display Horizonta	al l	
Bar Scale		


• Dual Measurement Display

dBm Hold Measurement

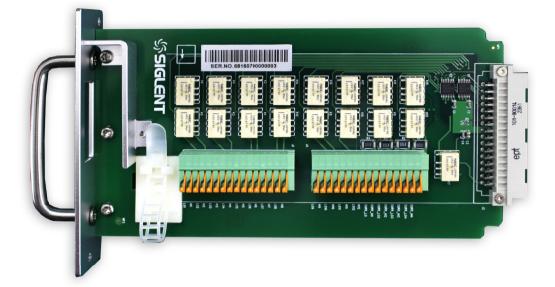
* Auto Trig		Local
DC Voltage		
7	3.51	dBm
	Manual 2V 60 <mark>1</mark> Ω	
dB /dBmFunctionOnOffdB dBm	Ref R	Done

• Trend Chart

• Statistics

• Auto Trig	₽	Loca
DC Voltage ^{Manual} 2v + 2	.19898	35 VDC
Min: -1.922663	Average: +1.296304	Max: +2.258248
Span: +4.180911	Std dev: +0.7040476	Samples: 2.802k
Low Limit: -1.000000	High Limit: +3.000000	Status: Pass
Low Failures: 0	High Failures:26	
Statistics Limits	dB /dBm Value Off	

• Hold Measurement


• Probe Hold			Local
DC Voltage	2.1	02183	VDC
Live: +2.102183	VDC		
1: +1.826254	VDC	5: +2.039982	VDC
2: +1.845059	VDC	6: +2.061850	VDC
3: +1.952317	VDC	7: +2.083752	VDC
4: +1.968185	VDC	8: +2.102522	VDC
Probe Hold Bee On Off On	per Off		ear ist

• Interface

Scanner card SC1016 (Only for SDM3065X-SC)

The SIGLENT Scanner Card SC1016 is a multiplexer that provides multi-point measurement capabilities to the SDM3065X-SC. The scanner features 12 multi-purpose + 4 current channels and supports the following measurement functions: DCV, ACV, DCI, ACI, 2WR, 4WR, CAP, FREQ, DIODE, CONT and TEMP (RTD and Thermocouple). It provides a convenient and versatile solution for test applications that require multiple measurement points or signals and is an ideal tool for R&D burn-in and production testing.

Ordering Information

Standard Accessories	
Power Cord -1	
USB Cable -1	
Quick Start -1	
warranty Card -1	
EasyDMM ^[1]	software
Test Leads and Alligator Clips -2	
Optional Accessories	
USB-GPIB	USB-GPIB adapter

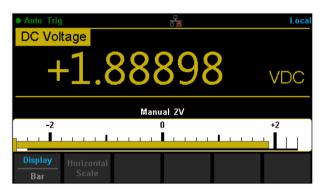
[1]The latest version of EasyDMM can be downloaded for free from the SDM3000 series of digital multimeter. Please see our web site at www. siglent.com for more information.

SDM3055 Digital Multimeter

Application

- Research & Development Laboratory
- Detection and Maintenance
- Calibration Laboratory
- Automatic Production Test

Main Features (SDM3055/SDM3055-SC)

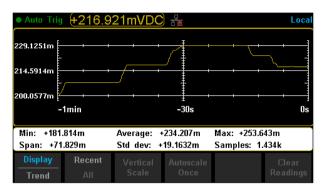

- Real 51/2 digits readings resolution (240,000 counts)
- Up to 150 rdgs/s measurement speed
- True-RMS AC Voltage and AC Current measuring
- 1 Gb Nand flash size, Mass storage configuration files and data files
- Built-in cold terminal compensation for thermocouple temperature measurements
- With easy, convenient and flexible PC software: EasyDMM
- standard interfaces: USB Host, LAN (Optional Accessories USB-GPIB Adapter)
- Scanner Card SC1016 (Only for SDM3055-SC)
- Support remote control operation via SCPI commands.Compatible with commands of main stream multimeters

Special Features

• Histogram

• Auto Tr	ig (+0.253)	<u>63 VDC)</u>			Local
30.6% 72					
Total 235					-
#Bin 20					
	+181.615m		+217.629m		+253.643m
Display Histogram	Binning Auto			Cumulative	Clear Readings

• Bar Chart


• Dual Display

Auto Trig		Dual	Local
DC Voltage			
+2	.3965	3	VDC
	Manual 2V	Dual: +095.	389mADC
Range 2V	Input Z 10M 10G	-	Rel On Off

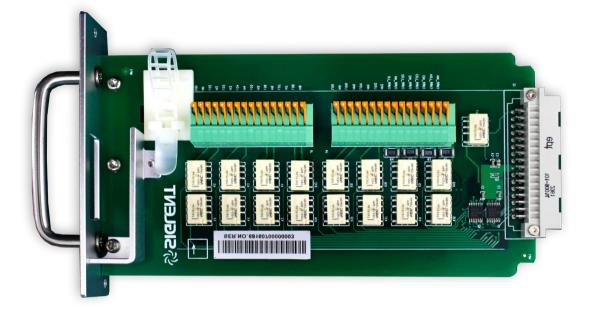
• dBm Hold Measurement

• Trend Chart

• Statistics

• Auto Trig	± ₽	Loca
DC Voltage ^{Manual} 2v + ().9887	5 VDC
Min: +0.88897 Span: +1.00008	Average: +1.40896 Std dev: +0.452430	Max: +1.88904 Samples: 380
Low Limit: -1.00000 Low Failures: 0	High Limit: +1.00000 High Failures: 132	Status: Pass
Show Hide		Clear Done Readings

• Hold Measurement


• Probe Hold			Dual Loca
DC Voltage	•		
Auto 2V -	+2.01	L332	VDC
Live: +2.01332	VDC		
1: +1.88901	VDC	5: +03.2124	VDC
2: +02.4262	VDC	6: +2.21013	VDC
3: +07.1979	VDC	7: +2.11151	VDC
4: +05.2067	VDC	8: +2.01354	VDC
Probe Hold Be	eper Off		lear List

• Interface

Scanner card SC1016 (Only for SDM3055-SC)

The SIGLENT Scanner Card SC1016 is a multiplexer that provides multi-point measurement capabilities to the SDM3055-SC. The scanner features 12 multi-purpose + 4 current channels and supports the following measurement functions: DCV, ACV, DCI, ACI, 2WR, 4WR, CAP, FREQ, DIODE, CONT and TEMP (RTD and Thermocouple). It provides a convenient and versatile solution for test applications that require multiple measurement points or signals and is an ideal tool for R&D burn-in and production testing.

Ordering Information

Standard Accessories	
Power Cord -1	
USB Cable -1	
Quick Start -1	
warranty Card -1	
EasyDMM ^[1]	software
Test Leads and Alligator Clips -2	
Optional Accessories	
USB-GPIB	USB-GPIB adapter

[1]The latest version of EasyDMM can be downloaded for free from the SDM3000 series of digital multimeter. Please see our web site at www. siglent.com for more information.

SDM3045X Digital Multimeter

Application

- Research Laboratory
- Development Laboratory
- Detection and Maintenance
- Calibration Laboratory
- Automatic Production Test

Main Features SDM3045X

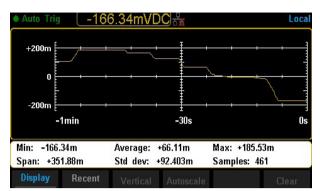
- Real 41/2 digit (60000 count) readings resolution
- Up to 150 rdgs/s measurement speed
- True-RMS AC Voltage and AC Current measuring
- 1 Gb NAND flash size, Mass storage configuration files and data files
- Built-in cold terminal compensation for thermocouple
- With easy, convenient and flexible PC software: EasyDMM
- Standard interface: USB Device, USB Host, LAN (Optioanal Accessories: USB-GPIB Adapter)
- USB & LAN remote interfaces support common SCPI command set. Compatible with other popular DMMs on the market

Special Features

• Histogram

• Bar Chart

Auto Trig			다. 다	Local
DC Vol	age			
	+6.	00	00	VDC
		Manu	al 6V	
-6		()	+6
Display				
Bar	Scale			


• Dual Display

• dBm Hold Measurement

• Trend Chart

• Statistics

Auto Trig				Local	
DC Voltage Manual 6V	5.9	998)	VDC	
Min: -0.0018 Span: overloadV	Average: Std dev:	overload V overload V	Max: Samples	overload V : 2.444k	
Low Limit: -1.0000 Low Failures: 0	High Limit High Failu		Status:	Pass	
Statistics Show Hide			Clear Reading	gs Done	

• Hold Measurement

Single Trig				Dual	Local
DC Voltage Auto 6V		.19	953		VDC
Live: +1.1953	VDC				
1: +2.0006	VDC		5: +2.1936	VDC	
2: +2.0997	VDC		6: +5.2312	VDC	
3: +1.6055	VDC		7: +07.242	VDC	
4: +3.2351	VDC		8: +1.1954	VDC	
Probe Hold Be	eper Off		(Clear List	

• Interface

Ordering Information

Standard Accessories				
Power Cord -1				
USB Cable -1				
Quick Start -1				
warranty Card -1				
EasyDMM ^[1]	software system			
Test Leads and Alligator Clips -2				
Optional Accessories				
USB-GPIB adapter	USB-GPIB			

[1] The latest version of EasyDMM can be downloaded for free from the SDM3000 series of digital multimeter. Please see our web site at www. siglent.com for more information.

Туре	Model	Picture	Specifications
Passive Probe	PB470 PP510 PP215		PB470, 70 MHz bandwidth PP510, 100 MHz bandwidth PP215, 200 MHz bandwidth 1 X/10 X decay, 1 M/10 Mohm, 300 V/600 V
	PB925		Bandwidth 250 MHz, fixed 10X decay, the rise time of about 1.2 ns, input capacitance: 16 pF, compensation range: 10 pF-35 pF, input impedance 10 M Ω , length 120 cm, safe voltage levels: CAT II 1000 V, CAT III 600 V
	SAP1000	6	Bandwidth(-3dB) 1GHz, input capacitance 1.2 pF, input impedance $1M\Omega$, DC bias range ±12V, probe attenuation factor ÷10, DC bias accuracy <3%, DC gain accuracy <3%, input dynamic range ±8V, non-destructiv voltage range 20 V, length 130 cm
Active Probe	SAP2500		Bandwidth(-3dB) 2.5 GHz, input capacitance 1.1 pF, input impedance $1M\Omega$, DC bias range ±12V, probe attenuation factor ÷10, DC bias accuracy <3%, DC gain accuracy <3%, input dynamic range ±8V, non-destructiv voltage range 20 V, length 130 cm
	SAP2500D		Bandwidth(-3dB) 2.5 GHz, input capacitance 1.0 pF, input impedance 200 kohm(Diff), 100 kohm(Single ended), 50 khom(Comm mode), DC bias range ± 8 V, probe attenuation factor $\div 10$, DC bias accuracy <3%, DC gain accuracy <3%, input dynamic range ± 8 V, differential input dynamic range ± 4 V, common mode input range ± 10 V, non-destructiv voltage range 20 V, length 130 cm
	CPL5100		Bandwidth: DC-600 kHz; Current range L, H; Maximum operation current 10 A(L)/ 100 A(H); Max operation voltage 600 V ; DC Accuracy: $3\%\pm50$ mA (L) ; 1500 mA~40 A Peak: $4\%\pm50$ mA; 40 A~100 A Peak: $\pm15\%$ Maximum (H); 9 V alkaline layer-built battery/ 15 H
	CP4020		Bandwidth : 100 KHz; Maximum continuous current 20 Arms; Peak current 60 A; Switching ratio: 50 mV/A; 5 mV/A; DC measurement accuracy: 50 mV/A (0.4 A-10 ApK) ± 2%; 5 mV/A (1 A-60 ApK)±2%; 9 V battery-powered
Current Purcha	CP4050		Bandwidth: 1 MHz; Maximum continuous current 50 Arms; Peak current 140 A; Switching ratio: 500 mV/A; 50 mV/A; DC measurement accuracy: 500 mV/A (20 mA-14 ApK) ±3%±20 mA; 50 mV/A (200 mA-100 ApK)±4%± 200 mA; 50 mV/A (100 A-140 ApK)±15% max; 9V battery-powered
Current Probe	CP4070		Bandwidth: 150 KHz; Maximum continuous current 70 Arms; Peak current 200 A; Switching ratio: 50 mV/A; 5 mV/A; DC measurement accuracy: 50 mV/A (0.4 A-10 ApK) ±2%, 5 mV/A (1 A-200 ApK)±2%;9 V battery-powered
	CP4070A		Bandwidth: 300 KHz; Maximum continuous current 70 Arms; Peak current 200 A;Switching ratio: 100 mV/A;10 mV/A; DC measurement accuracy: 100 mV/A (50 mA-10 ApK) ±3%±50 mA; 10 mV/A (500 mA-40 ApK) ±4%±50 mA; 10 mV/A (40 A-200 ApK) ±15% max; 9 V battery-powered
	CP5030		Bandwidth: 50 MHz; Maximum continuous current 30 Arms; Peak current 50 A; Switching ratio: 100 mV/A; 1 V/A; AC/DC measurement accuracy: 1 A (±1%±1 mA); 100 mV/A (±1%±10 mA); Standard DC 12 V/1.2 A power adapter

Туре	Model	Picture	Specifications
	CP5030A		Bandwidth: 100 MHz; Maximum continuous current 30 Arms; Peak current 50 A; Switching ratio: 100 mV/A; 1 V/A; AC/DC measurement accuracy: 1 A (±1%±1 mA); 100 mV/A (±1%±10 mA); Standard DC 12 V/ 1.2 A power adapter
Current Probe	CP5150		Bandwidth: 12 MHz; Maximum continuous current 150 Arms; Peak current 300 A; Switching ratio: 100 mV/A; 1 V/A; AC/DC measurement accuracy: 100 mV/A(±1% ±1 mA); 10 mV/A (±1% ±10 mA); Standard DC 12 V/1.2 A power adapter
	CP5500		Bandwidth: 5 MHz; Maximum continuous current 500 Arms; Peak current 750 A; Switching ratio: 100 mV/A; 10 mV/A; AC/DC measurement accuracy: 100 mV/A (±1% ±1 mA); 10 mV/A (±1% ±10 mA); Standard DC 12 V/1.2 A power adapter
	DPB1300		Bandwidth: DC-50 MHz, Rise time \leq 7 ns; DC Accuracy ±2%; Attenuation Ratio 50 X/500 X; Max Differential Test Voltage (DC + Peak AC) 50 X: ±130 V, 500 X:±1300 V; DC 12 V/1.2 A Power
	DPB4080		Bandwidth: 50 MHz; Maximum input differential voltage 800 V (DC + Peak AC); Range selection (attenuation ratio):10 X/100 X; Accuracy: \pm 1%; Standard DC 9 V/1 A power adapter
High Voltage	DPB5150		Bandwidth: 70 MHz; Maximum input differential voltage 1500 V (DC + Peak AC); Range selection (attenuation ratio): 50 X/500 X; Accuracy: ±2%; Standard 5 V/ 1 A USB power adapter
Differential Probe	DPB5150A		Bandwidth: 100 MHz; Maximum input differential voltage 1500 V (DC + Peak AC); Range selection (attenuation ratio): 50 X/500 X; Accuracy: $\pm 2\%$; Standard 5 V/ 1 A USB power adapter
	DPB5700		Bandwidth: 70 MHz; Maximum input differential voltage 7000 V (DC + Peak AC); Range selection (attenuation ratio): 100 X/1000 X; Accuracy: ±2%; Standard 5 V/1 A USB power adapter
	DPB5700A		Bandwidth: 100 MHz; Maximum input differential voltage 7000 V (DC + Peak AC);Range selection (attenuation ratio): 100 X/1000 X; Accuracy: ±2%; Standard 5 V/1 A USB power adapter
High Voltage Probe	HPB4010		Bandwidth: 40 MHz; Maximum measurement voltage DC: 10 KV; AC(rms): 7 KV (sine); AC (Vpp): 20 KV (Pulse); attenuation ratio1:1000; Accuracy: ≤3%

Туре	Model	Picture	Specifications
	SPL1016		Logic Probe for SDS1000X+ series, 16-channel, 500 MSa/s
Logic Probe	SLA1016		16 logic analyzer hardware module, suitable for SDS1000X-E 4 channel series and SDS2000X-E series oscilloscope
	SPL2016		Logic Probe for SDS2000X, SDS2000X Plus and SDS5000X series, 16-channel, 500 MSa/s
Near-field Probe	SRF5030T		Near Field Probe: H field probe sets (20 mm, 10 mm, 5 mm) , E field probe (5 mm), 300 kHz~3.0 GHz; distinguished within 10 cm range of the magnetic field; for EMI radiation interference and the intensity detector
Isolated Front End	ISFE		Realize isolation among ordinary oscilloscope channels, isolation between the measured signal and ground, use USB 5 V power supply, plug and play, the maximum input voltage of up to \pm 600 Vpk
GPIB	USB-GPIB		The USB Device interface extends into the GPIB interface, USB-GPIB adapter can more easily complete the task of the operation command through the GPIB, USB follow the USB2.0 specification, GPIB follow the IEEE488.2 standard
Demo Board (STB Test Board)	STB3		Output signals include square waves, sine, AM, pulse, PWM, fast edge, I2C, CAN, LIN signal etc
Deskew Fixture	DF2001A		Supporting power analysis software for calibration phase voltage and current probes generated during transmission
Cable	N-BNC-2L		N-BNC cable for SSA3000X Series; 2 GHz bandwidth

Туре	Model	Picture	Specifications	
Cable	N-N-6L		N-N cable for SSA3000X, SSA3000X Plus, SSA3000X-R, SVA1000X Series; 6 GHz bandwidth	
	N-N-18L	\bigcirc	N(M)-N(M) cable for SSA3000X, SSA3000X Plus, SSA3000X-R, SVA1000X series, 100cm, 18 GHz bandwidth	
	N-SMA-18L	\bigcirc	N(M)-SMA(M) cable for SSA3000X, SSA3000X Plus, SSA3000X-R, SVA1000X series, 100cm, 18 GHz bandwidth	
	N-SMA-6L		N-SMA cable for SSA3000X, SSA3000X Plus, SSA3000X-R, SVA1000X Series; 6 GHz bandwidth	
Reflection Bridge	RB3X25		VSWR bridge: (1 MHz~2.5 GHz), N (M) -N (M) adaptor (2 pcs)	
SSA3000X Utility Kit	UKitSSA3X		Utility Kit for SSA3000X Series: N (M) -SMA (M) cable, N (M) -N (M) cable, N (M) -BNC (F) adaptor (2 pcs), N (M) -SMA (F) adaptor (2 pcs), 10 dB attenuator	
WIFI Adapter	TL_WN725N	States	usb-wifi adapter, suitable for SDS1000X-E 4 channel series oscilloscope	
USB AWG Module	SAG1021I	SAG18211 min orana Sagana ana ang sagana sagan	Output Sine, Square, Ramp, pulse, Noise, DC and 45 built-in waveforms. The arbitrary waveforms can be accessed and edited by the EasyWave PC software. Isolated voltage ±42 Vpk.	
Rack Mount	SDS1X-E-RMK		The height is 4U, suitable for SDS1000X-E oscilloscope	
	SDG-RMK		Single instrument rack mount kit 19" shelf design is compatible with the SDG800, SDG1000, SDG1000X, SDG2000X, SDG6000X, and SDG5000 series function generators as well as the SDM3000 series of DMMs	
	SDG-2-RMK		Rackmount kit for two intruments , compatible with the SDG800, SDG1000, SDG1000X, SDG2000X, SDG5000 and SDG6000X series function generator and SDM3045X, SDM3055, SDM3065X digital multimeter	

Туре	Model	Picture	Specifications	
Rack Mount	SSA-RMK		Single instrument rack mount kit for SSA3000X, SVA1000X series	
	SPD3000-RMK		Compatible with SPD3000X / X-E / D / S / C models.4U rack height	
	SDS2000-RMK		19" rack mount kit for a single SDS2000 or SDS2000X series oscilloscopes	
Amplifier	SPA1010		Increase the voltage and current output capabilities to generators like the SIGLENT SDG family. Typical Input Impedance: $15k\Omega$ Input: +/- 6.5V Vpp (Gain: X1) +/- 1.3 V (Gain: X10) Gain: Switched 10V/1V and 10V/10V Output Voltage: 25.4 Vpp Output Current: 1.12 A Slew Rate: \geq 90 V/µs Overshoot: \leq 4% Compatible with all SIGLENT SDG series generators	
Attenuator	ATT-20 dB	COD Harris	20dB attenuator	
Carry Bag	BAG-S1	O SIGOLAYY	Soft Carry Case for SDS1000DL+/CML+, SDS1000X, SDS1000X-E, SDS2000X-E Series	
	BAG-S2	SPRANT	Soft Carry Case for SDS2000X, SDS5000X, SSA3000X, SVA1000X, SSA3000X Plus	

Service Promise:

Since the date of purchase, we offer three year's warranty for the main unit:

- During the warranty period, if the products cause any hardware or software failure because of the quality, Siglent's after-sales service center or Siglent's designated maintenance points will offer the maintenance of the fault products for the user.
- Because of improper use or any other artificial reason, the damage won't be included in the free maintenance.

1. Extension after-sales service

Extension service is based on the main unit (not including accessories) as an object. During the extension service, Siglent still offer free maintenance after the standard warranty period.

1.1 Three advantages:

- Guarantee investment. To extend the life cycle of the products.
- Save money. To prevent the high cost of maintenance after the warranty period.
- Avoid the repeated investment. To prevent buying new equipments because it can't be repaired after the warranty period.

1.2 The content of the extension service

You can buy the following extension service according to your demand:

Solution	Viability	Instruction
ES4	One year after the warranty period	According to the service terms, Siglent will offer another one year for the after-sales maintenance service
ES5	Two years after the warranty period	According to the service terms, Siglent will offer another two years for the after-sales maintenance service

2. Calibration services

After long-term use, oscilloscope will cause the deviation of measured value and waveform display, because of its work temperature and humidity. Siglent will restore the original performance and accuracy of factory setting to calibrate the deviation.

- Eliminate the error of measurement
- Restore the original performance and accuracy of the factory setting to the "new" state
- The upgrade of the firmware and the software
- Make the instruments comply with the standard of the ISO9001 quality management process
- Traceable calibration certificates

About SIGLENT

SIGLENT is an international high-tech company, concentrating on R&D, sales, production and services of electronic test & measurement instruments.

SIGLENT first began developing digital oscilloscopes independently in 2002. After more than a decade of continuous development, SIGLENT has extended its product line to include digital oscilloscopes, function/arbitrary waveform generators, RF generators, digital multimeters, DC power supplies, spectrum analyzers, vector network analyzers, isolated handheld oscilloscopes, electronic load and other general purpose test instrumentation. Since its first oscilloscope, the ADS7000 series, was launched in 2005, SIGLENT has become the fastest growing manufacturer of digital oscilloscopes. We firmly believe that today SIGLENT is the best value in electronic test & measurement.

Headquarters:

SIGLENT Technologies Co., Ltd Add: Bldg No.4 & No.5, Antongda Industrial Zone, 3rd Liuxian Road, Bao'an District, Shenzhen, 518101, China Tel: + 86 755 3688 7876 Fax: + 86 755 3359 1582 Email: sales@siglent.com Website: int.siglent.com

USA:

SIGLENT Technologies America, Inc 6557 Cochran Rd Solon, Ohio 44139 Tel: 440-398-5800 Toll Free: 877-515-5551 Fax: 440-399-1211 Email: info@siglent.com Website: www.siglentna.com

Europe:

SIGLENT Technologies Germany GmbH Add: Staetzlinger Str. 70 86165 Augsburg, Germany Tel: +49(0)-821-666 0 111 0 Fax: +49(0)-821-666 0 111 22 Email: info-eu@siglent.com Website: www.siglenteu.com Follow us on Facebook: SiglentTech

