Three-phase electrical network analyser

Thank you for purchasing this CA 8345 three-phase power quality analyser.
For best results from your instrument:

- read these operating instructions carefully,
- comply with the precautions for use.

WARNING, risk of DANGER! The operator must refer to these instructions whenever this danger symbol appears.

WARNING, risk of electric shock. The voltage applied to parts marked with this symbol may be hazardous.

USB connector / USB drive.

Kensington anti-theft lock.

Ethernet connector (RJ45).
$\underset{=}{\perp}$ GND Earth.

Useful information or tip.
SD card.

Chauvin Arnoux has designed this instrument in the context of a global Eco-Design approach. A life cycle analysis was carried out to master and optimize the impact of this product on the environment. More precisely, the product exceeds the requirements of regulations as regards recycling and valuation.

The product is declared recyclable following an analysis of the life cycle in accordance with standard ISO 14040.
The CE marking certifies that the product is in compliance with the requirements applicable in the Union European, in particular as regards Low Voltage Directive 2014/35/EU, Electromagnetic Compatibility Directive 2014/30/EU, Radio Equipment Directive 2014/53/EU, and Restriction of Hazardous Substances Directives 2011/65/EU and 2015/863/EU.

The UKCA marking certifies that the product is in compliance with the requirements applicable in the United Kingdom as regards Low Voltage, Electromagnetic Compatibility, and Restriction of Hazardous Substances.

The rubbish bin with a line through it means that in the European Union, the product must undergo selective disposal in compliance with Directive WEEE 2012/19/UE.

Definition of measurement categories

- Measurement category IV corresponds to measurements taken at the source of low-voltage installations. Example: power feeders, counters and protection devices.
- Measurement category III corresponds to measurements on building installations. Example: distribution panel, circuit-breakers, machines or fixed industrial devices.
- Measurement category II corresponds to measurements taken on circuits directly connected to low-voltage installations. Example: power supply to electro-domestic devices and portable tools.

PRECAUTIONS FOR USE

This instrument is compliant with safety standard IEC/EN 61010-2-030 or BS EN 61010-2-030, the leads are compliant with IEC/ EN 61010-031 or BS EN 61010-031, and the current sensors are compliant with IEC/EN 61010-2-032 or BS EN 61010-2-032, for voltages up to 1000 V in category IV.

Failure to observe the precautions for use may create a risk of electric shock, fire, explosion, and/or destruction of the instrument and of the installations.

- The operator and/or the responsible authority must carefully read and clearly understand the various precautions to be taken in use. Sound knowledge and a keen awareness of electrical hazards are essential when using this instrument.
- If you use this instrument other than as specified, the protection it provides may be compromised, thereby endangering you.
- Do not use the instrument on networks of which the voltage or category exceeds those mentioned.
- Do not use the instrument if it seems to be damaged, incomplete, or poorly closed.
- Do not use the instrument without its battery.
- Before each use, check the condition of the insulation on the leads, housing, and accessories. Any item of which the insulation is deteriorated (even partially) must be set aside for repair or scrapping.
- Before using your instrument, check that it is perfectly dry. If it is wet, it must be thoroughly dried before it can be connected or used.
- Use only the leads and accessories supplied. The use of leads (or accessories) of a lower voltage or category limits the voltage or category of the combined instrument and leads (or accessories) to that of the leads (or accessories).
- Use personal protection equipment systematically.
- Keep your hands away from the terminals of the instrument.
- When handling the leads, test probes, and crocodile clips, keep your fingers behind the physical guard.

■ Use only the mains power unit and battery pack provided by the manufacturer. These items have specific safety devices.

- Some current sensors must not be placed on or removed from bare conductors at hazardous voltages: refer to the data sheet of the sensor and comply with the handling instructions.
- All troubleshooting and metrological checks must be performed by competent and accredited personnel.

CONTENTS

1. COMMISSIONING 5
1.1. Delivery condition 5
1.2. Accessories6
1.3. Spare 6
1.4. Charging the battery 7
1.5. Choice of language 7
2. DESCRIPTION OF THE INSTRUMENT 8
2.1. Functions8
2.2. Overall view 10
2.3. Measurement terminals 10
2.4. Connectors on side 11
2.5. Battery 11
2.6. Display unit 12
2.7. On/Off button 12
2.8. Keypad 13
2.9. Installation of the colour codes 14
2.10. Memory card 15
2.11. Prop 16
2.12. Magnetised hook (optional) 16
3. CONFIGURATION 17
3.1. Navigation 17
3.2. Users 17
3.3. Configuration of the instrument 18
3.4. Configuration of the measurements 24
4. USE 39
4.1. Starting up 39
4.2. Navigation. 39
4.3. Configuration 42
4.4. Connections 42
4.5. Functions of the instrument 44
4.6. Switching off 44
4.7. Safety status of the instrument 45
5. WAVEFORM 46
5.1. Display filter 46
5.2. RMS function 46
5.3. THD function 48
5.4. CF function 48
5.5. Min-Max function 48
5.6. Summary function 49
5.7. Phasor function 51
6. HARMONIC 53
6.1. Display filter 54
6.2. Examples of screens 54
7. POWER 57
7.1. Display filter 57
7.2. Examples of screens 57
8. ENERGY 59
8.1. Display filter 59
8.2. Examples of screens 59
9. TREND MODE 61
9.1. Start of a recording 61
9.2. List of recordings 62
9.3. Reading a recording 62
10. TRANSIENT MODE 65
10.1. Start of a recording 65
10.2. List of recordings 66
10.3. Reading a recording 66
11. INRUSH CURRENT MODE 69
11.1. Start of a capture 69
11.2. List of captures 70
11.3. Reading a capture 70
12. ALARM MODE 74
12.1. Start of an alarm campaign 74
12.2. List of alarm campaigns 75
12.3. Start of an alarm campaign 76
13. MONITORING MODE 77
13.1. Start of a monitoring campaign 77
13.2. List of monitoring campaigns 79
13.3. Reading a monitoring campaigns 80
14. SCREENSHOT 81
14.1. Screenshot 81
14.2. Management of screenshots 81
15. HELP 83
16. APPLICATION SOFTWARE 84
16.1. Obtain the PAT3 software 84
17. TECHNICAL SPECIFICATIONS 85
17.1. Reference conditions 85
17.2. Electrical specifications 86
17.3. Memory card 97
17.4. Power supply 98
17.5. Display unit 99
17.6. Environmental conditions 99
17.7. Mechanical specifications 99
17.8. Compliance with international standards 100
17.9. Electromagnetic compatibility (EMC) 102
17.10. Radio emissions 102
17.11. GPL code 102
18. MAINTENANCE 103
18.1. Cleaning the housing 103
18.2. Maintenance of the sensors 103
18.3. Replacement of the battery 103
18.4. Memory card 105
18.5. Updating the firmware 106
19. WARRANTY 108
20. APPENDICES 109
20.1. Notation 109
20.2. Formulas 109
20.3. Flicker 114
20.4. Sources of distribution supported by the instrument 114
20.5. Hysteresis 114
20.6. Minimum scale values of waveforms and minimum RMS values 115
20.7. Four-quadrant diagram 116
20.8. Transient capture triggering mechanism 116
20.9. Conditions of capture in inrush current mode 117
20.10. Possible causes for a stopped record 117
20.11. Glossary 118
20.12. Abbreviations 121

1. COMMISSIONING

1.1. DELIVERY CONDITION

Figure 1
(1) One CA 8345 with its battery, one SD card, and a protective film on the display unit.
(2) 5 black straight-straight banana-banana safety leads attached with a Velcro tie.
(3) 5 black crocodile clips.
(4) 5 cable reels
(5) One hand strap.
(6) One USB A-B cord.
(7) One specific mains power unit with mains cord, PA40W-2 or PA32ER depending on the order.
(8) 12 sets of inserts and rings to mark the current leads and sensors according to their phases.
(9) One carrying bag.
(10) One carrying bag for the instrument.
(11) One multilingual safety data sheet
(12) One test report.
(13) One multilingual quick start guide

1.2. ACCESSORIES

- Three-phase 5 A adapter
- Essailec® ${ }^{\circledR}$ A three-phase adapter

[1] [i]
- MN93 clamp
- MN93A clamp
- AmpFlex ${ }^{\circledR}$ A193 450 mm
- AmpFlex ${ }^{\circledR}$ A193 800 mm

- C193 clamp

- MiniFlex MA194 250 mm
- MiniFlex MA194 350 mm
- MiniFlex MA194 1000 mm

- E3N MINI94

- E94 clamp

- J93 clamp

- Functional earth USB cable

- Charging dock for the battery
- Hand strap for the instrument

- Data View Software

1.3. SPARE

- Li-ion battery, $10.8 \mathrm{~V}, 5800 \mathrm{mAh}$
- USB-A USB-B cord
- One PA40W-2 specific mains power unit with mains cord
- One PA32ER power supply unit per phase
- SDHC card, 16 GB
- No. 22 carrying case
- No. 21 carrying case

- Magnetized hook

- Set of 5 black straight-straight banana-banana safety cables, 5 crocodile clips, and 12 inserts and rings to identify the phases, the voltage leads, and the current sensors

- Set of inserts and rings to identify the phases, the voltage leads, and the current sensors
- Adapter, C8 jack to 2 banana jacks
- 5 cable reels

For accessories and spares, check out our Web site: www.chauvin-arnoux.com

1.4. CHARGING THE BATTERY

Before the first use, start by fully charging the battery.
■ Remove the plastic film that prevents connecting the battery to the instrument. For this, refer to § 18.3, which explains how to remove the battery from the instrument.

- Connect the mains cord to the power supply unit and to mains.
- Open the elastomer hatch protecting the mains power socket and connect the special 4-point connector of the power supply unit to the instrument.
The $\bigcup^{(1)}$ button blinks and the display unit indicates the progress of charging. They will go off only when the battery is fully charged.

When the battery is completely discharged, the charging time is approximately 6 hours.

Figure 2

1.5. CHOICE OF LANGUAGE

Before using the instrument, start by choosing the display language.

Press the second yellow function key , then 电, to open the language menu. More than 20 languages are available, choose yours.

LANGUAGE		(0)	\square		15/04/21 10:55		品	
						R1		
Oar	Ocs		Oda	Ode	Oen-Gb	Oes-Es		Otr-FR
Oni	Oit	Oko	Onl	Ono	Opl	Opt-PT	Oro	
Oru	Osv	Oth	Otr	Ovi	Ozh-Cn			

Figure 3

2. DESCRIPTION OF THE INSTRUMENT

2.1. FUNCTIONS

The CA 8345 is a portable three-phase power quality analyser with built-in rechargeable battery. It has been certified to comply with IEC 61000-4-30 edition 3, Amendment 1 (2021) in class A requirements. The certificate can be viewed on our website: www.chauvin-arnoux.com.

The CA 8345 is used:

- to measure the RMS values, powers, and disturbances of power distribution networks.
- to take a snapshot of the main specifications of a three-phase network.
- to track variations of the different parameters over time.

The measurement uncertainty of the instrument is better than 0.1% for voltage measurements and 1% for current measurements.
The instrument provides a large choice of current sensors, for measurements from a few milliamperes up to several kiloamperes.
The instrument is compact and impact-resistant.
The ergonomics and simplicity of its user interface make it a pleasure to use. The CA 8345 has a large colour touch screen graphic display unit. It can also manage 3 user profiles.

The SD card can store a large quantity of measurements and photographs, which can be read directly on a PC. It is also possible to use a USB drive (optional).

The instrument can communicate by USB, wifi, or Ethernet.
The instrument has a remote user interface (VNC) allowing remote control from a PC, a tablet, or a smartphone.
The PAT3 application software processes the recorded data and generates reports.

2.1.1. RECORDING FUNCTIONS

These serve to make the following measurements and calculations:

- Measurement of the RMS values of AC voltages up to 1000 V between terminals. Using ratios, the instrument can reach hundreds of gigavolts.
- Measurement of the RMS values of AC currents up to 10,000 A (neutral included). Using ratios, the instrument can reach hundreds of kiloamperes.
- Automatic detection of the type of current sensor and powering of the sensor if necessary.
- Measurement of the DC component of voltages and currents (neutral included).
- Calculation of direct, inverse, and zero sequence voltage/ current unbalances.
- Measurement of inrush current, for motor start-up.
- Measurement of peak values of voltages and currents (neutral included).
- Measurement of the frequency of $50-\mathrm{Hz}$ and $60-\mathrm{Hz}$ networks.
- Measurement of the current and voltage crest factors (neutral included).
- Calculation of the harmonic loss factor (FHL), range of application transformers in the presence of harmonic currents.
- Calculation of the K factor (FK), range of application transformers in the presence of harmonic currents.
- 40 alarms per user profile.
- Log of events such as voltage dips, voltage swells, interruptions, transients, rapid voltage changes (RVC), and synchronisation.
- Measurement of the total harmonic distortion of currents and of voltages (except for neutral) referred to the fundamental (THD in \%f).
- Measurement of the total harmonic distortion of currents and of voltages (neutral included) referred to the AC RMS value (THD in \%r)
- Measurement of active, reactive (capacitive and inductive), non-active, distorting, and apparent power, per phase and total (except for neutral).
- Measurement of the power factor (PF) and of the displacement factor (DPF or $\cos \varphi)$ (except for neutral).
- Measurement of the distorting RMS value (d) for currents and voltages (except for neutral).
- Measurement of the short-term flicker of voltages $\left(P_{s t}\right)$ (except for neutral).
- Measurement of the long-term flicker of voltages $\left(\mathrm{P}_{\mathrm{tt}}\right)$ (except for neutral).
- Measurement of active, reactive (capacitive and inductive), non-active, distorting, and apparent energy, per phase and total (except for neutral).
- Valuation of the energy directly in currency ($€, \$$, £, etc.), with a basic rate and 8 special rates.
- Measurement of current and voltage harmonics (neutral included) up to order 63: RMS value, percentages referred to the fundamental (\%f) (except for neutral) or to the total RMS value (\%r), minimum and maximum and harmonic sequence level.
- Measurement of apparent harmonic power (except for neutral) up to order 63: percentages referred to the fundamental apparent power (\%f) or to the total apparent power (\%r), minimum and maximum of the level of each order.
- Measurement of current and voltage inter-harmonics (neutral included) up to order 62.
- Synchronisation with UTC time, with a choice of time zone.
- Monitoring mode, used to check the compliance of the voltages.
- Measurement of signaling frequency levels (PLC or Power Line Carrier) on the mains (MSV = Mains Signaling Voltage).

2.1.2. DISPLAY FUNCTIONS

- Display of waveforms (voltages and currents).
- Bargraphs of voltage and current harmonics.
- Screenshots.
- Display of information about the instrument: serial number, software version, MAC, Ethernet, and wifi addresses, etc.
- Display of recordings: trend, alarm, transients, and inrush current.

2.1.3. MEASUREMENT FUNCTIONS

- Trend recording function with time-stamping and programming of the beginning and end of a record. Representation, in the form of barcharts or curves, of the mean values of many parameters as a function of time, with or without the MIN-MAX. 4 configurations per user profile.
- Transients function. Detection and transient recording (up to 1000 per record) for a chosen duration and on a chosen date (programming of the beginning and end of the transient recording). Recording of 4 complete cycles (one before the event triggering the transient and three after) in the 8 acquisition channels.
Possibility of capturing shock waves up to 12 kV over a duration of 1 ms .
- Alarm function: List of alarms recorded (20,000 alarms at most) as a function of the thresholds programmed in the configuration menu. Programming of the beginning and end of monitoring of an alarm. 40 alarms per user profile.
- Inrush current function: display of parameters useful for studying motor start-up
- Instantaneous value of the current and voltage at the instant designated by the cursor.
- Absolute maximum instantaneous current and voltage (over the entire starting event).
- RMS current and voltage (without neutral) of the half-cycle (or lobe) on which the cursor is placed.
- Maximum half-cycle RMS current and voltage (over the entire starting event).
- Instantaneous network frequency at the instant designated by the cursor.
- Maximum, mean, and minimum instantaneous network frequency (over the entire starting event).
- Time at which motor start-up begins.
- Monitoring function: trend, transient and alarm recording.

2.1.4. CONFIGURATION FUNCTIONS

- Setting the date and time
- Brightness adjustment.
- Choice of colours of the curves.
- Management of screen auto-off.
- Choice of night mode display.
- Choice of language.
- Choice of calculation methods: non-active quantities broken down or not, choice of the unit of energy, choice of coefficients for the calculation of the K factor, choice of reference for levels of harmonics, calculation of PLT (sliding window or not).
- Choice of distribution system (single-phase, two-phase, three-phase with or without measurement of neutral) and connection method (standard, 2 elements or $21 / 2$ elements).
- Configuration of recordings, of alarms, of inrush currents, and of transients.
- Erasure of the data (total or partial).
- Display of current sensors: detected, not detected, not managed, simulated, or impossible to simulate (2-element connection method). Adjustment of voltage and current ratios, transduction ratios, and sensitivity.
- Configuration of communication links (wifi, Ethernet).

2.3. MEASUREMENT TERMINALS

4 current input terminals (for current sensors).
5 voltage input terminals.

Figure 5

2.4. CONNECTORS ON SIDE

Special 4-point connector for the mains power supply. This is used to charge the battery or operate the instrument on mains power.

2.5. BATTERY

The instrument can operate either on its own battery or on mains power. It can operate on the battery while the latter is being recharged. It must never be used without its battery, which contributes to the user's safety.

Battery charge level check light
IIIII Battery fully charged, or a new battery whose level is unknown.
$\boxed{\| I I}, \boxed{\|} \downarrow, \boxed{\square}, \square \square$ Battery charge level check light
\square Battery discharged. Charge completely in this case.
\square Battery charging: one bar blinks.
When the remaining charge of the battery is too low to ensure correct operation of the instrument, a message is displayed. If you do not connect the instrument to mains, it switches off a minute after the message.

2.6. DISPLAY UNIT

The CA 8345 has a large colour touch-screen display unit (WVGA).
Below, a typical screen.
The status bar at the top of the screen reports the status of the instrument.

Figure 7

2.7. ON/OFF BUTTON

Pressing the \cup^{\top} button switches the instrument on. The \bigcup^{\top} button blinks orange during starting up.
When the battery is charging, the \bigcup^{\prime} button blinks green. When it is lit steadily, the battery is fully charged.
If the instrument is cut off, suddenly (interruption of mains power when the battery is discharged) or automatically (battery low), an information message is displayed when it is next switched on.

Pressing the \bigcup^{\top} key again switches off the instrument. If the instrument is recording, metering energy (even if metering is suspended), recording transients or alarms, or capturing an inrush current, it requests confirmation.

If you confirm the Power-off command, the records are finalized and the instrument is switched off. Recording resumes automatically the next time the instrument is switched on.

If the instrument is connected to mains when switched off, it starts charging the battery.

If, exceptionally, the display freezes and the instrument can no longer be switched off by pressing the \bigcup^{\top} button, you can force it off by keeping the $\mathcal{\top}$ button pressed for 10 seconds. This may cause a loss of the recordings in progress on the SD card.

2.8. KEYPAD

2.8.1. MODE KEYS (PURPLE KEYS)

These 9 keys are used to access specific modes:

Key	Function	See
(0)	Waveform mode	§ 5
Her	Harmonic mode	§ 6
W	Power mode	§ 7
w_{n}	Energy mode	§ 8
-	Trend mode	§ 9
(a)	Transient mode	§ 10
(1)	Inrush current mode	§ 11
\triangle	Alarm mode	§ 12
國	Monitoring mode	§ 13

2.8.2. NAVIGATION KEYS

Key	
\square	Function
Δ	4 directional arrows.
\square	Validation key.
\square	Return key.

2.8.3. THE OTHER KEYS

The functions of the other keys on the keypad are as follows:

Key	Function	See
0	Configuration key.	$\S 4$
0	Screenshot.	$\S 14$
0	Help key.	$\S 15$

2.8.4. THE FUNCTION KEYS (8 YELLOW KEYS)

The functions of the yellow keys change according to the mode and the context.

2.9. INSTALLING COLOUR MARKERS

To identify the cords and the input terminals, you can mark them using the coloured markers provided with the instrument.

- Break off the sector and insert it in the two holes provided for this purpose near the terminal (the large one for the current terminal and the small one for the voltage terminal).

Figure 8

- Clip a ring of the same colour onto each end of the cord you are going to connect to the terminal. A set of 12 different coloured markers is available to match all standard phase/neutral colour codes.

2.10. MEMORY CARD

The instrument accepts SD (SDSC), SDHC, and SDXC memory cards in FAT16, FAT32 or exFAT format as required. The instrument is delivered with a formatted SD card. The memory card is essential for recording measurements.

If you want to install a new SD card:

- Open the elastomer cap marked SD.
- Disconnect the SD card in place, following the procedure explained in 3.3.4. The red indicator goes off.
- Press on the memory card to remove it from its slot.
- Slide the new SD card all the way home in its slot. The red indicator lights.
- Then close the elastomer cap.

Figure 9

Write-protect the memory card when you remove it from the instrument. Unprotect the write-protected card before inserting it in the instrument.

Unprotected memory card.

Protected memory card.

2.11. PROP

There is a retractable prop on the back of the instrument to hold it at an angle of 60°.

Figure 10

2.12. MAGNETISED HOOK (OPTIONAL)

The magnetised hook can be used to suspend the instrument from the top of a door or attach it to a metallic surface.

3. CONFIGURATION

Before using it, you must configure your instrument.

The CA 8345 has 2 configuration menus:

- the configuration of the instrument itself
- Configuration of the measurements

Press the key.

Figure 11

3.1. NAVIGATION

To configure the instrument, you can use the navigation keys ($\mathbf{\square}, \mathbf{\Delta}, \boldsymbol{\nabla})$ to select and modify the parameters, especially if you are wearing gloves, or you can use the touch screen.
The Θ key is used to validate.
The Ξ key is used to abort or to return to the previous screen.

3.2. USERS

The CA 8345 lets 3 different users configure the instrument and the measurements.
Select \mathbf{Q} and choose your user number.
Select the user name and change it.

Figure 12
The entry screen lets you enter:

- upper-case letters from A to Z,
- lower-case letters from a to z,
- digits from 0 to 9 ,
- special characters: . _ - @.

Use \longleftarrow to erase the previous character.
Use to erase the selected character and all following characters.
When you return to your user profile, you recover your complete configuration.

3.3. CONFIGURATION OF THE INSTRUMENT

Figure 13

Except for the display and the language, the configuration of the instrument cannot be changed if the instrument is recording, metering energy (even if metering is suspended), recording transients or alarms, or capturing an inrush current.

3.3.1. LANGUAGE

To choose the language of your instrument, select $\%$.
Choose your language, then validate using the Θ key.

3.3.2. DATE AND TIME.

To set the date and time, select (4).

Figure 14

Choose one of the
73 time zones proposed.

Figure 15

3.3.2.1. GPS MODE

The GPS mode is necessary to guarantee that your instrument is class A (per IEC 61000-4-30). The instrument must be exposed at least once to the GPS satellites, so that the receiver can recover the date and time. Correct synchronisation may take up to 15 minutes. Accuracy is then maintained, even if the satellites are no longer accessible, in the following situations:

Satellite reception	Maximum drift for Class A	Drift of the CA8345
No satellite in view	$\pm 1 \mathrm{~s} / 24 \mathrm{~h}$	$\pm 24 \mathrm{~ms} / 24 \mathrm{~h}$
At least one satellite in view	$\pm 16.7 \mathrm{~ms}$ vs UTC, at all times	$\pm 60 \mathrm{~ns} / \mathrm{s}$, corrected at all times

To avoid time discontinuities, automatic setting of the time is blocked when recording is in progress.

Figure 16

The satellite reception status is indicated by an icon in the status bar, with the following meanings:

GPS synchronisation	Not synchronised		Synchronised	
Satellite	No satellite in view	At least one satellite in view	No satellite in view	At least one satellite in view
No recording	4	$\stackrel{3}{4}$	Θ	*
Recording in progress	\dagger	$\underset{9}{4}$	(tar	*

At the end of 40 days without exposure to a GPS satellite, the synchronisation icon) changes over to unsynchronised status (\ddagger)

Receiving GPS signals from satellites can be problematic inside a building. If the GPS icon never goes into synchronized state, it is likely that the satellites are out of range. In this case, use a GPS signal repeater, with an antenna placed outside or near a building window.

3.3.2.2. NTP MODE

If you choose time synchronisation by NTP, enter the address of the NTP server in the NTP server field (for example 0.fr.pool.ntp. org), taking care to use your country's time zone, then connect the instrument to this server using the Ethernet connector or by wifi.

Figure 17

3.3.3. DISPLAY

Select Φ to open the display configuration menu.

Figure 18

3.3.3.1. COLOURS OF THE VOLTAGE CURVES

To choose the colours of the voltage curves, select
Choose one colour for each of the 3 phases and for the neutral. You can choose from among about thirty colours.
In night mode, the white background turns black and the colours are reversed.

3.3.3.2. COLOURS OF THE CURRENT CURVES

To choose the colours of the current curves, select
Choose one colour for each of the 4 current inputs. You can choose from among about thirty colours.
In night mode, the white background turns black.

3.3.3.3. SCREEN BRIGHTNESS AND AUTO-OFF

To adjust the brightness of the display unit and the screen auto-off, select
You can activate or deactivate screen auto-off. The screen is switched off after 10 minutes with no user action. This prolongs battery life. If a recording is in progress, the screen is not switched off.

To switch the screen back on, press any key.

3.3.4. MEMORY

Select to manage the content of the external memory.

Figure 19

The screen indicates the content of the SD card $\left[\begin{array}{l}\text { b }\end{array}\right.$ or of the USB drive ψ.
To eject the SD card or the USB drive, press

You must eject the SD card before removing it from the instrument, since otherwise you risk losing part or all of its content.
When the SD card is removed, the red SD card present indicator goes off and the $\boldsymbol{\Lambda}$ symbol is displayed in the status bar.
You can erase all or part of the content of these memories. To do this, make a selection and press The instrument requests confirmation . Press to confirm or Ξ to abort.

You can also delete the other users by pressing 丠.
To view an item in detail, select it, then press $\boldsymbol{\sim} \boldsymbol{T}$.
You can erase all or part of the content

Figure 20
You can also copy all or part of the contents of the SD card to a USB drive $\mathbb{\square} \downarrow \rightarrow \psi$.

3.3.5. NETWORK

Select to open the network configuration menu of the instrument.

Figure 21
嗃 is used to configure the link Ethernet.
$\overparen{\widehat{6}}$ is used to configure the wifi link.
is used to configure email.
is used to connect to the IRD server.

3.3.5.1. ETHERNET LINK.

The \square symbol indicates that the link is active.
The symbol indicates that the link is inactive and that it can be activated.
To modify a link, deactivate it by pressing \quad.

- Check the DHCP (Dynamic Host Configuration Protocol) box and the instrument requests the IP address of a DHCP server. If no DHCP server replies, an IP address will be generated automatically.
- Uncheck the DHCP box to assign this address manually.

Then press to reactivate the link.

3.3.5.2. WIFI LINK

Choose your network by clicking on SSID.
If you do not see your network, press © to search. The instrument shows you all available wifi networks. Then enter the password if required.

- Check the DHCP (Dynamic Host Configuration Protocol) box and the instrument requests the IP address of a DHCP server. If no DHCP server replies, an IP address will be generated automatically.
- Uncheck the DHCP box to assign this address manually.

The symbol indicates that the link is active.
The symbol indicates that the link is inactive and that it can be activated.
To modify a link, deactivate it by pressing $\mathbb{\square}$. Uncheck DHCP to select manual and modify the parameters. Then press \square to reactivate the link.

3.3.5.3. EMAIL

Figure 23
Enter the email address for notifications if an alarm threshold is exceeded.

3.3.5.4. IRD SERVER

IRD (Internet Relay Device) is a protocol used for communication between two peripherals located in two distinct sub-networks (for example a PC and a measuring instrument). Each peripheral connects to an IRD server and this server links the two peripherals.

To control an instrument from a PC, enter the identification of the instrument and a password.

Figure 24

3.3.6. UPDATING THE EMBEDDED SOFTWARE

Select © to update the embedded software.
To obtain the latest version, refer to § 18.5 .
When the instrument finds more recent software, it displays the information about it and proposes installing it.
For example, if you have recorded an update on the SD card, the instrument finds it and displays the following screen.

Figure 25
Switch the instrument off, then back on. It reboots in a mode specific to the software update.

Figure 26
If it does not automatically reboot in the specific mode, switch the instrument off, then restart while holding the (${ }^{(1)}$ keys down until you see the screen shown above.

Select:

- 呂 to update from the Chauvin Arnoux web site via the Ethernet link.
- $\quad \mathbb{\square}$ to update from the SD card.
- Ψ to update from the USB drive.

Press \downarrow to download the file (this may take several minutes), then to start the update.

3.3.7. INFORMATION

Select \boldsymbol{i} to view information about the instrument.

Figure 27
The information pages (

- the warranty number,
- the serial number,
- the software and hardware versions,
- the MAC, Ethernet, and wifi addresses.

3.4. CONFIGURATION OF THE MEASUREMENTS

Figure 28
Before making measurements, you must specify or adapt the following parameters:

- The calculation methods,
- The distribution network and the type of connection,
- The voltage ratios, the current sensors, their ranges and their ratios,
- The values to be recorded, in the trend mode,
- The triggering levels for the transient and inrush current capture modes,
- The alarm thresholds, for the alarm mode,
- The units and the ranges for the energy mode,
- The parameters of the monitoring mode (using the PAT3 application software).

The configuration of the measurements cannot be altered if the instrument is recording, metering energy (even if metering is suspended), recording transients or alarms, or capturing inrush currents.

3.4.1. CALCULATION METHODS

To choose the calculation methods, select $\mathbf{X}=$.

Figure 29
$\mathbf{X n}$ to specify the nominal values.

- The nominal frequency (50 or 60 Hz)
- The nominal voltage,
- The nominal voltage between phases.

The nominal voltage configured here is the Nominal System Voltage $\left(U_{n}\right)$. Not to be confused with the Nominal Declared Input Voltage ($U_{\text {din }}$) on the terminals of the instrument.
In the case of Medium-Voltage or High-Voltage networks, there may be a stepdown transformer between the network and the measuring instrument.
It is possible to configure U_{n} between 50 V and 650 kV , but $\mathrm{U}_{\text {din }}$ must never exceed 1000 V between phases and 400 V between Phase and Neutral.
The uncertainty on the ratio of the stepdown transformers affects the accuracy of the measurement: the measurement is guaranteed only when the ratio is equal to 1 and $U_{\text {din }}=U_{n}$.
x
to choose the values displayed:

Figure 30

- For Real-time values, choose between 10-12 cycles and $\mathbf{2 0 0 m s}$ and $\mathbf{1 5 0 - 1 8 0}$ cycles and 3 s .

This choice will apply to the calculation and display of the values in most of the modes.

- For the Fundamental power factor, choose between DPF, PF_{1} and $\cos \varphi$ for the display.
- Frequency over 10s: calculation of the frequency over 10s (per IEC 61000-4-30 class A) or not. If you measure only the current, deactivate this choice.
- Choose whether or not to activate Display flagging.

When this is done, all quantities that undergo voltage dips, voltage swells, and interruptions are reported (see § 3.4.10).

- For the Phasor Diagram Reference, choose between Current and Voltage.
to specify the waveform mode.

Figure 31

- The way the long-term flicker $P_{\mid t}$ is calculated (fixed or sliding window),
- sliding window: the $P_{\text {tt }}$ will be calculated every 10 minutes. The first value will be available 2 hours after the instrument is switched on, because 12 values of $P_{\text {st }}$ are needed to calculate $P_{\text {tt }}$.
- fixed window: the $P_{\text {tt }}$ will be calculated every 2 hours, aligned on even-numbered UTC hours. If the local time has an odd-numbered offset to UTC time, then P_{lt} values will be available every 2 hours aligned on odd-numbered local time hours.
- Calculation of the RMS value,
- The coefficient \mathbf{q} for the calculation of the K factor (between 1.5 and 1.7), q is an exponential constant that depends on the type of winding and the frequency.
The value of 1.7 is suitable for transformers whose the conductor cross sections are round or square.
The value of 1.5 is suitable for transformers whose the low-voltage windings are in foil form.
- The coefficient \mathbf{e} for the calculation of the K factor (between 0.05 and 0.10). e is the ratio of Eddy current losses (at the fundamental frequency) to resistive losses, both evaluated at the reference temperature. The default values ($q=1.7$ and $e=0.10$) are suitable for most applications.
- Rated load current.

It is a transformer parameter that is used in the calculation of the K factor.

Ihe. to specify:

- The harmonic reference level (the level of the fundamental \%f or the RMS value \%r),
- MSV1: First Mains Signalling Frequency to be monitored.
- MSV2: Second Mains Signalling Frequency to be monitored.

Figure 32
$\xrightarrow{\stackrel{x}{\longrightarrow}}$ to specify the curve of maximum MSV voltages as a function of frequency. There are 5 preset points that you can modify.

Figure 33
3.4.2. THE DISTRIBUTION NETWORK AND THE TYPE OF CONNECTION,

To choose the connection of the instrument according to the distribution network, select $\mathbf{3} \phi$.
One or more types of network correspond to each distribution system.

Distribution system	Network	Electrical diagram
Single-phase, 2 wires (L1 and N)	Single-phase, 2 wires with neutral, without earth	
Single-phase, 3 wires (L1, N, and earth)	Single-phase, 3 wires with neutral and earth	
Two-phase, 2 wires (L1 and L2)	Two-phase, 2 wires	
	Three-phase, 2 wires in open star	
Two-phase, 3 wires (L1, L2, and N)	Two-phase, 3 wires with neutral, without earth	
	Two-phase, 3 wires in open star with neutral, without earth	
	Two-phase, 3 wires in "high leg" delta with neutral, without earth	
	Two-phase, 3 wires in open "high leg" delta with neutral, without earth	

Distribution system	Network	Electrical diagram
Two-phase, 4 wires (L1, L2, N, and earth)	Two-phase, 4 wires with neutral and earth	
	Three-phase, 4 wires in open star with neutral and earth	
	Three-phase, 4 wires in "high leg" delta with neutral and earth	
	Three-phase, 4 wires in open "high leg" delta with neutral and earth	

Distribution system	Network	Electrical diagram
Three-phase, 3 wires (L1, L2, and L3)	Three-phase, 3 wires in star	
	Three-phase, 3 wires in delta	
	Three-phase, 3 wires in open delta	
If 3 sensors are connected, the calculation will be done by the 3 wattmeters with virtual neutral method. If 2 sensors are connected, the calculation will be done by the Aron method. For a 2-sensor connection, the third sensor is not needed if the other two are identical (same type, same range, and same ratio). Otherwise, the third sensor must be connected for current measurements.	Three-phase, 3 wires in open delta with link to earth between phases	
	Three-phase, 3 wires in open delta with link to earth on the phase	
	Three-phase, 3 wires in open "high leg" delta	
	Three-phase, 3 wires in "high leg" delta	

Distribution system	Network	Electrical diagram
Three-phase, 4 wires (L1, L2, L3, and N)	Three-phase, 4 wires with neutral, without earth	
Indicate which voltages will be connected: all 3 voltages (3V) or only 2 (V1V2, V2V3 or V3V1).	Three-phase, 4 wires in open "high leg" delta with neutral, without earth	
If you connect only 2 voltages, the 3 phases must be balanced ($21 / 2$ elements method).	Three-phase, 4 wires in "high leg" delta with neutral, without earth	
Three-phase, 5 wires (L1, L2, L3, N, and earth)	Three-phase, 5 wires in star with earth and neutral	
Indicate which voltages will be connected: all 3 (3V) or only 2 (V1V2, V2V3 or V3V1).	Three-phase, 5 wires in open high leg delta with earth and neutral	
If you connect only 2 voltages, the 3 phases must be balanced ($21 / 2$ elements method).	Three-phase, 5 wires in delta with earth and neutral	

3.4.3. SENSORS AND RATIOS

To choose the voltage ratios, the current sensor ratios, and the range of the sensor, select $\bar{Z} \bar{E}$.

Figure 34

3.4.3.1. VOLTAGE RATIO

Voltage ratios are used when the voltages to be measured are too high for the instrument and voltage transformers are used to lower them. The ratio lets you display the true voltage and use it in the calculations.

To choose the voltage ratios, select \mathbf{V} for phase-to-neutral voltages (with neutral) or \mathbf{J} for phase-to-phase voltages (without neutral).

- $4 \mathrm{~V} 1 / 1$ or $3 \mathrm{U} 1 / 1$: all channels have the same ratio, unity.
- 4 V or 3 U : all channels have the same ratio, to be programmed.
- $3 \mathrm{~V}+\mathrm{VN}$: all channels have the same ratio; the neutral has a different ratio.
- $\mathbf{V} 1+\mathbf{V} 2+\mathrm{V} 3+\mathrm{VN}$ or $\mathbf{U 1} \mathbf{+} \mathbf{U} 2+\mathrm{U} 3$: each channel has a different ratio, to be programmed.

For the ratios, the primary voltages are in kV and the secondary voltages are in V .
To avoid calculations, you can use a multiplier $1 / \sqrt{3}$ both for the primary voltages and for the secondary voltages.

3.4.3.2. CURRENT SENSORS

To choose the ratios and ranges of current sensors, select \mathbf{A}.
The instrument automatically displays the current sensor models detected.
The different current sensors are:

\square	MINI94 clamp 200 A	
- 4	MN93 clamp 200 A	
	MN93A clamp 100 A	
	MN93A clamp 5 A	Ratio, to be programmed: [1 to 60,000] / $\{1 ; 2 ; 5\}$
	C193 clamp 1000 A	
	J93 clamp 3500 A	
	PAC93 clamp 1000 A	
-	E94 clamp	Choice of sensitivity: - sensitivity $10 \mathrm{mV} / \mathrm{A}$, range 100 A - sensitivity $100 \mathrm{mV} / \mathrm{A}$, range 10 A
	AmpFlex ${ }^{\circledR}$ A193 MiniFlex MA194	Choice of range: - $0.10 \mathrm{~A}-100.0 \mathrm{~A}$ - $1.0 \mathrm{~A}-1000 \mathrm{~A}$ - $10 \mathrm{~A}-10.00 \mathrm{kA}$
+14	Three-phase adapter: 5 A	Ratio, to be programmed: [1 to 60,000] / \{1; 2; 5\}

Current ratios are used when the currents to be measured are too high for the instrument and current transformers are used to lower them. The ratio lets you display the true current and use it in the calculations.

- 4A: all channels have the same ratio, to be programmed.
- 4A+AN: all channels have the same ratio; the neutral has a different ratio.
- A1+A2+A3+AN: each channel has a different ratio, to be programmed.

For the ratio, the primary current cannot be less than the secondary current.
In the case of a three-phase, 3 -wire set-up, when only 2 current sensors are connected, if these 2 sensors are of the same type and have the same ratio, the instrument simulates the third sensor, giving it the same specifications as the two others. The connection configuration must indicate which sensors will be present. The third sensor will then be shown as simulated.

This menu appears only for the sensors concerned (see the table above).

3.4.3.3. REVERSAL OF CURRENT

To reverse a current sensor, select \mathbf{A} (180).
If you have connected your current sensors and find during the measurements that one or more sensors are not in the right direction. You can easily reverse them without having to turn them round.

3.4.4. TREND MODE

The trend mode \sim is used to record different quantities for a specified duration. To configure the trend mode, select $\stackrel{\text { L }}{ }$.

All of the quantities the instrument measures can be recorded. Check those you want to record. The frequency (Hz) is always selected.
For more information about these quantities, refer to the glossary in § 20.10.
Quantities displayed in red are incompatible with the chosen configuration and will not be recorded.
Pages 2 and 3 concern the recording of harmonics. For each of these quantities, it is possible to select the orders of the harmonics to be recorded (between 0 and 63) and, possibly, to select odd harmonics only.

Figure 36
Levels of harmonics of order 01 will be displayed only they concern values stated in \%r.
4. is used to define, for repeated use (mode

- the duration of the recording,
- the configuration, from among the 4 possible,
- the recording period, between 200 ms and 2 h ,
- the name of the records.

Figure 37

3.4.5. TRANSIENT MODE

The transient mode is used to record voltage or current transients for a specified duration. To configure the transient mode, select D.

Figure 38

3.4.5.1. VOLTAGE THRESHOLDS

To configure the voltage thresholds, select \mathbf{V}.
Choose the number of cycles before the transient recording is triggered (1, 2 or 3).

- 4 V : all of the voltage inputs have the same threshold, to be programmed.
- $3 \mathrm{~V}+\mathrm{VN}$: all of the voltage inputs have the same threshold; the neutral has a different threshold.
- $\mathbf{V} 1+\mathbf{V} 2+\mathbf{V} 3+\mathbf{V N}$: each input voltage has a different threshold, to be programmed.

3.4.5.2. CURRENT THRESHOLDS

To configure the current thresholds, select \mathbf{A}.
Choose the number of cycles before the transient recording is triggered (1,2 or 3).

- 4A: all of the current inputs have the same threshold, to be programmed.
- 3A+AN: all of the current inputs have the same threshold; the neutral has a different threshold.
- A1+A2+A3+AN: each current input has a different threshold, to be programmed.

3.4.5.3. SHOCK WAVE THRESHOLDS

To configure the voltage thresholds of shock waves with respect to earth, select \triangle.

- 4VE all of the voltage inputs have the same threshold, to be programmed.
- $3 \mathrm{VE}+\mathrm{V}_{\mathrm{NE}}$: all of the voltage inputs have the same threshold; the neutral has a different threshold.
- $\mathrm{V}_{1 \mathrm{E}}+\mathrm{V}_{2 \mathrm{E}}+\mathrm{V}_{3 \mathrm{E}}+\mathrm{V}_{\mathrm{NE}}$: each input voltage has a different threshold, to be programmed.

3.4.5.4. RAPID PROGRAMMING OF CAPTURE

Press to specify:

- the duration of the capture (between 1 minute and 99 days),
- the maximum number of transients in the capture,
- the name of the capture.

3.4.6. INRUSH CURRENT MODE

The inrush current mode is used to capture an inrush current.
To configure the inrush current mode, select.

Figure 39
Choose whether the inrush current threshold applies to all 3 current inputs (3 A) or only one of them (A1, A2, or A3). Specify this threshold and the hysteresis. The capture triggers when the level of the current rises above the threshold. The capture stops when the level of the current drops below the stop threshold (= threshold + hysteresis).

For more information about the hysteresis, refer to § 20.5 . Setting the hysteresis to 100% is equivalent to not having a stop threshold.

Press to specify:

- the duration of the capture (between 1 minute and 99 days),
- the name of the records.

The number of captures is always 1 .

3.4.7. ALARM MODE

The alarm mode Δ is used to monitor one or more quantities, either in absolute value or in signed value. Each time a quantity crosses the threshold you have defined, the instrument records the information about the crossing.
To configure the alarms, select \triangle.

There are 40 possible alarms.
For each of them you must specify:

- The quantity to be monitored from among the following quantities:
- Hz ,
- Urms, Vrms, Arms,
- |Udc|, |Vdc|, |Adc|,
- |UPK+|, |VPK+|, |APK+|, |UPK-|, |VPK-|, |APK-|,
- Ucf, Vcf, Acf,
- Uthdf, Vthdf, Athdf, Uthdr, Vthdr, Athdr,
- |P|, |Pdc|, |Q ${ }_{f} \mid, N, D, S$,
- |PF|, |cos $\varphi \mid$ (or |DPF| or |PF ${ }_{1} \mid$), $|\tan \varphi|, P_{\text {st }}, P_{t t}, F H L, F K, K F$,
- $\mathrm{u}_{2}, \mathrm{a}_{2}, \mathrm{u}_{0}, \mathrm{a}_{0}$,
- VMSV1, UMSV1, VMSV2, UMSV2,
- Ud, Vd, Ad,
- U-h, V-h, A-h, U-ih, V-ih, A-ih.

For more information about these quantities, please refer to the glossary in \S 20.10.

- The order of the harmonic (between 0 and 63), for U-h, V-h, A-h, U-ih, V-ih and A-ih only.
- The period of calculation of the value.

For AC signals:

- 1/2c: 1 cycle every half-cycle. The value is measured over one cycle, starting at a passage through zero of the fundamental component, and refreshed every $1 / 2$ cycle.
- 10/12c: 10 cycles for $50 \mathrm{~Hz}(42.5$ to 57.5 Hz), or 12 cycles for $60 \mathrm{~Hz}(51$ to 69 Hz),
- 150/180c: 150 cycles for 50 Hz (42.5 to 57.5 Hz), or 180 cycles for 60 Hz (51 to 69 Hz).
- 10s.

For DC signals:

- 200 ms
- 3s
- The channel(s) to be monitored. The instrument proposes a list according to the connection you have specified.
- 3L: each of the 3 phases,
- N : the neutral,
- 4L: each of the 3 phases and the neutral,
- The direction of the alarm (< or >). Depending on the quantity, the direction may be imposed by the instrument.
- The threshold.
- The hysteresis: $1 \%, 2 \%, 5 \%$ or 10%.
- The minimum duration of the threshold overshoot.

Then choose whether to activate the alarm or not \square by checking the box.
You can also choose to have an email sent \boxtimes when the alarm is triggered. If there are several alarms, they can be grouped in a single email to limit the rate of sending to a maximum of one email every 5 minutes. To specify an email address, refer to § 3.3.5.

When an alarm configuration line is red, it means that the quantity requested is not available.

3.4.8. ENERGY MODE

The energy mode W_{h} is used to calculate the energy consumed or produced during a specified period of time. To configure the energy mode, select $\mathbf{V} \mathbf{h}$.

Figure 41

Select (©S to specify the energy calculation parameters:

- the unit of energy:
- Wh: watt-hour
- Joule
- toe (nuclear): ton of nuclear oil equivalent
- toe (non-nuclear): ton of non-nuclear oil equivalent
- BTU: British Thermal Unit
- the currency ($\$, €, £$, etc),

Use the $€ \$ £$ key to access the currency symbols

- the tariff rate.

Select 临 to define specific tariff rates (for example off hours).

Figure 42
You can define 8 different ranges and activate them ∇ or not \square :

- the days of the week,
- the starting time,
- the duration,
- the rate.

3.4.9. MONITORING MODE

The monitoring mode 國 is used to check the conformity of the voltage for a specified duration.
A monitoring campaign contains a trend record, a transients record, alarm detection, a log of events, and a statistical analysis of a specific set of measurements.

The monitoring mode is configured using the PAT3 application software (see § 16).

Allows the current configuration to be deleted and replaced by the default configuration (that of the EN 50160BT standard). It is not possible to modify the configuration if a recording is in progress.
Figure 43

3.4.10. FLAGGING

Class A flagging is used to flag the measurements.
During a dip, swell, interruption or rapid voltage change, the measurement algorithm for other parameters (for example, frequency measurement) might produce an unreliable value.

The flagging concept applies to the measurement of power frequency, voltage magnitude, flicker, supply voltage unbalance, voltage harmonics, voltage interharmonics and mains signalling.

If during a given time interval any value is flagged, the aggregated value which includes that value is also flagged.
Real-time flagged measurements affected by disturbances are indicated using the flag icon

Furthermore the instrument can be configured to monitor the supply voltage for compliance with EN 50160 using the PAT3 application software (see § 16). The monitoring configuration allows for adjustment of thresholds, hysteresis and durations.

4. USE

4.1. STARTING UP

To switch the instrument on, press the \bigcup^{\top} button. The home screen is displayed.

Figure 44
Then the Waveform screen is displayed.

Figure 45

4.2. NAVIGATION

To navigate in the various menus of the instrument, you can use:

- the keypad,
- the touch screen,
- the remote user interface (VNC).

4.2.1. KEYPAD

The keys of the keypad are described in § 2.8.
The functions of the function keys are indicated at the bottom of the screen. They change according to the mode and the context. The active key is yellow.

4.2.2. TOUCH SCREEN

opens the following screen:

Figure 46
You can then access all functions of the instrument without using the keys.

4.2.3. REMOTE USER INTERFACE

Remote navigation is possible from a PC, a tablet, or a smartphone.
You can then control the instrument remotely.

From a PC via an Ethernet link

- Connect the instrument to the PC using an Ethernet cable (see § 2.4).
- On the PC, in a web browser, enter http://IP_address_instrument.

To find this address, refer to § 3.3.5.

- go to configuration (4) key),
- then, in the instrument configuration (second yellow function key:
- then in the network configuration, 因,
- then in the Ethernet link 몸ㅁ,
- Check that the link is in fact active (display shaded and at bottom right),
- Note the IP address.

With a tablet or a smartphone and a wifi link

- Share a wifi connection with the tablet or the smartphone
- In a web browser, enter http://IP_address_instrument.

To find this address, refer to § $3 . \overline{3} .5$.

- go to configuration (4 key),
- then, in the instrument configuration (second yellow function key
- then in the network configuration, 闵,
- then in the wifi link, $\overparen{\Im}$,
- Choose the wifi network of your smartphone or your tablet.
- Check that the link is in fact active (display shaded and Φ at bottom right),
- Note the IP address.

Enter the IP address of your instrument in a browser. The remote browser (VNC) is activated.

Figure 47
In the left-hand tab,

- click on Fullscreen to adjust the size of the display window on your screen.
- click on Settings then check Shared Mode to control the instrument, or View Only just to see the screen of the instrument.

Figure 48

- Click on Settings again to close the configuration menu.

Then click on Connect. You will then see the screen of the C.A 8345 on your screen.

4.3. CONFIGURATION

Refer to the preceding paragraph to configure your instrument.
Before making any measurement, remember to specify:

- the connection (§ 3.4.2),
- the current sensors used and the voltage and current ratios (§ 3.4.3),
- the calculation method, if necessary (§ 3.4.1).

For the recording modes, remember to specify:

- the parameters to be recorded,
- the starting time and duration of the recording,
- the recording conditions.

4.4. CONNECTIONS

Make sure that all of your leads and sensors are correctly marked (see $\S 2.9$), then connect them to the circuit to be measured as shown by the following diagrams.

4.4.1. SINGLE-PHASE NETWORK

Figure 49

4.4.2. TWO-PHASE NETWORK

Figure 51

Figure 50

Figure 52

Figure 53

4.4.3. THREE-PHASE NETWORK

Figure 54

For three-phase, 3 wires, indicate which current sensors will be connected: all 3 sensors (3A) or only 2 (A1 and A2, or A2 and A3, or A 3 and A 1).

Figure 55

Figure 56

For three-phase 4 and 5 wires, indicate which voltages will be connected: all 3 voltages (3 V) or only 2 (V 1 and V 2 , or V 2 and V 3 , or V 3 and V 1).

4.4.4. CONNECTION PROCEDURE

Depending on the network, not all of the terminals and sensors need be connected.

In the case of a connection without neutral, connect the \mathbf{N} and GND terminals together.
The CA 8345 has a very high level of safety and protection against incorrect and dangerous connections: all inputs, including earth, are protected by a series impedance. However, this has the disadvantage that when an input is accidentally disconnected, the corresponding channel may show a non-zero voltage.

To prevent this, make sure you connect your device to earth. To do this, connect the optional functional earth cable to the USB A socket on the front panel.

Following the procedure described below holds connection errors to a minimum and avoids wasting time.

- Connect the earth lead between the $\stackrel{\perp}{=}$ terminal and the network earth.
- Connect the neutral lead between voltage terminal \mathbf{N} and the network neutral.
- Connect the neutral current sensor to the current terminal \mathbf{N}, then clamp the neutral cable.
- Connect the phase L1 lead between voltage terminal L1 and network phase L1.
- Connect the phase L1 current sensor to current terminal L1, then clamp the phase L1 cable.
- Connect the phase L2 lead between voltage terminal L2 and network phase L2.
- Connect the phase L2 current sensor to current terminal L2, then clamp the phase L2 cable.
- Connect the phase L3 lead between voltage terminal L3 and network phase L3.
- Connect the phase L3 current sensor to current terminal L3, then clamp the phase L3 cable.

If you connect a current sensor in reverse, you can correct this connection directly in the configuration.
Press

Disconnection procedure:

- Proceed in the reverse of the order of connection, always ending by disconnecting the earth and/or the neutral.
- Disconnect the leads from the instrument.

4.5. FUNCTIONS OF THE INSTRUMENT

4.5.1. MEASUREMENTS

Make sure that you have correctly configured the instrument for the measurements you want to make.
You can then make one or more of the following measurements:

- View the waveforms of a signal \triangle
- View the harmonics of a signal 1 n.
- View power measurements W.
- Meter energy Wh.
- Record a trend \sim.
- Record transients
- Capture an inrush current
- Detect alarms \triangle.
- Monitor a network EV.

There are 4 real-time modes: \triangle, W and W_{n}.
And 5 recording modes, $\sim, \square \square, \square$ and $\boxed{\square}$.
Some functions cannot be run simultaneously:

- The real-time modes (waveform, harmonics, power, and energy) can be activated while recordings are in progress.
- If an inrush current capture is in progress, it is not possible to start the recording of a trend, transients, alarms or a monitoring.
- If a recording of a trend, transients, alarms or a monitoring is in progress, it is not possible to start an inrush current capture.

4.5.2. SCREENSHOT

Any screen can be recorded by a long press on the 0 key.
The symbol turns yellow (0), then black (0) You can then release the key.
You can also click on the icon in the status bar at the top of the screen.
The snapshots are recorded on the SD card in directory $8345 \backslash$ Photograph.
Real-time screens that are likely to vary (curves, metering) are captured in bursts (up to 5). This lets you choose the one that suits you best.

4.5.3. HELP

You can press the help key 3 at any time.
The help screen provides information about the functions and the symbols used for the display mode in progress. The help screen provides information about the functions and the symbols used for the display mode in progress.

4.6. SWITCHING OFF

To switch the instrument off, press the ${ }^{\top}$ button.
If the instrument is recording, metering energy (even if metering is suspended), recording transients or alarms, or capturing inrush current, it requests confirmation before switching off.

If you confirm the Power-off command, the records will be finalized and the instrument is switched off. If the instrument is switched back on before the scheduled end of recording sessions, these will be resumed automatically.

4.7. SAFETY STATUS OF THE INSTRUMENT

If there is an overload on the inputs, the instrument changes to safety status; a red line under the status bar reports this event.

Figure 57
This line indicates that the sum of all voltage inputs exceeds 1450 V . This condition is not reached with signals ranging up to 1000 Vrms. On the other hand, if you accidentally connect the 3 voltage inputs to the same phase, the safety threshold will be exceeded.

When the overload has been eliminated, the safety status disappears after approximately 10 seconds and you can once again use your instrument normally.

5. WAVEFORM

The waveform mode is used to display voltage and current curves, and values measured and calculated from the voltages and currents (except for harmonics, powers, and energies).
This is the screen that appears when the instrument is powered up.

Figure 58
The functions:
RMS: display of curves and RMS values
THD: display of curves and harmonic distortion
CF: display of curves and crest factor.
士 : display in table form of the maximum (MAX), RMS, minimum (MIN), and peak (PK+ and PK-) values.

8: display of the phasor diagram of the signals.
$\Theta \Theta$ © reduces or increases the time scale of the curves.
To move the time cursor, use the $\boldsymbol{\square}$ keys.
To change the display filter, use the $\boldsymbol{\Delta} \boldsymbol{\nabla}$ keys.

5.1. DISPLAY FILTER

The display filter depends on the connection chosen:

Connection	Display filter	Display filter for function \S
Single-phase, 2 wires Two-phase, 2 wires	L1 (no choice)	L1 (no choice)
Single-phase, 3 wires	2V, 2A, L1, N	
Two-phase, 3 wires	U, 2V, 2A, L1, L2	2V, 2A, L1, L2
Two-phase, 4 wires	U, 3V, 3A, L1, L2, N	2V, 2A, L1, L2
Three-phase, 3 wires	3U, 3A	3U, 3A
Three-phase, 4 wires	3U, 3V, 3A, L1, L2, L3	3U, 3V, 3A, L1, L2, L3
Three-phase, 5 wires	3U, 4V, 4A, L1, L2, L3, N	3U, 3V, 4A, L1, L2, L3

5.2. RMS FUNCTION

The RMS function is used to display the signals measured in a period, along with their RMS values, averaged over 200ms or 3s depending on what has been configured (see § 3.4.1).
The cursor can be used to check the instantaneous values along the curves displayed.
To move the cursor, use the

- keys.

Here are a few examples of screens for the RMS function according to the display filter for a three-phase, 5 -wire connection.
To change the display filter, use the $\boldsymbol{\Delta} \boldsymbol{\nabla}$ keys.
The numbers of the channels ${ }^{(1)}$ are saturation indicators. The solid circle ${ }^{1}$ indicates that the channel being measured is saturated or that at least one channel used in calculating it is saturated.

The symbol near the channel number indicates that the voltage and all quantities that depend on it are doubtful. The associated current channel and the associated combined voltages are also flagged. For example, if V 1 is marked, then $\mathrm{A} 1, \mathrm{U} 1$ and U 3 will be also marked.
Flaggings concern voltage dips, voltage swells, interruptions, and rapid voltage changes.
To reduce or increase the time scale of the curves, use $\Theta{ }^{\ominus}$.

3U display filter

Displays the instantaneous curves of phase-to-phase voltages and their RMS values.

Figure 59

4V display filter

Displays the instantaneous curves of phase-to-neutral voltages and their RMS values.

Figure 60

4A display filter

Displays the instantaneous curves of currents and their RMS values.

Figure 61

L3 display filter

Displays the instantaneous voltage and current curves of phase 3 and their RMS values.
There are 3 curves each time, often superimposed: the maximum curve, the nominal curve, and the minimum curve.

Figure 62
The L1, L2 and N display filters are similar but concern phase 1, phase 2, and the neutral.

5.3. THD FUNCTION

The THD function displays the signals measured in a period, along with their total harmonic distortion.
The THD is displayed with as reference either the RMS value of the fundamental (\%f) or the RMS value without DC (\%r), depending on what you have configured (see § 3.4.1.).

The screens are similar to the RMS screens and depend on the display filter chosen.

5.4. CF FUNCTION

The CF function displays the signals measured in a period, along with their crest factors.
The screens are similar to the RMS screens and depend on the display filter chosen.

5.5. MIN-MAX FUNCTION

The $\overline{\mathfrak{l}}$ function is used to display the RMS, maximum (MAX), minimum (MIN), positive peak ($\mathrm{PK}+$) and negative peak (PK-) values of the voltage and of the current.

Here are a few examples of screens for the Min-Max function, depending on the display filter, for a three-phase, 5 -wire connection. To change the display filter, use the $\boldsymbol{\Delta} \boldsymbol{\nabla}$ keys.

The search for the extreme values starts when the instrument is switched on. To reset the values, press the key.
If a value cannot be calculated (for example because the instrument is not connected to the network), the instrument displays - - -

3U display filter

Displays the extreme values of the phase-to-phase voltages.

4V display filter

Displays the extreme values of the phase-to-neutral voltages.

Figure 64

4A display filter

Displays the extreme values of the currents.

Figure 65

L1 display filter

Displays the extreme values of the voltage and current of phase 1.

Figure 66
The L2, L3 and N display filters are similar but concern phase 2, phase 3, and the neutral. The L1, L2, and N display filters are similar but concern phase 1, phase 2, and the neutral.

5.6. SUMMARY FUNCTION

The $\overline{\equiv D} \overline{\equiv D}$ IE function displays:

- for voltages:
- the RMS value,
- the DC component,
- the total harmonic distortion referred to the RMS value of the fundamental (THD \%f),
- the total harmonic distortion referred to the RMS value without DC (THD \%r),
- the crest factor (CF),
- the short-term instantaneous flicker (P_{st} inst). For more information about the flicker, refer to § 20.3.
- the short-term flicker $\left(\mathrm{P}_{\mathrm{st}}\right)$,
- the long-term flicker $\left(\mathrm{P}_{\mathrm{tt}}\right)$.
- for currents:
- the RMS value,
- the DC component,
- the total harmonic distortion referred to the RMS value of the fundamental (THD \%f),
- the total harmonic distortion referred to the RMS value without DC (THD \%r),
- the crest factor (CF),
- the harmonic loss factor (FHL),
- the factor $\mathrm{K}(\mathrm{FK})$.
- the K-factor (KF).

Depending on the display filter, not all of these parameters are displayed.

The calculations start when the instrument is switched on.
If a value cannot be calculated (for example because the instrument is not connected to the network), the instrument displays - - - .
When a value is not specified (for example the DC component for an AC signal) or not yet calculated (for example the PLT), the instrument displays -- .

Here are a few examples of screens for the Summary function, depending on the display filter, for a three-phase, 5 -wire connection. To change the display filter, use the $\boldsymbol{\Delta} \boldsymbol{\nabla}$ keys.

4V display filter

Displays the data of the phase-to-neutral voltages.

98	Q ?	49.98 Hz		18/05/21 07:25	
	(1)	(2)	(3)	(1)	
RMS	228.3 V	232.4 V	236.0 V	5.869 V	
DC	+0.103 V=	+0.150 V=	+0.210 V=	- $0.186 \mathrm{~V}=$	\triangle
THD	2.7 \%f	5.4 \%f	2.7 \%f		30
THD	2.7 \%	5.4 \%r	2.7 \%r	4.5 \%	$4 \mathrm{4V}$
CF	1.374	1.418	1.451	1.569	L1
Pinst	0.014	0.017	0.016		L3 N
Pst	0.143	0.156	0.148		\checkmark
PIt	0.121	0.133	0.129		
RMS	THD	CF $\quad 1$		68	

Figure 67
The energy calculation starts at fixed times: $00.00,00.10,00.20,00.30,00.40,00.50,01.00,01.10$, etc. So if you switch your instrument on at 08.01, the first $P_{\text {st }}$ will be displayed at 08.20 .

The calculation of the $P_{\text {It }}$ starts at fixed times: $00.00,02.00,04.00,06.00,08.00,10.00,12.00$, etc. So if you switch your instrument on at 08.01, the first P_{tt} will be displayed at 12.00 in the case of a fixed window and at 10.10 in the case of a sliding window. Only the calculation done with the fixed window is recognised by IEC standard 61000-4-30.

4A display filter

Displays the extreme values of the currents.

Figure 68

L2 display filter

Displays the voltage and current data of phase 2.

	\square ？	［回	50.00 H		15／121	－	B\＄品正
		（v）	（4）				
	RMS	229．7V～	3．363A～				
	DC	＋ $20 \mathrm{mV}=$	－ $\mathrm{A}=$				
	THD	0．001\％f	0．001\％				${ }_{4 \mathrm{~A}}^{4 \mathrm{~A}}$
		0．001\％r	0．001\％r				L1
	CF	1.415	1.438				L2
	PSTinst	0.000	FHL	1.000			N
	PST	0.000	FK	1.000			
	PLT	－－	KF	0.000			
RMS	T THD	CF	t	野	G8		

Figure 69
The L1，L3 and N display filters are similar but concern phase 1，phase 3 ，and the neutral．

5．7．PHASOR FUNCTION

The function displays：
－the phasor diagram of the signals，
－the absolute values of the voltages or currents，
－the phase differences between the voltages or between the currents，
－the unbalance ratio and／or the inverse unbalance ratio of the voltages or of the current．
Here are a few examples of screens for the phasor function，depending on the display filter，for a three－phase，5－wire connection． To change the display filter，use the $\boldsymbol{\Delta} \boldsymbol{\nabla}$ keys．

3U display filter

Displays the phasor diagram of the phase－to－phase voltages．U1 is reference．

Figure 70

3V display filter

Displays the phasor diagram of the phase－to－neutral voltages and of the currents．V1 is reference．

Figure 71

4A display filter

Displays the phasor diagram of the currents and of the phase-to-neutral voltages.
A1 is reference. The choice of current or voltage as reference can be changed in the configuration (see § 3.4.1)).

L3 display filter

Displays the phasor diagram of the voltage and of the current of phase 3 .
A3 is reference. The choice of current or voltage as reference can be changed in the configuration (see § 3.4.1)).

Figure 73
The L1 and L2 display filters are similar but concern phase 1 and phase 2.

6. HARMONIC

The voltages and currents can be analysed as sum of sine waves at the network frequency and multiples thereof. Each multiple is a harmonic of the signal. It is characterized by its frequency, its amplitude, and its phase difference with respect to the fundamental frequency (network frequency).

If the frequency of one of these sine waves is not a multiple of the fundamental frequency, it is an inter-harmonic
The harmonic mode lltu displays a representation in bargraph form of the harmonics, order by order, of the voltage, of the current and of the mains signalling voltage (MSV).

It is used to determine the harmonic currents produced by nonlinear loads and analyse the problems caused by these same harmonics, as a function of their order (overheating of neutrals, of conductors, of motors, etc.).

Display of the voltages or currents
(1) with indication of saturation

Figure 74
The different functions are:
V to display:

- the harmonics, order by order, of the phase-to-neutral voltages,
- the total harmonic distortion, referred to either the RMS value of the fundamental (\%f) or the RMS value without DC (\%r), depending on what you have configured (see § 3.4.1).
- the distorting phase-to-neutral voltages.

A to display:

- the harmonics, order by order, of the currents,
- the total harmonic distortion, referred to either the RMS value of the fundamental (\%f) or the RMS value without DC (\%r), depending on what you have configured (see § 3.4.1).
- the distorting currents.

U to display:

- the harmonics, order by order, of the phase-to-phase voltages,
- the total harmonic distortion, referred to either the RMS value of the fundamental (\%f) or the RMS value without DC (\%r), depending on what you have configured (see § 3.4.1).
- the distorting phase-to-phase voltages.

MSV: to display the spectral level (curve) and RMS values at the MSV1 and MSV2 frequencies configured in § 3.4.1.
$\Theta{ }^{\ominus}$: to stretch or shrink the \% scale of the barchart.
LIluwe : when the display filter concerns only one phase (L1, L2, L3, or N), this function is used to view inter-harmonics.
$\xrightarrow{\mathrm{x}}$: in the MSV function, this function is used to view the profile of the limits of the level of V or of U according to the frequency you configured (see § 3.4.1.).

The numbers of the channels (1) are saturation indicators. The interior of the circle is coloured ${ }^{1}$ when the channel measured is saturated or when at least one channel used to calculate it is saturated.

To move the harmonic order cursor, use the $\boldsymbol{\square}$ keys.
When you reach the last harmonic of the screen, if there are more harmonics, you go to the second screen.
To change the display filter, use the $\boldsymbol{\Delta} \boldsymbol{\nabla}$ keys.

6.1. DISPLAY FILTER

The display filter depends on the connection chosen:

Connection	Display filter for V	Display filter for \mathbf{A}	Display filter for U	Display filter for MSV
Single-phase, 2 wires	L1 (no choice)	L1 (no choice)	-	L1 (no choice) on V
Single-phase, 3 wires	L1, N	L1, N	-	L1 (no choice) on V
Two-phase, 2 wires	-	L1 (no choice)	L1 (no choice)	L1 (no choice) on U
Two-phase, 3 wires	2L, L1, L2	2L, L1, L2	L1 (no choice)	L1, L2 on V L1 (no choice) on U
Two-phase, 4 wires	2L, L1, L2, N	2L, L1, L2, N	L1 (no choice)	L1, L2 on V L1 (no choice) on U
Three-phase, 3 wires	-	3L, L1, L2, L3	3L, L1, L2, L3	L1, L2, L3 on U
Three-phase, 4 wires	3L, L1, L2, L3	3L, L1, L2, L3	3L, L1, L2, L3	L1, L2, L3 on V and on U
Three-phase, 5 wires	3L, L1, L2, L3, N	3L, L1, L2, L3, N	3L, L1, L2, L3	L1, L2, L3 on V and on U

6.2. EXAMPLES OF SCREENS

Here are a few examples of screens for a three-phase, 5 -wire connection.

V function with the 3L display filter

Information about harmonic number 3 (pointed to by the cursor):

- level of harmonic (\%f or \%r),
- phase difference with respect to the harmonic of order 1 ,
- maximum of the harmonic,
- amplitude of harmonic 3 .

Figure 75

A function with the \mathbf{N} display filter

Information about harmonic number 0 (DC), pointed to by the cursor.

- level of harmonic (\%r),
- maximum of the harmonic,
- amplitude of harmonic 0 .

Envelope of the maximum of the harmonics.

There is a second page of harmonics.

Figure 76

The period displayed by the barcharts is 200 ms or 3 s , depending on the configuration chosen in $\S 3.4 .1$).

Figure 77
U and llluwe function with the L2 display filter

Figure 78
To exit from the function LINewe, press the lilume key again.

MSV-V function with the L1 display filter

Figure 79

MSV-U curve function with the L1 display filter

$\mathbf{1}$ To exit from the MSV function, press the MSV key again.

The power mode
displays power measurements \mathbf{W} and power factor calculations PF.

7.1. DISPLAY FILTER

The display filter depends on the connection chosen:

Connection	Display filter
Single-phase, 2 wires Single-phase, 3 wires Two-phase, 2 wires	L1 (no choice)
Two-phase, 3 wires Two-phase, 4 wires	2L, L1, L2, Σ
Three-phase, 3 wires	Σ
Three-phase, 4 wires Three-phase, 5 wires	3L, L1, L2, L3, Σ

The Σ filter is used to learn the value on the whole system (on all of the phases).

7.2. EXAMPLES OF SCREENS

Here are a few examples of screens depending on the display filter, for a three-phase, 5 -wire connection.
To change the display filter, use the $\boldsymbol{\Delta} \boldsymbol{\nabla}$ keys.

W function with the 3L display filter

P: active power.
Pdc: DC power (if a DC current sensor is connected).
\mathbf{Q}_{f} : reactive power.
D: distorting power.
N : non-active power.
S: apparent power.

Figure 81
PF function with the 3L display filter

	\% w			50.00 Hz	$1304041212: 34$	\%
PF : power factor = P/S.						
DPF or PF_{1} or $\cos \boldsymbol{\varphi}$: fundamental power factor. (1) (2)						
The name is chosen in the configuration (see § 3.4.1).	PF		-0.990	-0.988	-0.990	\triangle
$\boldsymbol{t a n} \varphi$: tangent of the phase difference.	DPF		-0.990	-0.989	-0.990	3 L
φ_{vA} : phase difference of the voltage with respect to the current.	$\tan \varphi$		+0.141	+0.147	+0.139	${ }_{4}^{11}$
	qua (${ }^{\circ}$		-172.0	- 171.6	- 172.1	${ }_{\text {L }}^{13}$
	w	PF				

Figure 82

L1 display filter

9	W	?	[回	50.00 Hz		13/04/21 12:38	品
(1) (8)							
	P (W)		-583.2		PF	-0.990	-
	P_{Dc} (w)		+ 1.5		$\cos \varphi$	-0.990	${ }^{31}$
	Q_{f} (var)		-81.8		$\tan \varphi$	+ 0.140	L1
	D (var)		+4.8		φ va ($\left.{ }^{(}\right)$) $\quad 172.0$	12 $\stackrel{1}{1}$
	N (var)		+82.0				-
	S (VA)		588.9				
w	,	PF					

Figure 83

Σ display filter

Figure 84

8. ENERGY

The energy mode W_{h} is used to meter energy, both generated and consumed, over a period of time, and indicate the corresponding price.

Figure 85
む: to access the energy configuration.
For it to be possible to change the configuration, there must not be any metering in progress or suspended. It is first necessary to reset the zero.
An energy meter, even if suspended, is still active, and will prevent the device from being switched off, the configuration from being changed or the user profile from being changed.
\rightarrow : energy consumed (by the load).
$\stackrel{\square}{\square}$: energy produced (by the source).
((S): price of the energy consumed or produced.
茴: to reset energy metering to zero.
D: to start energy metering.
(1): to suspend energy metering.

8.1. DISPLAY FILTER

The display filter depends on the connection chosen:

Connection	Display filter
Single-phase, 2 wires Single-phase, 3 wires Two-phase, 2 wires	L1 (no choice)
Two-phase, 3 wires Two-phase, 4 wires	2L, L1, L2, Σ
Three-phase, 3 wires	Σ
Three-phase, 4 wires Three-phase, 5 wires	3L, L1, L2, L3, Σ

The Σ filter can be used to obtain the calculation on the whole system (all phases).

8.2. EXAMPLES OF SCREENS

Here are a few examples of screens depending on the display filter, for a three-phase, 5 -wire connection.
To change the display filter, use the $\boldsymbol{\Delta} \boldsymbol{\nabla}$ keys.
Press to start energy metering.

Wh function with the L1 display filter

E_{p} : active energy.
$\mathrm{E}_{\mathrm{PDC}}$: DC energy (if a DC current sensor is connected).
$\mathrm{E}_{2 \text { : }}$: reactive energy (inductive part

E_{D} : distorting energy.
E_{N} : non-active energy.
E_{s} : apparent energy.

Figure 87

function with the Σ display filter

Figure 88

9. TREND MODE

The trend mode records the evolution of the quantities chosen in the configuration (see § 3.4.4) for a specified duration.
The CA 8345 can record a large number of trends, limited only by the capacity of the SD card.
The home screen displays a list of the recordings already made. For the moment, there are none.

Figure 89

9.1. START OF A RECORDING

Press on to schedule a recording.

The configuration specifies:

- a list of quantities to be recorded (up to four). Press to modify the list in progress.
- the starting date and time of the recording,
- the ending date and time of the recording,
- the recording period, between 200 ms and 2 h , which determines the quality of the zoom.

If the recording period exceeds the duration of the recording, the instrument changes the ending date to accommodate the recording period.

- the name of the records.

Press . Recording starts at the programmed time, if there is enough space on the SD card.

Figure 91

Figure 92
To ensure compliance with IEC 61000-4-30, it is essential that trend recordings are performed with :

- A measurement of the frequency over 10 seconds,
- Vrms, Urms and Arms selected.

9.2. LIST OF RECORDINGS

Press to view the recordings made.

Name, starting date and time, ending date and time of the recording.

Figure 93
If the ending date is shown in red, it is because recording could not continue up to the planned ending date.

- or because of a power supply problem (the instrument switched off because the battery was low),
- or because there was a write error on the SD card.

To learn what the error number shown means, use the help key 0 or refer to § 20.10.
To erase all trend recordings at once, refer to § 3.3.4.

9.3. READING A RECORDING

Select the recording to be read in the list and press the confirm key to open it.

To view the evolution of a quantity, select it.

Below are examples of screens for a three-phase, 5 -wire connection.
To change the display filter, use the $\boldsymbol{\Delta} \boldsymbol{\nabla}$ keys.
The cursor lets you view the values along the curves displayed.
To move the cursor, use the $\boldsymbol{\square}$ keys.
$\Theta{ }^{\oplus}$: to stretch or shrink the time scale. The zoom possibilities depend on the aggregation period and the duration of the recording
A. reports a problem during recording. If a quantity could not be correctly recorded, this symbol is displayed above all of the quantities.

When the duration of the recording is long (more than one day), it may take up to about ten seconds to display the curves.

The first data will be available at the end of the recording period, or between 200 ms and 2 h .

The CA 8345 measurement records comply with IEC 61000-4-30 edition 3, Amendment 1 (2021). The basic measurement time interval is 10 cycles (for a 50 Hz power system) or 12 cycles (for a 60 Hz power system). These measurements are then aggregated over 150 cycles (for a 50 Hz power system) or 180 cycles (for a 60 Hz power system), then over 10 minutes, etc. In addition, the measurements are resynchronised every 10 round minutes, with type 1 overlaps (10/12 cycles aggregations) and type 2 overlaps ($150 / 180$ cycles aggregations). The CA 8345 presents the measurements on a constant time scale ($0.2 \mathrm{~s}, 1 \mathrm{~s}, 3 \mathrm{~s}, \ldots, 2 \mathrm{~h}$).

Order 5 current harmonics (A-h05) for a 3L display filter

Value of the curves at the position of the cursor.

Figure 95

Phase-to-neutral voltages (Vrms) for an L3 display filter

Each time a value is recorded, for each of the phases, the instrument also records the minimum single-cycle RMS value and the maximum single-cycle RMS value. These are the three curves shown in the figure below.

\geq 】 < to zoom on the minimum of the curve of minima.
» \uparrow «: to zoom on the maximum of the curve of maxima.

Figure 96

Phase-to-neutral voltages (Vrms) for an L1 display filter and $\geqslant \downarrow$ <

Figure 97

Active power (P) for a display filter $\boldsymbol{\Sigma}$
The power, like the energy, is displayed in barchart form.
The duration of a bar is 1 second, or one recording period if it is longer than 1 s .

To display the active energy (E_{p}).

Figure 98

Cumulative active energy $\left(E_{p}\right)$ for a Σ display filter

- Place the cursor on the beginning of the accumulation range.
- Press the Σ key.
- Move the cursor to the end of the energy accumulation range.
- The cumulative total is displayed as it evolves.

Figure 99

Power factor (PF) for an L1 display filter

Figure 100

10. TRANSIENT MODE

The transient mode records voltage or current transients for a specified duration determined according to the configuration chosen (see § 3.4.5). It also serves to record shock waves: very high voltages for a very short time.

The CA 8345 can record a large number of transients. This number is limited only by the capacity of the SD card.
The home screen displays a list of the recordings already made. For the moment, there are none.

Figure 101

10.1. START OF A RECORDING

Press $\boldsymbol{\|}$ to schedule a recording.
4. mode for start recording a transient programmed in the configuration (§ 3.4.5) at the end of the current minute + one minute.

To change the voltage, current, or shock wave thresholds.

The configuration specifies:

- whether the recording concerns transients, shock waves, or both,
- the maximum number of transients or shock waves to be recorded,
- the starting date and time of recording,
- the ending date and time of recording,
- the name of the recording.

Press D. Recording will start at the programmed time if there is enough space on the SD card.

Figure 103

10.2. LIST OF RECORDINGS

Press to view the recordings made.

Name, starting date and time, ending date and time of the recording.

Figure 105
If the ending date is shown in red, it is because recording could not continue up to the planned ending date.

- or because of a power supply problem (the instrument switched off because the battery was low),
- or because the maximum number of transients was reached.
- or because there was a write error on the SD card.

To learn what the error number shown means, use the help key 0 or refer to § 20.10.
To erase all recordings of transients at once, refer to § 3.3.4.

10.3. READING A RECORDING

Select the recording to be read in the list and press the confirm key ω to open it.

Figure 106
To change the display filter, press the $\boldsymbol{\gamma}$ key, then use the $\boldsymbol{\Delta} \boldsymbol{\nabla}$ keys.

- $\boldsymbol{\forall}$: to display all of the transients.
- 4 V : to display the transients triggered by an event in one of the 4 voltage channels.
- 4 A : to display the transients triggered by an event in one of the 4 current channels.
- L1, L2 or L3: to display the transients triggered by a voltage or current event in phase L1, L2, or L3.
- \mathbf{N} : to display the transients triggered by a voltage or current event in the neutral.

Confirm by pressing the key again.

Figure 107
To display a transient, select it and press the confirm key Ξ.
Below are examples of screens for a three-phase, 5 -wire connection.
The cursor lets you view the values along the curves displayed.
To move the cursor, use the $\downarrow \rightarrow$ keys.
To change the display filter, use the $\boldsymbol{\Delta} \boldsymbol{\nabla}$ keys.
$\Theta \Theta$ © to stretch or shrink the time scale.

Transient event in all of the voltage channels

Channel that triggered the transient capture.

To zoom on the event that triggered the transient capture.
Because the triggering event is on the 3rd voltage channel, this key is active only on 4 V and L 3 .

Figure 108

Zoom on the triggering event

Figure 109

Shock wave in all of the voltage channels

If you have recorded a shock wave, it will appear when the record is read.

Figure 110
To display the recording of the shock wave, select it and press the confirm key \rfloor.
This screen displays the whole of the captured signal for a duration of 1.024 s . The instant of triggering is at one quarter of the screen.

Figure 111

Zoom on the triggering event or on the maximum value

Press » \uparrow ‘ to place the cursor on the triggering element or $>\mathrm{t}=0$ to place the cursor on the maximum. Since the shock wave builds up very quickly, these two points are often very close together. Then press ${ }^{\oplus}$, one or more times, to zoom.
Reminder of the channel that triggered the shock wave capture.

11. INRUSH CURRENT MODE

The inrush current mode is used to capture and record inrush currents for a duration specified according to the configuration chosen (see § 3.4.6).

The CA 8345 can record a large number of inrush current captures. This number is limited only by the capacity of the SD card.
The home screen displays a list of the captures already made. For the moment, there are none.

Figure 113

11.1. START OF A CAPTURE

Press $\boldsymbol{\|}$ to program a capture.

Figure 114
The configuration specifies:

- the starting date and time of the capture,
- the ending date and time of the capture,
- whether the capture concerns RMS values or RMS values and instantaneous values,
- the name of the capture.

Press D. The capture will start at the programmed time, if the SD card is in place at the time of the press and enough space remains.
\mathbb{Z} indicates that the capture has been programmed but not yet started.
indicates that it is in progress.

Figure 115

Figure 116

11.2. LIST OF CAPTURES

Press \square to view the captures performed.

Figure 117
To erase all of the inrush current captures at once, refer to § 3.3.4.
If the ending date is shown in red, it is because recording could not continue up to the planned ending date.

- or because of a power supply problem (the instrument switched off because the battery was low),
- or because there was a write error on the SD card.

To learn what the error number shown means, use the help key 0 or refer to § 20.10.

11.3. READING A CAPTURE

Select the capture to be read in the list and press the confirm key to open it. Captures whose ending date is shown in red may be unusable.

Reminder of information about the capture: name, number of detections of inrush current, starting date and time, duration of the capture, channel that triggered the capture.

Press the confirm key again to display the information about the capture.

Figure 119

To display the instantaneous value curves according to the configuration.

Below are examples of screens for a three-phase, 5 -wire connection.

11.3.1. RMS VALUES

Press the RMS key to view the RMS voltage and current values.
To change the display filter, use the $\boldsymbol{\Delta} \boldsymbol{\nabla}$ keys.

- 3 V : to display the 3 phase-to-neutral voltages.
- 3U: to display the 3 phase-to-phase voltages.
- 3A: to display the 3 currents.
- L1, L2, L3: to display the current and voltage on phases L1, L2, and L3.
- Hz: to display the evolution of the network frequency over time.

The cursor lets you view the values along the curves displayed.
To move the cursor, use the $\downarrow \bullet$ keys.
$\Theta \Theta$: to stretch or shrink the time scale.

The maximum duration of an RMS recording is 30 minutes. In this case, it can take up to about ten seconds to display the curves.

Capture of inrush current in RMS on 3A

Figure 120

Capture of RMS inrush current on L2

 keys are used to place the cursor on the minimum or maximum voltage or current.

Figure 121

11.3.2. INSTANTANEOUS VALUES

Press the WAVE key to view the instantaneous voltage and current values.
This recording displays all of the samples. It is much more precise than RMS, which displays only one value per half-cycle.
To change the display filter, use the $\boldsymbol{\Delta} \boldsymbol{\nabla}$ keys.

- $\mathbf{4 V}$: to display the 3 phase-to-neutral voltages and the neutral.
- 3U: to display the 3 phase-to-phase voltages.
- 4A: to display the 3 currents and the current of the neutral.
- L1, L2, L3: to display the current and voltage on phases L1, L2, and L3.
- \mathbf{N} : to display the current and the voltage on the neutral.

The cursor lets you view the values along the curves displayed.
To move the cursor, use the $\downarrow>$ keys.
$\Theta \oplus:$ to stretch or shrink the time scale.

Capture of instantaneous inrush current values on 4A

Figure 122

Capture of instantaneous inrush current values on L3

Figure 123

12. ALARM MODE

The alarm mode Δ detects and records overshoots of the quantities chosen in the configuration (see § 3.4.7) for a specified duration.

The CA 8345 can record a large number of alarm campaigns (limited only by the capacity of the SD card), each containing up to 20,000 alarms. You can choose this maximum number in the configuration.

The home screen displays a list of the alarm campaigns already performed. For the moment, there are none.

Figure 124

12.1. START OF AN ALARM CAMPAIGN

Press to program an alarm campaign.

Figure 125

When you modify an alarm, it is deactivated. Remember to reactivate it.

The configuration specifies:

- the starting date and time of the alarm campaign,
- the ending date and time of the alarm campaign,
- the maximum number of alarms to be recorded in the campaign.
- the name of the alarm campaign.

Press \boldsymbol{D}. The alarm campaign will start at the programmed time.
\boldsymbol{Z} indicates that the alarm campaign has been programmed but has not yet started.
indicates that it is in progress.
11 indicates that it is suspended.

Figure 126

The alarm campaign is in progress.

Figure 127

12.2. LIST OF ALARM CAMPAIGNS

Press \leftrightarrows to view the alarm campaigns already performed.

Name, starting date and time, ending date and time of the alarm campaign.

Figure 128
To erase all of the alarm campaigns at once, refer to § 3.3.4.
If the ending date is shown in red, it is because recording could not continue up to the planned ending date.

- or because of a power supply problem (the instrument switched off because the battery was low),
- or because there was a write error on the SD card.

To learn what the error number shown means, use the help key 0 or refer to § 20.10.

12.3. START OF AN ALARM CAMPAIGN

Select the alarm campaign to be read in the list and press the confirm key ω to open it.
Below is an example of a screen.

Figure 129

To change the display filter, use the $\boldsymbol{\Delta} \boldsymbol{\nabla}$ keys.

- \forall : to display the alarms in all channels.
- L1, L2, L3: to display the alarms on phase L1, L2, or L3.
- \mathbf{N} : to display the alarms on the neutral.
- $\boldsymbol{\Sigma}$: to display the alarms on the quantities that can be summed, such as the power

If an alarm duration is displayed in red, it means that it was cut off:

- because the alarm campaign ended while the alarm was in progress,
- or because of a power supply problem (the instrument switched off because the battery was low),
- or because of a manual stop of the campaign ($\mathbb{\square}$ pressed) or because the instrument was intentionally switched off (${ }^{(1)}$ key pressed).
- or because the memory was full.
- or because of a measurement error.
- or because of an incompatibility between the quantity monitored and the configuration of the instrument (for example if a current sensor is removed).

In the last two cases, the extreme value is also displayed in red. This indicates the existence of an error, with an error number. To learn the meaning of this number, use the help key ?.

13. MONITORING MODE

The monitoring mode E \mathbb{E} monitors an electrical network per standard EN 50 160. It detects:

- slow variations,
- rapid variations and interruptions
- voltage dips,
- temporary voltage swells,
- and transients.

A monitoring campaign therefore triggers a trend recording, a search for transients, an alarm campaign, and a log of events.
The CA 8345 can record a large number of monitoring campaigns. This number is limited only by the capacity of the SD card.
The home screen displays a list of the monitoring campaigns already performed. For the moment, there are none.

Figure 130

13.1. START OF A MONITORING CAMPAIGN

The monitoring mode is configured using the PAT3 application software (see § 16).
Once the software has been installed and the instrument connected, go to the Instrument, Configure monitoring menu.

Figure 131

The configuration window opens.

Figure 132
It has 5 tabs:

- Monitoring
- Slow variations thresholds
- Rapid voltage changes and interruptions
- Dips and swells
- Transients

In the Monitoring tab, indicate the nominal voltage, the frequency, and the name of the file that will contain the monitoring campaign.
In the Slow variations thresholds tab, the maximum variations of the frequency and of the voltages are already specified, as per the standard, for a duration of one week and for the duration of the monitoring campaign. You can modify them or add quantities to be monitored.

The Rapid variations of voltages and interruptions tab specifies the duration of interruptions and rapid voltage changes (RVC), which are however slower than transients. You can keep the preset values or modify them.

The Dips and swells tab specifies the level and duration of the voltage dips and the level and duration of the voltage swells. You can keep the preset values or modify them.

The Transients tab is used to specify a search for transients as on the instrument (see § 3.4.5).

When the monitoring campaign is configured, confirm by pressing OK; the configuration is transferred to the instrument.
Then start the monitoring campaign on the instrument by specifying its starting time and its duration.
Press $\boldsymbol{\square}$ to program a monitoring campaign.

Figure 133
The configuration specifies:

- the starting date and time of the recording,
- the ending date and time of the recording,
- the name of the records.

Press . The monitoring will start at the programmed time if there is enough space on the SD card.

Figure 134

Figure 135

13.2. LIST OF MONITORING CAMPAIGNS

Press to view the monitoring campaigns already done.

Name, starting date and time, ending date and time of the monitoring campaign.

Figure 136
If the ending date is shown in red, it is because recording could not continue up to the planned ending date.

- or because of a power supply problem (the instrument switched off because the battery was low),
- or because the maximum number of transients was reached,
- or because there was a write error on the SD card.

To learn what the error number shown means, use the help key \square or refer to § 20.10.
To erase all of the monitoring campaigns at once, refer to § 3.3.4.

13.3. READING A MONITORING CAMPAIGNS

Select the analysis to be read in the list and press the confirm key Θ to open it.
Below is an example of a screen.

To view the recording of a trend.

To view searches for transients.

To view alarm crossings

Figure 137

Name, starting and ending dates of the analysis.

To read an alarm campaign, refer to § 12.3.
To read a search for transients, refer to § 10.3.
To read a trend recording, refer to § 9.3.
For slow variations, rapid changes, interruptions, voltage dips and swells, the recordings are in PAT3 in My recorded sessions.

14. SCREENSHOT

The key is used to make screenshots and to view the recorded screenshots.
Screenshots are recorded on the SD card in directory 8345\Photograph. They can also be read on the PC using the PAT3 software or using an SD card reader (not provided).

14.1. SCREENSHOT

You can make a screenshot in two ways:

- Long-press the key and keep it pressed.

The symbol in the status bar turns yellow [0], then black . You can then release the key.

- Press the symbol in the status bar, at the top of the display unit. The (©0) symbol in the status bar turns yellow [0], then grey.

Screens that are likely to vary (curves, metering) are captured in bursts (up to five). This lets you choose the one that suits you best.
It is then necessary to wait a few seconds between screenshots, long enough for them to be recorded and for the symbol in the status bar to turn grey again.

The number of screenshots the instrument can record depends on the capacity of the SD card.
Single photographs (fixed screen) consume about 150 kB and multiple photographs (variable screen) consume approximately 8 MB . This means that the SD card provided can hold several thousand screenshots.

Then refer to § 3.3.4 for the procedure for total or partial erasure of the contents of the SD card.

14.2. MANAGEMENT OF SCREENSHOTS

To enter the screenshots mode, short-press the 0 key.

Figure 138

14.2.1. DISPLAY OF A SCREENSHOT

To display a screenshot, select it and press the confirm key . The instrument displays the available photograph(s). $_{\text {. }}$

Figure 139
Select a screenshot and confirm \triangleq.

The mode icon blinks in alternation with [0].

Figure 140

15. HELP

The 0 key gives you access to information about the functions of the keys and the symbols used for the display mode in progress.

Here's an example of a help screen in the power mode:

Figure 141
The first page indicates the two possible functions. The second page describes the display functions and the third defines the

symbols.

Figure 143

And an example of a waveform help screen.

Figure 142

Figure 144

16. APPLICATION SOFTWARE

The PAT3 (Power Analyser Transfer 3) application software is used to:

- configure the instrument and the measurements,
- start the measurements,
- transfer the data recorded in the instrument to a PC.

PAT3 can also be used to export the configuration to a file and to import a configuration file.

16.1. OBTAIN THE PAT3 SOFTWARE

You can download the latest version from our web site: www.chauvin-arnoux.com

Go to the Support tab, then Download our software.
Then search on the name of your instrument.
Download the software
To install it, run the set-up.exe file, then follow the instructions on screen.
Then connect the instrument to the PC using one of the available communication channels : Ethernet, Wi-Fi or USB (see figure below)

Switch the instrument on by pressing the \mathcal{U}^{\prime} button and wait for your PC to detect it.
All measurements recorded in the instrument can be transferred to the PC. The transfer does not erase the data recorded in the SD card unless you explicitly ask it to.

The data stored in the memory card can also be read on the PC using the PAT3 software or using an SD card reader (not provided). To withdraw the memory card from the instrument, refer to § 3.3.4.

1
To use PAT3, refer to its help menu or to its manual.

17. TECHNICAL SPECIFICATIONS

The CA 8345 has been certified to comply with IEC 61000-4-30 edition 3, Amendment 1 (2021) class A requirements.

17.1. REFERENCE CONDITIONS

Quantity of influence		Reference conditions
Environmental conditions	Ambient temperature	$23 \pm 3^{\circ} \mathrm{C}$
	Relative humidity	40 to 75\% RH
	Atmospheric pressure	860 to 1060 hPa
	Electric field	$<1 \mathrm{~V} / \mathrm{m}$ from 80 to 1000 MHz $\leq 0.3 \mathrm{~V} / \mathrm{m}$ from 1 to 2 GHz $\leq 0.1 \mathrm{~V} / \mathrm{m}$ from 2 to 2.7 GHz
	Magnetic field	< $40 \mathrm{~A} / \mathrm{m}$ DC (earth's magnetic field) $<3 \mathrm{~A} / \mathrm{m} \mathrm{AC}(50 / 60 \mathrm{~Hz})$
Specifications of the electrical system	Phases	3 phases available (for three-phase systems)
	DC components of voltage and current	No
	Waveform	Sine wave
	Frequency of the electrical network	$50 \pm 0.5 \mathrm{~Hz}$ or $60 \pm 0.5 \mathrm{~Hz}$
	Amplitude of the voltage	$\mathrm{U}_{\mathrm{din}} \pm 1 \%$ Phase-to-neutral voltage between 100 and 400 V Phase-to-phase voltage between 200 and 1000 V
	Flicker	$\mathrm{P}_{\text {st }}<0,1$
	Voltage unbalance	```u Phase modulus: 100 % m0,5 % U U din Phase angles: L1 0 }\pm0.0\mp@subsup{5}{}{\circ},\textrm{L}2-120\pm0.0\mp@subsup{5}{}{\circ},\textrm{L}312 \pm.05```
	Harmonics	$<3 \% \mathrm{U}_{\text {din }}$
	Inter-harmonics	$<0.5 \% \mathrm{U}_{\text {din }}$
	Input voltage on the current terminals (current sensors except Flex)	30 to 1000 mVRMS without DC - 1 VRMs <=> $A_{\text {nom }}{ }^{(1)}$ - 30 mVRMs <=> $3 \times \mathrm{A}_{\text {nom }}{ }^{(1)} / 100$
	Input voltage on current terminals for AmpFlex ${ }^{\text {® }}$ and MiniFlex sensors, 10 kA range	11.73 to 391 mVRMS without DC $11,73 \mathrm{mVRms}$ at $50 \mathrm{~Hz}<=>300$ Arms 391 mVRMS at 50 Hz <=> 10 kARMS
	Input voltage on current terminals for AmpFlex ${ }^{\text {® }}$ and MiniFlex sensors, 1000 A range	1.173 to 39.1 mV RMS without DC $1,173 \mathrm{mVRMS}$ at $50 \mathrm{~Hz}<=>30$ Arms $39,1 \mathrm{mV}$ RMs at 50 Hz <=> 1000 Arms
	Input voltage on current terminals for AmpFlex and MiniFlex sensors, 100 A range	117.3 à 3910μ VRMS without DC $117.3 \mu \mathrm{VRMS}$ at $50 \mathrm{~Hz}<=>3$ Arms 3.91 mVRMS at 50 Hz <=> 100 ARMs
	Phase difference	0° (active power and energy) 90° (reactive power and energy)
Configuration of the instrument	Voltage ratio	1
	Current ratio	1
	Voltages	measured (not calculated)
	Current sensors	real (not simulated)
	Auxiliary power supply voltage	$230 \mathrm{~V} \pm 1 \%$ or $120 \mathrm{~V} \pm 1 \%$
	Instrument warm-up	1 h

Table 1
1: The values of $A_{\text {nom }}$ are given in the following table.

Current sensor	Nominal RMS current $A_{\text {nom }}(A)$	Full-scale technical RMS per class A (A) (2)	Full-scale commercial RMS per class A (A) (3)
AmpFlex ${ }^{\text {® }}$ A193 and MiniFlex MA194	$\begin{gathered} \hline 100 \\ 1000 \\ 10,000 \end{gathered}$	14.14 to 16.97 141.42 to 169.71 1414.21 to $1697.06^{(1)}$	$\begin{gathered} 30 \mathrm{~A} \\ 300 \mathrm{~A} \\ 3000 \mathrm{~A}^{(1)} \end{gathered}$
J93 clamp	3500	1650 to 1980	1800
C193 clamp	1000	471 to 566	500
PAC93 clamp	1000	471 to 566	500
MN93 clamp	200	94.3 to 113	100
MINI94 clamp	200	94.3 to 113	100
MN93A clamp (100 A)	100	47.1 to 56.6	50
E94 clamp (10 mV/A)	100	47.1 to 56.6	50
E94 clamp (100 mV/A)	10	3.54 to 4.24	4
MN93A clamp (5 A)	5	1.77 to 2.12	2
Three-phase 5 A adapter	5	1.77 to 2.12	2
Essailec ${ }^{\circledR} 5 \mathrm{~A}$ three-phase adapter	5	1.77 to 2.12	2

Table 2
1: Flex type current sensors do not guarantee Class A at full scale. This is because they generate a signal proportional to the differential coefficient of the current, and the scale factor can easily reach $3,3.5$, or 4 if the signal is not sinusoidal.

2: Calculation formulas

Lower value	Upper value
$\frac{\sqrt{2}}{\mathrm{CF}_{\text {Class-A }}} \times \mathrm{A}_{\text {nom }}$	$1.2 \times \frac{\sqrt{2}}{\mathrm{CF}_{\text {Class-A }}} \times \mathrm{A}_{\text {nom }}$

The factor 1.2 follows from the capacity of the current input of the instrument to accept 120% of $\mathrm{A}_{\text {nom }}$ with a sinusoidal signal.

3: The commercial full scale RMS value is chosen inside the technical full scale.

17.2. ELECTRICAL SPECIFICATIONS

17.2.1. SPECIFICATIONS OF THE INPUT VOLTAGE

Range of use	0 VRMS to 1000 VRMS phase-neutral and neutral-earth
	0 VRMS to 1700 VRMS phase-phase, without exceeding 1000 VRMS with respect to earth
Input impedance	2 M Ω (between phase and neutral and between neutral and earth)
Permanent overload	1200 VRMS phase-neutral and neutral-earth
Temporary overload	12,000 VRMS phase-neutral and neutral-earth, 278 pulses per second at most

17.2.2. SPECIFICATIONS OF THE CURRENT INPUT

Range of use	0 to 1 VRMS with CF $=\sqrt{2}$ except Flex
0 to $\left(0.391 \times \mathrm{f}_{\text {nom }} / 50\right)$ VRMS with CF $=\sqrt{2}$ for the Flex	
Input impedance	$1 \mathrm{M} \Omega$ except Flex
	$12.5 \mathrm{k} \Omega$ for the Flex Maximum input voltage 1.2 VRMS with CF $=\sqrt{2}$ Permanent overload
1.7 VRMS with CF $=\sqrt{2}$	

17.2.3. BANDWIDTH AND SAMPLING

The instrument incorporates anti-aliasing filters as required by IEC 61000-4-7 Ed.2.
S/s: sample per second
spc: sample per cycle

The bandwidth and the sampling frequency ($\mathrm{S}=$ sample) are:

- 88 kHz and $400 \mathrm{kS} / \mathrm{s}$ (16 bits) for the voltage channels
- 20 kHz and $200 \mathrm{kS} / \mathrm{s}$ (18 bits) for the current channels
- 200 kHz and $2 \mathrm{MS} / \mathrm{s}$ (12 bits) for fast transients

There are two streams of data used for metrology: $40 \mathrm{kS} / \mathrm{s}$ and 512 spc (samples per cycle).

- Waveform - RMS:
- 3U, 4V, 4A filters: 512 spc stream
- L1, L2, L3, N filters: 512 spc stream, except for the Min and Max curves: $400 \mathrm{kS} / \mathrm{s}$ for V and $\mathrm{U}, 200 \mathrm{kS} / \mathrm{s}$ for I .
- Waveform - Min- Max:
- RMS measurements: 512 spc stream
- Max, Min measurements: $40 \mathrm{kS} / \mathrm{s}$ stream
- Pk+, Pk- measurements: $40 \mathrm{kS} / \mathrm{s}$ stream (10/12-cycle / 200 ms aggregation) or 512 spc stream (150/180-cycle $/ 3 \mathrm{~s}$ aggregation)
- Transients:

■ 3U, 4V, 4A filters: 512 spc stream

- L1, L2, L3, N filters: 512 spc stream, except for the Min and Max curves: $400 \mathrm{kS} / \mathrm{s}$ for V and $\mathrm{U}, 200 \mathrm{kS} / \mathrm{s}$ for I .
- Shock wave: $2 \mathrm{MS} / \mathrm{s} / 500 \mathrm{~ns}$ (Waveform and events), up to 12 kV
- Inrush current:
- Curves: 512 spc stream
- Measurements: $40 \mathrm{kS} / \mathrm{s}$ stream ($\mathrm{RMS}^{1} / 2$ measurements)
- Harmonics: 512 spc stream
- Power and energy: $40 \mathrm{kS} / \mathrm{s}$ stream
- Trend and alarm: 512 spc or $40 \mathrm{kS} / \mathrm{s}$, depending on the quantities:

■ RMS values, flicker, tan φ, harmonics, inter-harmonics, unbalances, harmonic distortions: 512 spc stream

- Power frequency, power and energy measurements: $40 \mathrm{kS} / \mathrm{s}$ stream
17.2.4. SPECIFICATIONS OF THE INSTRUMENT ALONE (WITHOUT CURRENT SENSOR)

17.2.4.1. CURRENTS AND VOLTAGES

Measurement		Measurement range without ratio (with unity ratio)		Display resolution (with unity ratio)	Maximum intrinsic error
		Minimum	Maximum		
Frequency		42.50 Hz	69.00 Hz	10 mHz	$\pm 10 \mathrm{mHz}$
Voltage RMS ${ }^{(4)}$	phase-to-neutral	5.000 V	9,999 V ${ }^{(1)}$	4 digits	$\pm(0.1 \%+100 \mathrm{mV})$
		10.00 V	600.0 V	4 digits	$\pm\left(0,1\right.$ \% $\mathrm{U}_{\text {din }}$)
		600.1 V	1,000 V	4 digits	$\pm(0.1 \%+1 \mathrm{~V})$
	phase-to-phase	5.000 V	$19.99 \mathrm{~V}^{(1)}$	4 digits	$\pm(0.1 \%+100 \mathrm{mV})$
		20.00 V	1,500 V	4 digits	$\pm\left(0,1\right.$ \% $\left.\mathrm{U}_{\text {din }}\right)$
		1,501 V	2,000 V	4 digits	$\pm(0.1 \%+1 \mathrm{~V})$
DC voltage	phase-to-neutral	5.000 V	999.9 V	4 digits	$\pm(0.5 \%+500 \mathrm{mV})$
		1,000 V	1,200 V ${ }^{(2)}$	4 digits	$\pm(0.5 \%+1 \mathrm{~V})$
	phase-to-phase	5.000 V	999.9 V	4 digits	$\pm(0.5 \%+500 \mathrm{mV})$
		1,000 V	2,400 $\mathrm{V}^{(2)}$	4 digits	$\pm(0.5 \%+1 \mathrm{~V})$
Distorting RMS 1 1 2	phase-to-neutral	2.000 V	1,000 V	4 digits	$\pm(0.5 \%+500 \mathrm{mV})$
	phase-to-phase	2.000 V	$999.9 \mathrm{~V}^{(1)}$	4 digits	$\pm(0.5 \%+500 \mathrm{mV})$
		1,000 V	$2000 \mathrm{~V}^{(1)}$	4 digits	$\pm(0.5 \%+1 \mathrm{~V})$
Distorting voltage	phase-to-neutral	2.000 V	999.9 V	4 digits	$\pm(1.5 \%+500 \mathrm{mV})$
		1,000 V	$1414 \mathrm{~V}^{(3)}$	4 digits	$\pm(1.5 \%+1 \mathrm{~V})$
	phase-to-phase	2.000 V	999.9 V	4 digits	$\pm(1.5 \%+500 \mathrm{mV})$
		1,000 V	$2828 \mathrm{~V}^{(3)}$	4 digits	$\pm(1.5 \%+1 \mathrm{~V})$
Instantaneous sensation of flicker ($\mathrm{P}_{\text {instmax }}$)		0.000	$12,00{ }^{(5)}$	4 digits	$\pm 8 \%$
Severity of short-term flicker ($\mathrm{P}_{\text {st }}$)		0.000	$12,00{ }^{(5)}$	4 digits	Max $\pm(5 \% ; 0.05)$
Severity of long-term flicker (P_{lt})		0.000	$12,00{ }^{(5)}$	4 digits	Max $\pm(5 \%$; 0.05)
Crest factor (CF) (voltage and current)		1.000	9.999	4 digits	$\begin{gathered} \pm(1 \%+5 \mathrm{pt}) \\ \mathrm{CF}<4 \end{gathered}$
		$\begin{gathered} \pm(5 \%+2 p t) \\ C F \geq 4 \end{gathered}$			

1: Provided that the voltages between the individual terminals and earth do not exceed 1000 Vrms.
2: Limitation of voltage inputs.
3: $1000 \times \sqrt{2} \approx 1414 ; 2000 \times \sqrt{2} \approx 2828$.
4: Total RMS value and RMS value of the fundamental.
5: The limits specified in IEC 61000-3-3 are: $P_{\text {st }}<1,0$ and $P_{\mathrm{tt}}<0,65$. Values greater than 12 are unrealistic and no uncertainty is specified for them.

Measurement		Measurement range without ratio (with unity ratio)		Display resolution (with unity ratio)	Maximum intrinsic error
		Minimum	Maximum		
RMS current ${ }^{(4)}$	J93 clamp	3.000 A	164.9 A	4 digits	$\pm(0.5 \%+200 \mathrm{~mA})$
		165.0 A	1980 A	4 digits	± 0.5 \% ${ }^{(6)}$
		1981 A	3500 A	4 digits	$\pm(0.5 \%+1 \mathrm{~A})$
	C193 clamp PAC93 clamp	1.000 A	47.09 A	4 digits	$\pm(0.5 \%+200 \mathrm{~mA})$
		47.10 A	566.0 A	4 digits	± 0.5 \% ${ }^{(6)}$
		566.1 A	1,000 A	4 digits	$\pm(0.5 \%+200 \mathrm{~mA})$
	MN93 clamp	200.0 mA	9.429 A	4 digits	$\pm(0.5 \%+20 \mathrm{~mA})$
		9.430 A	113.0 A	4 digits	± 0.5 \% ${ }^{(6)}$
		113.1 A	200.0 A	4 digits	$\pm(0.5 \%+200 \mathrm{~mA})$
	E94 clamp ($10 \mathrm{mV} / \mathrm{A}$) MN93A clamp (100A)	200.0 mA	4.709 A	4 digits	$\pm(0.5 \%+20 \mathrm{~mA})$
		4.710 A	56.60 A	4 digits	$\pm 0.5 \%{ }^{(6)}$
		56.61 A	100.0 A	4 digits	$\pm(0.5 \%+200 \mathrm{~mA})$
	E94 clamp ($100 \mathrm{mV} / \mathrm{A}$)	20.00 mA	353.9 mA	4 digits	$\pm(0.5 \%+2 \mathrm{~mA})$
		354.0 mA	4.240 A	4 digits	± 0.5 \% ${ }^{(6)}$
		4.241 A	10.00 A	4 digits	$\pm(0.5 \%+10 \mathrm{~mA})$
	MN93A clamp (5 A) 5 A adapter Essailec ${ }^{\circledR}$ adapter	5.000 mA	176.9 mA	4 digits	$\pm(0.5 \%+2 \mathrm{~mA})$
		177.0 mA	2.120 A	4 digits	± 0.5 \% ${ }^{(6)}$
		2.121 A	5.000 A	4 digits	$\pm(0.5 \%+2 \mathrm{~mA})$
	MINI94 clamp	50.0 mA	9.429 A	4 digits	$\pm(0.5 \%+20 \mathrm{~mA})$
		9.430 A	113.0 A	4 digits	± 0.5 \% ${ }^{(6)}$
		113.1 A	200.0 A	4 digits	$\pm(0.5$ \% + 200 mA)
	AmpFlex ${ }^{\circledR}$ A193 MiniFlex MA194 (10 kA)	10.00 A	299.9 A	4 digits	$\pm(0.5 \%+3 \mathrm{~A})$
		300.0 A	3,000 A	4 digits	± 0.5 \% ${ }^{(6)}$
		3001 A	10,000 A	4 digits	$\pm(0.5 \%+3 \mathrm{~A})$
	AmpFlex ${ }^{\text {® }}$ A193 MiniFlex MA194 (1000 A)	1.000 A	29.99 A	4 digits	$\pm(0.5 \%+0.5 \mathrm{~A})$
		30.00 A	300.0 A	4 digits	± 0.5 \% ${ }^{(6)}$
		300.1 A	1,000 A	4 digits	$\pm(0.5 \%+0.5 \mathrm{~A})$
	AmpFlex ${ }^{\circledR}$ A193 MiniFlex MA194 (100 A)	100.0 mA	2.999 A	4 digits	$\pm(0.5 \%+100 \mathrm{~mA})$
		3.000 A	30.00 A	4 digits	± 0.5 \% ${ }^{(6)}$
		30.01 A	100 A	4 digits	$\pm(0.5 \%+3 \mathrm{~A})$
DC current	J93 clamp	3 A	5000 A	4 digits	$\pm(1 \%+1 \mathrm{~A})$
	PAC93 clamp	1 A	$1300 \mathrm{~A}^{(1)}$	4 digits	$\pm(1 \%+1 A)$
	E94 clamp ($10 \mathrm{mV} / \mathrm{A}$)	200 mA	$100 \mathrm{~A}^{(1)}$	4 digits	$\pm(1 \%+100 \mathrm{~mA})$
	E94 clamp ($100 \mathrm{mV} / \mathrm{A}$)	20 mA	$10 \mathrm{~A}{ }^{(1)}$	4 digits	$\pm(1 \%+10 \mathrm{~mA})$

4: Total RMS value and RMS value of the fundamental.
6: The intrinsic uncertainty of class A is $\pm 1 \%$.

Measurement		Measurement range without ratio (with unity ratio)		Display resolution (with unity ratio)	Maximum intrinsic error
		Minimum	Maximum		
Distorting RMS $1 / 2{ }^{(8)}$	J93 clamp	1.000 A	3500 A	4 digits	$\pm(1 \%+1 \mathrm{~A})$
	C193 clamp PAC93 clamp	1.000 A	1000 A	4 digits	$\pm(1 \%+1 \mathrm{~A})$
	MN93 clamp	200.0 mA	200.0 A	4 digits	$\pm(1 \%+1 \mathrm{~A})$
	E94 clamp ($10 \mathrm{mV} / \mathrm{A}$) MN93A clamp (100 A)	200.0 mA	100.0 A	4 digits	$\pm(1 \%+100 \mathrm{~mA})$
	E94 clamp (100 mV/A)	20.00 mA	10.00 A	4 digits	$\pm(1 \%+10 \mathrm{~mA})$
	MN93A clamp (5 A) 5 A adapter Essailec ${ }^{\circledR}$ adapter	5.000 mA	5.000 A	4 digits	$\pm(1 \%+10 \mathrm{~mA})$
	MINI94 clamp	50.0 mA	200.0 A	4 digits	$\pm(1 \%+1 \mathrm{~A})$
	AmpFlex ${ }^{\circledR}$ A193 MiniFlex MA194 (10 kA)	10.00 A	10.00 kA	4 digits	$\pm(2.5 \%+5 \mathrm{~A})$
	AmpFlex ${ }^{\circledR}$ A193 MiniFlex MA194 (1000 A)	10.00 A	1000 A	4 digits	$\pm(2.5 \%+5 \mathrm{~A})$
	AmpFlex ${ }^{\circledR}$ A193 MiniFlex MA194 (100 A)	100.0 mA	100.0 A	4 digits	$\pm(2.5 \%+200 \mathrm{~mA})$
Peak current (PK)	J93 clamp	1.000 A	$4950 \mathrm{~A}^{(7)}$	4 digits	$\pm(1 \%+2 \mathrm{~A})$
	C193 clamp PAC93 clamp	1.000 A	$1414 \mathrm{~A}^{(7)}$	4 digits	$\pm(1 \%+2 \mathrm{~A})$
	MN93 clamp	200.0 mA	$282.8 \mathrm{~A}^{(7)}$	4 digits	$\pm(1 \%+2 \mathrm{~A})$
	E94 clamp ($10 \mathrm{mV} / \mathrm{A}$) MN93A clamp (100 A)	200.0 mA	$141.4 \mathrm{~A}^{(7)}$	4 digits	$\pm(1 \%+200 \mathrm{~mA})$
	E94 clamp (100 mV/A)	20.00 mA	$14.14 \mathrm{~A}^{(7)}$	4 digits	$\pm(1 \%+20 \mathrm{~mA})$
	MN93A clamp (5 A) 5 A adapter Essailec ${ }^{\circledR}$ adapter	5.000 mA	$7.071 \mathrm{~A}^{(7)}$	4 digits	$\pm(1 \%+20 \mathrm{~mA})$
	MINI94 clamp	50.0 mA	$282.8 \mathrm{~A}^{(7)}$	4 digits	$\pm(1 \%+2 \mathrm{~A})$
	$\begin{aligned} & \text { AmpFlex }{ }^{\circledR} \text { A193 } \\ & \text { MiniFlex MA194 } \\ & (10 \mathrm{kA}) \end{aligned}$	10.00 A	$14.14 \mathrm{kA}^{(7)}$	4 digits	$\pm(3 \%+5 \mathrm{~A})$
	AmpFlex ${ }^{\circledR}$ A193 MiniFlex MA194 (1000 A)	10.00 A	$1414 \mathrm{kA}^{(7)}$	4 digits	$\pm(3 \%+5 \mathrm{~A})$
	AmpFlex ${ }^{\circledR}$ A193 MiniFlex MA194 (100 A)	100.0 mA	$141.4 \mathrm{~A}^{(7)}$	4 digits	$\pm(3 \%+600 \mathrm{~mA})$

Table 3
7: $3500 \times \sqrt{2} \approx 4950 ; 1000 \times \sqrt{2} \approx 1414 ; 200 \times \sqrt{2} \approx 282.8 ; 100 \times \sqrt{2} \approx 141.4 ; 10 \times \sqrt{2} \approx 14.14 ; 10000 \times \sqrt{2} \approx 14140$; $6500 \times \sqrt{2} \approx 9192$;
8: RMS $1 / 2$: RMS values of the voltages measured in 1 cycle, starting at a zero crossing of the fundamental, refreshed at each half-cycle.
17.2.4.2. POWER AND ENERGY

Measurement		Measurement range without ratio (with unity ratio)		Display resolution (with unity ratio) ${ }^{(11)}$	Maximum intrinsic error	
		Minimum	Maximum			
Active power $(P)^{(1)}$	Without Flex	$1.000 \mathrm{~W}^{(3)}$	10.00 MW ${ }^{(4)}$	4 digits ${ }^{(5)}$	$\begin{gathered} \pm(1 \%+10 \mathrm{pt}) \\ \|\cos \varphi\| \geq 0,8 \end{gathered}$	
					$\begin{gathered} \pm(1.5 \%+10 \mathrm{pt}) \\ 0,2 \leq\|\cos \varphi\|<0,8 \end{gathered}$	
	AmpFlex ${ }^{\circledR}$ MiniFlex	$1.000 \mathrm{~W}^{(3)}$	10.00 MW ${ }^{(4)}$	4 digits ${ }^{(5)}$	$\begin{gathered} \pm(1 \%+10 \mathrm{pt}) \\ \|\cos \varphi\| \geq 0,8 \end{gathered}$	
					$\begin{gathered} \pm(1.5 \%+10 \mathrm{pt}) \\ 0,5 \leq\|\cos \varphi\|<0,8 \end{gathered}$	
Reactive power $\left(Q_{\mathrm{f}}\right){ }^{(2)}$ and non-active power (N)	Without Flex	1.000 var ${ }^{(3)}$	10.00 Mvar ${ }^{(4)}$	4 digits ${ }^{(5)}$	$\begin{gathered} \pm(1 \%+10 \mathrm{pt}) \\ \|\sin \varphi\| \geq 0,5 \text { and } \mathrm{THD} \leq 50 \% \end{gathered}$	
					$\begin{gathered} \pm(1.5 \%+10 \mathrm{pt}) \\ 0,2 \leq\|\sin \varphi\|<0,5 \text { and THD } \leq 50 \% \end{gathered}$	
	AmpFlex ${ }^{\circledR}$ MiniFlex	1.000 var ${ }^{(3)}$	10.00 Mvar ${ }^{(4)}$	4 digits ${ }^{(5)}$	$\begin{gathered} \pm(1.5 \%+10 \mathrm{pt}) \\ \|\sin \varphi\| \end{gathered} \geq 0,5 \text { and } T H D \leq 50 \% ~$	
					$\begin{gathered} \pm(1.5 \%+20 \mathrm{pt}) \\ 0,2 \leq\|\sin \varphi\|<0,5 \text { and } T H D \leq 50 \% \end{gathered}$	
Distorting power (D) ${ }^{(7)}$		1.000 var ${ }^{(3)}$	10.00 Mvar ${ }^{(4)}$	4 digits ${ }^{(5)}$	$\pm\left(2 \% \mathrm{~S}+\left(0,5 \% \mathrm{n}_{\max }+50 \mathrm{pt}\right)\right.$ $\mathrm{THD}_{\mathrm{A}} \leq 20 \% \mathrm{f} \text { and }\|\sin \varphi\| \geq 0,2$	
		$\begin{gathered} \pm\left(2 \% S+\left(0,7 \% n_{\max }+10 p t\right)\right. \\ T H D_{A}>20 \% f \text { and }\|\sin \varphi\| \geq 0,2 \\ \hline \end{gathered}$				
Apparent power (S)			$1.000 \mathrm{VA}^{(3)}$	10.00 MVA $^{(4)}$	4 digits ${ }^{(5)}$	$\pm(1 \%+10 \mathrm{pt})$
DC power (Pdc)		$1.000 \mathrm{~W}^{(8)}$	6.000 MVA ${ }^{(9)}$	4 digits ${ }^{(5)}$	$\pm(1 \%+10 \mathrm{pt})$	
Power factor (PF)		-1	1	0.001	$\begin{gathered} \pm(1.5 \%+10 \mathrm{pt}) \\ \|\cos \varphi\| \geq 0,2 \end{gathered}$	
Active energy $\left(E_{p}\right)^{(1)}$	Without Flex	1 Wh	9999999 MWh ${ }^{(6)}$	up to 7 digits ${ }^{(5)}$	$\begin{gathered} \pm(1 \%+10 \mathrm{pt}) \\ \|\cos \varphi\| \geq 0,8 \end{gathered}$	
					$\begin{gathered} \pm(1.5 \%+10 \mathrm{pt}) \\ 0,2 \leq\|\cos \varphi\|<0,8 \end{gathered}$	
	AmpFlex ${ }^{\text {® }}$ MiniFlex	1 Wh	9999999 MWh ${ }^{(6)}$	up to 7 digits ${ }^{(5)}$	$\begin{gathered} \pm(1 \%+10 \mathrm{pt}) \\ \|\cos \varphi\| \geq 0,8 \end{gathered}$	
					$\begin{gathered} \pm(1.5 \%+10 \mathrm{pt}) \\ 0,5 \leq\|\cos \varphi\|<0,8 \end{gathered}$	
Reactive energy $\left(\mathrm{E}_{\mathrm{Qf}}\right)^{(2)}$ and non-active energy $\left(E_{N}\right)^{(2)}$	Except Flex	1 varh	9999999 Mvarh ${ }^{(6)}$	up to 7 digits ${ }^{(5)}$	$\begin{gathered} \pm(1 \%+10 \mathrm{pt}) \\ \|\sin \varphi\| \geq 0,5 \text { and THD } \leq 50 \% \end{gathered}$	
					$\begin{gathered} \pm(1.5 \%+10 \mathrm{pt}) \\ 0,2 \leq\|\sin \varphi\|<0,5 \text { and } \mathrm{THD} \leq 50 \% \end{gathered}$	
	AmpFlex ${ }^{\text {® }}$ MiniFlex	1 varh	9999999 Mvarh ${ }^{(6)}$	up to 7 digits ${ }^{(5)}$	$\begin{gathered} \pm(1.5 \%+10 \mathrm{pt}) \\ \|\sin \varphi\| \geq 0,5 \text { and THD } \leq 50 \% \end{gathered}$	
					$\begin{gathered} \pm(1.5 \%+20 \mathrm{pt}) \\ 0,2 \leq\|\sin \varphi\|<0,5 \text { and THD } \leq 50 \% \end{gathered}$	
Distorting energy (E_{D})		1 varh	9999999 Mvarh ${ }^{(6)}$	up to 7 digits ${ }^{(5)}$	$\begin{aligned} & \pm\left(2 \% S+\left(0,5 \% n_{\max }+50 \mathrm{pt}\right)\right. \\ & \mathrm{THD}_{\mathrm{A}} \leq 20 \% \mathrm{f} \text { and }\|\sin \varphi\| \geq 0,2 \end{aligned}$	
		$\pm\left(2 \% \mathrm{~S}+\left(0,7 \% \mathrm{n}_{\max }+10 \mathrm{pt}\right)\right.$ $\mathrm{THD}_{\mathrm{A}} \leq 20 \% \mathrm{f}$ and $\|\sin \varphi\| \geq 0,2$				
Apparent energy (E_{s})			1 VAh	9999999 MVAh ${ }^{(6)}$	up to 7 digits ${ }^{(5)}$	$\pm(1 \%+10 \mathrm{pt})$
DC energy ($\mathrm{E}_{\text {PDC }}$)		1 Wh	9999999 MWh ${ }^{(10)}$	up to 7 digits ${ }^{(5)}$	$\pm(1 \%+10 \mathrm{pt})$	

Table 4

1: The uncertainties on the active power and energy measurements are greatest at $|\cos \varphi|=1$ and typical for the other phase differences.
2: The uncertainties on the reactive power and energy measurements are greatest at $|\sin \varphi|=1$ and typical for the other phase differences.
3: For the MN93A clamps (5 A) or the 5 A adapters.
4: For the AmpFlex ${ }^{\circledR}$ and the MiniFlex and for a single-phase, 2-wire connection.
5: The resolution depends on the current sensor used and on the value to be displayed.
6: The energy corresponds to more than 114 years of the associated maximum power with unity ratios.
$7: \mathrm{n}_{\max }$ is the highest order of which the harmonic level is not zero. THD is the THD of the current.
8: For $100 \mathrm{mV} / \mathrm{A}$ E94 clamp.
9: For J93 clamp and a single-phase, 2-wire connection.
10: The energy corresponds to more than 190 years of the maximum power Pdc at unit ratios.
11: The display resolution is determined by the apparent power (S) or apparent energy (Es)
17.2.4.3. QUANTITIES ASSOCIATED WITH POWER VALUES

Measurement	Measurement range		Display resolution	Maximum intrinsic error
	Minimum	Maximum		
Fundamental phase differences	-179 ${ }^{\circ}$	180°	0.1°	$\pm 2^{\circ}$
$\cos \varphi$ (DPF, PF_{1})	-1	1	4 digits	$\pm 5 \mathrm{pt}$
$\tan \varphi$	-32.77 ${ }^{(1)}$	$32.77{ }^{(1)}$	4 digits	$\pm 1^{\circ}$ if THD < 50\%
Voltage unbalance ratio ($\mathrm{u}_{0}, \mathrm{U}_{2}$)	0\%	100\%	0,001 \%	$\begin{gathered} \pm 0.15 \% \text { if } u_{0} \text { or } u_{2} \leq 10 \% \\ \pm 0.5 \% \text { if } u_{0} \text { or } u_{2}>10 \% \end{gathered}$
Current unbalance ratio ($\mathrm{a}_{0}, \mathrm{a}_{2}$)	0\%	100\%	0,001 \%	$\pm 0.15 \%$ if a_{0} or $\mathrm{a}_{2} \leq 10 \%$ $\pm 0.5 \%$ if a_{0} or $a_{2}>10 \%$

Table 5
1: $|\tan \varphi|=32.767$ corresponds to $\varphi= \pm 88.25^{\circ}+\mathrm{k} \times 180^{\circ}$ (with k a natural integer)
17.2.4.4. HARMONICS

Measurement	Measurement range		Display resolution	Maximum intrinsic error
	Minimum	Maximum		
Harmonic level of voltage (T_{n})	0\%	$\begin{aligned} & 1500 \% f \\ & 100 \% \text { r } \end{aligned}$	$\begin{gathered} \hline 0.1 \% \\ T_{\mathrm{n}}<1000 \% \\ \hline \end{gathered}$	$\pm(2.5 \%+5 \mathrm{pt})$
			$\begin{gathered} 1 \% \\ T_{n} \geq 1000 \% \end{gathered}$	
Harmonic level of current (T_{n}) (except Flex)	0\%	$\begin{gathered} 1500 \% f \\ 100 \% r \end{gathered}$	$\begin{gathered} 0.1 \% \\ T_{n}<1000 \% \\ \hline \end{gathered}$	$\begin{gathered} \pm(2 \%+(\mathrm{n} \times 0.2 \%)+10 \mathrm{pt}) \\ \mathrm{n} \leq 25 \end{gathered}$
			$\begin{gathered} 1 \% \\ T_{n} \geq 1000 \% \end{gathered}$	$\begin{gathered} \pm(2 \%+(n \times 0.6 \%)+5 p t) \\ n>25 \end{gathered}$
Harmonic level of current (τ_{n}) (AmpFlex ${ }^{\circledR}$ and MiniFlex)	0\%	$\begin{aligned} & 1500 \% f \\ & 100 \% r \end{aligned}$	$\begin{gathered} 0.1 \% \\ T_{n}<1000 \% \\ \hline \end{gathered}$	$\begin{gathered} \pm(2 \%+(n \times 0.3 \%)+5 p t) \\ n \leq 25 \end{gathered}$
			$\begin{gathered} 1 \% \\ T_{n} \geq 1000 \% \end{gathered}$	$\begin{gathered} \pm(2 \%+(n \times 0.6 \%)+5 p t) \\ n>25 \end{gathered}$
Total harmonic distortion (THD) of voltage (with respect to the fundamental) of the voltage	0\%	999.9\%	0.1\%	$\pm(2.5 \%+5 \mathrm{pt})$
Total harmonic distortion (THD) (with respect to the fundamental) of the current (except Flex)	0\%	999.9\%	0.1\%	$\begin{gathered} \pm(2.5 \%+5 p t) \\ \text { if } \forall n \geq 1, t_{n} \leq(100 \div n)[\%] \end{gathered}$
				or
				$\begin{gathered} \pm\left(2 \%+\left(\mathrm{n}_{\max } \times 0.2 \%\right)+5 \mathrm{pt}\right) \\ \mathrm{n}_{\max } \leq 25 \end{gathered}$
				$\begin{gathered} \pm\left(2 \%+\left(\mathrm{n}_{\max } \times 0.5 \%\right)+5 \mathrm{pt}\right) \\ \mathrm{n}_{\max }>25 \\ \hline \end{gathered}$
Total harmonic distortion (THD) (with respect to the fundamental) of the current (AmpFlex ${ }^{\circledR}$ and MiniFlex)	0\%	999.9\%	0.1\%	$\pm(2.5 \%+5 \mathrm{pt})$ if $\forall \mathrm{n} \geq 1, \mathrm{t}_{\mathrm{n}} \leq\left(100 \div \mathrm{n}^{2}\right)[\%]$
				or
				$\begin{gathered} \pm\left(2 \%+\left(\mathrm{n}_{\max } \times 0.3 \%\right)+5 \mathrm{pt}\right) \\ \mathrm{n}_{\max } \leq 25 \end{gathered}$
				$\begin{gathered} \pm\left(2 \%+\left(\mathrm{n}_{\max } \times 0.6 \%\right)+5 \mathrm{pt}\right) \\ \mathrm{n}_{\max }>25 \\ \hline \end{gathered}$
Total harmonic distortion (THD) of voltage (with respect to the signal without DC)	0\%	100\%	0.1\%	$\pm(2.5 \%+5 \mathrm{pt})$
Total harmonic distortion (THD) of the current (with respect to the signal without DC) (except Flex)	0\%	100\%	0.1\%	$\begin{gathered} \pm(2.5 \%+5 p t) \\ \text { if } \forall n \geq 1, t_{n} \leq(100 \div n)[\%] \end{gathered}$
				or
				$\begin{gathered} \pm\left(2 \%+\left(\mathrm{n}_{\max } \times 0.2 \%\right)+5 \mathrm{pt}\right) \\ \mathrm{n}_{\max } \leq 25 \end{gathered}$
				$\begin{gathered} \pm\left(2 \%+\left(\mathrm{n}_{\max } \times 0.5 \%\right)+5 \mathrm{pt}\right) \\ \mathrm{n}_{\max }>25 \\ \hline \end{gathered}$
Total harmonic distortion (THD) of the current (with respect to the signal without DC) (AmpFlex ${ }^{\circledR}$ and MiniFlex)	0\%	100\%	0.1\%	$\pm(2.5 \%+5 \mathrm{pt})$ if $\forall \mathrm{n} \geq 1, \mathrm{t}_{\mathrm{n}} \leq\left(100 \div \mathrm{n}^{2}\right)[\%]$
				or
				$\begin{gathered} \pm\left(2 \%+\left(\mathrm{n}_{\max } \times 0.3 \%\right)+5 \mathrm{pt}\right) \\ \mathrm{n}_{\max } \leq 25 \end{gathered}$
				$\begin{gathered} \pm\left(2 \%+\left(\mathrm{n}_{\max } \times 0.6 \%\right)+5 \mathrm{pt}\right) \\ \mathrm{n}_{\max }>25 \\ \hline \end{gathered}$
Harmonic loss factor (FHL)	1	99.99	0.01	$\begin{gathered} \pm\left(5 \%+\left(\mathrm{n}_{\max } \times 0.4 \%\right)+5 \mathrm{pt}\right) \\ \mathrm{n}_{\max } \leq 25 \end{gathered}$
				$\begin{gathered} \pm\left(10 \%+\left(\mathrm{n}_{\max } \times 0.7 \%\right)+5 \mathrm{pt}\right) \\ \mathrm{n}_{\max }>25 \end{gathered}$
K factor (FK)	1	99.99	0.01	$\begin{gathered} \pm\left(5 \%+\left(\mathrm{n}_{\max } \times 0.4 \%\right)+5 \mathrm{pt}\right) \\ \mathrm{n}_{\max } \leq 25 \\ \hline \end{gathered}$
				$\begin{gathered} \pm\left(10 \%+\left(\mathrm{n}_{\max } \times 0.7 \%\right)+5 \mathrm{pt}\right) \\ \mathrm{n}_{\max }>25 \end{gathered}$
Phase differences of harmonics (order ≥ 2)	-179 ${ }^{\circ}$	180°	1°	$\pm\left(1.5^{\circ}+1^{\circ} \mathrm{x}(\mathrm{n} \div 12.5)\right.$

$\mathrm{Nmax}_{\max }$ is the highest order of which the harmonic level is not zero.

Measurement		Measurement range (with unity ratio)		Display resolution (with unity ratio)	Maximum intrinsic error
		Minimum	Maximum		
RMS voltage of harmonic (order $n \geq 2$)	phase-to-neutral	2 V	$1000 \mathrm{~V}^{(1)}$	4 digits	$\pm(2.5 \%+1 \mathrm{~V})$
				4 digits	
	phase-to-phase	2 V	$2000 \mathrm{~V}^{(1)}$	4 digits	$\pm(2.5 \%+1 \mathrm{~V})$
				4 digits	
Distorting voltage (RMS)	phase-to-neutral (Vd)	2 V	$1000 \mathrm{~V}^{(1)}$	4 digits	$\pm(2.5 \%+1 \mathrm{~V})$
				4 digits	
	phase-to-phase (Ud)	2 V	$2000 \mathrm{~V}^{(1)}$	4 digits	$\pm(2.5 \%+1 \mathrm{~V})$
				4 digits	
RMS current of harmonic RMS ${ }^{(3)}$ (order $n \geq 2$)	J93 clamp	1 A	3500 A	4 digits	$\mathrm{n} \leq 25: \pm(2 \%+(\mathrm{n} \times 0.2 \%)+1 \mathrm{~A})$
				4 digits	$\mathrm{n}>25: \pm(2 \%+(\mathrm{n} \times 0.5 \%)+1 \mathrm{~A})$
	C193 clamp PAC93 clamp	1 A	1000 A	4 digits	$n \leq 25: \pm(2 \%+(n \times 0.2 \%)+1 A)$
				4 digits	$\mathrm{n}>25: \pm(2 \%+(\mathrm{n} \times 0.5 \%)+1 \mathrm{~A})$
	MN93 clamp	200 mA	200 A	4 digits	$\mathrm{n} \leq 25: \pm(2 \%+(\mathrm{n} \times 0.2 \%)+1 \mathrm{~A})$
				4 digits	$\mathrm{n}>25: \pm(2 \%+(\mathrm{n} \times 0.5 \%)+1 \mathrm{~A})$
	E94 clamp (10 mV/A) MN93A clamp (100 A)	200 mA	100 A	4 digits	$\mathrm{n} \leq 25: \pm(2 \%+(\mathrm{n} \times 0.2 \%)+100 \mathrm{~mA})$
				4 digits	n > 25: $\pm(2 \%+(\mathrm{n} \times 0.5 \%)+100 \mathrm{~mA})$
	E94 clamp$(100 \mathrm{mV} / \mathrm{A})$	20 mA	10 A	4 digits	$\mathrm{n} \leq 25: \pm(2 \%+(\mathrm{n} \times 0.2 \%)+10 \mathrm{~mA})$
				4 digits	$\mathrm{n}>25: \pm(2 \%+(\mathrm{n} \times 0.5 \%)+10 \mathrm{~mA})$
	MN93A clamp (5 A) 5 A adapter Essailec ${ }^{\circledR}$ adapter	5 mA	5 A	4 digits	$\mathrm{n} \leq 25: \pm(2 \%+(\mathrm{n} \times 0.2 \%)+10 \mathrm{~mA})$
				4 digits	$n>25: \pm(2 \%+(n \times 0.5 \%)+10 \mathrm{~mA})$
	MINI94 clamp	5 mA	5 A	4 digits	$\mathrm{n} \leq 25: \pm(2 \%+(\mathrm{n} \times 0.2 \%)+10 \mathrm{~mA})$
				4 digits	$\mathrm{n}>25: \pm(2 \%+(\mathrm{n} \times 0.5 \%)+10 \mathrm{~mA})$
	AmpFlex ${ }^{\circledR}$ A193 MiniFlex MA194 (10 kA)	10 A	10 kA	4 digits	$\begin{gathered} n \leq 25: \\ \pm\left(2 \%+(n \times 0.3 \%)+1 A+\left(\text { AfRMS }^{(2)} \times 0.1 \%\right)\right) \\ \hline \end{gathered}$
				4 digits	$\begin{gathered} n>25: \\ \pm\left(2 \%+(n \times 0.6 \%)+1 A+\left(\text { AfRMS }^{(2)} \times 0.1 \%\right)\right) \end{gathered}$
	AmpFlex ${ }^{\circledR}$ A193 MiniFlex MA194 (6500 A)	10 A	6500 A	4 digits	$\begin{gathered} n \leq 25: \\ \pm\left(2 \%+(n \times 0.3 \%)+1 \text { A }+\left(\text { AfRMS }^{(2)} \times 0.1 \%\right)\right) \end{gathered}$
				4 digits	$\begin{gathered} n>25: \\ \pm\left(2 \%+(n \times 0.6 \%)+1 A+\left(\text { AfRMS }^{(2)} \times 0.1 \%\right)\right) \end{gathered}$
	AmpFlex ${ }^{\circledR}$ A193 MiniFlex MA194 (100 A)	100 mA	100 A	4 digits	$\mathrm{n} \leq 25: \pm(2 \%+(\mathrm{n} \times 0.2 \%)+30 \mathrm{pt})$
				4 digits	$n>25: \pm(2 \%+(n \times 0.5 \%)+30 \mathrm{pt})$
Distorting current (RMS) (Ad) (3)	J93 clamp	1 A	3500 A	4 digits	$\pm\left(\left(n_{\max } \times 0.4 \%\right)+1 \mathrm{~A}\right)$
	C193 clamp PAC93 clamp	1 A	1000 A	4 digits	$\pm\left(\left(\mathrm{n}_{\max } \times 0.4 \%\right)+1 \mathrm{~A}\right)$
				4 digits	
	MN93 clamp	200 mA	200 A	4 digits	$\pm\left(\left(n_{\max } \times 0.4 \%\right)+1 \mathrm{~A}\right)$
	E94 clamp (10 mV/A) MN93A clamp (100 A)	200 mA	100 A	4 digits	$\pm\left(\left(n_{\max } \times 0.4 \%\right)+100 \mathrm{~mA}\right)$
				4 digits	
	E94 clamp ($100 \mathrm{mV} / \mathrm{A}$)	20 mA	10 A	4 digits	$\pm\left(\left(n_{\max } \times 0.4 \%\right)+10 \mathrm{~mA}\right)$
				4 digits	
	MN93A clamp (5 A) 5 A adapter Essailec ${ }^{\circledR}$ adapter	5 mA	5 A	4 digits	$\pm\left(\left(\mathrm{n}_{\max } \times 0.4 \%\right)+10 \mathrm{~mA}\right)$
	MINI94 clamp	50 mA	200 A	4 digits	$\pm\left(\left(n_{\max } \times 0.4 \%\right)+1 \mathrm{~A}\right)$
	AmpFlex ${ }^{\circledR}$ A193 MiniFlex MA194 (10 kA)	10 A	10 kA	4 digits	$\pm\left(\left(\mathrm{n}_{\max } \times 0.4 \%\right)+1 \mathrm{~A}\right)$
				4 digits	
	AmpFlex ${ }^{\circledR}$ A193 MiniFlex MA194 (6500 A)	10 A	6500 A	4 digits	$\pm\left(\left(\mathrm{n}_{\max } \times 0.4 \%\right)+1 \mathrm{~A}\right)$
				4 digits	
	AmpFlex ${ }^{\circledR}$ A193 MiniFlex MA194 (100 A)	100 mA	100 A	4 digits	$\left.\pm\left(\mathrm{n}_{\max } \times 0.5 \%\right)+30 \mathrm{pt}\right)$
				4 digits	

Table 6
1: Provided that the voltages between the individual terminals and earth do not exceed 1000 Vrms.
2: RMS value of the fundamental.

3: $n_{\max }$ is the highest order of which the harmonic level is not zero.
17.2.4.5. CURRENT AND VOLTAGE RATIOS

Ratio	Minimum	Maximum
Voltage	$\frac{100}{1000 \times \sqrt{3}}$	$\frac{9999900 \times \sqrt{3}}{0.1}$
Current $^{(1)}$	$1 / 5$	$60,000 / 1$

Table 7
1: Only for the 5 A MN93A clamps and the 5 A adapters.

17.2.5. SPECIFICATIONS OF THE CURRENT SENSORS

The measurement error on the RMS current and the phase error must be added to the errors of the instrument in the case of measurements that use the current measurements: powers, energies, power factors, tangents, etc.

Type of sensor	RMS current at $50 / 60 \mathrm{~Hz}$ (ARMs)	Maximum error at $50 / 60 \mathrm{~Hz}$	Maximum error on φ at $50 / 60 \mathrm{~Hz}$
AmpFlex ${ }^{\text {® }}$ A193	[1 000 A ... 12000 A]	$\pm(1,2 \%+1 \mathrm{~A})$	$\pm 0,5^{\circ}$
	[100 A ... 1000 A]	$\pm(1,2 \%+0,5 \mathrm{~A})$	
	[5 A ... 100 A]	$\pm(1,2 \%+0,2 \mathrm{~A})$	
	[0,1 A ... 5 A]	$\pm(1,2 \%+0,2 \mathrm{~A})$	-
MiniFlex MA194	[1000 A ... 12000 A]	$\pm(1 \%+1 \mathrm{~A})$	$\pm 0,5^{\circ}$
	[100 A ... 1000 A]	$\pm(1 \%+0,5 \mathrm{~A})$	
	[5 A ... 100 A]	$\pm(1 \%+0,2 \mathrm{~A})$	
	[0,1 A ... 5A]	$\pm(1 \%+0,2 \mathrm{~A})$	-
$\begin{aligned} & \text { J93 clamp } \\ & 3,500 \mathrm{~A} \end{aligned}$	[50 A ... 100 A]	$\pm(2 \%+2.5 \mathrm{~A})$	$\pm 4^{\circ}$
	[100 A ... 500 A]	$\pm(1.5 \%+2.5 \mathrm{~A})$	$\pm 2^{\circ}$
	[500 A ... 2,000 A]	$\pm 1 \%$	$\pm 1^{\circ}$
	[2,000 A ... 3,500 A]	$\pm 1 \%$	$\pm 1.5^{\circ}$
$\begin{aligned} & \text { C193 clamp } \\ & \text { 1,000 A } \end{aligned}$	[1 A ... 50 A]	$\pm 1 \%$	-
	[50 A ... 100 A]	$\pm 0.5 \%$	$\pm 1^{\circ}$
	[100 A ... 1,200 A]	$\pm 0.3 \%$	$\pm 0.7^{\circ}$
$\begin{aligned} & \text { PAC93 clamp } \\ & \text { 1,000 A } \end{aligned}$	[0.5 A ... 100 A]	$\pm(1.5 \%+1 \mathrm{~A})$	$\pm 2.5^{\circ}$
	[100 A ... 800 A]	$\pm 2.5 \%$	$\pm 2^{\circ}$
	[800 A ... 1,000 A]	$\pm 4 \%$	$\pm 2^{\circ}$
$\begin{aligned} & \text { MN93 clamp } \\ & 200 \text { A } \end{aligned}$	[0.5 A ... 5 A]	$\pm(3 \%+1 \mathrm{~A})$	-
	[$5 \mathrm{~A} \ldots . .40 \mathrm{~A}$]	$\pm(2.5 \%+1 \mathrm{~A})$	$\pm 5^{\circ}$
	[40 A ... 100 A]	$\pm(2 \%+1 \mathrm{~A})$	$\pm 3^{\circ}$
	[100 A ... 240 A]	$\pm(1 \%+1 \mathrm{~A})$	$\pm 2.5^{\circ}$
MN93A clamp 100 A	[0.2 A ... 5 A]	$\pm(1 \%+2 \mathrm{~mA})$	$\pm 4^{\circ}$
	[$5 \mathrm{~A} \ldots 120 \mathrm{~A}$]	$\pm 1 \%$	$\pm 2.5^{\circ}$
MN93A clamp 5 A	[0.005 A ... 0.25 A$]$	$\pm(1.5 \%+0.1 \mathrm{~mA})$	-
	[0.25 A ... 6 A]	$\pm 1 \%$	$\pm 5^{\circ}$
E94 clamp (BNC) 100 A	[0.5 A ... 40 A]	$\pm(4 \%+50 \mathrm{~mA})$	$\pm 1^{\circ}$
	[$40 \mathrm{~A} . . .70 \mathrm{~A}$]	$\pm 15 \%$	$\pm 1^{\circ}$
E94 clamp (BNC) $10 \mathrm{~A}$	[0.1 A ... 7 A]	$\pm(3 \%+50 \mathrm{~mA})$	$\pm 1.5^{\circ}$
MINI94 clamp	[0.05 A ... 10 A]	$\pm(0.2 \%+20 \mathrm{~mA})$	$\pm 1^{\circ}$
200 A	[10 A ... 200 A]		$\pm 0.2^{\circ}$
Three-phase 5 A adapter	[$5 \mathrm{~mA} \ldots 50 \mathrm{~mA}$ [$\pm(1 \%+1.5 \mathrm{~mA})$	$\pm 1^{\circ}$
	[50 mA ... 1 A	$\pm(0.5 \%+1 \mathrm{~mA})$	$\pm 0^{\circ}$
	[1 A ... 5A]	$\pm 0.5 \%$	$\pm 0^{\circ}$

Table 8
This table does not take into account possible distortion of the measured signal (THD) because of the physical limitations of the current sensor (saturation of the magnetic circuit or of the Hall effect sensor).

Limitation of the AmpFlex ${ }^{\circledR}$ and of the MiniFlex

As is true of all Rogowski sensors, the output voltage of the AmpFlex ${ }^{\circledR}$ and of the MiniFlex is proportional to the frequency. A high current at high frequency can saturate the current input of the instruments.

To avoid saturation, it is necessary to satisfy the following condition:

$$
\sum_{n=1}^{n=\infty}\left[n . I_{n}\right]<I_{n o m}
$$

With $\quad I_{\text {nom }}$ being the range of the current sensor
n the order of the harmonic
I_{n} the current of the harmonic of order n
For example, the input current range of a dimmer must be one fifth of the current range selected on the instrument. Wave-train dimmers having a non-integer number of periods are not compatible with Flex type sensors.

This requirement does not take into account the limitation of the bandwidth of the instrument, which can lead to other errors.

17.2.6. UNCERTAINTY OF THE TIME-REAL CLOCK

The uncertainty of the real-time clock is at most 80 ppm (instrument 3 years old used at an ambient temperature of $50^{\circ} \mathrm{C}$).
With a new instrument used at $25^{\circ} \mathrm{C}$, this uncertainty is no more than 30 ppm .

17.3. MEMORY CARD

The CA 8345 is delivered with a 16GB CD card.
Depending on their capacities, SD cards can store:

	2 GB	4 GB	16 GB
Various functions	50 screenshots 16,362 alarms 210 searches for transients and 5 searches for shock waves - 1 inrush current capture, RMS+PEAK - 10 min - 1 trend recording of all parameters for 20 hours with a 3s sampling period	- 50 screenshots - 16,362 alarms - 210 searches for transients and 5 searches for shock waves - 1 inrush current capture, RMS+PEAK - 10 min - 1 trend recording of all parameters for 6 days with a 3s sampling period	50 screenshots 16,362 alarms 210 searches for transients and 5 searches for shock waves - 1 inrush current capture, RMS+PEAK - 10 min - 1 trend recording of all parameters for 40 days with a 3s sampling period
or a single trend recording of all parameters per EN 50160.	0.4 day with a sampling period of 200 ms . 1.9 day with a sampling period of 1 s . 5.6 days with a sampling period of 3 s .	- 0.75 day with a sampling period of 200 ms . - 3.75 days with a sampling period of 1 s . 11.25 days with a sampling period of 3 s .	3 days with a sampling period of 200 ms . 15 days with a sampling period of 1 s . 45 days with a sampling period of 3 s .

	32 GB	64 GB
Various functions	- 50 screenshots - 16,362 alarms - 210 searches for transients and 5 searches for shock waves - 1 inrush current capture, RMS+PEAK - 10 min - 1 trend recording of all parameters for 84 days with a 3s sampling period	- 50 screenshots - 16,362 alarms - 210 searches for transients and 5 searches for shock waves - 1 inrush current capture, RMS+PEAK - 10 min - 1 trend recording of all parameters for 174 days with a 3s sampling period
or a single trend recording of all parameters per EN 50160.	- 6 days with a sampling period of 200 ms . - 30 days with a sampling period of 1 s . - 90 days with a sampling period of 3 s .	12 days with a sampling period of 200 ms . 90 days with a sampling period of 1 s . 180 days with a sampling period of 3 s .

The shorter the recording interval and the longer the duration of a recording, the larger the file will be.

17.4. POWER SUPPLY

17.4.1. BATTERY

The power supply unit of the instrument is a $10.9 \mathrm{~V}, 5700 \mathrm{mAh}$, Li-ion battery pack. Battery mass: approximately 375 g including 5.04 g of lithium.

Voltage	10.86 V	
Nominal capacity	5700 mAh	
Minimum capacity	5500 mAh	
Loss of capacity	11% after 200 charge-discharge cycles 16% after 400 charge-discharge cycles	
The charging current and duration depend on the power supply unit (PA40W-2 or PA32ER)	$10^{\circ} \mathrm{C}<\mathrm{T}<40^{\circ} \mathrm{C}$	PA40W-2: 1.5 A and 3h50 PA32ER: 1 A and 5h50
	$0^{\circ} \mathrm{C}<\mathrm{T}<10^{\circ} \mathrm{C}$	PA40W-2: 0.75 A and 7h30 PA32ER: 0.5 A and 11h30
	$-20^{\circ} \mathrm{C}<\mathrm{T}<0^{\circ} \mathrm{C}$	$\begin{aligned} & \text { PA40W-2: } 0 \text { A } \\ & \text { PA32ER: } 0 \text { A } \end{aligned}$
T° of use	-20 to $+60^{\circ} \mathrm{C}$	
Recharging ${ }^{\circ}$	0 to $40^{\circ} \mathrm{C}$	
Storage T°	-20 to $+60{ }^{\circ} \mathrm{C}$ for one month -20 to $+45^{\circ} \mathrm{C}$ for 3 months -20 to $+20^{\circ} \mathrm{C}$ for one year	

If the instrument will be left unused for an extended period, remove the battery (see § 18.3).

17.4.2. EXTERNAL POWER SUPPLY:

The CA 8345 can be connected to an external supply to save or recharge the battery. It can operate while being charged.
There are two chargers.

Nominal voltage and overvoltage category	600 V category III	100 to 1000 VAC 150 to 1000 VDC
Input voltage	100 to 260 V from 0 to 440 Hz	$\mathrm{DC}, 40$ to $70 \mathrm{~Hz}, 340$ to 440 Hz
Input frequency	0 to 440 Hz	2 A
Maximum input current	0.8 A	30 W
Maximum input power	50 W	$15 \mathrm{~V} \pm 7 \%$
Output voltage	$15 \mathrm{~V} \pm 4 \%$	30 W
Output power	40 W max	$220 \times 112 \times 53 \mathrm{~mm}$
Dimensions	$160 \times 80 \times 57 \mathrm{~mm}$	Approximately 930 g
Mass	Approximately 460 g	-20 to $+50^{\circ} \mathrm{C}$, from 30 to $95 \% \mathrm{RH}$ without condensation
Temperature of use	0 to $+50^{\circ} \mathrm{C}$, from 30 to $95 \% \mathrm{RH}$ without condensation	-25 to $+85^{\circ} \mathrm{C}$, from 10 to $90 \% \mathrm{RH}$ without condensation
Storage temperature	condensation $+70^{\circ} \mathrm{C}$ from 10 to $90 \% \mathrm{RH}$ without	

To use these power supplies, please refer to their manuals.

17.4.3. BATTERY LIFE

The typical consumption of the instrument is 750 mA . This includes the display, the SD card, GPS, the Ethernet link, wifi, and supplying the current sensors when necessary.

Battery life between charges is approximately 6 hours when the battery is fully charged and the screen is on. If the screen is off, battery life between charges is approximately 10 hours.

17.5. DISPLAY UNIT

The display unit is an active matrix LCD (TFT) having the following specifications:

- diagonal 18 cm or 7 "
- resolution 800×480 pixels (WVGA)
- 262,144 colours
- LED backlighting
- angle of view 85° in all directions

17.6. ENVIRONMENTAL CONDITIONS

Figure 147
Indoor use.
Altitude:
Use < 2,000 m
Storage < 10,000 m
Degree of pollution: 3 .

17.7. MECHANICAL SPECIFICATIONS

Dimensions (L x D x H) $200 \mathrm{~mm} \times 285 \mathrm{~mm} \times 55 \mathrm{~mm}$

Mass
Display unit
approximately 2 kg $152 \mathrm{~mm} \times 91 \mathrm{~mm}$ (diagonal 7")

Index of protection

- IP54 per IEC 60529 when the 5 elastomer caps are closed and there are no leads on the 9 terminals.
- IP20 on the measurement terminals when the instrument is in service.
- IK06 per IEC 62262, without screen.

Drop test
1 m per IEC 60068-2-31.

17.8. COMPLIANCE WITH INTERNATIONAL STANDARDS

17.8.1. ELECTRICAL SAFETY

The instrument is compliant with IEC/EN 61010-2-030 and BS EN 61010-2-030:

- Measurement inputs and enclosure: $1,000 \mathrm{~V}$ cat. IV, degree of pollution 3.
- Power supply input: $1,000 \mathrm{~V}$ cat. IV, degree of pollution 3.

The current sensors are compliant with standard IEC/EN 61010-2-032 and BS EN 61010-2-032 600 V cat. IV or 1000 V cat. III, degree of pollution 2.
The measurement leads and crocodile clips are compliant with standard IEC/EN 61010-031 and BS EN 61010-031, 1,000 V cat. IV, degree of pollution 2 .

Association with current sensors:

- using the AmpFlex ${ }^{\oplus}$, the MiniFlex, and C 193 clamps creates an "instrument + current sensor" assembly rated at 600 V , category IV or 1000 V, category III
- using PAC93, J93, MN93, MN93A, MINI94, E94 clamps creates an "instrument + clamp" assembly rated at 300 V , category IV or 600 V , category III.
- using a 5 A adapter housing creates an "instrument + adapter" assembly rated at 150 V , category IV or 300 V , category III.

In order to protect the user, the instrument has protection impedances between the input terminals and the electronic circuit. As a consequence, if the user connects a USB lead to the instrument and touches the other end of the lead, the voltage and the current will not endanger them.

The devices comply with BS EN 62749 for EMF. Product intended for professional use.

17.8.2. STANDARD IEC 61000-4-30, CLASS A

All of the measurement methods, the measurement uncertainties, the measurement ranges, the aggregations of measurements, the flagging, and the markings are compliant with the requirements of IEC 61000-4-30, edition 3.0, Amendment 1 (2021) for instruments of class A.

The CA 8345 therefore performs the following measurements:

- Measurement of power frequency over 10 s ,
- Measurement of the amplitude of the voltage for $10 / 12$ cycles, $150 / 180$ cycles, 10 minutes, and 2 hours,
- Calculation of the voltage unbalance for 10/12 cycles, $150 / 180$ cycles, 10 minutes, and 2 hours,
- Measurement of the harmonics of voltages for $10 / 12$ cycles, $150 / 180$ cycles, 10 minutes, and 2 hours,
- Measurement of the inter-harmonics of voltages for 10/12 cycles, $150 / 180$ cycles, 10 minutes, and 2 hours,
- Minimum and maximum values of the voltage (Under/Over deviation),
- Calculation of flicker over 10 minutes and 2 hours,
- Detection of voltage dips, swells and interruptions, in amplitude and duration,
- Mains signalling voltages (MSV),
- Rapid voltage changes (RVC),
- Measurement of the amplitude of the current for $10 / 12$ cycles, $150 / 180$ cycles, 10 minutes, and 2 hours,
- Calculation of the current unbalance for 10/12 cycles, 150/180 cycles, 10 minutes, and 2 hours,
- Measurement of the harmonics of currents for $10 / 12$ cycles, $150 / 180$ cycles, 10 minutes, and 2 hours,
- Measurement of the inter-harmonics of currents for $10 / 12$ cycles, $150 / 180$ cycles, 10 minutes, and 2 hours,

All measurements are made for 10/12 cycles and synchronised with UTC time every 10 minutes.
They are then aggregated to $150 / 180$ cycles, 10 minutes, and 2 hours.
17.8.3. MEASUREMENT UNCERTAINTIES AND RANGES

Parameter		Measurement range	Uncertainty	Range of quantity of influence
Power frequency	50 Hz network	42.5 to 57.5 Hz	$\pm 10 \mathrm{mHz}$	$\begin{gathered} \mathrm{U}_{\text {din }} \in[100 \mathrm{~V} ; 400 \mathrm{~V}](\mathrm{V}) \\ \mathrm{U}_{\text {din }} \in[200 \mathrm{~V} ; 1000 \mathrm{~V}](\mathrm{U}) \end{gathered}$
	60 Hz network	51 to 69 Hz		
Amplitude of the supply voltage		[10\%; 150%] $\mathrm{U}_{\text {din }}$	$\pm 0.1 \% \mathrm{U}_{\text {din }}$	$\begin{aligned} & \mathrm{U}_{\text {din }} \in[100 \mathrm{~V} ; 400 \mathrm{~V}](\mathrm{V}) \\ & \mathrm{U}_{\text {din }} \in[200 \mathrm{~V} ; 1000 \mathrm{~V}](\mathrm{U}) \end{aligned}$
Flicker	$\mathrm{P}_{\text {inst.max }}$	0.2 to 12	$\pm 8 \%$	$\begin{aligned} & \mathrm{U}_{\text {din }} \in[100 \mathrm{~V} ; 400 \mathrm{~V}](\mathrm{V}) \\ & \mathrm{U}_{\text {din }} \in[200 \mathrm{~V} ; 1000 \mathrm{~V}](\mathrm{U}) \end{aligned}$
	$\mathrm{P}_{\text {st }}, \mathrm{P}_{\text {lt }}$	0.2 to 12	Max ($\pm 5 \%$; 0.05)	
Voltage dips	Amplitude	[10\%; 90%] $\mathrm{U}_{\text {din }}$	$\pm 0.2 \% \mathrm{Udin}^{\text {din }}$	$\begin{gathered} \mathrm{U}_{\mathrm{din}} \in[100 \mathrm{~V} ; 400 \mathrm{~V}](\mathrm{V}) \\ \mathrm{U}_{\mathrm{din}} \in[200 \mathrm{~V} ; 1000 \mathrm{~V}](\mathrm{U}) \end{gathered}$
	Beginning	-	$1 / 2$ cycle	
	Duration	$\geq 1 / 2$ cycle $\times 1$ cycle	1 cycle	
Voltage swells	Amplitude	[110\%; 200%] $\mathrm{U}_{\text {din }}$	± 0.2 \% U din	$\begin{gathered} \mathrm{U}_{\text {din }} \in[100 \mathrm{~V} ; 400 \mathrm{~V}](\mathrm{V}) \\ \mathrm{U}_{\text {din }} \in[200 \mathrm{~V} ; 1000 \mathrm{~V}](\mathrm{U}) \end{gathered}$
	Beginning	-	$1 / 2$ cycle	
	Duration	$\geq 1 / 2$ cycle	1 cycle	
Interruptions of the voltage	Beginning	-	$1 / 2$ cycle	$\begin{gathered} \mathrm{U}_{\text {din }} \in[100 \mathrm{~V} ; 400 \mathrm{~V}](\mathrm{V}) \\ \mathrm{U}_{\text {din }} \in[200 \mathrm{~V} ; 1000 \mathrm{~V}](\mathrm{U}) \end{gathered}$
	Duration	$\geq 1 / 2$ cycle $\times 1$ cycle	1 cycle	
Voltage unbalance ($\mathrm{u}_{0}, \mathrm{u}_{2}$)		0.5 to 5\% (absolute)	$\begin{gathered} \pm 0.15 \% \\ \text { (absolute) } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{U}_{\text {din }} \in[100 \mathrm{~V} ; 400 \mathrm{~V}](\mathrm{V}) \\ \mathrm{U}_{\mathrm{din}} \in[200 \mathrm{~V} ; 1000 \mathrm{~V}](\mathrm{U}) \\ \hline \end{gathered}$
Voltage harmonics $\left(\mathrm{V}_{\text {sgh }} / \mathrm{U}_{\text {sgh }}\right)$	$\mathrm{h} \in[0 ; 50]$	$\begin{aligned} & \hline[0.1 \% ; 16 \%] \text { of } V_{1} / U_{1} \\ & \text { and } V_{\text {sah }} / U_{\text {sah }} \geq 1 \% \bigcup_{\text {din }} \\ & \hline \end{aligned}$	$\pm 5 \%$	$\begin{aligned} & \mathrm{U}_{\text {din }} \in[100 \mathrm{~V} ; 400 \mathrm{~V}](\mathrm{V}) \\ & \mathrm{U}_{\text {din }} \in[200 \mathrm{~V} ; 1000 \mathrm{~V}](\mathrm{U}) \end{aligned}$
		$\begin{gathered} {[0.1 \% ; 16 \%] \text { of } V_{1} / U_{1}} \\ \text { and } V_{\text {soh }} / U_{\text {soh }}<1 \% U_{\text {din }} \end{gathered}$	$\pm 0,05 \% \mathrm{U}_{\text {din }}$	
Interharmonics of voltage $\left(\mathrm{V}_{\text {isgh }} / \mathrm{U}_{\text {isgh }}\right)$	$\mathrm{h} \in[0 ; 49]$	$\begin{array}{\|l} \hline[0.1 \% ; 10 \%] \text { of } V_{/} / U_{1} \\ \text { and } V_{\text {issh }} / U_{\text {isch }} \geq 1 \% U_{\text {din }} \\ \hline \end{array}$	$\pm 5 \%$	$\begin{aligned} & \mathrm{U}_{\text {din }} \in[100 \mathrm{~V} ; 400 \mathrm{~V}](\mathrm{V}) \\ & \mathrm{U}_{\text {din }} \in[200 \mathrm{~V} ; 1000 \mathrm{~V}](\mathrm{U}) \end{aligned}$
		$\begin{aligned} & \hline[0.1 \% ; 10 \%] \text { of } V_{1} / U_{1} \\ & \text { and } V_{\text {isgh }} / U_{\text {isgh }}<1 \% U_{\text {din }} \\ & \hline \end{aligned}$	$\pm 0.05 \% \mathrm{U}_{\text {din }}$	
Mains signalling voltages (MSV)		$\begin{gathered} {[3 \% ; 15 \%] \cup_{\text {din }}} \\ {[0 \mathrm{~Hz} ; 3 \mathrm{kHz}]} \end{gathered}$	$\pm 5 \%$	$\begin{aligned} & \mathrm{U}_{\text {din }} \in[100 \mathrm{~V} ; 400 \mathrm{~V}](\mathrm{V}) \\ & \mathrm{U}_{\text {din }} \in[200 \mathrm{~V} ; 1000 \mathrm{~V}](\mathrm{U}) \end{aligned}$
		$\begin{aligned} & {[1 \% ; 3 \%] \mathrm{U}_{\text {din }}} \\ & {[0 \mathrm{~Hz} ; 3 \mathrm{kHz}]} \\ & \hline \end{aligned}$	$\pm 0.15 \% \mathrm{U}_{\text {din }}$	
Rapid voltage changes (RVC) VRMS $1 / 2 /$ URMS $^{1} 1 / 2$	Beginning	-	$1 / 2$ cycle	$\begin{gathered} \mathrm{U}_{\text {din }} \in[100 \mathrm{~V} ; 400 \mathrm{~V}](\mathrm{V}) \\ \mathrm{U}_{\text {din }} \in[200 \mathrm{~V} ; 1000 \mathrm{~V}](\mathrm{U}) \end{gathered}$
	Duration	-	1 cycle	
	$\Delta \mathrm{U}_{\text {max }}$	[1\% ; 6\%] $\mathrm{U}_{\text {din }}$	$\pm 0.2 \% \mathrm{Udin}_{\text {din }}$	
	$\Delta \mathrm{U}_{\text {ss }}$	[1\%; 6\%] $\mathrm{U}_{\text {din }}$	± 0.2 \% U $\mathrm{din}^{\text {d }}$	
Amplitude of current		[10\%; 100\%] of the fullscale technical class-A RMS value of the current	$\pm 1 \%$	See Table 2
Current harmonics ($\mathrm{l}_{\text {sgh }}$)	$\mathrm{h} \in[0 ; 50]$	$\mathrm{I}_{\text {sah }} \geq 3 \% \mathrm{I}_{\text {nom }}$	$\pm 5 \%$	$\mathrm{I}_{\text {nom }}$
		$\mathrm{I}_{\text {sah }}<3 \% \mathrm{I}_{\text {nom }}$	$\pm 0.15 \% \mathrm{I}_{\text {nom }}$	
Interharmonics of currents ($\mathrm{l}_{\text {isgh }}$)	$\mathrm{h} \in[0 ; 49]$	$\mathrm{I}_{\text {isgh }} \geq 3 \% \mathrm{I}_{\text {nom }}$	$\pm 5 \%$	$\mathrm{I}_{\text {nom }}$
		$\mathrm{l}_{\text {isgh }}<3 \% \mathrm{I}_{\text {nom }}$	$\pm 0.15 \% \mathrm{I}_{\text {nom }}$	
Current unbalance ($\mathrm{a}_{0}, \mathrm{a}_{2}$)		0.5 to 5% (absolute)	$\begin{gathered} \pm 0.15 \% \\ \text { (absolute) } \\ \hline \end{gathered}$	$\mathrm{I}_{\text {nom }}$

Table 9

17.8.4. MARKINGS PER IEC 62586-1

The marking PQI-A-PI means:

- PQI-A: class A power quality instrument
- P : portable measuring instrument
- I: Indoor use

17.9. ELECTROMAGNETIC COMPATIBILITY (EMC)

The instrument is in compliance with the requirements of standard IEC/ EN 61326-1 or BS EN 61326-1.

- The instrument is intended for use in an industrial environment.
- The instrument is a class A product
- This instrument is not intended for use in residential environments and may not ensure adequate protection of radio reception in this type of environment.

For AmpFlex ${ }^{\circledR}$ and MiniFlex sensors:

- An (absolute) influence of 2% may be observed on the current THD measurement in the presence of a radiated electric field.
- An influence of 0.5 A may be observed on the RMS current measurement in the presence of conducted radio frequencies.
- An influence of 1 A may be observed on the RMS current measurement in the presence of a magnetic field.

17.10. RADIO EMISSIONS

The instruments are in compliance with directive RED 2014/53/EU and with FCC regulations.
The wifi module is certified in compliance with the FCC regulations under number XF6-RS9113SB.

17.11. GPL CODE

The source codes of the software under GNU GPL (General Public License) are available www.chauvin-arnoux.com/COM/CA/doc/Q2/Software CA83XX.zip

Except for the batteries, the instrument contains no parts that can be replaced by personnel who have not been specially trained and accredited. Any unapproved work or replacement of any part by equivalents may gravely compromise safety.

The servicing and maintenance instructions must be provided to the responsible authority.

18.1. CLEANING THE HOUSING

Disconnect anything connected to the instrument and switch it off.
Use a soft cloth, moistened with soapy water. Rinse with a damp cloth and dry rapidly with a dry cloth or forced air. Do not use alcohol, solvents, or hydrocarbons.

18.2. MAINTENANCE OF THE SENSORS

The current sensors must be regularly maintained:

- Use a soft cloth, moistened with soapy water. Rinse with a damp cloth and dry rapidly with a dry cloth or forced air. Do not use alcohol, solvents, or hydrocarbons.
- Keep the air gaps of the clamps perfectly clean. Lightly oil visible metal parts to prevent rust.

18.3. REPLACEMENT OF THE BATTERY

The battery of this instrument is specific: it has precisely adapted protective and safety elements. Replacing the battery by a model other than the one specified may cause material damage or bodily injury by explosion or fire.

To ensure unbroken safety, replace the battery only by the original model. Do not use a battery of which the housing is damaged.

Do not throw the battery into a fire.
Do not expose the battery to a temperature in excess of $100^{\circ} \mathrm{C}$.
Do not short-circuit the terminals of the battery pack.

Figure 148

1. Disconnect anything connected to the instrument.
2. Turn the instrument over and insert a flat-head screwdriver in the battery release recess.
3. Push down on the screwdriver to release the battery.

Figure 150
4. Use the notches to extract the battery from its compartment.

Old batteries must not be treated as household wastes. Take them to the appropriate collection point for recycling.

In the absence of a battery, the internal clock of the instrument continues to operate for at least 17 hours.
5. Place the new battery in its compartment and press down until you hear the click of the locking mechanism.

Whenever the battery has been disconnected, even if it has not been replaced, it must be fully recharged. This is so that the instrument will know the charge status of the battery (this information is lost when it is disconnected).

18.4. MEMORY CARD

The instrument accepts type SD (SDSC), SDHC, and SDXC memory cards.
To remove an SD card from the instrument, refer to § 3.3.4.
Write-protect the memory card when you remove it from the instrument. Remove the write protection before putting the card back in its slot in the instrument.

Unprotected memory card

Protected memory card

To remove the memory card from its slot, open the elastomer cap.
Eject the card as described in § 3.3.4 (仙, 岂,
Press on the memory card to remove it from its slot.

Figure 151
To put the card back in place, slip it into its slot until it is all the way home. The red indicator lights.
Then put the elastomer cap back in place.

18.5. UPDATING THE FIRMWARE

With a view to providing the best possible service in terms of performance and technical upgrades, Chauvin Arnoux enables you to update the software incorporated in this instrument by a free download of the new version, available on our web site.

Our site:
www.chauvin-arnoux.com
In the «Support» item, click on "Download our software" and enter the name of the instrument, "CA 8345".

You can perform the update in several ways:

- Connect the instrument to your PC to an Ethernet network having access to Internet using an Ethernet cord.
- Copy the update file to a USB drive, then insert the drive in its port in the instrument.
- Copy the update file to the SD card and insert the card in its slot in the instrument.

Figure 152
To install the update, refer to § 3.3.6.
The update of the firmware depends on its compatibility with the hardware version of the instrument. This version is indicated in the instrument configuration; see § 3.3.7.
i
Updating the firmware erases all of the data: configuration, alarm campaigns, screenshots, inrush current captures, searches for transients, trend recordings. Save the data you want to keep to a PC using the PAT3 software before updating the firmware.

Except as otherwise stated, our warranty is valid for 36 months starting from the date on which the equipment was sold. The extract from our General Conditions of Sale is available on our website. www.group.chauvin-arnoux.com/en/general-terms-of-sale

The warranty does not apply in the following cases:
■ inappropriate use of the equipment or use with incompatible equipment;
■ modifications made to the equipment without the explicit permission of the manufacturer's technical staff

- work done on the device by a person not approved by the manufacturer;
- adaptation to a particular application not anticipated in the definition of the equipment or by the user manual
- damage caused by shocks, falls, or floods.

20. APPENDICES

This section presents the formulas used for the calculation of the different parameters.
The formulas are compliant with standard IEC 61000-4-30, edition 3.0, Amendment 1 (2021) for class A instruments and with IEEE 1459, 2010 edition, for the power formulas.

20.1. NOTATION

Notation	Description
Y	Represents V, U or I.
L	Number of the phase or of the channel.
n	Instantaneous sample index.
h	Subgroup order of the harmonic or of the interharmonic.
M	Total number of samples in the duration considered.
N	Number of cycles.
$\mathrm{Y}_{\mathrm{L}}(\mathrm{n})$	Instantaneous value of the channel L sample having index n .
$\mathrm{Y}_{\text {sghL }}(\mathrm{h})$	RMS value of the sub-group harmonic of order h on channel L, Voltage/Current. $=$ directly adjacent to it.
$\mathrm{Y}_{\text {isghL }}(\mathrm{h})$	RMS value of the centred interharmonic subgroup of order h on channel L, Voltage/Current. $=$ RMS value of all spectral components between two consecutive harmonic frequencies, not including the spectral components directly adjacent to the harmonic frequencies.
$\mathrm{I}_{\mathrm{hL}}(\mathrm{h})$	RMS current of the harmonic of order h on channel L.

Most of the quantities measured can be calculated on aggregations of different durations:

- 1 cycle ($=1$ period $=1 /$ frequency),
- 10/12 cycles (10 cycles for $50 \mathrm{~Hz}, 12$ cycles for 60 Hz),
- 150/180 cycles (150 cycles for $50 \mathrm{~Hz}, 180$ cycles for 60 Hz),
- 10 minutes,
- other.

20.2. FORMULAS

20.2.1. RMS VALUES

The quantities are calculated in accordance with standard IEC 61000-4-30 edition 3.0 Amendment 1 (2021), § 5.2.1.
The RMS value includes the DC component.
$Y_{R M S L}=\sqrt{\frac{\sum_{n=1}^{M} Y_{L}^{2}(n)}{M}}$

20.2.2. PEAK VALUES

$Y_{p k^{+} L}=\max _{M}\left(Y_{L}(n)\right)$
$Y_{p k^{-} L}=\min _{M}\left(Y_{L}(n)\right)$

20.2.3. CREST FACTOR

$Y_{C F L}=\frac{Y_{p k L}}{Y_{R M S L}}$
With $Y_{p k L}=\max \left(\left|Y_{p k+L}\right|,\left|Y_{p k-L}\right|\right)$

20.2.4. LEVELS OF HARMONICS AND INTERHARMONICS

The quantities are calculated in accordance with standard IEC 61000-4-7, edition 2.0 Amendment 1, § 5.6.
Level of harmonics referred to the RMS value of the fundamental (\%f):
$Y_{h \% f L}(h)=\frac{Y_{s g h L}(h)}{Y_{s g h L}(1)}$
Level of harmonics referred to the RMS value without DC (\%r):
$Y_{h \% r L}(h)=\frac{Y_{s g h L}(h)}{Y_{L r m s}}$
Level of interharmonics referred to the RMS value of the fundamental (\%f):
$Y_{i h \% f L}(h)=\frac{Y_{i s g h L}(h)}{Y_{s g L}(1)}$

Level of interharmonics referred to the RMS value without DC (\%r):
$Y_{i h \% r L}(h)=\frac{Y_{i s g h L}(h)}{Y_{L r m s}}$

20.2.5. LEVEL OF UNBALANCES

The quantities are calculated in accordance with standard IEC 61000-4-30 edition 3.0, Amendment 1 (2021), § 5.7.1.
The unbalance of the supply voltage is evaluated by the method of symmetrical components. In addition to direct component U 1 , an unbalance adds at least one of the following components: inverse component U2 and/or zero sequence component U0.

Inverse voltage component:
$u_{2}=\frac{U_{2}}{U_{1}} x 100 \%$

Zero sequence voltage component:
$u_{0}=\frac{U_{0}}{U_{1}} x 100 \%$

Inverse current component:
$a_{2}=\frac{I_{2}}{I_{1}} x 100 \%$

Zero sequence current component:
$a_{0}=\frac{I_{0}}{I_{1}} x 100 \%$
With
$U_{0} \quad$ Voltage zero (or homopolar) sequence unbalance
$\mathrm{U}_{1} \quad$ Voltage positive (or direct) sequence unbalance
$\mathrm{U}_{2} \quad$ Voltage negative (or inverse) sequence unbalance
$\mathrm{u}_{0} \quad$ Voltage zero (or homopolar) sequence unbalance ratio
$\mathrm{u}_{2} \quad$ Voltage negative (or inverse) sequence unbalance ratio
$I_{0} \quad$ Current zero (or homopolar) sequence unbalance
$I_{1} \quad$ Current positive (or direct) sequence unbalance
$I_{2} \quad$ Current negative (or inverse) sequence unbalance
$a_{0} \quad$ Current zero (or homopolar) sequence unbalance ratio
a_{2} Current negative (or inverse) sequence unbalance ratio

20.2.6. MAINS SIGNALLING VOLTAGES (MSV)

The quantities are calculated in accordance with standard IEC 61000-4-30 edition 3.0, Amendment 1 (2021), § 5.10.
The voltage amplitude of the signal for a specified carrier frequency is obtained by calculating the square root of the sum of the squares of the RMS values, for 10/12 periods, of the four closest interharmonic spikes.

20.2.7. LEVEL OF HARMONIC GROUP DISTORTION

The quantities are calculated in accordance with standard IEC 61000-4-7, edition 2.0, Amendment 1, § 3.3.2.
$T H D G_{L} \% f=\sqrt{\frac{\sum_{h=2}^{63} Y_{\text {sghL }}(h)^{2}}{Y_{\text {sghL }}(1)^{2}}}$
$T H D G_{L} \% r=\sqrt{\frac{\sum_{h=2}^{63} Y_{\text {sghL }}(h)^{2}}{\left(Y_{\text {sghL }}(1)^{2}+\sum_{n=2}^{63} Y_{\text {sghL }}(h)^{2}\right)}}$

20.2.8. DISTORTION

$Y_{d L}=\sqrt{\sum_{h=2}^{63} Y_{s g h L}(h)^{2}}$

20.2.9. K FACTOR AND HARMONIC LOSS FACTOR

These quantities concern only the current and are calculated in accordance with standard IEEE C57.110, 2004 edition, § B. 1 and § B.2.

The factor $\mathrm{K}(\mathrm{KF})$ is a nominal value applied to a transformer to indicate its ability to be used with loads that consume non-sinusoidal currents:
$K F_{L}=\sum_{h=1}^{h_{\max }} \frac{I_{H L}^{2}(h)}{I_{R}^{2}} x h^{2}$
With $\quad I_{R}$: nominal current of the transformer
Harmonic loss factor (HLF):
$F H L_{L}=\frac{\sum_{h=1}^{h_{\max }} h^{2} \times I_{H L}^{2}(h)}{\sum_{h=1}^{h_{\max }} I_{H L}^{2}(h)}$

K factor (FK)
Derating of the transformer as a function of the harmonics:
$F K_{L}=\sqrt{1+\frac{e}{1+e}\left(\frac{\sum_{h=2}^{h_{\max }} h_{\times I_{H L}^{2}(h)}}{\sum_{h=1}^{h_{\max }} I_{H L}^{2}(h)}\right)}$
With: $\mathrm{e} \in[0.05 ; 0.1]$ and $\mathrm{q} \in[1.5 ; 1.7]$

20.2.10. POWER FREQUENCY

Quantity calculated in accordance with standard IEC 61000-4-30, edition 3.0, Amendment 1 (2021), § 5.1.1.
The zero crossings method is used. The duration of the aggregation depends on the configuration of the instrument (10 seconds in Class A mode).

20.2.11. DC COMPONENT

Mean of the M samples Y_{L}.
$Y_{D C L}=\frac{\sum_{n=0}^{M-1} Y_{L}(n)}{M}$

20.2.12. ACTIVE POWER (P)

Quantity calculated in accordance with standard IEEE 1459, 2010 edition, § 3.1.2.3.
Active power, per phase:
$P_{L}=\frac{\sum_{n=0}^{M-1} V_{L}(n) \cdot I_{L}(n)}{M}$
With $V_{L}(n)$ and $I_{L}(n)=$ instantaneous values of the V or I sample having index n in channel L.
Total active power:
$P_{\Sigma}=P_{1}+P_{2}+P_{3}$

20.2.13. FUNDAMENTAL ACTIVE POWER (P_{F})

Quantity calculated in accordance with standard IEEE 1459, 2010 edition, § 3.1.2.4.
Active power of fundamental, per phase:
$P_{f L}=\frac{\sum_{n=0}^{M-1} V_{f L}(n) \cdot I_{f L}(n)}{M}$
With $\mathrm{V}_{\mathrm{fL}}(\mathrm{n})$ and $\mathrm{I}_{\mathrm{fl}}(\mathrm{n})=$ instantaneous fundamental voltage and current of the sample having index n in channel L .
Total active power of fundamental:
$P_{f \Sigma}=P_{f L 1}+P_{f L 2}+P_{f L 3}$
Notes: these quantities, which are used to calculate other quantities, are not displayed.

20.2.14. FUNDAMENTAL REACTIVE POWER $\left(Q_{F}\right)$

Quantity calculated in accordance with standard IEEE 1459, 2010 edition, § 3.1.2.6.
Fundamental reactive power, per phase:
$Q_{f L}=V_{f L} x I_{f L} x \sin \left(\varphi_{V_{f L} I_{f L}}\right)$
with $\varphi_{\text {vilifl }}=$ angle between $V_{f L}$ and $I_{f t}, V$ and I of the fundamental in channel L.
Total fundamental reactive power
$Q_{f}=Q_{f L 1}+Q_{f L 2}+Q_{f L 3}$

20.2.15. HARMONIC ACTIVE POWER (P_{H})

Quantity calculated in accordance with standard IEEE 1459, 2010 edition, § 3.1.2.5.
The harmonic active power includes the DC component.
Harmonic active power, per phase:
$P_{H L}=P_{L}-P_{f L}$
Total harmonic active power:
$P_{H \Sigma}=P_{H L 1}+P_{H L 2}+P_{H L 3}$
20.2.16. DC POWER (P_{DC})

DC power, per phase:
$P_{D C L}=V_{D C L} \times I_{D C L}$
With $\mathrm{V}_{\mathrm{DCL}}$ and ${ }_{\text {IDCL }}$: $D C$ voltage and current in channel L .
Total DC power:
$P_{D C \Sigma}=P_{D C L 1}+P_{D C L 2}+P_{D C L 3}$
20.2.17. APPARENT POWER (S)

Quantity calculated in accordance with standard IEEE 1459, 2010 edition, § 3.1.2.7.
Apparent power, per phase:
$S_{L}=V_{L} x I_{L}$
With V_{L} and I_{L} : RMS voltage and current of channel L.
Total apparent power:
$S_{\Sigma}=S_{L 1}+S_{L 2}+S_{L 3}$

20.2.18. NON-ACTIVE POWER (N)

Quantity calculated in accordance with standard IEEE 1459, 2010 edition, § 3.1.2.14.
Non-active power, per phase:
$N_{L}=\sqrt{S_{L}^{2}-P_{L}^{2}}$

Total non-active power:
$N_{\Sigma}=\sqrt{S_{\Sigma}^{2}-P_{\Sigma}^{2}}$

20.2.19. DISTORTING POWER (D)

Distorting power, per phase:
$D_{L}=\sqrt{S_{L}^{2}-P_{L}^{2}-Q_{f L}^{2}}=\sqrt{N_{L}^{2}-Q_{f L}^{2}}$
Total distorting power:
$D_{\Sigma}=\sqrt{S_{\Sigma}^{2}-P_{\Sigma}^{2}-Q_{f}^{2}}=\sqrt{N_{\Sigma}^{2}-Q_{f}^{2}}$

20.2.20. POWER FACTOR (PF), POWER FACTOR OF FUNDAMENTAL (PF1)

Quantities calculated in accordance with standard IEEE 1459, 2010 edition, § 3.1.2.16 and § 3.1.2.15.
Power factor (PF), per phase:
$P F_{L}=\frac{P_{L}}{S_{L}}$
total power factor (PF):
$P F_{\Sigma}=\frac{P_{\Sigma}}{s_{\Sigma}}$
Displacement Factor (DPF) or $\cos \varphi$ or Fundamental power factor (PF1), per phase:
$D P F_{L}=P F_{1 L}=\cos (\varphi)_{L}=\frac{P_{f L}}{S_{f L}}$
Total Displacement Factor (DPF) or $\cos \varphi$ or Fundamental power factor (PF1):
$D P F_{\Sigma}=P F_{1 \Sigma}=\frac{P_{f \Sigma}}{S_{f \Sigma}}$

20.2.21. TANGENT

Tangent of the difference between the angle of the fundamental voltage and the angle of the fundamental current.
Tangent, per phase:
$\tan (\varphi)_{L}=\frac{Q_{f L}}{P_{f L}}$

Total tangent:
$\tan (\varphi)_{\Sigma}=\frac{Q_{f \Sigma}}{P_{f \Sigma}}$

20.3. FLICKER

The quantities are calculated in accordance with class F3 of standard IEC 61000-4-15, edition 2.0, § 4.7.3, § 4.7.4, and § 4.7.5.
Flicker measures the human perception of the effects of fluctuations in the amplitude of the voltage supplying a lamp.
These variations are caused mainly by fluctuations of the reactive power in the network, themselves caused by the connection and disconnection of devices.

To accurately reflect the effects on vision, the measurement must be made over a long enough time (10 minutes or 2 hours). That said, flicker can vary considerably in a short time, since it depends on connections and disconnections to the network.

The CA 8345 therefore measures:

- instantaneous flicker Pinst,

The value displayed is max(Pinst) on a 150/180-cycle aggregation. The max(Pinst) recorded in Trend mode is calculated on the selected aggregation.

- short-term flicker P_{st},

This is calculated over 10 minutes. This interval is long enough to minimise the transient effects of connections and disconnections, but also long enough to take into account the deterioration of a user's vision.

- long-term flicker $P_{\text {lt }}$.

This is calculated over 2 hours. It is used to take into account devices having a long cycle.
For $P_{\text {ti }}$, the instrument lets you choose the calculation method (see § 3.4.1): fixed or sliding window. Long-term flicker based on a 2-hour observation period.

The perceived discomfort is a function of the square of the amplitude of the fluctuation multiplied by the duration of the fluctuation. The average observer's sensitivity to lighting fluctuations is greatest around 10 Hz .

20.4. SOURCES OF DISTRIBUTION SUPPORTED BY THE INSTRUMENT

See the connections § 4.4.

20.5. HYSTERESIS

Hysteresis is a filtering principle used in alarm mode (see § 12) and in inrush current mode (see § 11). Careful adjustment of the hysteresis avoids a repeated change of state when the measurement oscillates around the threshold.

20.5.1. VOLTAGE SWELL DETECTION

At a hysteresis of 2% for example, the reset point for an Voltage swell detection will be ($100 \%-2 \%$), or 98% of the threshold

Reset point
Figure 153

20.5.2. VOLTAGE DIP AND VOLTAGE INTERRUPTION DETECTION

For a hysteresis of 2% for example, the reset point in the context of dip detection will be ($100 \%+2 \%$), or 102% of the threshold

Threshold
Figure 154

20.6. MINIMUM SCALE VALUES OF WAVEFORMS AND MINIMUM RMS VALUES

	Minimum scale value (waveform mode)	Minimum RMS values
Phase-to-earth and phase-to-phase voltages	8 V	2 V
AmpFlex $^{\circledR}$ A193, MiniFlex MA194 (10 kA)	80 A	8 A
AmpFlex $^{\circledR}$ A193, MiniFlex MA194 (1 kA)	8 A	800 mA
AmpFlex ${ }^{\circledR}$ A193, MiniFlex MA194 (100 A)	800 mA	80 mA
J93 clamp	24 A	2 A
C193 clamp	8 A	800 mA
PAC93 clamp	8 A	800 mA
MN93 clamp	2 A	150 mA
MN93A clamp (100 A)	800 mA	80 mA
E94 clamp (10 mV/A)	800 mA	100 mA
E94 clamp (100 mV/A)	80 mA	10 mA
MN93A clamp (5 A)	40 mA	4 mA
MINI94 clamp	400 mA	40 mA
5 A and Essailec ${ }^{\circledR}$ adapters	40 mA	4 mA

Value to be multiplied by the ratio in effect (if not unity).
Scale value $=($ dynamic full scale $) / 2=($ Max - Min $) / 2$

20.7. FOUR-QUADRANT DIAGRAM

This diagram is used for power and energy measurements (see § 7 and 8).

Figure 155

20.8. TRANSIENT CAPTURE TRIGGERING MECHANISM

When a search for transients is started, each sample is compared to the sample from the previous cycle. In standard IEC 61000-430, this monitoring method is called the "sliding window method". The previous cycle corresponds to the middle of a virtual tube; it is used as reference. When a sample deviates from the tube, it is considered a triggering event; the representation of the transient is then captured by the instrument. The cycle that precedes the event and the three cycles that follow it are stored in memory.

Here is a graphic representation of the transient capture triggering mechanism :

Figure 156
The half-width of the virtual tube, for voltage or current, is equal to the threshold programmed in the configuration of the transient mode (see § 3.4.5).

20.9. CONDITIONS OF CAPTURE IN INRUSH CURRENT MODE

The capture is determined by a triggering event and a stop event. A capture stops automatically in one of the following cases:

- the stop threshold is crossed in the downward direction,
- the recording memory is full,
- the recording duration exceeds 10 minutes in RMS+WAVE mode,
- the recording duration exceeds 30 minutes in RMS mode.

The capture stop threshold is calculated by the following formula:
$[$ Stop threshold $[A]]=[$ Triggering threshold [A]] $\times(100-[$ stop hysteresis [\%]] $) \div 100$
Here are the triggering and stop conditions of captures:

Triggering filter	Triggering and stop conditions
A1	Triggering condition <=> [half-cycle RMS value of A1] > [Triggering threshold] Stop condition <=> [half-cycle RMS value of A1] < [Stop; threshold]
A2	Triggering condition <=> [half-cycle RMS value of A2] > [Triggering threshold] Stop condition <=> [half-cycle RMS value of A2] < [Stop; threshold]
A3	Triggering condition <=> [half-cycle RMS value of A3] > [Triggering threshold] Stop condition <=> [half-cycle RMS value of A3] < [Stop; threshold]
3 A	Triggering condition <=> [the half-cycle RMS value in one of the current] channels > [Triggering threshold] Stop condition <=> [the half-cycle RMS value in all of the current channels] < [Stop threshold]

20.10. POSSIBLE CAUSES FOR A STOPPED RECORD

When displaying a list of recordings (trend, transient, inrush current, alarm or monitoring), if the end date is in red, it means that the recording could not be completed to the scheduled end date. An error code is then displayed next to the red date. To find out what the error number is, use the help button 0 .

For trend, transient, inrush current or monitoring records:

- Code 1: The recording stopped at the programmed end time.
- Code 2: Recording stopped manually.
- Code 3: Memory full.
- Code 4: Other recording error.
- Code 5: Recording stopped due to the instrument being switched off (battery level too low and no mains power).
- Code 6: The maximum number of events (transient, inrush current) has been reached.

In case of alarm records:

- Code 2: Manual stop of the recording.
- Code 4: Other recording error.
- Code 5: Memory full.
- Code 6: Recording stopped at the programmed end time.
- Code 7: Recording stopped due to the instrument being switched off (battery level too low and no mains power supply).
- Code 8: The maximum number of events has been reached.

20.11. GLOSSARY

$\simeq \quad A C$ and $D C$ components.
~ AC component only.
$=\quad$ DC component only.
I Inductive phase shift.
$\stackrel{\perp}{\boldsymbol{\top}} \quad$ Capacitive phase shift.

- Degree.
| Absolute values.
$\boldsymbol{\varphi}_{\mathrm{VA}} \quad$ Phase difference of the phase-to-earth voltage (phase voltage) with respect to the phase-to-earth current (line current).
Phase difference of the phase-to-phase voltage (line voltage) with respect to the phase-to-earth current (line current). Two-phase 2-wire mode only.
$\boldsymbol{\Sigma}$ System value.
Percentage.
\%f Value of fundamental as reference (percentage of the fundamental value).
$\% \quad$ Total value as reference (percentage of the total value).
A Line current or ampere as unit.
$\mathbf{a}_{0} \quad$ Current zero (or homopolar) sequence unbalance ratio.
$a_{2} \quad$ Current negative (or inverse) sequence unbalance ratio.
A1 Current of phase 1.
A2 Current of phase 2.
A3 Current of phase 3.
A-h Current harmonic.
AC \quad AC component (current or voltage).
AcF Crest factor of the current
Ad Distorting RMS current.
ADC DC current.
$A_{\text {nom }} \quad$ Nominal current of the current sensors.
APK+ Maximum peak current.
APK- Minimum peak current.
Arms RMS current.
ATHD Total harmonic distortion of the current.
AthdF Harmonic distortion of the current referred to the RMS value of the fundamental.
ATHDR Harmonic distortion of the current referred to the total RMS value without DC .
AVG Average value (arithmetic mean).
Bandwidth: frequency range within which the response of an instrument is greater than some minimum.
BTU British Thermal Unit.
CF Crest Factor for current or voltage: ratio of peak current to RMS current.
Channel and phase: a measurement channel corresponds to a difference of potential between two conductors. A phase corresponds to a single conductor. In polyphase systems, a measurement channel can be between two phases, between a phase and the neutral, between a phase and the earth, or between the neutral and the earth.
$\cos \varphi \quad$ Cosine of the phase difference of the voltage with respect to the current (displacement factor - DPF).
D Distorting power.
DC DC component (current or voltage).
DHCP Dynamic Host Configuration Protocol.
Dip threshold: voltage specified for detection of the beginning and end of a voltage dip.
DPF Displacement factor $(\cos \varphi)$.
E Exa (10 ${ }^{18}$)
$\mathrm{E}_{\mathrm{D}} \quad$ Distorting energy.
$E_{\text {PDC }} \quad D C$ energy.
$\mathrm{E}_{\mathrm{Qf}} \quad$ Reactive energy.
$E_{p} \quad$ Active energy.
$\mathrm{E}_{\mathrm{N}} \quad$ Non-active energy.
$\mathrm{E}_{\mathrm{s}} \quad$ Apparent energy.

FK	Factor K. Downgrading of the transformer as a function of harmonics..
FHL	Harmonic loss factor (FHL) This is used to quantify losses due to harmonics in transformers.
Flicker	visual effect produced by voltage variations.
Frequency	number of complete voltage or current cycles produced in one second.
Fundamental component : component of which the frequency is the fundamental frequency.	
G	Giga (109)
GPS	Satellite-based (Global Positioning System).
Harmonics	Voltages or currents found in electrical installations at frequencies that are integral multiples of the fundamental frequency.
Hysteresis	difference of amplitude between the forward and reset points of thresholds.
Hz	unit in which network frequency is stated.
Interruption	reduction of the voltage at a point in the electrical network to below the interruption threshold.
J	Joule
k	kilo (10^{3})
KF	K factor calculated per IEEE C57.110. Indicates the ability of a transformer to be used with loads that consume non-sinusoidal currents.
L	Channel (Line).
m	milli (10^{-3})
M	Mega (106)
MAX	Maximum value, calculated over 10 or 12 cycles depending on whether the frequency is 50 or 60 Hz .
MIN	Minimum value, calculated over 10 or 12 cycles depending on whether the frequency is 50 or 60 Hz .
ms	millisecond.
MSV	Mains Signalling Voltage.
N	Non-active power.
Nominal voltage: voltage by which a network is designated or identified.	
NTP	Network Time Protocol, enables time synchronisation via a time server
P	Active power.
P	Peta (1015)
Pdc	DC power.
PF	Power Factor: ratio of active power to apparent power.
PF_{1}	Fundamental power factor.
Phase	Time relation between current and voltage in AC circuits.
PK	or PEAK. Maximum (+) or minimum (-) peak value of the signal over 10/12 cycles.
P_{lt}	Severity of long-term flicker (Long term severity), calculated over 2 hours.
$\mathrm{P}_{\text {st }}$	Severity of short-term flicker (Short term severity), calculated over 10 minutes.
Q ${ }_{\text {f }}$	Reactive power.
Order of a harmonic: integer equal to the ratio of the frequency of the harmonic to the frequency of the fundamental.	
RMS	RMS value of current or voltage (Root Mean Square). Square root of the arithmetic mean of the square of the instantaneous values of a quantity during a specified interval of time ($200 \mathrm{~ms}, 1 \mathrm{~s}$, or 3 s).
RVC	Rapid Voltage Changes.
S	Apparent power.
S-h	Harmonics in power.
T	Relative date of the time cursor.
T	Tera (10²)
$\boldsymbol{\operatorname { t a n }} \varphi$	Tangent of the phase difference of the voltage with respect to the current.
Toe	Tonnes oil equivalent (nuclear or non-nuclear).
THD	Total Harmonic Distortion. Total harmonic distortion is the percentage of harmonics in a signal, referred to the RMS value of the fundamental (\%f) or to the total RMS value without DC (\%r).
U	Phase-to-phase voltage or voltage between phases.
u_{0}	Voltage zero (or homopolar) sequence unbalance ratio.
u_{2}	Voltage negative (or inverse) sequence unbalance ratio if the neutral is connected, otherwise phase-to-phase voltage.
$\mathrm{U} 1=\mathrm{U}_{12}$	Phase-to-phase voltage between phases 1 and 2.
$\mathrm{U} 2=\mathrm{U}_{23}$	Phase-to-phase voltage between phases 2 and 3 .
$\mathrm{U} 3=\mathrm{U}_{31}$	Phase-to-phase voltage between phases 3 and 1.

U-h	Harmonics in phase-to-phase voltage.
Uc	Declared supply voltage, normally Uc = Un.
UcF	Crest factor of the phase-to-phase voltage (line voltage).
Ud	Distorting phase-to-phase RMS voltage.
Udc	Phase-to-phase DC voltage.
Udin	Declared input voltage, Udin = Uc x transducer ratio.
Uh	Harmonic of the phase-to-phase voltage.
UpK+	Maximum peak phase-to-phase voltage.
UPK-	Minimum peak phase-to-phase voltage.
Un	Nominal network voltage.

Nominal network voltage.

Figure 157
Networks that have a nominal voltage $100 \mathrm{~V}<\mathrm{Un}>1000 \mathrm{~V}$ have standard voltages of:
■ Phase-to-earth voltages: 120, 230, 347, 400 V

- Phase-to-phase voltages: 208, 230, 240, 400, 480, 600, 690, 1000 V

In some countries there are also:
■ Phase-to-earth voltages: 100, 220, 240, 380 V

- Phase-to-phase voltages: 200, 220, 380, 415, 600, 660 V

Urms Phase-to-phase RMS voltage.
UTC Coordinated Universal Time.
UTHD Total harmonic distortion of the phase-to-phase voltage.
UTHDF Harmonic distortion of the phase-to-phase voltage referred to the RMS value of the fundamental.
UTHDR Harmonic distortion of the phase-to-phase voltage referred to the total RMS value without DC.
V Phase-to-earth voltage or phase-neutral voltage or unit = volt.
V1 Phase-to-earth voltage on phase 1.
V2 Phase-to-earth voltage on phase 2.
V3 Phase-to-earth voltage on phase 3.
V-h Harmonics in phase-to-earth voltage.
VA Unit = voltampere.
VAh Unit = voltampere hour.
var Unit = reactive voltampere.
varh Unit reactive voltampere hour.
VcF \quad Crest factor of the phase-to-earth voltage.
Vd Distorting phase-to-earth RMS voltage.
VDC Phase-to-earth DC voltage.
VPK+ Maximum peak value of phase-to-earth voltage.
VPK- Minimum peak value of phase-to-earth voltage.
Vh Harmonic of the phase-to-earth voltage.
VN Phase-to-earth voltage on the neutral.
Voltage balance in a polyphase electrical network: state in which the RMS values of the voltages between conductors (fundamental component), and/or the phase differences between successive conductors, are not all equal.
Voltage dip: temporary lowering of the amplitude of the voltage at a point in the electrical network to below some specified threshold.

Voltage swell: temporary increase of the voltage magnitude at a point in the electrical system above a threshold.
Vrms Phase-to-earth RMS voltage.
Vthd Total harmonic distortion of the phase-to-earth voltage.
VTHDF Harmonic distortion of the phase-to-earth voltage referred to the RMS value of the fundamental.
VTHDR Harmonic distortion of the phase-to-earth voltage referred to the total RMS value without DC.
w
Wh Unit = watt-hour.

20.12. ABBREVIATIONS

Prefixes (of units) of the International System (S.I.)

Prefix	Symbol:	Multiplies by
milli	m	10^{-3}
kilo	k	10^{3}
Mega	M	10^{6}
Giga	G	10^{9}
Tera	T	10^{12}
Peta	P	10^{15}
Exa	E	10^{18}

FRANCE

Chauvin Arnoux
12-16 rue Sarah Bernhardt 92600 Asnières-sur-Seine Tél : +33 144854485 Fax: +33 146277389 info@chauvin-arnoux.com www.chauvin-arnoux.com

INTERNATIONAL

Chauvin Arnoux

Tél : +33 144854438
Fax: +33 146279569
Our international contacts
www.chauvin-arnoux.com/contacts

