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Abstract of Dissertation 

Accelerating Electric Vehicle Adoption in the United States:  
The Impact of Experience, Incentives, and Resale Value  

 
In recent years, with focus on climate change and environmentally beneficial 

technologies growing, the transportation industry has turned its attention to the 

development of plug-in electric vehicles (PEVs). Modern electric vehicles were re-

introduced to the US market in 2011, but despite benefits to both the environment and 

consumers, adoption of this vehicle technology remains low. Utilizing theory on adoption 

of innovative technologies, this dissertation addresses critical areas needed to improve 

consumer adoption of PEVs over the next decades. This consists of three studies that 

analyze different levers contributing to US consumer PEV adoption, all connected 

through gaining consumer consideration and adoption of this innovative technology. The 

first study analyzes the impact of PEV experience and knowledge on consumers’ 

willingness to consider purchasing a PEV. The second study elicits implicit discount rates 

that consumers hold for various financial incentives designed to increase PEV adoption. 

Finally, the last study will investigate the emerging used market for PEVs, focusing on 

estimating how the current generation of PEVs retain resale value with subsequent policy 

implications. Together, these studies will offer new insights on important factors for 

increasing PEV adoption to consumers across the technology adoption curve. 
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Chapter 1: Introduction to PEV Adoption in the US and Prior Research:  
What Are PEVs and Where Do We Stand Today? 

The automotive industry is on the precipice of a monumental paradigm shift with 

the development of promising vehicle technologies aimed at reducing the overall 

environmental impact of vehicular transportation. New vehicle technologies involving 

plug-in electric vehicles (PEVs) offer a promising pathway to rapid decarbonization of 

the transportation industry, the largest contributor to anthropogenic greenhouse gas 

emissions in the United States (US) [1], provided they are charged on low-carbon energy 

sources. Despite the environmental benefits, innovative features, and potential wide range 

of government incentives to increase PEV adoption, sales are still low compared to sales 

of conventional Internal Combustion Engine (ICE) vehicles [2]–[4]. While the market 

share of PEVs has continued to increase in the US, they remain a relatively niche offer; in 

2023 US PEV sales comprised just over 9% of total new vehicle sales [5]. The 

transportation industry has also become the largest emitter of GHG emissions in the US 

in recent years, with a little over 1.8B tons of CO2 equivalent emitted in 2021 [6]. 

Addressing emissions within the transportation sector is critical, and gaining further 

consumer adoption of PEVs is the path forward towards this future. 
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Figure 1-1: US GHG Emissions by Sector.  
The transportation sector is the largest emitter of GHG emissions and has continued to increase 
in 2021 despite a brief decrease during COVID [6], [7]. 

As frequently observed with the introduction of innovative technologies, 

consumers have many questions and uncertainties surrounding PEVs. Personal vehicles 

are a critical component to overall mobility and daily life in the US, and in 2022 was the 

2nd largest consumer expenditure for US households behind housing [8]. Consumer 

reservations towards PEVs span many different technical and socio-economic aspects of 

the technology, including utilization, longevity, and accessibility and may reflect 

incorrect or outdated perceptions. This significance combined with lack of knowledge 

and potential misperceptions about PEVs creates an ambiguous future for consumers 

around adoption of this new innovation.  

In order to deliver the environmental benefits and other gains from this new 

vehicle technology, research is essential to understand how consumers assess and accept 

PEVs. If PEVs are going to make the transition to a mass-market vehicle, then further 

work is needed to understand how to propel forward consumer acceptance of these 
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vehicles. This dissertation focuses on opportunities to gain further consumer acceptance 

of PEVs studying specific mechanisms available to the industry, policymakers and 

stakeholders. These studies focus on alternative powertrains, including hybrid (HEV), 

plug-in hybrid (PHEV), battery electric (BEV), and fuel cell vehicles (FCEV) with an 

emphasis on PHEVs and BEVs (PEVs). All studies have a consumer element with 

different inputs that assist in consideration of PEVs. 

We achieved the stated objectives through the execution of three research studies: 

1. The impact of short exposure PEV experience on consumer acceptance 

2. PEV financial incentives based on consumer preferences 

3. Investigation of resale value of PEVs vs. ICEs 

These studies together connect back to PEV adoption by contributing insight into 

the various phases along the innovation diffusion curve. Utilizing Rogers’ Diffusion of 

Innovation curve built from the Bass Model, there are many phases in consumer adoption 

of an innovative technology [9]. These three studies aim to bring consumer insight along 

different stages of PEV adoption in order to create a holistic thesis on the progression of 

PEVs in the US and how consumers adopt new technologies. In addition, all three studies 

aim to highlight ways to prioritize equity measures in this innovation diffusion, as 

diffusion of innovations typically broaden the gap between lower- and upper-income 

groups and moving this technology forward will require access across all parts of the US 

population. 
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Figure 1-2: Innovation Adoption Curve Overlaid with Dissertation Research Chapters and 
Consumer Impact.  
Figure is based on Rogers adoption curve and classifications [9] and recreated by author. 

These chapters deliver wider contributions to the research community. First, the 

results expand on prior works by investigating novel, more time-effective methods by 

which to increase PEV acceptance. Second, results come from unique data sources that 

provide consumer-specific data supplied to various modeling techniques. Finally, these 

studies provide a comprehensive review of important consumer relevant factors meant to 

bridge the gap between current innovations and consumer approval while considering 

equity of innovation diffusion as well. 

1.1  Background  

The electrified vehicle market has emerged as a focal development effort for the 

future of transportation. Electrified vehicle technologies take various forms in today’s 

automotive market: 

 



 

 5 

Table 1-1: Electrified Vehicle Technologies and Their Attributes. 
Electrified Vehicle 
Technology 

Description Electric Range Environmental 
Benefits 

Mild Hybrid Small electric motor (48V) system 
attached to ICE engine 

None Limited 

Hybrid Larger electric motor attached to ICE 
engine which can power the vehicle for 
short distances and at low speeds 

<1 mi  

Plug-In Hybrid Large electric motor attached to ICE 
engine with large battery pack for 
electric-only driving; can be plugged in 

20-40 mi  

Battery Electric Large electric motor and battery pack for 
electric-only driving; can be plugged in 

150-400 mi  

Fuel Cell Electric Large electric motor and battery pack for 
electric-only driving; electricity 
generated from a fuel cell powered by 
hydrogen 

300+ mi  

 Source: DOE Alternative Fuels Data Center [10], [11]. 

Research has created a strong foundation for diffusion models of technological 

innovations. The “Bass Model” is the most well-known innovation adoption model and is 

used across many different fields of study to represent the diffusion of technology across 

a population, as shown in Figure 1-3 [12]. Extensions and variations of the Bass Model 

are frequent, as with Rogers’ version overlaying information on different groupings of 

consumers in different phases of the Bass Model [9]. These diffusion models can also 

integrate stated preferences and reveal characteristics of groupings of adopters, like those 

known as “early/late majority adopters” in the Bass model, who are much more risk 

averse and less willing to purchase an innovation so different from the dominant design 

[13], [14]. Rogers’ theory also includes equity issues in diffusion of innovation research, 

both the lack of research addressing and the hypothesis that diffusion of innovations 

creates a wider gap between socioeconomic statuses. The various studies in this 

dissertation extend this foundational theory by offering observations of consumers in 

different phases of the innovation diffusion curve, as well as analyzing equity strategies. 
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Figure 1-3: Bass Model Cumulative and Noncumulative Adopter Curve.  
Figure recreated by author based on Norton and Rogers [12]. 

Some research has also further investigated the psychological constructs by which 

individuals assess and accept new technologies. The theory of planned behavior (TPB) by 

Ajzen explains the factors present that influence consumer reception and adoption of new 

technologies. According to TPB, the main determining factors of behavioral intention are 

attitudes, which are influenced by knowledge and experience, subjective norms that the 

consumer believes is acceptable by society, and the perceived control of the behavior or 

perceived ability to execute a behavior. An illustration of TPB is found in Figure 1-4. For 

the purposes of diffusion of technology research like PEV adoption, consumer acceptance 

of technology is considered an intention to adopt, use, or support its development [15]. 

PEV research has provided evidence that shows the relevance of one or all of the TPB 

factors in decision making and adoption of EVs [16]–[21]. Attitudes and perceptions of 

technology have been shown to impact consumer behavior, and understanding of a 

technology through knowledge and experience acquisition leads to less perceived risk 

and more favorable intentions. Higher comprehension of the technology also improves 
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perceptions of behavior impact when it comes to new technology [21]. TPB is an 

important theoretical construct of the behavioral intentions of individuals when faced 

with consideration and adoption of a new technology such as PEVs. 

 

Figure 1-4: Theory of Planned Behavior Sequencing. 
Figure recreated by author from TPB illustration Ajzen [15]. 

As a further extension of TPB, frameworks for the diffusion of innovation have 

been developed and explored in order to theoretically define the process and contributors 

to adoption. In a well-known framework developed by Rogers, there are five sequential 

stages in innovation adoption: (1) gaining knowledge of an innovation, (2) forming an 

attitude, (3) deciding to adopt or reject it, (4) executing the decision, and (5) confirming 

the decision [9], [22], [23]. Previous experiences, existing needs/problems, 

innovativeness and social norms influence consumers to begin this adoption process. 

Figure 1-5 shows the progression of this innovation diffusion framework and the 

importance of the individual and their perceptions of characteristics of the innovation as 

critical inputs into the Knowledge and Persuasion (attitude) steps. Knowledge and 

experience emerge as important factors before and during Rogers’ innovation adoption 

framework. Rogers also connects his framework to the Bass Model, supposing that 10–
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25% of the population rapidly move to adoption of an innovation followed by the 

remainder of the population, forming the S-shaped curve found in the Bass Model [9].  

 

Figure 1-5: Model of Five Stages in the Innovation-Decision Process.  
Figure created by author based on Rogers [9]. 

While considering the rate of adoption, it is also important to highlight the 

perceived attributes of innovations and their impact of rate of acceptance of innovations. 

Rogers estimates that between 49%-87% of variance in rate of adoption of innovations is 

explained by these attributes [9]. Diffusion of innovations is an uncertainty reduction 

process and, as such, electric vehicles have some advantages and risks when analyzing 

through this model. While there are many similarities to the established technology on a 

fundamental level, perceived differences in basic operational, technical and 

socioeconomic levels present challenges when looking to accelerate adoption. 
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Figure 1-6: Perceived Attributes of Adoption with Relevant Subtopics for PEV Adoption. 
Figure created by author based on Rogers [9]. 

This dissertation translates these theories into empirical, applied studies by which 

to draw further consumer insights and progress diffusion of this innovation. Utilizing this 

theoretical basis is appropriate for diffusion of electric vehicles and the various consumer 

dynamics studied for many reasons. First, electric vehicles serve as an example of an 

innovation as human behavior and theory defines states an idea, practice or object does 

not need to be “objectively” new or not. Rogers provides a succinct explanation for the 

definition of an innovation: “If an idea seems new for the individual, it is an innovation” 

[9]. Given the newness and distinction between electric and conventional vehicles, as 

well as the new knowledge and uncertainty associated with this new technology, electric 

• Degree which innovation is better than 
existing one

• Preventative innovation & need for more 
outreach or incentives

Relative Advantage

• Degree which innovation is consistent 
with needs

• With preceeding version
Compatibility

• Degree which innovation is difficult to 
understand

• Technical expertise
Complexity

• Degree which innovation may be tried 
out

• Customizable, personal trial period
Trialability

• Degree which results are visibile to 
population

• hardware vs. software, ambiguity
Observability
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vehicles fit into innovation diffusion theory as posited by Rogers. Next, Rogers’s theory 

provides structure and definition to various adoption categories and their traits. Chapter 2 

of this dissertation examines the impact of experience and knowledge of PEVs, providing 

insight into Early Adopters and beyond, as Innovators handle risks of new innovations 

without requiring experience and typically understand and apply complex technical 

knowledge without prompting and move through the Innovation–Decision process 

without needing much prompting. Chapter 3 studies PEV financial incentive design and 

in turn pertains to Early Majority and beyond; as a generalization Early Adopters have a 

greater degree of upward social mobility than later adopters and prior research also points 

out that, for Early Adopters, financial incentives did not impact their adoption decision 

[24]. Finally, Chapter 4 provides insight into Late Majority and beyond with specific 

insights into used PEVs, which offers opportunity for those with broader socioeconomic 

status to consider PEVs with less financial risk and limited resources. 

These paradigms are not only theoretical, as innovative technology adoption 

theory and “S curve” diffusion have been observed in practice with the adoption of many 

innovations to consumer goods. These useful theories provide an outline for diffusion 

that has proven accurate for many consumer product innovations when they are 

introduced to the market: technologies like electricity, radio, TV and cell phones have all 

entered the market and gained fairly rapid adoption [25]. 
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Figure 1-7: Historical Adoption of Innovative Technologies to US Households (%) 
Figure from Carvalho et. al. [26] digitized from Nicholas Felton, New York Times [27] with 
automotive adoption highlighted by author 

Automotive adoption has followed a similar S-curve adoption rate with some 

variability: while adoption grew rapidly at first, growth rates faltered due to the market 

circumstances of WWI and WWII, constrained purchasing power, manufacturing ability 

and commodities shortages. After these macroeconomic factors passed, adoption 

accelerated again, then slowed pace and took 45 years to gain ~10% of utilization. Now 

US household utilization of automotive vehicles is ~90%, an expensive yet critical part of 

everyday life for almost everyone in the US. With this has come the massive oil 

consumption and environmental impact from having our personal transportation system 

based on Internal Combustion Engine (ICE) technologies. Now that zero-emissions 

alternatives, particularly PEVs are being developed and industrialized to a level not 

previously seen, applying the theory of “S-curve” diffusion dictates that we are moving 

through the “early adopter” beginning phases of innovative technology adoption and 

these vehicles will soon be mainstream. As demonstrated by the adoption curve of 

conventional ICE vehicles, however, adoption is subject to constraints over time, whether 

it be market conditions or product and consumer limitations. When discussing PEV “S-
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curve” innovation diffusion it is critical that we start considering, evaluating, and 

preparing for the inevitable adoption plateaus of PEVs in the market so we can formulate 

the policy and strategic planning to push forward to the next phase and truly deliver 

mass-market zero-emissions transportation to consumers. 

1.2  Consumer Acceptance of PEVs 

Prior research has identified multiple barriers to achieving greater PEV adoption, 

including high purchase prices [28], [29] insufficient recharging infrastructure [30]–[32] 

and “range anxiety”—the fear that the driving range on a single charge will be 

insufficient to make it to a destination [16], [28], [30], [33], [34]. Researchers have also 

found that consumers often hold multiple misperceptions about PEVs—that they are less 

powerful than ICE vehicles, have worse environmental benefits, and are inconvenient to 

recharge—perceptions that are inconsistent with actual PEVs available on the market 

today [17], [35]. Finally, researchers have found that most consumers lack any basic 

knowledge of many aspects of PEVs, including their appearance, purchase price, 

acceleration performance, top speed, recharging time, driving range, recharging 

operation, electricity costs, and maintenance [4], [21], [36], [37]. 

Expanding on that point, knowledge has been shown in previous research to be an 

important component of automotive purchasing decisions with a significant impact on 

automotive purchases generally. As the established technology, the cost of ownership and 

driving experience of an ICE is well known, and comparisons on these items to PEVs 

have been suggested as an important factor affecting attitude and intentions, as well as 

something consumers struggle to assess correctly for fuel-efficient vehicles [17], [38], 

[39]. Research into PEV knowledge specifically has concluded that consumers are not 

very knowledgeable on many aspects of PEVs and there is much work needed to improve 
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consumer knowledge these vehicles [4], [21], [36], [37]. Participants were not 

knowledgeable on several specific aspects of PEVs, including appearance, price, top 

speed, recharging time, driving range, recharging operation, electricity costs, and daily 

maintenance [4], [37]. And at even a more basic level, 86% of households could not 

differentiate between different PEV vehicles and technologies and the majority did not 

understand the charging process [36]. These studies have found the lack of PEV 

knowledge extends through many important customer-facing aspects of PEVs from price 

and features of PEVs to general PEV technology operation. 

1.3  Impact of Incentives on PEVs 

Price associated with PEVs is another often cited issue for PEV adoption and high 

purchase price is specifically cited as a factor constraining PEV adoption. In a study 

analyzing consumer willingness to pay for PEV technology, researchers found that high 

purchase price remains consumers’ main concern about electric vehicles [28]. Another 

study found that average US consumers are not willing to pay more for an PEV compared 

to an ICE vehicle despite the technology’s price premium [29]. Many of the studies on 

consumer attitudes also include purchase price as another factor identified by consumers 

as a reason not to consider an PEV [4], [16]. A few studies have captured the importance 

of price sensitivity when it comes to PEVs and vehicle ownership that, “Vehicle 

ownership costs are important in vehicle adoption choice for both private and business 

purchases” [40], [41]. In general consumers do not always have accurate or adequate 

information about possible fuel or maintenance cost savings (or other cost benefits), 

therefore leading to flawed decision making [42]. As noted by Turrentine, “One effect of 

this lack of knowledge and information is that when consumers buy a vehicle, they do not 

have the basic building blocks of knowledge assumed by the model of economically 
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rational decision-making, and they make large errors estimating gasoline costs and 

savings over time” [39]. This is particularly applicable to PEVs as there are fuel and 

maintenance savings over time along with other benefits of the technology. 

A mechanism by which to address the high price of PEV technology and vehicles 

is incentives. In the US, the government offers a federal tax credit of $7,500 subject to 

individual tax situations and other criteria [43]. This legislation has recently evolved, still 

offering up to $7,500 tax credit with more qualifiers and thresholds for local production, 

battery and mineral content [44]. Certain states have additional incentive benefits 

including vehicle purchase incentives, reduced registration fees, reduced charging rates, 

charger incentives, emissions inspection exemption, HOV lane access, and 

designated/free parking. Vehicle purchase incentives typically take the form of rebates, 

subsidies, income tax credit, excise tax credit, or sales tax exemption [45]. Other 

researchers have grouped these as vehicle purchase incentives intended to reduce the 

purchase price of a PEV and the remainder as “reoccurring” or "ownership” incentives 

that apply throughout ownership of the PEV [46]. Each state in the US creates its own 

legislation related to PEV ownership, contributing to a high amount of difference in the 

structure, amount and execution of state PEV incentives, with some states even 

implementing PEV fees [47]. Between federal and state differentiation and variation, a 

convoluted system in the US has developed around PEV incentives as a mechanism to 

increase consumer adoption. 

1.4  Used PEVs Market and Resale Value 

So far adoption of PEVs has been explored through the lens of consumer 

behaviors as it related to new vehicle market and sales, however there is a secondary, 

used-car segment that plays an important role in the US automotive market. Average 
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vehicle transaction prices have been trending upward in the US, with the average 

transaction price in sales to consumers topping $35,655 in September 2020 and growing 

month over month [48]. The secondary market has emerged as a practical means to 

purchase affordable vehicles. The used-car market is also over double the size of the 

new-car market in the US and has consistently delivered over twice the amount of cars 

since 2012 [49], [50].Furthermore, replacement of older, used ICE vehicles with a used 

PEV would deliver further environmental benefits with the removal of a less efficient 

gasoline vehicle from the US fleet and subsequent adoption of a zero-emission option. As 

the secondary market continues to develop and expand for PEVs, this will be a cost-

effective and further market opportunity that reaches additional consumers, many of 

whom may not ever have considered PEV ownership a possibility.  

To summarize, there is much to be gained from further research into PEV 

adoption and the various consumer elements that contribute to future success. This 

dissertation covers distinct inputs, with insights gained into PEV consumer experience, 

knowledge, incentivization, and resale value as well as spanning across adoption curve 

phases. A better understanding of today’s PEVs and consumers gives us the opportunity 

to offer improved policies and strategies for the growth of this innovative technology 

moving into the future.   
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Chapter 2: Impact of PEV Experience and Knowledge on Consumer Acceptance 

This chapter is a published paper by Roberson & Helveston: Roberson, L. A., & 
Helveston, J. P. (2020), “Electric vehicle adoption: can short experiences lead to big 

change?” in Environmental Research Letters. 
 

Meeting the goals of the Paris Agreement will require massive decarbonization of 

the transportation sector—the largest contributor to anthropogenic greenhouse gas 

emissions in the US[1]. Plug-in electric vehicles (PEVs) offer a promising pathway to 

rapid decarbonization, provided they are charged on low-carbon energy sources. Despite 

a wide range of government incentives to increase PEV adoption, sales are still low 

compared to conventional Internal Combustion Engine (ICE) vehicles [2 – 4]. In 2018, 

US PEV sales comprised just 2.1% of total vehicle sales [51], and during this timeframe 

with the exception of Tesla the combined monthly sales of battery electric vehicles 

(BEVs) sold by all other automakers have been flat for the past five years (see Figure 

2-1). 
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Figure 2-1: US Monthly Sales of BEVs. 
Despite Tesla’s market success, PEVs comprised just 2.1% of vehicle sales in 2018. The authors 
developed this figure using vehicle sales data from hybridcars.com and insideEVs.com. 

Prior research has identified multiple barriers to achieving greater PEV adoption, 

including high purchase prices [6 – 7], insufficient recharging infrastructure [8 – 10], and 

“range anxiety”—the fear that the driving range on a single charge will be insufficient to 

make it to a destination [6], [8], [11 – 13]. Researchers have also found that consumers 

often hold multiple misperceptions about PEVs, including that they are less powerful 

than ICE vehicles, have worse environmental benefits, and are inconvenient to 

recharge—perceptions that are inconsistent with actual PEVs available on the market 

today [14 – 15]. Finally, researchers have found that most consumers lack basic 

knowledge about many aspects of PEVs, including their appearance, purchase price, 

acceleration performance, top speed, recharging time, driving range, recharging 

operation, electricity costs, and maintenance [4], [16 – 18]. 

One potential strategy to help alleviate some of these barriers and misperceptions 

is to increase consumers’ direct experience with PEVs. Prior research has found that 

consumers who have had direct experience with PEVs were more comfortable with the 
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technology, noticed more of the advantages that PEVs offer, and in general perceived 

PEVs more positively than those who lacked direct experience [19 – 22]. Experiments 

that measure differences in stated perceptions about PEVs before and after having a 

direct experience with a PEV have concluded that direct experience results in a more 

positive perception and opinion about PEVs and their performance [23 – 30]. Other 

studies found that participants with more PEV experience could readily recognize the 

environmental and economic benefits of PEVs, such as lower refueling costs, and were 

more capable of assessing whether their true driving range needs would be met by a PEV 

[19 – 21], [31]. Finally, studies also found that after directly experiencing a PEV, 

participants had more favorable opinions about PEVs and higher stated purchase 

intentions [25], [27], [29 – 30].  

Nonetheless, these studies have all involved relatively long time frames—from 

days to months—during which participants experienced a PEV, which limited the 

feasible sample size (most studies have had less than 100 participants). The implications 

of these studies are also limited in their scalability; for example, it would be unreasonably 

costly for many thousands of customers to test drive a PEV for days or months in order to 

increase PEV adoption. Table 2-1 places this study in the context of this prior literature (a 

more detailed and comprehensive version is provided in Appendix Table A- 9). 
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Table 2-1: Summary of Studies on the Effect of Direct PEV Experience on PEV 
Perceptions. 

 
 

In this study, we aim to assess the effect of short exposure times (e.g. minutes) on 

stated PEV purchase consideration. By limiting the exposure time to riding in a PEV for 

just three to five minutes, we were able to achieve a much larger sample size (n = 6,518) 

compared to similar prior studies. We find that the short experience of riding in a PEV on 

average had a significant, positive effect on participants’ stated consideration ratings for 

adopting a PEV. Whereas longer duration experiences expose fewer participants to a 

wider variety of situations, our findings suggest that a single, shorter duration experience 

may be effective in increasing overall PEV adoption consideration across a larger 

population. 

2.1  Methods 

We collaborated with an industry partner, EZ-EV—a start-up subsidiary of 

Exelon Corp, one of the largest energy providers in the U.S.—to conduct a PEV ride 

along experience at the 2019 Washington DC Auto Show. The mission of EZ-EV is to 

Author Year Location Year Time  
Frame 

Sample 
Size 

Change in 
Perception 

Gärling 2001 Sweden 1998 - 2000 3 months 42 No change 
Carroll 2010 UK 2010 NA 69 + 
Turrentine et. 
al. 2011 LA, NY, NJ 2009 - 2010 12 months 102 + 

Burgess et. al. 2013 UK 2008 - 2012 6 – 12 
months 55 + 

Jensen et. al. 2013 Denmark 2012 3 months 369 +/- 

Bühler et. al. 2014 Berlin 2009 - 2010 6 months 77 + 

Franke 2014 Germany 2014 3 months 29 No Change 
Wikström et al. 2014 Sweden 2011-2012 18 months 50 + 
Skippon et. al. 2016 UK 2016 36 hours 393 +/- 
Schmalfuß et. 
al. 2017 Germany 2017 24 hours 30 + 

This study 2019 Washington D.C. 2019 3-5 minutes 6,518 + 
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simplify the process of consumer consideration and adoption of PEVs by providing 

educational and shopping tools about PEVs and hosting PEV events.  

The PEV ride along experience was conducted inside the Walter Reed 

Convention Center from April 18-26, 2019 and was open to all attendees of the Auto 

Show, although individuals under 18 had to be accompanied by a parent or guardian. The 

PEV experience involved riding in a PEV with a professional driver around a short 

indoor course for approximately three to five minutes to experience some of the features 

of PEVs, including a 0-40 mph section to specifically highlight the acceleration 

performance and drivability of the vehicle. During the experience, the drivers answered 

questions specific to the vehicle and about PEVs in general. While they were not 

provided a script to follow, we know that some drivers provided basic information 

regarding the vehicle’s drivability, the charging process, and available incentives based 

on feedback from participants that we interviewed after the experience. It is certainly 

possible that some of this information could have influenced the participants’ survey 

responses, but isolating this effect is a limitation of the experiment. As a result, our 

results must be interpreted as the joint effect of riding in a PEV with an informative 

driver. 

The available vehicles included three battery electric vehicles (BEVs)—the Audi 

e-tron, Hyundai Kona, and Nissan Leaf—which run entirely on electricity and can be 

recharged from the grid; one plug-in hybrid electric vehicle (PHEV)—the Toyota Prius 

Prime—which combines a conventional gasoline-powered engine with a battery that can 

be recharged from the grid; and one fuel cell electric vehicle (FCEV) —the Hyundai 

Nexo—which use fuel cells powered by hydrogen to produce electricity for the motor.  
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Data was collected at the driving experience booth through entry and exit surveys. 

All participants were required to take the entry survey and register for the event first, 

during which time they were given a unique ID code. The entry survey included three 

sections: 1) information about their current and future vehicle(s), 2) questions about their 

knowledge of PEVs, including the maximum available federal subsidy and vehicle 

refueling requirements, and 3) a Likert scale rating of two questions: a) whether they 

would “consider” a BEV and a PHEV for their next vehicle, and b) whether they would 

“recommend” either vehicle type to a friend. Respondents were not informed about 

whether their answers to the knowledge questions were correct or not. Table 2-2 

summarizes the questions asked on the entry and exit surveys (a complete copy of the 

surveys can be found in the Appendix A, Section A.5).  

Table 2-2: Summary of Entry and Exit Survey Questions.  
Entry survey Exit survey 

Survey-specific 
questions 

• Demographics: 
– Current vehicle (year, 

make, model, age) 
– Time to next vehicle 

purchase 
– Number of vehicles 

owned  
– Home parking access 
– Whether neighbor owns 

PEV 
• PEV knowledge questions: 

– Vehicle types that can be 
fueled with gasoline 

– Vehicle types that can be 
plugged in 

– Maximum available 
federal subsidy 

• Which vehicle(s) rode in. 
• Brands considering for 

next purchase. 

Questions asked in 
both surveys 

• ID Code 
• Consideration and recommendation ratings for BEVs & PHEVs 

 

After taking the entry survey, participants were driven around the course in one of 

the vehicles by a professional driver. Participants were given the option to choose which 

vehicle to ride in, otherwise they were randomly assigned to one. After the driving 
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experience was over, participants completed the exit survey, which captured the 

vehicle(s) the participants rode in as well as the same consideration and recommendation 

questions as shown in the entry survey. 

The final dataset for our analysis was formed by using the unique respondent ID 

codes to match the entry and exit survey responses. To assess the impact of the PEV 

experience on the participants’ consideration and recommendation ratings for BEVs and 

PHEVs, we first tabulated the ratings provided before and after the experience. Then, to 

examine the effect of the experience on the probability of participants choosing each 

rating level, we estimated an ordinal logistic regression (also known as the “proportional 

odds” or “log odds” model), which incorporates the inherent ordering of the 

consideration ratings that participants could choose, from “Definitely not” to “Definitely 

yes.” 

To explain the model, let 𝑌𝑌 be an ordinal outcome with 𝐽𝐽 categories, 

corresponding to each rating level in the survey. If 𝑃𝑃(𝑌𝑌 ≤ 𝑗𝑗) is the cumulative probability 

of 𝑌𝑌 being less than or equal to rating level 𝑗𝑗 = 1, … , 𝐽𝐽 − 1, then the odds of being less 

than or equal to rating level j is defined as 

𝑃𝑃(𝑌𝑌 ≤ 𝑗𝑗)
𝑃𝑃(𝑌𝑌 > 𝑗𝑗)

,    for  𝑗𝑗 = 1, … , 𝐽𝐽 − 1 (2.1) 

The log odds, also known as the “logit,” is then defined as 

log
𝑃𝑃(𝑌𝑌 ≤ 𝑗𝑗)
𝑃𝑃(𝑌𝑌 > 𝑗𝑗)

= 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙[𝑃𝑃(𝑌𝑌 ≤ 𝑗𝑗)],    for  𝑗𝑗 = 1, … , 𝐽𝐽 − 1 (2.2) 
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The ordinal logistic regression model defines a linear relationship between equation (2.2) 

and a series of independent variables. The specific model we use is given by the 

following equation: 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙[𝑃𝑃(𝑌𝑌 ≤ 𝑗𝑗)] = 𝛼𝛼𝑗𝑗 − 𝛽𝛽𝛽𝛽 −�𝛾𝛾𝑖𝑖𝑧𝑧𝑖𝑖
𝑖𝑖

−�𝛿𝛿𝑖𝑖𝑧𝑧𝑖𝑖𝑥𝑥
𝑖𝑖

,     (2.3) 

where  𝑗𝑗 = 1, … , 𝐽𝐽 − 1 and 𝑖𝑖 = 1, … ,𝑀𝑀 independent variables. The 𝛼𝛼𝑗𝑗 coefficients in 

equation (2.3) are intercepts that represent the dividing points between each level of the 

ordered ratings before participants had the PEV experience (e.g. 𝛼𝛼1 denotes the division 

between  “Definitely not” and “Probably not”). The 𝛽𝛽 coefficient determines the 

significance and magnitude of the main effect of interest: the before / after effect of 

having the PEV experience, where 𝑥𝑥 is a dummy variable for the time period (0 for 

“before” and 1 for “after” the experience). Thus, if 𝛼𝛼𝑗𝑗 determines the probability of 

choosing each rating before the PEV experience, then 𝛼𝛼𝑗𝑗 − 𝛽𝛽𝛽𝛽 determines the probability 

of choosing each rating after the PEV experience. The 𝛾𝛾𝑖𝑖 coefficients reflect the effect of 

other independent variables, 𝑧𝑧𝑖𝑖, on the before experience rating. These include the 

experience, knowledge, and demographic variables listed in Table 2-3, such as correctly 

answering a knowledge question or having parking access at home. Finally, the 𝛿𝛿𝑖𝑖 

coefficients reflect the interaction effect between the independent variables 𝑧𝑧𝑖𝑖 and the 

time period variable, 𝑥𝑥. These terms reflect how much the main before / after effect 

(given by 𝛽𝛽) changes based on the independent variables 𝑧𝑧𝑖𝑖. For example, participants 

that rode in a more premium vehicle, such as the Audi e-tron, might be expected to have 
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a larger change in their ratings than those that rode in less premium vehicles, all else 

being equal.  

Since the outcome variables in this model (the log odds) is not immediately 

intuitive to interpret, we convert them into probabilities of choosing a rating by taking the 

inverse logit: 

𝑃𝑃(𝑌𝑌 ≤ 𝑗𝑗) =
𝑒𝑒𝑒𝑒𝑒𝑒�𝛼𝛼𝑗𝑗 − 𝛽𝛽𝛽𝛽 − ∑ 𝛾𝛾𝑖𝑖𝑧𝑧𝑖𝑖 − ∑ 𝛿𝛿𝑖𝑖𝑧𝑧𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖 �

1 + 𝑒𝑒𝑒𝑒𝑒𝑒�𝛼𝛼𝑗𝑗 − 𝛽𝛽𝛽𝛽 − ∑ 𝛾𝛾𝑖𝑖𝑧𝑧𝑖𝑖 − ∑ 𝛿𝛿𝑖𝑖𝑧𝑧𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖 �
  (2.4) 

We then use the values of each 𝑃𝑃(𝑌𝑌 ≤ 𝑗𝑗) level to compute the individual probabilities of 

choosing each rating level. For example, the probability of choosing rating level 1 

(“Definitely not”) is 𝑃𝑃(𝑌𝑌 ≤ 1), and the probability of choosing rating level 2 (“Probably 

not”) is 𝑃𝑃(𝑌𝑌 ≤ 2) −  𝑃𝑃(𝑌𝑌 ≤ 1), and so on, with the probability of choosing rating 5 

(“Definitely yes”) being equal to 1 minus the sum of the others.  

We estimate a series of models to assess how different variables influence the 

probability of choosing a rating before and after the PEV experience. Each model is 

estimated using the polr() command from the MASS package in R [64]. The first model 

tests the main effect of interest: the time period before and after the experience. We also 

estimate models to control for each of the vehicle metrics we captured in the survey as 

well as the knowledge questions. The full set of variables are shown in Table 2-3. In the 

results section, we only report results for models that had non-negligible outcomes on the 

consideration ratings for BEVs. While we did also collect ratings on PHEVs, the results 

do not vary substantially compared to those from the BEV ratings. We include these 

results and other additional model results in Appendix A, Section A.3). The raw data and 

code to reproduce all results can be found at Github. 

https://github.com/jhelvy/pev-experience-2019
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Table 2-3: Summary of Model Variables. 
Effect Variable Description Units / Values 
PEV experience 
metrics 

timePeriod Rating given before or after PEV 
experience. 

Before (0); 
After (1) 

etron, kona,  
leaf, nexo 

Variable for each vehicle model rode in  
(base level is the Toyota Prius Prime). 

For each vehicle 
model:  
Yes (1); No (0) 

PHEVpowertrain, 
FCEVpowertrain 

Variable for powertrain of vehicle rode 
in (base level is BEV). 

Yes (1); No (0) 

countCarsDriven Variable for number of vehicles ridden 
in. 

1 to 5 

Respondent 
demographics 

homeParking Dedicated home parking spot (i.e. 
accessible for home charging). 

Yes (1); No (0) 

neighborPEV Whether respondent’s neighbor owns a 
PEV. 

Yes (1); No (0) 

multicar Owns more than 1 vehicle. Yes (1); No (0) 

PEV knowledge bothFuels Correctly answered both refueling 
questions. 

Yes (1); No (0) 

pluginFuel Only correctly answered plug-in 
refueling question. 

Yes (1); No (0) 

gasFuel Only correctly answered gasoline 
refueling question. 

Yes (1); No (0) 

subsidy  Correctly answered subsidy question. Yes (1); No (0) 

 

2.2  Results 

2.2.1  Participant Sample and Consideration Ratings 

Out of the 7,509 people that participated in the experience, 6,518 respondents 

completed both the entry and exist surveys—a completion rate of 86.8%. To keep the 

survey short and facilitate throughput, respondents were only asked about their current 

vehicle (age and make), when they plan to purchase a vehicle next, and which vehicles 

they rode in during the experience. The majority of participants had vehicles that were 

less than 10 years old, which aligns with the average light duty vehicle age in the US of 

11.8 years [65]. The most common brands owned in the sample were Toyota, Honda, 

Ford, Chevy and Nissan, and most respondents stated not being in the market for a new 

vehicle. A total of 7,787 total rides were taken during the experience (some participants 
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rode in more than one vehicle). Despite having five vehicles available, 90% of 

respondents rode in either the Audi e-tron or the Hyundai Kona as they were available 

every day of the event. The other cars were not always available due to various factors, 

such as driver availability or technical issues with the vehicle. We summarize this 

information about the sample in Table 2-4. 

Table 2-4: Summary of Sample Demographics. 
Current Car Age NA 1 year or 

less 
2-5 years 6-10 years 11-20 years 21+ years 

Total Reponses: 366 1,132 2,694 1,805 1,329 183 
Complete Reponses: 298 968 2,336 1,593 1,164 159 
Current Vehicle Make Toyota Honda Ford Chevrolet Nissan Other 
Total Reponses: 897 887 541 473 410 4,301 
Complete Reponses: 779 776 465 414 355 3,729 
Time to next purchase Not in 

Market 
0-6 Months 6 to 12 

Months 
12+ 
Months 

  

Total Reponses: 4,809 432 695 1,573   
Complete Reponses: 4,140 370 617 1,391   
Vehicle rides taken e-tron Kona Leaf Nexo Prius Prime Total 
Complete Reponses: 3,117 3,925 597 135 13 7,787 
Neighbor has an PEV Yes No I’m not sure    
Total Reponses: 1,458 4,249 1,802    
Complete Reponses: 1,275 3,681 1,562    
Number of cars in 
Household 

0 1 2 3 4 5 

Total Reponses: 410 3,487 1,762 973 508 369 
Complete Reponses: 332 3,010 1,535 858 449 334 
Dedicated home parking Yes No     
Total Reponses: 4,420 3,089     
Complete Reponses: 3,872 2,646     
Number of Vehicles 
Ridden In 

1 2 3 4 5 NA 

Complete Responses: 5,284 1,100 92 3 3 36 
 

While we asked respondents to rate both their consideration to purchase a PEV 

and whether they would recommend a PEV to a friend, we only present results for the 

consideration questions here because 1) the recommendation ratings were similar to the 

consideration ratings, and 2) our primary interest is consumer adoption of PEVs. 
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Furthermore, because results were similar for BEVs and PHEVs, we only show results 

for BEV ratings (results for PHEVs can be seen in Appendix A, Section A.1 PHEV 

Response Results). Figure 2-2 shows the change in BEV consideration ratings before and 

after the PEV experience. 

 
Figure 2-2: Change in BEV Consideration Rating Before and After Ride Along Experience.  

 

While the majority of respondents chose the same rating before and after riding in a 

PEV (gray ribbons), those who changed their rating were far more likely to choose a 

more positive rating (blue ribbons) than more negative rating (red ribbons). Before the 

PEV experience, nearly 70% of respondents chose “Maybe / not sure”, 11% chose 

negative ratings, and 20% chose positive ratings. In contrast, the post-PEV experience 

responses show a shift away from the “Maybe / not sure” rating (down to 51%) coupled 
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with a shift towards positive ratings (up to 43%) and a decline in negative responses 

(down to 6%). 

2.2.2  Modeling Consideration Rating Choices 

We estimated six different ordinal logistic regression models to assess the impact 

of the PEV ride along experience and other factors on the BEV rating choices. Model 1 

includes only the main effect of interest—the time period (before / after the PEV 

experience); models 2a and 2b include effects for whether participants correctly answered 

the knowledge questions for PEV refueling (2a) and the maximum available federal PEV 

purchase subsidy (2b); model 3 includes an effect for whether the participants stated 

having a neighbor who owns a PEV; model 4 includes effects for which vehicle models 

they rode in during the experience; and model 5 includes all of the effects from models 

1–4. Table 2-5 shows the estimated coefficients from each model. 
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Table 2-5: Estimated Coefficients from Ordinal Logistic Regression Models of BEV Ratings 
 

Model #: 1 2a 2b 3 4 5 

Description: Before/After PEV 
Experience 

PEV Knowledge: 
Fueling 

PEV Knowledge: 
Subsidy PEV Neighbor Car Model(s) Rode 

In 
Full Model  

(models 1 – 4) 
N: 13,036 13,036 13,036 13,036 13,036 13,036 

M
ai

n 
ef

fe
ct

s 

𝛽𝛽 timePeriod 1.033 (0.036) *** 1.087 (0.047) *** 1.073 (0.039) *** 1.051 (0.041) *** 0.951 (0.100) *** 1.014 (0.105) *** 

𝛾𝛾𝑖𝑖 

pluginFuel  -0.034 (0.080)     -0.106 (0.080)  
gasFuel  0.115 (0.084)     0.032 (0.084)  
bothFuel  0.47 (0.071) ***    0.256 (0.074) *** 
subsidy   0.785 (0.074) ***   0.653 (0.079) *** 

neighborPEV    0.620 (0.064) ***  0.559 (0.064) *** 
etron     0.098 (0.065)  0.045 (0.065)  
kona     0.029 (0.067)  0.007 (0.067)  
leaf     0.219 (0.097) * 0.157 (0.097)  
nexo     -0.031 (0.184)  0.007 (0.185)  

In
te

ra
ct

io
n 

ef
fe

ct
s 

𝛿𝛿𝑖𝑖 

pluginFuel  -0.114 (0.109)     -0.106 (0.110)  
gasFuel  -0.028 (0.114)     -0.002 (0.114)  
bothFuel  -0.205 (0.095) *    -0.142 (0.101)  

subsidy   -0.253 (0.100) *   -0.208 (0.106)  

neighborPEV    -0.039 (0.087)   -0.016 (0.087)  

etron     0.093 (0.088)  0.114 (0.088)  

kona     0.081 (0.091)  0.095 (0.091)  
leaf     -0.151 (0.133)  -0.129 (0.133)  
nexo     0.168 (0.250)  0.155 (0.252)  

In
te

rc
ep

ts
 

𝛼𝛼𝑗𝑗  

definitelyNot | 
probablyNot 

-3.232 (0.056) *** -3.151 (0.060) *** -3.146 (0.057) *** -3.131 (0.057) *** -3.149 (0.089) *** -3.003 (0.091) *** 

probablyNot | 
maybeNotSure 

-1.937 (0.033) *** -1.860 (0.039) *** -1.854 (0.034) *** -1.835 (0.035) *** -1.855 (0.076) *** -1.711 (0.078) *** 

maybeNotSure | 
probablyYes 

1.365 (0.029) *** 1.456 (0.036) *** 1.478 (0.031) *** 1.498 (0.032) *** 1.450 (0.075) *** 1.655 (0.078) *** 

probablyYes | 
definitelyYes 

2.682 (0.037) *** 2.780 (0.043) *** 2.811 (0.039) *** 2.828 (0.040) *** 2.768 (0.078) *** 3.005 (0.082) *** 

Significance codes:  ***=0.001, **=0.01, *=0.05  
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Across all models, the main effect—the before / after effect of the PEV 

experience—is large, statistically significant, and robust to the inclusion of other effects. 

All other statistically significant effects in each model are smaller in magnitude than the 

before / after effect. To make this effect easier to interpret, we use equation 2.5 to convert 

the estimated coefficients in model 1 into probabilities of choosing each rating level 

before and after the PEV experience. Figure 2-3 shows these probabilities, with error bars 

computed using simulation (details are provided in Appendix A, Section A.2 Additional 

Details on Model Estimation Methods). 

 
Figure 2-3: Predicted Probabilities of BEV Consideration Rating Choices Before and After 
PEV Experience. 
The predicted ratings shift towards more positive ratings after the experience. Error bars 
represent a 95% confidence interval reflecting uncertainty in the model parameters, computed 
using simulation (see in Appendix A, Section A.2 Additional Details on Model Estimation 
Methods). 

In addition to the BEV rating questions, participants were asked three questions 

assessing their knowledge about PEVs: two pertaining to the refueling requirements of 

different vehicle types and one regarding the maximum federal subsidy available for 

purchasing a PEV. The responses indicate that most participants were not knowledgeable 
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about these aspects of PEVs. Only 30% of respondents correctly answered either the 

plug-in or gasoline refueling question (with only 18% correctly answering both refueling 

questions), and only 14% correctly answered the subsidy question, with 80% stating they 

were not sure. Figure 2-4 summarizes the responses to these questions.  

 

 

Figure 2-4: Knowledge Question Results (Correct Response Highlighted in Green). 
Only 30% of participants correctly answered either the plug-in or gasoline refueling questions, 
with just 18% correctly answering both (A). Only 14% of participants were able to correctly 
answer the question about the federal PEV subsidy, with 80% stating they were not sure (B). 

Although the majority of respondents did not correctly answer the knowledge 

questions, those that did chose higher BEV consideration ratings both before and after the 

PEV experience. Those who knew the maximum federal PEV subsidy available in 

particular had higher ratings than those who correctly answered the refueling questions, 

though this may be expected as respondents who knew the subsidy may already be 

considering purchasing a PEV. Nonetheless, these results suggest that even those with 

more knowledge about PEVs were still on average chose more positive ratings after the 

PEV experience. Figure 2-5 shows the results of models 2a and 2b converted to 

probabilities of rating choices. 
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Figure 2-5: Predicted Probabilities of BEV Consideration Rating Choices Before and After 
PEV Experience. 
Respondents with greater knowledge about PEV refueling (A) and subsidies (B) had higher 
predicted ratings both before and after the experience. Error bars represent a 95% confidence 
interval reflecting uncertainty in the model parameters, computed using simulation (see in 
Appendix A, Section A.2  Additional Details on Model Estimation Methods). 

Results of model 3 suggest that respondents that stated they had a neighbor that 

owns a PEV chose higher BEV consideration ratings both before and after the PEV 

experience (this effect is similar in size to that of those who correctly answered the 

subsidy knowledge question). This corresponds with prior research on the “neighbor 
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effect,” which suggests that people are more likely to consider adopting a PEV if their 

neighbors have also adopted a PEV [34 - 35]. Figure 2-6 shows these results.   

 
Figure 2-6: Predicted Probabilities of BEV Consideration Rating Choices Controlling for 
Neighbors with PEV. 
Those who indicated their neighbors own a PEV showed greater levels of consideration before 
and after the PEV experience, with the PEV experience still providing an increase in 
consideration. Error bars represent a 95% confidence interval reflecting uncertainty in the model 
parameters, computed using simulation (see in Appendix A, Section A.2  Additional Details on 
Model Estimation Methods). 

Finally, results from model 4 suggest that the particular vehicle model that 

participants rode in did not have a substantial effect on their rating choices, as shown in 

the overlapping error bars in Figure 2-7. This is important as it suggests that a short ride 

in a much more affordable PEV, such as the Nissan Leaf, could potentially be just as 

significant as riding in a luxury PEV in terms of influencing peoples’ consideration about 

adopting a PEV. 
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Figure 2-7: Predicted Probabilities of BEV Consideration Rating Choices Controlling for 
Vehicle Model Rode In during Experience. 
Although we expected to see more positive ratings for riding in a luxury vehicle model, such as 
the Audi e-tron, we did not find evidence of this. Instead, it appears that the post-experience 
positive rating was approximately the same regardless of the vehicle ridden in. The error on the 
Prius Prime is substantially larger due to the fact that few respondents rode in it. Error bars 
represent a 95% confidence interval reflecting uncertainty in the model parameters, computed 
using simulation (see in Appendix A, Section A.2  Additional Details on Model Estimation 
Methods). 

Model 5 provides a comprehensive model including all variables from models 1 – 

4. While we did estimate additional models to control for other factors, such as having 

dedicated at-home parking and how many cars the participant owned, none of these 

models had statistically significantly different results. Results from these additional 

models can be found in Appendix A, Section A.3 Additional Models.  

2.3  Discussion and Conclusions  

In this study, we conducted a large-scale experiment investigating how a short, 

direct exposure with a PEV could impact participants’ stated consideration of adopting 

the technology. Overall, results indicated that the experience had a positive impact on 

their stated consideration of and recommendation for PEVs. Our results show a 118% 

increase in the number of participants that stated they would “probably” or “definitely” 
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consider purchasing a BEV for their next vehicle—from 1,268 participants before the 

experience to 2,762 after. These results agree with previous studies that used substantially 

longer exposure times in their experiments [23 – 30]. For example, in Carroll et al. [58], 

72% of participants stated they would use a PEV as their regular car after the test drive 

experience compared with just 47% before the test drive [58], and in Turrentine et al. 

[61] 67% of respondents changed their opinion about PEVs after the end of their leases, 

with 71% of respondents stating they would be more likely to purchase a PEV after the 

experience than before. Part of why this short exposure experience may have had such an 

impact on participants’ consideration of PEVs is that it familiarized participants with an 

otherwise foreign vehicle technology. Rogers (2003) suggests that knowledge and 

experience acquisition of a new technology leads to lower perceived risk from it and 

more favorable intentions towards it [9]. The short, scalable experience provided in our 

experiment may have helped address some of the known knowledge and risks issues 

associated with PEV adoption [16]. 

An important observation of these results is that even a short exposure time with a 

PEV may lead to a significant increase in positive PEV perceptions—a result that has 

important practical implications for increasing PEV adoption. The type of short, 

experiential event that we conducted is well within the scope of the types of events 

vehicle manufacturers and dealers currently conduct with conventional vehicles in the 

form of promotional events. This structure could be utilized by automakers and dealers to 

promote PEVs in a cost- and time-effective manner to increase consumer acceptance of 

PEVs on a much larger scale. Fleet operators such as taxi and ride hailing companies 

could also potentially impact a much larger portion of the general public by operating 
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PEV fleets and exposing riders to the technology. Policymakers could support PEV usage 

in fleets and other forms of short-term direct exposure events.  

In terms of the general public’s knowledge about PEVs, our results corroborated 

prior research on large gaps in PEV knowledge and misperceptions that exist [4], [21], 

[36], [37]. Research in this area also found that greater PEV knowledge was associated 

with more positive perceptions of PEVs, lower perceived risks of PEVs, positive 

evaluation of PEV attributes, and a higher intent to pay a premium for renewable fuel—

all of which are associated with a great overall intention to adopt a PEV [4], [18], [22], 

[38 – 39]. Our study suggests similar results. Participants that correctly answered the 

knowledge questions on the survey—in particular, the federal subsidy question—had 

higher PEV consideration ratings both before and after the experience, suggesting that 

knowledge about the technology may be important for shifting public option and 

willingness to consider adopting a PEV. More research in this area is needed to determine 

effective means for conveying this knowledge to consumers and what kinds of 

knowledge might have the biggest impact.  

Although this experiment was successful in capturing a substantially larger 

sample size than prior research on direct experience with PEVs, the experiment design is 

potentially susceptible to response biases that can be present in survey-based studies. In 

particular, because all respondents were shown the same rating questions on both the 

before and after surveys, there is a chance that some of the shift to more positive ratings 

after the experience is due to response bias. We acknowledge this potential as a limitation 

of the study, and thus the main before / after experience effect should be interpreted with 

this potential bias in mind. Nonetheless, other aspects of the study suggest that response 
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bias alone would not likely explain the results. For example, verbal responses from 

participants during short interviews conducted immediately after the PEV experience 

were overwhelmingly positive towards PEVs and frequently involved statements of 

surprise about PEVs, in particular about the high acceleration performance of the PEV. In 

addition, some respondents stated more negative ratings after the experience than they 

did before. Finally, some of the results should be robust to response bias. For example, 

the association between having greater knowledge about PEVs and stating higher 

consideration ratings could still be concluded as the difference between the more and less 

knowledgeable participants should not be affected by response bias. A more robust 

research design would have had a random sample of participants only respond to a post- 

survey. This would have allowed us more ability to analyze different control groups and 

quantify any potential biases in the response from seeing the same questions in both 

surveys.   

Some limitations in the data collection process include the lack of more detailed 

demographic data (a trade-off made between the time required to complete the surveys 

and participant throughput) and the self-reported nature of the demographic data 

collected. For instance, 20% of the complete sample reported that their neighbor owns a 

PEV, which is likely higher than reality given the historically low PEV sales rate. Given 

that few participants correctly answered the knowledge questions about PEVs, we suspect 

that many who responded “yes” likely had neighbors with vehicles that they mistook for 

a PEV, such as a hybrid vehicle. Nonetheless, while it is not possible to determine the 

accuracy of their responses, it may still be valuable to gauge the difference in the 
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perceptions of those who believe they encounter PEVs on a daily basis with those that do 

not. 

Finally, it is important to address potential limitations in the generalizability and 

longevity of the effects noted in this study. Participants in this study were individuals 

who opted to attend the DC Auto Show and participate in the EV ride along experience, 

presenting a limited and self-selecting sample. There is potential for self-selection bias in 

our sample; participants were already opting to engage in an automotive event and 

elected to participant in our ride and drive, possibly creating a sample not applicable 

beyond these circumstances. However, the DC Auto Show is open to the general public 

with thousands of attendees and attracts a wide range of individuals. In addition, other 

ride and drive events for specific automakers were also present at the event, including 

Jeep, Jaguar, and Land Rover. Based on responses to our knowledge questions and results 

from the study, there was a similar lack of knowledge and experience with PEVs that is 

consistent with the general population. In addition, qualitative verbal responses from 

participants after the experience were overwhelmingly consistent with a positive overall 

experience. Unfortunately, we are unable to assess the longevity of the effects captured in 

this study as we did not obtain identifiable information about the respondents necessary 

to contact them at a later time. This is an important consideration for future related work 

and could be easily integrated into future research in this area.   

Electrifying the vehicle fleet to meet carbon goals will require PEV adoption are 

far greater rates than have historically occurred. This will require solutions that go 

beyond attracting early adopters and scale to attract the general public. Our study shows 
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that having a direct experience—even for just a few minutes—with a PEV could be 

important for changing public opinion about PEVs on a mass scale. 
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Chapter 3: Consumer Preferences of PEV Financial Incentives 

This chapter is a published paper by Roberson, L. A., & Helveston, J. P. (2022), 
“Not all subsidies are equal: measuring preferences for electric vehicle financial 

incentives” in Environmental Research Letters. 
 

Plug-in electric vehicles (PEVs) are an important pathway for decarbonizing the 

transportation sector, yet sales in the US are still relatively low. Federal and state 

incentives, such as purchase subsidies, have been shown to have a measurable effect on 

increasing PEV adoption [70], but how these incentives are designed can affect both their 

value to customers as well as how equitably they are distributed [71]. In this study, we 

aimed to measure how US vehicle buyers value different features of PEV financial 

incentives to identify incentives that are more attractive and more likely to be distributed 

across a more diverse group of consumers. 

Most studies on the impacts of PEV incentives find that financial incentives lead 

to increased PEV adoption. In a 2017 review of studies on PEV incentives, 32 of 35 

studies concluded that PEV subsidies have a positive effect on PEV sales [70], mirroring 

earlier research on the effectiveness of financial incentives in increasing hybrid sales 

[72]–[74]. In addition, evidence suggests that financial incentives are becoming even 

more important over time as more mainstream car buyers start adopting PEVs [75]. One 

reason is that average US consumers in general do not appear to be as willing to pay a 

premium for PEVs compared to wealthier early adopters; evidence suggests that PEVs 

would indeed need to have considerably lower prices than those of internal combustion 

engine vehicles in order to be equally desirable for mainstream buyers, all else being 

equal [29].  
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A particularly important finding from this body of research is that not all 

incentives are equally effective in increasing new technology adoption. One of the 

earliest studies on adoption rates of hybrid electric vehicles found that providing 

consumers with sales tax exemptions had a more than ten-fold increase in sales compared 

with providing income tax credits [73]. Literature reviews by Hardman et al. and 

Deshazo highlight multiple studies that find a similar preference for tax exemptions over 

tax credits as well as a preference for incentives that are applied at the point of sale over 

those applied post-sale [70], [76]. These results are consistent with the well-known 

phenomenon of “present bias,” a cognitive bias in which money is valued more in the 

present than in the future [77]. 

Incentive design also impacts how equitably incentives are distributed. In a 

review of the distributional effects of US clean energy tax credits, Borenstein and Davis 

found that incentive programs aimed at incentivizing PEV purchases were the most 

extreme in terms of the incentive distribution, with the top income quintile receiving 

approximately 90% of all credits [78]. This outcome is unsurprising considering how the 

federal subsidy tax credit is structured. In general, time-delayed incentives like tax credits 

are skewed towards higher-income buyers who can afford the full up-front PEV purchase 

price. Furthermore, not all households are eligible to receive the full PEV incentive 

amount ($7,500 for most full electric vehicles) as it depends on tax liability. Specifically, 

households with lower tax liabilities due to income or the availability of other credits, 

such as the child tax credit, may not receive the full credit amount compared to high-

income earners with larger tax liabilities. In a study on Atlanta, GA, researchers estimate 
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that only 23% to 45% of the city population could qualify for the full PEV tax credit, and 

these percentages are even lower for minority populations [71]. 

Finally, while the vast majority of PEV tax credits have gone to the wealthiest 

buyers [79], studies suggest that a more equitable allocation to buyers with lower and 

middle incomes may have been more effective at increasing overall PEV adoption. A 

survey by Hardman et al. found that financial incentives were not an important decision 

factor for purchasers of high-end PEVs but were significantly important for purchasers of 

lower-end PEVs [24]. Likewise, in a quasi-experimental analysis of subsidies in 

California, Muehlegger and Rapson found relatively large demand elasticities for PEVs 

among low-income buyers, with an estimated 32-34% increase in demand for every 10% 

reduction in purchase price via a subsidy [80]. The combined outcomes of these prior 

studies suggest that improvements could be made to incentive designs to make them 

more attractive and equitable. 

3.1  Methods 

We aimed to measure how US vehicle buyers value different features of PEV 

financial incentives to identify incentive designs that are both more valuable to 

consumers and more likely to be distributed across a more diverse group of consumers. 

To do so, we designed and fielded a nationwide choice-based conjoint survey online in 

August and September of 2021.  In conjoint surveys, respondents are asked to choose 

their most preferred option from a set of alternatives in a series of consecutive choice 

questions. Each alternative in each choice question is comprised of a list of attributes 

(e.g., “price”) with different levels (e.g., different dollar amounts). We use a randomized 

survey design, meaning that the attribute levels shown in each choice set were randomly 

chosen from the full set of combinations of all the levels for each attribute. While this 
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approach requires a larger sample size to obtain precise parameter estimates compared to 

alternatives that attempt to maximize information, such as “D-optimal” designs, it allows 

for greater flexibility in the types of models that can be estimated [81]. The choice data 

obtained can then be used to estimate choice models to quantify the relative value 

respondents hold for each attribute shown. 

By using a controlled experiment, we are able to disaggregate preferences for 

different incentive features and explore heterogeneity in those preferences among 

different sub-populations, which can be difficult (if not impossible) using historical 

incentive data as they have limited variation amongst incentive features. Furthermore, our 

survey results reveal preferences for the general car buying population as opposed to 

wealthy early adopters. Given the diversity of car buyers in our sample, we report effects 

for different subgroups in the sample, which is important for any revisions to current 

subsidy policy as PEVs are gradually adopted by more diverse populations. 

We restricted the survey to financial incentives because these incentives have 

been found to be one of the more effective types [70] and because including other non-

financial incentives would require a substantially larger sample size to identify the 

preferences of sub-groups within the sample, which is important for understanding the 

equity implications of the study. Based on preliminary piloting and reviews of prior 

literature, the following incentives features were included in the choice questions: 1) 

Type—a tax credit, tax deduction, sales tax exemption, or a direct rebate; 2) Amount—

the total dollar amount of the incentive, ranging from $1,000 to $8,000 in increments of 

$500, which reflects the range of historically available incentive amounts (for the sales 

tax type, the amount is an exemption of 50%, 75%, or 100% of the sales tax, computed as 
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the participants self-reported budget multiplied by 7.5%); 3) Timing—the time when the 

incentive will be received (immediately versus several levels of delay, ranging from 

weeks to the next tax filing period); and 4) Source—the government, dealership, or 

automaker. Each participant answered 10 consecutive conjoint questions. We also asked 

additional questions regarding respondent demographics as well as their knowledge about 

and experience with PEVs. Respondents were screened such that they were 18 years old 

or older, reside in the U.S., and were in the market for a vehicle. The full text of the 

survey is available in Appendix B, Section B.3.   

To ensure that participants understood the choice task, respondents were first 

shown a practice question where the rebate option was the logically dominant choice. 

This question was used to screen out respondents as choosing anything other than the 

dominant choice suggests they were likely either not paying close attention or did not 

understand the choice task. Figure 3-1 shows example choice questions. 

 
Figure 3-1: Example Conjoint Questions. 
Figure A is the practice question shown to all respondents, and Figure B is an example 
randomized question. 
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The conjoint choice questions were designed and randomized using the cbcTools 

R package [82], and the survey was implemented on formr.org, an open-source online 

platform that uses the R programming language to define survey questions [83]. An 

initial pilot survey was fielded on Amazon Mechanical Turk (N = 216 participants) for 

basic testing purposes. The final survey was fielded using an online panel via Dynata, a 

market research firm. We applied a stratified sampling approach to match the income 

distribution of US car buyers for the first 2,000 respondents, and we collected an 

additional 500 respondents targeting those with household incomes below $50,000 as this 

group was under-sampled in the original run.  

We accounted for cost of living (COL) differences across the national sample by 

adjusting the amount variable shown in the survey by a COL adjustment scalar prior to 

estimating all models. The COL scalar for each respondent was obtained by matching 

each respondent’s self-reported zip code to its associated Core-Based Statistical Area 

(CBSA) using data from the US Department of Housing and Urban Development (HUD) 

[84] and then matching each CBSA to a COL adjustment factor from the Real Personal 

Income by State and Metropolitan Area dataset provided by the US Bureau of Economic 

Analysis [85]. This resulted in the amount value being scaled down by a factor less than 1 

in locations where the COL is higher than the national average (since the value of a dollar 

buys less in places with a higher COL) and scaled up by a factor greater than 1 where the 

COL is lower than the national average. This COL adjustment had little effect on the 

model results (see Table B-4 in Appendix B for the un-scaled model results). After 

removing 338 respondents who did not have a zip code that matched with the COL 
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adjustment data, our final sample was 2,170 respondents. Table 3-1 summarizes 

demographic statistics of the final sample including COL adjusted results. 

Table 3-1: Summary of Sample Demographics 
Summary Statistics N = 2,170 
Age 
Min 19 
Max 92 
Mean 56 
(NA) 6 
Gender identity 
Male 1,211 (56%) 
Female 942 (43%) 
Other 11 (0.5%) 
Prefer not to say 2 (<0.1%) 
(NA) 4 
Timeframe for purchase 
1 year 914 (42%) 
0-3 months 786 (36%) 
No timeline 470 (22%) 
Shopping for new or used 
New 1,284 (59%) 
Used / both / not sure 886 (41%) 
Income 
> Median 1,404 (65%) 
< Median 750 (35%) 
Prefer not to say 12 (0.6%) 
(NA) 4 (0.15%) 
 

 

Using the choice data, consumer choice can be modeled using a random utility 

framework, which assumes that individual consumer i makes choices among alternatives 

j that maximize an underlying random utility model, 𝑢𝑢𝑖𝑖𝑖𝑖, which can be parameterized as a 

function of an alternative’s observed attributes, 𝑣𝑣𝑖𝑖𝑖𝑖, and a random variable representing 

the portion of utility that is unobservable to the modeler, 𝜀𝜀𝑖𝑖𝑖𝑖, such that 𝑢𝑢𝑖𝑖𝑖𝑖 = 𝑣𝑣𝑖𝑖𝑖𝑖 +  𝜀𝜀𝑖𝑖𝑖𝑖. 

For this study, the utility model for alternative j for individual i can be expressed as 

follows: 
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𝑢𝑢𝑖𝑖𝑖𝑖 = 𝛃𝛃′𝐱𝐱𝒋𝒋 − 𝜆𝜆𝜆𝜆𝑗𝑗 +  𝜀𝜀𝑖𝑖𝑖𝑖,      

(3.1) 

where λ is the coefficient for the incentive amount, aj, and β is a vector of 

coefficients for all other attributes, xj. To make the results more easily interpretable, we 

specify the utility model in the “willingness-to-pay” (WTP) space [86], [87] such that 

estimated model coefficients represent the marginal WTP (or valuation in the context of 

this study) for marginal changes in each attribute: 

𝑢𝑢𝑖𝑖𝑖𝑖 = 𝜆𝜆�𝛚𝛚′𝐱𝐱𝒋𝒋 − 𝑎𝑎𝑗𝑗� + 𝜀𝜀𝑖𝑖𝑖𝑖, 

(3.2) 

where 𝛚𝛚 is the WTP coefficients for all non-price attributes, xj, and λ is now a 

scale parameter. Using the WTP space for the utility models has several conveniences. 

Since WTP coefficients have units of dollars, they can be immediately interpreted and 

understood independent of other parameters. In addition, since WTPs are independent of 

error scaling, they can be directly compared across different models estimated on 

different subsets of the data. In contrast, preference space coefficients represent marginal 

utility, which must be interpreted relative to other parameters and cannot be directly 

compared across models due to potential scaling differences. For the specific context of 

this study, the general WTP space utility model takes the following form: 

 

𝑢𝑢𝑖𝑖𝑖𝑖 = 𝜆𝜆 �𝛚𝛚′𝐱𝐱𝒋𝒋
type + 𝝉𝝉′𝐱𝐱𝒋𝒋

timing + 𝛈𝛈′𝐱𝐱𝒋𝒋source + 𝛚𝛚tt′𝐱𝐱𝒋𝒋
type𝐱𝐱𝒋𝒋

timing + 𝛚𝛚ts′𝐱𝐱𝒋𝒋
type𝐱𝐱𝒋𝒋source − 𝑎𝑎𝑗𝑗�

+  𝜀𝜀𝑖𝑖𝑖𝑖, 

(3.3) 
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where ω, 𝝉𝝉, and 𝛈𝛈 are vectors of WTP parameters for each incentive type, timing, 

and source, respectively, and each of the 𝐱𝐱𝑗𝑗 terms are the dummy-coded variables for 

these respective attributes. The incentives amount is given by aj. Interactions terms for 

type*timing and type*source are included since the timing and source values vary 

depending on the type (e.g., the sales tax exemption is always at the time of sale). The 

rebate type was set as the reference level for the dummy-coded incentive types. For 

timing, the reference level was time of sale for the tax credit and rebate types (the timing 

didn’t vary for the sales tax and tax deduction types). Finally, for source, the reference 

level was government for the rebate type (the source didn’t vary for all other incentive 

types).  

We assess consumer valuation for different financial incentive features by 

estimating multinomial logit (MNL) models on the full sample and subgroups within the 

sample as well as a mixed logit (MXL) model on the full sample via maximum likelihood 

estimation, a common and well-established estimation approach for discrete outcome 

utility models [88], [89]. The multinomial logit models assume fixed preference 

parameters across the survey population whereas in the mixed logit model preference 

heterogeneity is modeled according to parametric assumptions about the population 

preference parameters. One of the convenient features of the logit model is that by 

assuming the error term of the utility model follows a Gumbel extreme value 

distribution1 

 

1 Gumbel and independent normal distribution error assumptions yield practically identical results 

empirically, and Gumbel yields a more convenient expression for choice probabilities. 
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the probability that a consumer i will choose option j from the choice set ℐ𝑐𝑐 follows a 

convenient closed form expression [89]: 

 

𝑃𝑃𝑖𝑖𝑖𝑖 =
𝑒𝑒𝑒𝑒𝑒𝑒�𝑣𝑣𝑗𝑗�

∑ 𝑒𝑒𝑒𝑒𝑒𝑒�𝑣𝑣𝑗𝑗�𝑘𝑘∈ℐ𝑐𝑐
,           ∀𝑐𝑐 ∈ {1,2,3 …𝐶𝐶},    𝑗𝑗 ∈ ℐ𝑐𝑐 , 

(3.4) 

where c indexes a set of C choice sets. For mixed logit, probabilities are 

approximated using random draws from parameter distribution via maximum simulated 

likelihood [89]. Panel effects from repeated choices by each individual are accounted for 

in the calculation of the log-likelihood function for MXL models (see equation 6.2 in 

Train, 2009 [89]), and standard errors are clustered at the individual level. All models 

were estimated using the logitr R package [90]. 

Finally, in our results we present some WTP values as the sum of multiple 

different WTP coefficients. For example, the WTP for a 6-week-delayed rebate from a 

dealership is the sum of the coefficients for type_rebate, the interaction parameter for 

type_rebate*timing_6_weeks, and the interaction parameter for 

type_rebate*source_dealer. For these calculations, 95% confidence intervals are 

computing by taking multivariable normal draws of the model parameters using the mean 

estimates and the variance-covariance matrix of the model, summing the appropriate 

draws to compute the desired value, and observing the 2.5% and 97.5% percentiles of 

those draws [91]. Code to reproduce analysis and results can be found on GitHub. 

https://github.com/jhelvy/pev-incentives-2021


 

 50 

3.2  Results 

We present the results from several models. Model 1 is a MNL of the full sample, 

model 2 is a MXL of the full sample, and models 3 – 5 are MNL models on subgroups 

based on demographic information, including high- vs. low-income buyers (3), new vs. 

used vehicle buyers (4), and high vs. low budgets (5). All models are estimated in the 

“Willingness to Pay” (WTP) space such that coefficients reflect preference values in 

dollars [86], [87]. Table 3-2 shows the estimated coefficients from each model, which are 

in units of thousands of dollars. Since each respondent answered 10 choice questions, the 

final dataset includes 21,700 choice observations from sets of four incentive types: sales 

tax exemption, tax credit, tax deduction, and rebate.  

Results from all models suggest that car buyers value financial incentives 

significantly differently depending on how they are implemented. Coefficients from 

model 1 imply that participants overwhelmingly prefer immediate rebates, on average 

valuing them by $580, $1,450, and $2,630 more than sales tax exemptions, tax credits, or 

tax deductions, respectively (see Figure 3-2). The mixed logit model (model 2) suggests 

similar results, valuing immediate rebates by $650, $1,580, and $3,580 more than sales 

tax exemptions, tax credits, or tax deductions, respectively. The results that a sales tax 

exemption is valued at several hundred dollars less than an immediate rebate is 

particularly interesting as they both occur at the time of sale, suggesting there could be an 

intrinsic difference in value for receiving money compared to avoiding a fee. In addition, 

unlike an immediate rebate, the dollar savings from a sales tax exemption can depend on 

the purchase price. 
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Figure 3-2: Value of Different Incentive Designs Relative to an Immediate Government 
Rebate at the Time of Sale. 
Bars represent the mean WTP coefficients from model 1, and error bars reflect a 95% confidence 
interval computed via simulation as described in the Methods section [91]. 
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Table 3-2: Summary of Estimated Model Coefficients. 
Model: (1) 

Multinomial 
Logit 

(2) 
Mixed Logit 
(mean)              (st. dev) 

(3a) 
Above Median 
Income 

(3b) 
Below Median 
Income 

(4a) 
New Car 
Buyers 

(4b) 
Used Car 
Buyers 

(5a) 
Budget  
>$30k 

(5b) 
Budget  
<$30k 

 Respondents: N = 2,170 N = 2,170 N = 1,404 N = 750 N = 1,284 N = 886 N = 1,125 N = 1,045 

Scale 
parameter* 

0.519 ***  
(0.0) 

0.711 ***  
(0.0) 

--- 0.562 ***  
(0.0) 

0.460 ***  
(0.0) 

0.525 ***  
(0.0) 

0.512 ***  
(0.0) 

0.545 ***  
(0.0) 

0.488 ***  
(0.0) 

Sales Tax -0.582 ***  
(0.1) 

-0.648 ***  
(0.1) 

2.235 ***  
(0.1) 

-0.499 ***  
(0.1) 

-0.742 ***  
(0.2) 

-0.586 ***  
(0.1) 

-0.563 ***  
(0.1) 

-0.389 ***  
(0.1) 

-0.858 ***  
(0.1) 

Tax Credit -1.449 ***  
(0.1) 

-1.583 ***  
(0.1) 

2.508 ***  
(0.1) 

-0.982 ***  
(0.1) 

-2.438 ***  
(0.2) 

-1.143 ***  
(0.1) 

-1.896 ***  
(0.2) 

-0.973 ***  
(0.1) 

-1.963 ***  
(0.1) 

Tax 
Deduction 

-2.727 ***  
(0.1) 

-3.576 ***  
(0.1) 

-2.800 ***  
(0.1) 

-2.436 ***  
(0.1) 

-3.261 ***  
(0.2) 

-2.726 ***  
(0.1) 

-2.718 ***  
(0.2) 

-2.443 ***  
(0.1) 

-3.048 ***  
(0.2) 

Tax Credit: 
Immediate 

0.403 ***  
(0.1) 

0.297 **  
(0.1) 

-0.365 .  
(0.2) 

0.239 **  
(0.1) 

0.789 ***  
(0.1) 

0.140      
(0.1) 

0.798 ***  
(0.1) 

0.198 *  
(0.1) 

0.624 ***  
(0.1) 

Rebate: 
2-week delay 

-0.075      
(0.1) 

-0.026      
(0.1) 

0.344      
(0.2) 

-0.016      
(0.1) 

-0.190      
(0.1) 

-0.081      
(0.1) 

-0.063      
(0.1) 

-0.000      
(0.1) 

-0.156      
(0.1) 

Rebate: 
6-week delay 

-0.318 ***  
(0.1) 

-0.254 ***  
(0.1) 

0.492 **  
(0.2) 

-0.231 *  
(0.1) 

-0.510 ***  
(0.1) 

-0.352 ***  
(0.1) 

-0.273 *  
(0.1) 

-0.143      
(0.1) 

-0.515 ***  
(0.1) 

Rebate: 
Source OEM 

-0.022      
(0.1) 

-0.148 .  
(0.1) 

-0.574 ***  
(0.2) 

-0.011      
(0.1) 

-0.014      
(0.1) 

-0.050      
(0.1) 

0.025      
(0.1) 

0.008      
(0.1) 

-0.057      
(0.1) 

Rebate: 
Source Dealer 

-0.042      
(0.1) 

-0.102      
(0.1) 

-0.323 *  
(0.1) 

0.012      
(0.1) 

-0.124      
(0.1) 

-0.112      
(0.1) 

0.057      
(0.1) 

-0.012      
(0.1) 

-0.079      
(0.1) 

Signif. Codes: ‘***’ = 0.001, ‘**’ = 0.01, ‘*’ = 0.05, ‘.’ = 0.1, ‘ ‘ = 1 
*The incentive amount in all models was scaled to account for cost-of-living differences 
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The current federal tax credit was consistently one of the least-valued incentives, 

with an average devaluation of $1,450 (model 1) and $1,580 (model 2) compared to an 

immediate rebate. Even after adjusting the tax credit timing to be assignable at the point 

of sale, it is still over $1,000 less valuable to consumers compared to an immediate 

rebate. While this may seem surprising, it is important to again emphasize that many 

households may not be able to claim the full tax credit as it depends on their tax liability. 

In contrast, the direct rebate is immediately delivered, reducing the purchase price, taxes, 

and fees at the point of sale, and the amount provided is independent of any individual’s 

tax circumstances. 

Our results also indicate that the timing of when an incentive is received matters, 

with delays resulting is significant devaluations. For example, model 1 suggests that 

delaying a rebate by 2-weeks or 6-weeks lowers the incentive value by approximately 

$40 or $320, respectively. Using these results, we can compute the implied discount rate 

of the current maximum federal tax credit ($7,500) for different incentive types. Using 

coefficients from model 1 suggests that car buyers discount time-delayed incentives at 

rather large rates: 30%, 46%, and 54% for 2-week, 6-week, and 6-month delays, 

respectively. These rates are consistent with depreciation rates of passenger vehicles; for 

example, gasoline-powered vehicles typically lose as much as 60% of their initial value 

within their first five years of use, which is equivalent to a 20% discount rate [92]. These 

discount rates suggest that delaying incentives can significantly reduce their value to 

consumers. 

Given that the vast majority of historical PEV subsidies have been allocated to 

wealthier car buyers [78], [79], making PEV incentives more equitably accessible is 
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critically important for the design of future incentive policies. We compared the 

preferences of respondents from households with annual incomes above and below the 

median US income (model 3), which is $67,521 according to the 2020 census [93], those 

who stated they were shopping exclusively for new vehicles versus those that were also 

considering used vehicles (model 4), and those with larger versus smaller stated budgets 

(model 5). Results show that an immediate rebate is even more highly valued for lower-

income buyers, used vehicle buyers, and those with smaller budgets. Specifically, 

respondents with annual household incomes below the median income (N = 750) valued 

a tax credit by $2,440 less than an immediate rebate whereas those with annual household 

incomes above the median (N = 1,404) valued a tax credit by $1,000 less than an 

immediate rebate (see Figure 3-3). Below-median income households also devalued the 

tax deduction and sales tax exemption incentives at greater levels than higher-income 

households. Similarly, used vehicle buyers (N = 886) valued a tax credit at $1,900 less 

than an immediate rebate compared to only $1,140 for new car buyers (N = 1,284), and 

respondents with a budget of less than $30,000 (N = 1,045) valued the tax credit at 

$1,960 less than an immediate rebate compared to only $970 for those with higher 

budgets (N = 1,125). Preferences for other incentive features were similar for each of 

these groups. 
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Figure 3-3: Value of Different Incentive Designs Relative to an Immediate Government 
Rebate at the Time of Sale for Above- and Below-Median Income Households. 
Bars represent the mean WTP coefficients from model 3, and error bars reflect a 95% confidence 
interval computed via simulation as described in the Methods section [91]. 

In addition, participants were asked whether they knew the current maximum 

federal tax credit, whether or not they would ever consider purchasing a BEV or PHEV, 

and whether or not their neighbors own a PEV (response summaries are shown in Table 

3-3). Results from models comparing groups according to their responses to these 

questions (Table B-6 in Appendix B) suggest that the tax credit design is less attractive to 

buyers who are already less likely to purchase a PEV. Likewise, those who are already 

considering a PEV, know more about the current incentives, and have neighbors that own 

a PEV value those incentives more. All of these groups strongly preferred an immediate 

rebate over the current tax credit system. These results also suggest that improving 

education and awareness about PEVs and available incentives may be important for 

increasing the value of future incentives to customers as those who were more 

knowledgeable about PEVs valued the incentives more. Results of models estimated 
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comparing other demographic groups largely had insignificant statistical differences 

between groups, often due to small sample sizes in one or more group. These include 

housing ownership, access to home parking, ethnicity, education, and work. 

Table 3-3: Response Summary for PEV-related Questions. 
Do you know the current maximum 
available federal subsidy? 

Would you ever consider purchasing a PHEV? 

Not sure 1,685 (67%) Definitely Yes 372 (15%) 
$10,000 89 (3.6%) Probably Yes 580 (23%) 
$7,500 380 (15%) Maybe / Not sure 820 (33%) 
$5,000 206 (8.2%) Probably Not 428 (17%) 
$2,500 111 (4.4%) Definitely Not 305 (12%) 
$1,000 36 (1.4%) (NA) 3 
(NA) 1   
Do any of your neighbors own a PEV? Would you ever consider purchasing a BEV? 

Yes 433 (17%) Definitely Yes 334 (13%) 
No 1,382 (55%) Probably Yes 407 (16%) 
Not sure 690 (28%) Maybe / Not sure 678 (27%) 
(NA) 3 Probably Not 559 (22%) 
  Definitely Not 527 (21%) 
  (NA) 3 

 

Across every model we estimated, immediate rebates were valued significantly 

more than tax credits. This suggests that the federal government could have achieved the 

same value to PEV buyers with less taxpayer dollars if the federal PEV subsidy had been 

implemented as an immediate rebate. To estimate this potential savings, we estimated the 

total amount of federal tax credits available to all eligible PEVs sold between 2010 and 

2019 (approximately 1.4 million PEVs) [94], [95]. Using PEV sales data at the make-

model level, we assumed that BEVs received the full tax credit amount ($7,500) and 

computed the amount for PHEVs based on the battery capacity, accounting for the 

subsidy phase out when specific models that reached the 200,000 sales limit [96]. This 

results in an estimated $8.65 billion in tax credits. If this subsidy were instead 

implemented as an immediate rebate, we estimate the federal government could have 

saved approximately $2.07 billion (24%), or $1,440 per PEV on average (see Figure 3-4). 
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This implies that an immediate rebate program would still deliver greater value to 

customers at the same cost to the government so long as the potential additional 

administrative burden of implementing the program remains less than $1,440 per PEV. 

 
Figure 3-4: Estimated Annual Federal PEV Subsidy Allocation Between 2011 and 2019. 
The red portion indicates the estimated amount the federal government could have saved if the 
tax credit were delivered as an immediate rebate rather than a tax credit. Estimates are based on 
applying the federal tax credit policy to every eligible PEV sold using sales data from 
hybridcars.com and insideEVs.com. 
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3.3  Discussion  

In this study, we aimed to understand how consumers value different features of 

PEV incentives to inform the development of a more effective and equitable incentive 

design. Based on the results of a nation-wide conjoint survey, we find that both the 

incentive type (tax credit, tax deduction, sales tax exemption, or direct rebate) and timing 

(at the point of sale or some period after purchase) significantly impacted its value while 

the source (government, dealer, or OEM) had little to no impact. Respondents valued 

more immediate incentives over time-delayed incentives, with discount rates ranging 

from 30% to 53% for time-delayed incentives. Immediate rebates delivered at the time of 

sale are the most-valued incentive design across all subgroups in our sample. Relative to 

the current federal tax credit incentive, immediate rebates are valued by as much a $1,450 

more on average. These findings are consistent with prior research that suggests 

consumers prefer incentives that are applied at the point of sale over those applied post-

sale [70], [76]. This also aligns with the financial concept of Time Value of Money where 

money in the present is valued more than an equal amount in the future due to inflation, 

investment potential, compounding interest etc. and the psychological factors that make it 

harder for humans to equate present vs. future values. All these factors combines to 

emphasize the value of providing financial incentives for PEVs immediately as rebates. 

Research has also shown that the current tax credit strongly favors households 

with higher incomes and fewer children and is thus not equitably accessible [71]. Our 

results complement these findings and suggest that the valuation for immediate rebates is 

nearly twice as large for lower-income households compared to higher-income 

households and approximately 50% larger for used vehicle buyers compared to new 

vehicle buyers. This suggests that implementing the PEV subsidy as a direct rebate and 
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extending it to used PEVs could be an effective strategy to encourage a more equitable 

adoption of PEVs.  

Our results also suggest that improving education and awareness about PEVs may 

also increase the incentive value to potential PEV buyers; approximately 85% of 

participants who took our survey could not correctly identify the currently maximum 

federal subsidy amount for PEVs, and respondents that lacked this knowledge or were not 

considering purchasing a PEV valued the tax credit less. This is consistent with other 

research that suggests direct experience with PEVs can increase consumers’ willingness 

to consider purchasing them [97]. Combining an education and awareness campaign 

along with changes to incentive policy that aligns with consumer preferences could result 

in a more effective and equitable incentive by a larger and more diverse population than 

today’s tax credit. 

Unfortunately, the structure of today’s PEV subsidy—a tax credit delivered when 

filing taxes—was consistently one of the least-valued incentive types, with only a tax 

deduction being valued less. This finding is not necessarily surprising considering the 

inconveniences and hurdles associated with the tax credit design. First, if the taxes a PEV 

buyer owes are less than the maximum $7,500 credit, the buyer will not receive the 

excess amount. Furthermore, since the credit is delayed until the annual tax filling 

process, the PEV buyer must finance the full PEV purchase price along with any state 

sales taxes and fees evaluated at that price. These two factors can significantly reduce the 

total amount of incentive available to consumers.  

Nonetheless, maximizing value to the customer may not be a prioritized objective 

when designing a PEV incentives; indeed, ease of implementation can often outweigh 
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other factors. For example, including a new tax credit into the already well-established 

tax filling procedure is arguably a simpler system to adopt (and pass legislation for) than 

many other alternative designs. 

Furthermore, the current implementation of the tax credit does not necessarily 

require the government to send funds to buyers but rather reduces the total tax revenue 

raised. As a result, overhead costs for implementing the tax credit are potentially lower 

than alternative designs.  

Based on the consumer preferences from our experiment, we estimate that by 

delivering the federal PEV subsidy as a tax credit, the cumulative amount of subsidy 

available to prior PEV purchases was devalued by approximately 24% compared to if it 

were delivered as an immediate rebate, resulting in a loss in value to customers (or a 

potential savings to the government) of $2.07 billion. While an immediate rebate may 

incur higher administrative costs to deliver compared to a tax credit, it would result in a 

more equitably distributed subsidy and would deliver a greater value to customers, and it 

would still be at least as cost effective as the current tax credit design so long as 

additional administrative burdens are no greater than $1,440 per PEV. 

While results from this research show some very interesting results in terms of 

consumers’ valuation of PEV financial incentives, it is important to interpret these along 

with potential limitations. First, the research questions around PEV financial incentives 

requires a more complex conjoint design and some participants may not have understood 

the choice task. We addressed this as thoroughly as possible throughout the design and 

analysis phases, offering education around every attribute in the conjoint, reference 

materials available throughout conjoint questions and a test question to filter out those 
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not understanding or paying attention. But there still could be an element of lack of 

familiarity or understanding in the responses. Also, this was a completely hypothetical 

scenario and while participants might respond during the survey, their actions in real life 

might be different. It wasn’t possible to translate the questions from this survey into an 

actionable check for participants given the nature of the vehicle transaction and 

incentives in question. An additional follow-up with respondents to assess if a purchase 

has taken place and details would have added an ability to confirm responses against 

actual behaviors.  

3.4  Conclusions 

Despite their rapid growth in countries with more aggressive policies [98], PEVs 

comprise just 2-3% of the new vehicle market share in the US[95]. If the US is to catch 

up with other countries, PEV incentives will play an important role, especially in 

expanding PEV adoption to more diverse populations beyond wealthy early adopters. 

How these incentives are designed can affect both their effectiveness and accessibility to 

diverse populations. 

In this study, we aimed to understand how consumers value different features of 

PEV incentives to inform the development of a more effective and equitable incentive 

design. Based on the results of a nation-wide conjoint survey, we found that an 

immediate rebate delivered at the time of sale is the most-valued incentive design across 

all subgroups in our sample. Relative to the current federal tax credit incentive, 

immediate rebates are valued by as much a $1,450 more on average, and this valuation is 

nearly twice as large for lower-income households compared to higher-income 

households. We also found that used vehicle buyers value an immediate rebate more than 
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new vehicle buyers. Implementing a direct rebate for both new and used PEVs could be 

an effective strategy to encourage a more equitable adoption of PEVs. 

We also estimate that by delivering the federal PEV subsidy as a tax credit, the 

cumulative amount of subsidy available to prior PEV purchases was devalued by 

approximately 24% compared to if it were delivered as an immediate rebate, resulting in 

a loss of $2.07 billion in value to customers or savings to the government ($1,440 per 

PEV sold on average). While an immediate rebate may incur higher administrative costs 

to deliver compared to a tax credit, it would result in a more equitably distributed subsidy 

and would deliver a greater value to customers. Finally, our results suggest that 

improving education and awareness about PEVs may also increase the incentive value to 

potential PEV buyers. 
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Chapter 4: Investigation of PEV Resale Market & Depreciation with Policy 
Implications 

This chapter is forthcoming at Environmental Research Letters: Roberson, L.A., Pantha 
S. & Helveston, J.P. “Battery-Powered Bargains? Assessing Electric Vehicle Resale 

Value in the United States” 
 

Plug-in electric vehicles (PEVs) are a critical technology for decarbonizing the 

US transportation sector—now the nation’s largest contributor to greenhouse gas 

emissions [1]. But their success as a substitute for gasoline-powered conventional 

vehicles (CVs) will depend on whether consumers are willing to purchase them. While 

higher up front purchase prices and limited driving ranges are frequently cited as barriers 

to adoption [16], [29], researchers have found that uncertainty in their resale value (or 

“resale anxiety” [99], [100]) remains an important consideration for consumers 

purchasing a technology with uncertain durability [101]. PEV affordability in the resale 

market will also play a crucial role in expanding PEV adoption beyond wealthier 

households, which currently comprise the vast majority of PEV owners [102]. As the 

used PEV market expands, improving our understanding of value retention among used 

PEVs is critically important for both consumers and policy makers looking to incentivize 

PEV adoption in the resale market. 

Vehicle resale value is affected by a variety of factors, such as the vehicle make, 

model, year, mileage, condition, and trim, as well as features related to the market, such 

as the location and overall supply of used vehicles. For PEVs, resale value can be 

affected by additional factors, such as the all-electric driving range and battery condition 

[103], as well as PEV-specific policies, such as tax incentives in the new PEV market 

[104]. Industry and academic research estimating PEV value retention rates has 

concluded that while hybrid vehicles (HEVs) have depreciated at similar rates as CVs, 
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plug-in hybrid vehicles (PHEVs) and battery electric vehicles (BEVs) have depreciated 

faster [105]–[108]. Table 4-1 summarizes prior research on PEV residual value.  

 

Table 4-1: Summary of Studies Quantifying PEV Resale Value 
Study Model 

Years 
MSRP 
Data 

Resale 
Value Data 

Resolution Sample 
Size 

Main Results 

This study 2012-
2018 

EPA; 
carsheet.io 

marketcheck Daily 
listings 

9,015,324 BEVs and PHEVs depreciate 
quicker than CV/HEV but is 
improving with more recent 
model years and higher ranges. 

Rush et al. 
(2022) 
[109] 

2012-
2019 

Edmunds 
 

Edmunds 
TMV 

Monthly 
time series 

582,000* CVs and HEVs consistent 3-yr 
retention; PHEVs and BEVs 
initially lower but increasing 
in retained value 

Burnham 
et al. 
(2021) 
[110] 

2013-
2019 

EPA Edmunds 
TMV  

1 TMV 
snapshot 
(July 
2020) 

686* 
 

BEVs and PHEVs depreciate 
more quickly than HEVs and 
CVs 

Hamza et 
al. (2020) 
[111] 

2014-
2019  

KBB KBB Snapshot 
(2019) 

72* 
 

PHEVs and CVs hold value 
similarly; BEVs 11% lower 
retention over 5 years  

Guo et al. 
(2019) 
[103] 

2010-
2016 

Wards Edmunds 
TMV 

Snapshot 
(Q4 2016) 

1,400* 
 

PEV retention lower than 
gasolines equivalents. Tesla 
major exception with highest 
retained value over time. 

Schoettle 
et al. 
(2018) 
[112] 

2011-
2015 

EPA KBB  Snapshot 
(Jan. 2018) 

200* PHEVs retained resale value 
equally as well as CVs (i.e., 
0% average difference), and 
BEVs improved to an average 
of -5.7% difference in resale 
value compared to CVs 

Tal et al. 
(2017) 
[113] 

2011-
2015 

New car 
buyers 
survey / 
OEM 
website  

Self-
reported 
used car 
buyers 
survey 

Snapshot 
(2016) 

160* PEVs models held 34% (2011 
Nissan Leaf) to 80% (2014 
Toyota Prius plug-in) of value 
in 2015 compared to MSRP. 

Zhou et 
al. (2016) 
[114] 

Unknown NADA 
guides 

NADA 
guides 

Unknown Unknown Comparing the adjusted 
retention rates of PHEVs and 
BEVs with those of CVs 
indicates 2-3 year retention 
rate is lower for PEVs. 

*Sample sizes estimated based on descriptions of data in papers.  
Abbreviations: 
EPA = Environmental Protection Agency (fueleconomy.gov) 
TMV = True Market Value (private party data) 
KBB = Kelly Blue Book (private party data) 
NADA = National Automobile Dealers Association 

 

Although more rapid PEV depreciation is a consistent finding, this outcome is not 

necessarily the same for every vehicle. Tesla BEVs, for example, have been found to 
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have among the highest value retention rates of any vehicle [103],  [109], in part due to 

their desirable features, such as high driving ranges and well-established private charging 

infrastructure, but also due to supply constraints they have historically faced in the new 

market, leading to higher used vehicle price [115]. Furthermore, many of the studies 

concluding that PEVs rapidly depreciate are based on data from earlier PEV models 

between 2011 and 2016, a time when most BEVs had relatively low driving ranges and 

were first generation vehicles [103], [112], [113]. More recent studies are finding some 

evidence that newer model PEVs are holding their value better [109].  

In this study, we aim to improve upon these prior studies using listing prices from 

a large, nationally representative dataset of used cars listed online between 2016 and 

2020 in the United States. The listing data are licensed from marketcheck.com, a market 

research firm that collects vehicle listing data from dealership websites. Whereas prior 

studies have used smaller samples of pre-processed data, such as the Edmunds True 

Market Value [103], [109], [110], or snapshots of available listed vehicles [111], [112], 

[113], the data we use contains the raw, daily listing prices from 66,641 dealerships. The 

detailed data enables the ability to quantify changes in value retention due to vehicle 

features (e.g., mileage), environment features (e.g., number of days the vehicle was 

listed), policy features (e.g., available subsidies), and changes over time (e.g., newer 

versus older model years), enabling greater insights into PEV retention rates compared to 

prior studies. To control for other features not included in the listings data, we added 

electric driving ranges and MSRPs (used to calculate retention rates) from carsheet.io 

[116]. Vehicle operating costs (in cents per mile) were computed using vehicle 

efficiencies from fueleconomy.gov [117] and monthly gasoline prices [118] and annual 
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average electricity prices [119] in different states from the US Energy Information 

Administration (EIA), using utilization factors (0 to 1) from fueleconomy.gov to compute 

the electric and gas portions of operating costs for PHEVs. We also include data on the 

federal and state subsidies available for new PEVs at the time vehicles were listed. More 

detailed descriptions of these calculations are included in the methods. 

For our primary analyses, we censor the data to only include vehicles with ages 

between 1 and 8 years old as few BEV listings were present in the dataset outside of this 

period. While the data go out to March 2022, we only use listings up until the end of 

2019 to avoid the pricing disruptions experienced due to supply shortages during and 

after the COVID-19 pandemic, which began in early 2020 (Figure 4-5 shows prices 

through March 2022 for different vehicle types for comparison). We also limit the data to 

vehicle models that comprised at least 1% of the listings within each powertrain, ensuring 

a representative sample of the majority of common vehicle models on the market while 

removing exotic models. We also focus on cars since few BEV pickups or SUVs were 

listed in the time period captured in the dataset. Table 4-2 summarizes the dataset by 

powertrain, with Tesla and non-Tesla BEVs separated given Tesla’s historically higher 

retention rates and significant size in the US market. Appendix Table C-1 summarizes 

each car model included in our analyses.  
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Table 4-2: Summary of Used Vehicle Listings. 

Key Sample Stats Conventional 
N = 8,395,000 

Hybrid 
N = 464,560 

PHEV 
N = 58,915 

BEV Tesla 
N = 22,518 

BEV Other 
N = 74,331 

Model Year 
2012 764,383 

(9.1%) 
61,590 
(13%) 

6,823 
(12%) 

390 
(1.7%) 

3,943 
(5.3%) 

2013 1,188,624 
(14%) 

93,803 
(20%) 

14,342 
(24%) 

2,797 
(12%) 

11,245 
(15%) 

2014 1,466,956 
(17%) 

86,350 
(19%) 

14,043 
(24%) 

2,969 
(13%) 

13,665 
(18%) 

2015 1,942,194 
(23%) 

102,049 
(22%) 

8,217 
(14%) 

6,645 
(30%) 

25,007 
(34%) 

2016 1,598,340 
(19%) 

54,178 
(12%) 

4,474 
(7.6%) 

6,608 
(29%) 

15,193 
(20%) 

2017 1,007,898 
(12%) 

45,596 
(9.8%) 

9,905 
(17%) 

1,232 
(5.5%) 

4,075 
(5.5%) 

2018 426,605 
(5.1%) 

20,994 
(4.5%) 

1,111 
(1.9%) 

1,877 
(8.3%) 

1,203 
(1.6%) 

Mileage (1,000) 
Mean 42 45 42 34 24 
Median 37 39 36 31 23 
SD 26 28 25 19 14 
Age (years) 
Mean 3.40 3.70 3.86 3.82 3.66 
Median 3.28 3.58 3.65 3.80 3.61 
SD 1.49 1.51 1.40 1.28 1.13 
Listing price (Used $USD) 
Mean 16,192 16,954 16,684 51,314 14,109 
Median 14,957 16,429 16,364 49,006 12,428 
SD 6,188 5,040 4,347 13,111 6,068 
MSRP (New $USD) 
Mean 28,104 30,193 37,765 88,157 36,606 
Median 27,308 28,923 36,645 89,320 34,409 
SD 7,819 4,806 3,284 8,825 5,134 
Electric Range (miles) 
Mean -- -- 35 238 87 
Median -- -- 38 246 82 
SD -- -- 14 47 27 
Minimum -- -- 11 139 58 
Maximum -- -- 53 335 238 

 

4.1  Methods 

4.1.1  Data and Code Availability 

All of the code used to process the data, estimate models, and produce all analyses 

are publically available on GitHub. The vehicle listings data that support the findings of 

this study are available from marketcheck.com, but restrictions apply to the availability of 

these data, which were used under license for the current study and so are not publicly 

https://github.com/jhelvy/pev-resale-2024
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available. A sample of the data is included in the GitHub repository. The relevant 

variables in the full original database can be provided on an individual bases for review 

purposes only to reproduce the study results by contacting the lead contact. All other data 

used in the study are posted in the repository. 

4.1.2  Data Preparation 

We use vehicle listing data licensed from marketcheck.com, a market research 

firm that collects vehicle listing data from individual dealership websites daily (the same 

database was also used in a recent publication in Joule on PEV mileage[120]). Since the 

PEV market has a limited number of SUV models, we limit our analyses to only car 

models. We also limit our dataset to vehicle ages between 1 and 8 as fewer BEV listings 

are available outside of this range (fewer vehicles are listed used within 1 years of being 

new, and few used BEVs are older than 8 years old as of December 2019). Although we 

have access to data up to February 2022, we censored the data for our primary analyses to 

end in December 2019 due to the significant market impact of the COVID19 pandemic 

on vehicle pricing. In addition, we also only include vehicle models that comprised at 

least 1% of the listings within each powertrain as a practical compromise between 

including a representative sample of vehicles while remaining computationally 

reasonable as the majority of the listings are comprised of a smaller number of models 

and a large number of models have very few listings (e.g. exotic cars). The final dataset 

includes 9,015,324 unique used car listings from 66,641 dealerships. Appendix Table C-1 

summarizes the dataset. 

In addition, other vehicle specifications were obtained and joined onto the listings 

data from a variety of data sources. Vehicle MSRPs are from carsheet.io [116] and BEV 

and PHEV ranges as well as all vehicle efficiencies (miles per gallon for gasoline-
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powered vehicles and kWh per 100 miles for electricity-powered vehicles) are primarily 

from fueleconomy.gov [117] with a small amount of missing values added from 

carsheet.io. Monthly gasoline prices[118] and annual average electricity prices[119] in 

different states are from the US Energy Information Administration (EIA) which are used 

to calculate cents by miles operating costs which were also integrated. Pricing was also 

adjusted to account for inflation using Consumer Price Index[121]. Finally, we also 

include data on the federal and state subsidies available for new PEVs at the time used 

vehicles were listed. Data on these incentives between 2016 and 2018 were taken from 

Wee et al.[122] and manually updated through 2020 primarily from the Alternative Fuels 

Data Center. 

4.1.3  Modeling Vehicle Retention Rate 

To establish a comparable metric across different vehicles from different price 

ranges, we compute a retention rate for every vehicle model, calculated as the listing 

price divided by the original manufacturer’s suggested retail price (MSRP) based on the 

vehicle model year (both listing prices and MSRPs were inflation-adjusted to constant 

2019 dollars). While some studies subtract off available federal and state subsidies from 

the MSRP before computing the retention rate [103], [109], we choose not to make this 

adjustment for several reasons. First, subtracting off the available subsidies from the 

MSRP is a non-linear transformation of the retention rate that affects both the intercept 

and slope of the resulting depreciation curve (both intercepts and slopes will increase). 

We believe this is inconsistent with the effect that an initial subsidy in the new market 

should have, which is to lower the initial price but not necessarily affect the rate by which 

the value drops from that price. Subtracting off the subsidy in computing the retention 

rate could lead to a misleading conclusion with respect to annual depreciation rates, 

https://afdc.energy.gov/
https://afdc.energy.gov/
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implying that the retention rates of subsidized vehicles (BEVs and PHEVs) are falling at 

faster annual rates, albeit starting from higher initial retention rates. Finally, the subsidy 

available at the time a used vehicle was initially purchased is arguably less relevant to its 

resale value compared to the subsidy for the equivalent new model at the time the used 

vehicle is listed. For example, the maximum price a used BEV could be listed for should 

be the price for the equivalent model in the new market minus available subsidies, 

otherwise the buyer would simply buy the new version and obtain the subsidy. Thus, in 

our models we include the total subsidy (state plus federal) available for the equivalent 

new model at the time the used vehicle is listed as a separate covariate to assess any 

potential effect of new PEV subsidies on listing prices in the resale market.  

We develop an exponential decay model to estimate the potential effects of 

various factors, such as the make, model, mileage, model year, and powertrain, and 

available new market subsidies, on the retention rate of different vehicles. The basic 

exponential model follows that of other related studies [109], [110]: 

𝑟𝑟 = 𝛼𝛼𝑒𝑒(βx) 

(4.1) 

where 𝑟𝑟 is the retention rate, x is a matrix of model covariates, β is a vector of 

coefficients for the covariates, and 𝛼𝛼 represents the initial retention rate upon immediate 

sale in the new market. Taking the log of both sides of this equation yields a model that 

can be estimated using linear regression: 

log 𝑟𝑟 = 𝛼𝛼 + βx 

(4.2) 
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Interpreting the estimated 𝜷𝜷� coefficients in a meaningful way (e.g. the change in 𝒓𝒓 based 

on a change in any one covariate in 𝐱𝐱) requires the transformation 𝒆𝒆𝜷𝜷� − 𝟏𝟏. We present the 

estimated (non-transformed) coefficients in Table C-2 and Table C-3 and the transformed 

coefficients in Table 4-3, Table 4-4, and Table C-4. 

4.2  Results 

Our primary variable of interest is the value retention rate, which is computed as 

the listing price divided by the new MSRP2. Figure 4-1 compares the retention rates of 

CVs (gray bands) with those of other powertrains (green bands), including HEVs, 

PHEVs, and BEVs, where the median (solid lines) and interquartile ranges (bands) of 

retention rates were computed for all listings in each month of age. In general, CVs and 

HEVs follow similar retention rate patterns over time while PHEVs retain slightly more 

value at first then drop off steeper as compared to CVs. BEVs in general depreciate faster 

than CVs, with the exception of Tesla BEVs (blue bands) which actual retain higher 

values in the first few years of age relative to CVs before falling to similar values with 

CVs. This aligns with prior research in this area which finds Tesla BEVs follow a 

different depreciation trend than other BEVs [103]. 

 

 

2 In contrast to other studies, available subsidies were not subtracted off the MSRPs when 

computing retention rates (see the experimental procedures for a detailed explanation of this decision).  
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Figure 4-1: Comparison of the Median and Interquartile Ranges of Computed Retention 
Rates by Powertrain and Age. 
The solid line shows the median retention rate and the bands reflect the 25th and 75th 
percentiles. The same curve for CVs (in grey) is shown for comparison in each sub-figure. 

To quantify the differences in retention rates by powertrain, we estimate an 

exponential decay model of the log of retention rate on age interacted with powertrain 

type. Since the estimated coefficients (presented in Appendix C: Table C-2) are less 

intuitive to interpret, we present a transformation of those coefficients in Table 4-3, 

interpreted as the initial sale retention rate (exponentiation of the intercept coefficients) 

and annual depreciation rates (exponentiation of the slope coefficients minus one). 

Models 1 and 2 are identical except for BEVs, which are pooled in Model 1 and 

separated by Tesla or Non-Tesla in Model 2. Results are consistent with the trends shown 

in Figure 4-1: the annual depreciation rates (change in retention rate with age) is 

approximately 9% per year for both CVs and HEVs and steeper for PHEVs and non-

Tesla BEVs at approximately 15% per year each. Tesla BEVs depreciate at a slightly 

lower rate of 12% per year but start at a much higher intercept than any other vehicle 

type, retaining 98% of their MSRP at one year of age compared to only 70% at one year 

of age for non-Tesla BEVs. CVs and HEVs both retain approximately 81% of their value 

at one year old and PHEVs retain slightly more at 87%. 
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Table 4-3: Estimated First-Year Retention Rates and Annual Depreciation Rates for 
Different Vehicle Powertrains. 

Powertrain 

Initial Sale 
Retention Rate 
exp(intercept) 

Annual  
Depreciation Rate 
exp(coefficient) - 1 

Model 1 Model 2 Model 1 Model 2 

Conventional (CV) 81.08 
(0.02) 

8.77 
(0) 

Hybrid (HEV) 82.14 
(0.07) 

9.01 
(0.02) 

Plug-in Hybrid (PHEV) 86.77 
(0.24) 

15.34 
(0.06) 

Battery Electric (BEV) 72.73 
(0.18) -- 13.62 

(0.05) -- 

Non-Tesla BEV  -- 70.27 
(0.2) -- 15.4 

(0.06) 

Tesla BEV -- 98.11 
(0.47) -- 12.11 

(0.1) 
Number of observations: 9,015,324 9,015,324 9,015,324 9,015,324 
Adjusted R-Squared: 0.32513 0.331 0.32513 0.331 

 

To understand greater detail in the factors associated with depreciation within 

each powertrain, we estimate additional models on all cars within each powertrain. 

Again, we present the transformed coefficients in Table 4-4, with the estimated 

coefficients presented in Appendix C: Table C-3. These models included interactions 

effects between the vehicle age and each vehicle model to allow for different depreciation 

intercepts and rates by model, presented in Appendix C: Table C-4.  
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Table 4-4: Estimated Effects of Vehicle Model Years and Vehicle Characteristics on 
Retention Rates, Computed Using Estimated Coefficients in Appendix C: Table C-3. 
Vehicle models were interacted with age (in years) and are presented in Appendix C:Table C-4. 

 Non-Tesla 
BEV  

Tesla  
BEV PHEV HEV CV 

Initial Sale Retention Rate 

exp(intercept) 23.95 
(0.32) 

102.27 
(2.21) 

72.68 
(1.14) 

89.1 
(0.37) 

104.37 
(0.12) 

Difference by Model Year 
Reference Level: 2012 

2013 4.33 
(0.36) 

10.56 
(1.88) 

-1.09 
(1.3) 

-1.88 
(0.36) 

0.83 
(0.12) 

2014 6.33 
(0.41) 

-11.58 
(1.48) 

9 
(1.48) 

-1.57 
(0.36) 

-1.82 
(0.11) 

2015 6.49 
(0.41) 

-14.64 
(1.34) 

8.66 
(1.48) 

-3.59 
(0.35) 

-5.28 
(0.11) 

2016 6.16 
(0.42) 

-22.66 
(1.1) 

18.46 
(3.51) 

0.74 
(0.37) 

-4.49 
(0.11) 

2017 7.73 
(0.51) 

-26.62 
(1.04) 

17.78 
(3.46) 

-0.41 
(0.36) 

-6.26 
(0.11) 

2018 11.23 
(0.7) 

-47.42 
(0.75) 

21.42 
(3.58) 

-1.29 
(0.36) 

-5.38 
(0.11) 

Percent Change in Retention Rate from Addition of… 

…10,000 miles -5.07 
(0.06) 

-3.93 
(0.08) 

-4.49 
(0.03) 

-4.67 
(0.01) 

-4.64 
(0) 

…10 days on market -0.37 
(0.02) 

-0.13 
(0.06) 

-0.23 
(0.02) 

-0.28 
(0.01) 

-0.08 
(0) 

…1 cent per mile (operating cost) 0.13 
(0.06) 

0.38 
(0.13) 

0.35 
(0.06) 

1.13 
(0.02) 

0.08 
(0) 

…10 miles driving range 5.58 
(0.14) 

1.57 
(0.04) 

-0.8 
(1.45)   

…$7,500 subsidy in new market -3.25 
(0.36) 

-3.41 
(0.31) 

5.8 
(0.26)   

Number of Observations: 74,331 22,518 58,915 464,560 8,395,000 
Adjusted R-Squared: 0.688 0.604 0.838 0.727 0.587 

 

One of the first notable observations from these models is that while Non-Tesla 

BEVs and PHEVs have in general depreciated faster than HEVs and CVs historically, 

this appears to be changing over time. Specifically, we observe significantly higher initial 

sale retention rates for these powertrains with each new model year, with Non-Tesla 

BEVs increasing by 11.23% and PHEVs increasing by 21.42% for model year 2018 

relative to 2012. The opposite trend has occurred for CVs and HEVs, falling by 5.35% 

and 1.29%, respectively, for model year 2018 relative to model year 2012. Notably, Tesla 
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BEV retention rates have fallen steeply over this period, with the 2018 model year initial 

sale retention rate being 47.42% lower than that of the 2012 model year. This is not 

surprising considering that Tesla lowered its pricing in the new market multiple times 

during the period when the vehicles in our sample were listed in the resale market. These 

results suggest a more competitive market is emerging across alternative powertrain 

vehicles, with PHEVs and Non-Tesla BEVs performing increasingly better in terms of 

value retention in the resale market (though not yet quite as good as HEVs and CVs). 

Figure 4-2 illustrates this trend, comparing the predicted two-year old retention rates of a 

2018 versus 2014 model year vehicle for every vehicle model in our analyses. Two-year 

retention rates were used here due to the available data and model years, and this option 

allowed us to examine more different model years and observations given data 

limitations. While not all vehicle models were available in both years, for those that were 

we observe a steep increase in the predicted retention rates of PHEVs and Non-Tesla 

BEVs and a steep decline for Tesla BEVs.  
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Figure 4-2: Predicted Two-Year-Old Retention Rates for All Vehicle Models, Comparing 
Model Years 2014 and 2018. 
Model year 2018 HEVs, CVs, and Non-Tesla BEVs are experiencing lower retention rates relative 
to model year 2014 while PHEVs and Non-Tesla BEVs are experience higher retention rates. 
Predictions are made using the estimated model coefficients in Appendix C: Table C-4 
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Table 4-4 also shows other important findings regarding how retention rates vary 

with different vehicle characteristics. We observe that increased mileage has a negative 

impact on retention rate across all powertrains, with Tesla BEVs having the lowest 

sensitivity to mileage at 3.9% for every additional 10,000 miles and Non-Tesla BEVs 

having the highest sensitivity at 5%. We also observe lower retention rates for vehicles 

that remain on dealership lots longer, suggesting that (as would be expected) dealerships 

reduce the prices of vehicles that take longer to sell. CV prices fall at lower rates (0.08% 

for every additional 10 days on the lot) relative to non-CVs, which fall at rates between 

0.13% (Tesla BEVs) and 0.37% (Non-Tesla BEVs). We also find that less efficient 

vehicles (those with higher operating costs) appear to hold their value better than more 

efficient vehicles (lower operating costs) across all powertrains. While this result may be 

counterintuitive, it is important to note that more efficient vehicles tend to have higher 

prices; as a result, higher demand for more affordable (but less efficient) vehicles could 

lead to less rapid depreciation compared to higher-priced (but more efficient) vehicles.  

Table 4-4 shows several important effects specific to PEVs. First, we find that 

BEVs with higher driving ranges have higher retention rates, though this effect is 

significantly higher for Non-Tesla BEVs, which tend to have lower ranges in general than 

Tesla BEVs. For every additional 10 miles of range, Non-Tesla BEVs have 5.58% higher 

retention rates and Tesla BEVs have 1.57% higher retention rates, all else being equal. 

The range effect is not statistically significant for PHEVs.  

Figure 4-3 shows this relationship, plotting the predicted two-year-old retention 

rate versus range for multiple model years for select vehicle in our analysis. We only 

include vehicle models that have at least three available model years between 2014 and 
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2018 as some models (such as the Tesla Model 3 and Chevrolet Bolt EV) only came out 

in 2018. Predictions are made using the estimated model coefficients in Appendix C: 

Table C-4, and the points are the mean two-year-old retention rates across all listings for 

a given model year-range pair. Here we see the rapid increase in two-year-old retention 

rates for newer Non-Tesla BEVs, which have larger electric driving ranges. In contrast, 

the slope of line for the Tesla Model S is negative because the negative model year effect 

is larger than the positive range effect, which is smaller in magnitude than that of Non-

Tesla BEVs. This suggests that there may be a limit to the higher value retention obtained 

from increased driving ranges. 

 
Figure 4-3: Predicted Two-Year-Old Retention Rate Versus Range for Select BEV Models 
By Model Year (Only Vehicle Models With At Least Three Model Years are Included). 
Predictions are made using the estimated model coefficients in Appendix C: Table C-4, and 
points are the mean two-year-old retention rates across all listings for a given model year-range 
pair. 

 



 

 79 

Finally, we also find an effect from subsidies available in the new vehicle market. 

A $7,500 subsidy for a new BEV (the maximum federal subsidy for which most BEVs in 

this time period qualified) had the effect of lowering the retention rates in the resale 

market of Non-Tesla BEVs by 3.25% and Tesla BEVs by 3.41%. This is expected as 

lowering the price of a new BEV via a subsidy should also lower prices of earlier 

versions of the same vehicle model in the resale market. This logic falls from the idea 

that the upper bound that buyers should be willing to pay for a used vehicle is the MSRP 

of the new version minus the subsidy value, otherwise they would simply buy the new 

version and obtain the subsidy (assuming adequate supply). As a result, the retention 

rates (computed as the listing price divided by the unsubsidized MSRP) should be lower 

for used vehicles that have an equivalent subsidized model available in the new market 

compared to those that do not.  

Because of this pass-through effect of the new market subsidies into the resale 

market, we estimate that the total federal subsidies dispensed for new BEVs sold between 

2011 and 2019 resulted in $255 million in indirect subsidies to the resale market (see 

Figure 4-4). While relatively small in magnitude compared to the $8.7 billion in new 

subsidies, our estimate is still important to note as it is an additional benefit to consumers 

that comes at no additional cost to the government. 
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Figure 4-4: Annual Total Indirect Subsidy to the Resale Market from Price Reductions Due 
to Federal Subsidies for New PEVs. 

 

Although our data extends to vehicles listed up until March of 2022, we chose to 

censor the data used for all modeling to the end of 2019 due to the supply disruptions in 

the automotive market that resulted from the outbreak of the COVID19 pandemic in early 

2020. These disruptions led to significant increases in vehicle listing prices, with prices 

for some used vehicles rising higher than the MSRP in the new market since many new 

vehicles were unavailable for lengthy periods of time. This rise in pricing made models 

that relied on assumptions of exponential decline unreliable, hence why we omitted the 

data from our models. Nonetheless, descriptions of the post-pandemic listing prices are 

still informative. Figure 4-5 shows the mean listing prices for CVs, Tesla BEVs, and 

Non-Tesla BEVs. As of March 2022, mean inflation-adjusted prices are 37%, 39%, and 
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3% higher compared to in January 2020 for CVs, Non-Tesla BEVs, and Tesla BEVs, 

respectively. In combination with the overall trend of increased retention rates for Non-

Tesla BEVs, this result suggests that, at least in the short term, the resale market may no 

longer be a place for buyers to find an affordable BEV, adding an additional barrier to 

more equitable PEV adoption.  

 
Figure 4-5: Summary of Resale Market Prices for CVs (Gray), Tesla BEVs (Blue), and Non-
Tesla BEVs (green). 
Solid lines are mean prices and bands show the interquartile range of prices. The vertical red line 
marks March 2020, the start of the COVID19 pandemic. 

4.3  Discussion 

PEVs are a critical component in a sustainable transportation future, and the 

resale market will play a critical role in expanding PEV adoption beyond affluent 

demographics given its greater affordability [123] and size (more than double in annual 

sales compared to the new vehicle market [124]). In this study, we analyze the retention 
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rates of different cars listed in the resale market, comparing result across different 

powertrains. We find in general that PEVs do not hold their value as well as CVs as they 

age, which is consistent with much of the prior literature on this topic [103], [109]–[111], 

[114]. 

However, we also find evidence that this is changing over time, with newer PEV 

models holding higher retention rates that are approaching those of many CVs. This trend 

is particularly significant given the rapid advancements in PEV technology, notably in 

driving range. In our dataset, the mean BEV range grew 76% from 86 to 151 miles from 

2012 to 2018. This evolution not only addresses range anxiety but also potentially 

mitigates resale anxiety [101] as we find that higher-range BEVs have significantly 

higher retention rates than lower-range BEVs. 

Mileage continues to be a critical determinant of resale value across all 

powertrains, with its impact slightly more pronounced in non-Tesla BEVs. This finding 

underscores the importance of mileage as a proxy for battery health in BEVs, a key 

consideration for potential buyers in the used market. 

Interestingly, our analysis reveals that subsidies in the new BEV market indirectly 

influence the resale market, effectively lowering used BEV prices. Our results suggest 

that a $7,500 subsidy for a new BEV translates to approximately a 3% reduction in 

retention rates for the same vehicle model in the resale market. While this phenomenon 

aids in making used BEVs more accessible, it simultaneously could fuel resale anxiety 

among new BEV purchasers. This dynamic presents a complex scenario for 

policymakers, especially considering the recent introduction of a used PEV tax credit. 
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The long-term effects of such incentives on PEV resale values warrant further 

investigation. 

The COVID-19 pandemic has significantly impacted the vehicle market by 

reducing affordability across all powertrains. Recognizing and adapting to these shifts is 

imperative in maintaining PEV affordability and, consequently, in promoting broader 

adoption. The evolving landscape of PEV retention rates, particularly among non-Tesla 

models, is noteworthy. However, this also introduces a new dynamic where the 

affordability of subsequent vehicles diminishes due to elevated pricing and retention 

rates. In the post-pandemic era, the surge in used vehicle prices has somewhat eroded the 

affordability that once characterized the used PEV market. 

Our study is not without limitations. The exclusion of data post-2019 due to the 

COVID-19 pandemic’s impact on the market introduces a temporal boundary to our 

findings. This exclusion means that our analysis does not account for the potentially 

lasting effects of the pandemic on consumer behavior and market dynamics, which could 

have significant implications for the PEV resale market. Also, this significantly limits the 

BEV models available for analysis, excluding newer BEV SUVs that have been 

introduced in the past couple years thus leaving out the largest and most popular 

bodystyle segment in the US from our results. Updating these findings using more recent 

listings and models would expand the breadth of results here. Additionally, our reliance 

on listing prices as a proxy for actual transaction prices may not fully capture the nuances 

of final sale negotiations and discounts. If there are systematic differences in listing and 

transaction prices by powertrain, then our comparative analysis across powertrains may 

have slight discrepancies with respect to true differences in retained value.  
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Nonetheless, the retention rates presented in this study should accurately reflect 

what consumers would have observed at dealerships prior to making a purchase decision. 

Our study also focuses predominantly on the US market, which may limit the 

generalizability of our findings to global markets where different economic conditions, 

consumer preferences, and policy frameworks prevail. The PEV market dynamics in 

other regions could offer contrasting insights, especially in areas with different levels of 

infrastructure development, consumer awareness, overall PEV adoption, and government 

incentives for PEVs. Our analysis also does not extensively delve into the impact of 

brand perception and consumer loyalty, particularly concerning Tesla and other emerging 

PEV manufacturers. The strength and reputation of a brand can significantly influence 

resale values, and as the market continues to evolve, shifts in consumer perception could 

markedly alter the landscape of PEV value retention. 

Finally, the rapidly evolving nature of PEV technology, particularly 

advancements in battery efficiency and lifespan, could alter the depreciation patterns in 

ways not captured in our current dataset. As newer models with improved technology 

enter the resale market, their retention rates could differ significantly from the trends 

observed in our study. For these reasons, we caution modelers from extrapolating these 

trends too far into the future. Continuous monitoring and analysis will be essential to 

fully understand the long-term trends and implications for PEV adoption and 

sustainability in the transportation sector. 
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Chapter 5: Lessons from PEV Research and Adoption of Innovative Technology 
Theory: What’s Next for PEV Adoption in the US? 

A more sustainable future is being built today from technological innovations 

across multiple industries. As the highest greenhouse gas emitter in the US [1], the 

transportation industry urgently needs these innovations. Plug-in electric vehicles 

(PEVs), especially for passengers cars, is one of the most salient and feasible solutions 

for long-term reduction in vehicle greenhouse gases [125]; however, adoption has 

remained low, especially in the US [126]. To understand how to accelerate PEV 

adoption, this dissertation explored three different aspects of consumer considerations for 

purchasing a PEV. 

From this research, we have gained valuable insight into how different areas of 

consumer consideration and adoption of new innovations might impact and deliver 

further diffusion of this new technology. These studies together connect back to PEV 

adoption by contributing insights into the various phases along the innovation-diffusion 

curve. Rogers’ Diffusion of Innovation curve, built from the Bass Model, shows that 

there are many phases in consumer adoption of an innovative technology. These three 

studies aimed to yield insights along different stages of PEV adoption in order to create a 

holistic thesis on the progression of PEVs.  
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Figure 5-1: Innovation Adoption Curve Overlaid with Dissertation Research Chapters and 
Consumer Impact. 
Figure is based on Rogers innovation adoption curve and classifications [9] and recreated by 
author. 

These insights come at a potentially critical point in US PEV adoption as the 

technology looks to break out past early adoption phase into the mainstream, which 

potentially means crossing the “chasm” – the transition from “technologists” to 

“pragmatists” where additional effort is needed to push from early adopters with 

openness to innovation adoption to the early majority and beyond, which tend to be 

motivated by more practical measures [127]. Currently, the US PEV market is 

experiencing some issues looking to bridge this gap and move forward. PEV sales in 

2023 slowed compared to growth in 2022, with sales up 46% in 2023 vs. 65% in 2022 

[128]. Also, new PEV uncertainties emerged, with one specific example being PEV 

ownership in the winter and their performance in cold temperatures [129]. And finally 

PEVs remain a costly endeavor for consumers and, despite price decreases in 2023, the 
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average transaction price of PEVs (roughly $55k in Jan 2024) remains in line with luxury 

cars and pickup trucks [130]. 

Diffusion of an innovation is a highly individual and behavioral phenomenon and 

can be explored through the Theory of Planned Behavior, which provides some 

additional insights as it relates to conceptualizing the findings of this dissertation [15]. To 

create intention to adopt a PEV, three factors contribute to the decision towards intent. 

First, consumers’ attitudes towards the behavior, which we have addressed throughout 

this dissertation, identify various ways the general perception of PEVs could be 

improved. For example, as we saw in Chapter 2, allowing more opportunities for the 

general population to experience PEVs (even for relatively short periods) can create a 

more positive consideration of PEVs. Next, the subjective norm—or the social 

standard—for a behavior also contributes to intention. In this dissertation, we saw a few 

different examples of opportunities to generate a more favorable societal norm when it 

comes to PEV adoption. Throughout the research, we demonstrated that PEV knowledge 

was lacking and, with the proper attention, governments at different levels could focus on 

promotion and education around EVs in order to establish a more societally positive 

depiction. Finally, perceived behavioral control—or perceived ease of executing on 

adopting a PEV for our purposes—is the third factor in predicting intention, and this is a 

key factor addressed throughout this dissertation in the form of equity implications. This 

research shows there are inequities in PEV consideration and adoption today, including 

affordability issues, inequitable subsidization, and lack of access.  

Each chapter in this dissertation has provided clear contributions to the research 

of PEV adoption, with analysis into three distinct and significant contributors to 
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technology adoption. In Chapter 2, we showed how short PEV experiences can deliver a 

positive impact on stated consideration of and recommendation for PEVs. This directly 

indicates the benefits of PEV experience, (particularly short experiences, which are more 

realistic and actionable for stakeholders to recreate), on PEV consideration for 

manufacturers, policy makers, and other PEV stakeholders. There is also concrete 

evidence that a lack of consumer knowledge around tax credits and refueling of PEVs 

exists, implying further outreach and education is needed. When considering the theory 

behind diffusion of technological innovations, this research indicates short experiential 

opportunities will benefit the early phase of consideration and adoption thus making it a 

critical component during early adoption and beyond, as well as establishing attitudes, 

imparting knowledge, and demonstrating the relative advantage, 

compatibility/complexity, observability and trialability in perceptions of this innovation. 

Learnings from this study can also be translated to other technologies where an 

experiential and exposure factor may affect consumers as well as a gap in current 

knowledge exists – for instance solar panels and seeing a neighbor install a set or a short 

trial of a geothermal heating system; or a short test drive of emerging hands-free driving 

systems in a vehicle to gain familiarity with the new technology similar to the research 

performed in Chapter 2.   

Next, in Chapter 3, our results identified issues in current policy structures for 

PEV financial incentives and how more effective incentive design, based on how 

consumers value dollars, could be structured. This means offering rebates at the time of 

sale, which offers additional benefits towards lower income households and would 

overall improve PEV financial incentive policies effectiveness and equity. Furthermore, 
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this chapter reinforced the lack of knowledge around PEV financial incentive policy, 

which should encourage further education and outreach for consumers on available PEV 

incentives. In terms of diffusion theory, this research contributes to the understanding of 

early majority adopters and beyond as adoption expands to groups with lower social 

mobility and extends the relative advantage of this innovation. There is also a huge 

overlap with societal norms and perceived behavior control, as correctly designed 

subsidies offer more opportunity for access across the entire population and show a larger 

societal government commitment to this new technology. These conclusions could also 

assist in incentive design recommendations for adoption of sustainable technologies 

where cost of adoption is a clear barrier – solar panels and battery storage systems are 

cost prohibitive for many homeowners so a time of sale rebate would be an important and 

effective incentive design to consider that could likewise offer an incentive system for 

furthering adoption.  

Finally, in Chapter 4 we provided more robust data analysis on PEV depreciation 

and residual values in order to deliver a more granular analysis of the PEV resale market. 

Through retention rate modeling, we demonstrated that while PEVs depreciate faster than 

their conventional or hybrid counterparts, there has been improvement in recent model 

years, with increased range providing a crucial improvement over time. Also, our results 

found new PEV subsidies provide further support to the developing PEV secondary 

market through downward price pressure. While improvements were being made in PEV 

retention rates, recent changes to the post-COVID19 automotive market show dramatic 

price increases even after accounting for inflation and an overall lack of affordability, 

leaving the secondary market in flux as an affordable option for those considering PEVs. 
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It is important to note that this analysis focuses on PEV cars and future work should be 

done to investigate resale value for PEV SUV and truck bodystyles since these are 

popular vehicles in the US and consumers’ interpretation of these PEVs will continue to 

evolve. This chapter offers insights for innovation diffusion in terms of late majority 

adopter types, as the secondary PEV market allows those with limited resources and less 

financial risk to consider PEVs. Also, this assists in the perception of behavioral control, 

making PEV adoption more attainable via secondary market and an ability to gain 

relative advantage and observability in perception of PEVs to create a more favorable 

foundation for PEV adoption. And conclusions here could translate to other higher cost, 

durable goods as secondary markets will offer ways for certain individuals to engage with 

these products and technology improvements over time will help improve resale value. 

And there is a larger secondary market dynamic to consider as we aim more broadly 

towards a more sustainable future, finding new lives for the goods we consume as a 

society.  

One important thing to note is with any innovative technology, market dynamics 

are constantly changing and these research studies and findings reflect the time and 

circumstances in which they were observed. The PEV market continues to evolve, for 

instance with new PEV models and bodystyles being introduced every year with more 

technology advancements. Therefore, we should acknowledge that aspects of the research 

will continue to evolve as well as these updates are brought to consumers. However, 

throughout the studies here there was consistency in much of the findings across the 3 

studies and timeframes, as well as with prior research occurring in earlier years. While 

this innovative technology will continue to progress, fundamental themes explored here 
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like experience, knowledge, incentives and accessibility remain critical factors in the path 

to gain consumer acceptance. 

Overall, these studies deliver wider contributions to the research community and 

demonstrate how various levers in innovative technology adoption will continue to push 

PEVs into the mainstream. The results expand on prior works by investigating novel and 

up to date insights from unique data sources that provide consumer data supplied to 

various modeling techniques in order to comprehensively review important consumer 

relevant factors meant to bridge the gap between current innovations and consumer 

approval. Throughout these studies, it becomes clear that gaining experience, supported 

with effective incentives and an affordable used market, supports further PEV adoption, 

which aligns with innovation technology diffusion theory as well. Also, there are clearly 

shortcomings in today’s PEV market in the US—both technology- and policy-wise—that 

this dissertation explores more fully. There are some clear recommendations from this 

research that will help push PEVs forward in the US. Using these three studies 

holistically, the results comprehensively demonstrate various methods and strategies for 

more effective and equitable engagement of consumers around PEV adoption. 

5.1  Where Do We Go from Here with PEV Adoption in the US? 

This dissertation explored the state of PEV adoption and research today and 

developed further insights into a few specific mechanisms that could help support PEVs. 

However, there are numerous other topics that cannot be explored in a single dissertation. 

Furthermore, it is critical to acknowledge the gap between where adoption stands today in 

the US and the progress needed to continue adoption of this innovative technology in 

order to achieve a zero-emissions future.  
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As discussed in earlier sections, prior research has effectively established many 

barriers, such as range anxiety, high purchase prices, charging infrastructure, lack of 

basic knowledge, and unwillingness to pay a premium, which spans both PEV technology 

and policy areas. And while this dissertation has focused on key themes around 

knowledge, experience, financial incentives, resale value, and equity, spanning both PEV 

technological performance and policy development, there are clearly many areas to 

consider to provide a more holistic view into the advancement of PEV adoption in the 

USA. Therefore, we will take lessons from previous work and this dissertation to discuss 

the future of PEV adoption in the US, focusing on key insights as they relate to both PEV 

technology development and PEV policy. 

5.2  Technological Advances to PEVs and Future Considerations for Adoption in the 
US 

On one hand, our current understanding of the technological factors affecting 

PEV adoption are generally well researched and can be thoroughly articulated. At a high 

level, range anxiety, charging, and high purchase price are consistently cited as key 

technology barriers of PEV adoption [16], [28]–[34]. While aspects of these factors are 

being addressed through technological innovations as PEVs continue to evolve and 

advance, we can observe that some of these efforts will fall short of consumer 

expectations. For example, there has been an emergence of recent, higher mileage PEVs: 

Tesla provides some of the longest range PEVs available with models offering about 

300+ miles for their long-range options and Lucid Air was recently introduced with over 

500 miles of range (albeit with a price tag of over $100,000) [131]. Considering that just 

ten years ago PEVs were being introduced with around 100 miles of range, the range 

developments have been impressive. However, even with these significant improvements, 
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the 2021 median range for electric vehicles is 234 miles, while the median range for 

gasoline vehicles is 403 miles. [132] 

 
Figure 5-2: Median and Maximum Range for MY21 Vehicles by Fuel Type.  
Despite PEV Range and Battery Technology Improvements Over the Years, PEVs, on Average, 
Still Fall Well Short of ICE Vehicle Range. Figure recreated by author utilizing data from US 
Department of Energy [132]. 

Additionally, in the US automotive utilization patterns differ from those in other 

countries in that vehicles are typically needed for the majority of day-to-day tasks, and 

the distance Americans expect to travel on a regular basis is higher. As seen in the 2022 

Global Automotive Consumer Study by Deloitte, US consumers’ expectation of all-

electric driving range is 518 miles, 100+ miles higher than the average range expectation 

of all countries surveyed [133]. This type of range is out of reach for almost all PEVs 

today and achieving these types of ranges will affect battery size and price, leaving this 

range at an affordable price currently unfeasible by a wide margin.  
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Figure 5-3: Consumer BEV Range Expectations by Country. 
Regionality is a Key Input into Range Expectations with US Consumers Expecting 500+ miles of 
BEV Range. Figure recreated by author with data from Deloitte Global Automotive Consumer 
Study [133]. 

Enhancing the energy capacity of PEVs is a key R&D initiative. With 

explorations into solid-state batteries, different and more efficient mineral compounds 

(i.e. sodium-ion), and a reimagination of anode and cathode materials, we will likely see 

longer-distance and more efficient and affordable battery technology in the future [134]. 

The US has seen an influx of local EV manufacturing and battery production, with US 

battery manufacturers like AESC, Gotion, LG, Northvolt, our Next Energy, Panasonic, 

SK Battery America and Redwood materials increasing local R&D and production of EV 

batteries, materials, cathode and anodes, and recycling for both PEVs and energy systems 

[135]. However, just to achieve PEV 2030 targets in the US, PEV battery production will 

require $10-73 billion in total investment [136]. PEV battery improvements are clearly 

expensive and require long development cycles, which is directly at odds with the policy 
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requirements for increasing PEV sales over the next decades. With this, experience will 

be a critical element to help give consumers understanding of PEVs; governmental 

support will also be an essential element to continuing promotion of advancements in 

PEV driving range technology. 

Charging is another significant technological change compared to ICEs and is 

frequently cited as a barrier to PEV adoption. Compared to an ICE, charging is a much 

more time-consuming and unfamiliar process [137]. When first launched, PEVs 

introduced a massive shift in the “refueling” process, including different levels of 

charging, 50kW fast charging capacity, different plug types and much confusion for 

consumers [138]. In the past decade, the progression of this technology continues with 

PEVs available now with advanced 800V charging architecture and 350 kW fast charging 

capabilities. With these advancements, certain vehicles like the Hyundai IONIQ 5 can 

fast charge in 18 minutes in ideal conditions [139]. While PEV charging time has 

progressed to a more reasonable timeframe, overall, it still requires a substantial amount 

of time as compared to ICEs. Charging time innovation continues—with researchers 

investigating different charging electrochemistries, electrolytes, solvents and additives, or 

battery algorithms—however these efforts remain in laboratories currently and there are 

some critical roadblocks to mainstream utilization, particularly industrialization and 

production, electrical grid capabilities, and mineral supply chain [140]. Further 

exploration and research are needed to make more advances in reducing charging time, 

which will require more time and investment to deliver. 

The location, amount, and reliability of Electric Vehicle Supply Equipment 

(EVSE) for charging is another critical area of future development for the US. Consumers 
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question where charging will occur: home charging is subject to the individual housing 

circumstances of each household while also potentially requiring further financial 

investment and fast-charging stations are still further developing. Currently, the US 

government is taking on an ambitious plan to expand access to chargers by 2030 for 

$7.5 billion and potentially 500,000 new chargers [141], [142]. Currently, one major 

complication in EVSE technology is in the US there are different EV charging plug 

technologies available simultaneously, making universal EVSEs impossible and 

restricting and confusing customers [143]. Increasing charging locations and total number 

of EVSE equipment is a focus for the future, however research has found today’s public 

fast charging access is distributed inequitably, making this another important accessibility 

point of contention for the future [144]. And while PEV charging technology has 

progressed significantly, there are still many open questions for customers. Applying 

some of the lessons from this dissertation, addressing lack of experience and knowledge 

around EV “refueling” and adding a federal ESVE financial subsidy for equipment and 

installation would help address the technological shortcomings. On the technology side, 

further innovations must be expected, including a universal plug for PEVs sold in the US, 

increased access and equitability in EVSE charging locations, expansion of vehicle-to-X 

(V2X) capabilities, and development of multi-household and workplace charging stations 

on a mass scale. 

The costs associated with PEVs is another oft-cited issue for PEV adoption. High 

purchase price is one of the aspects in PEV cost analysis research that is specifically cited 

as a factor constraining PEV adoption [4], [16], [28], [29]. Between federal and state 

differentiation and variation of incentives, a convoluted system has developed in the US 
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around PEV incentives as a mechanism to increase consumer adoption. The most 

expensive piece of technology on a PEV is the battery [145]. From their inception, PEV 

prices have decreased over time due to further industrialization yielding lower-cost 

batteries and manufacturing. Since PEV development started in 2008, the estimated cost 

of a PEV battery has dropped 89% to $153/kWh [146]. 

 
Figure 5-4: Estimated Electric Vehicle Lithium-Ion Battery Pack Costs from 2008-2022. 
Figure recreated by author with data from US Department of Energy [146]. 

However, this drastic change stands in contrast to the change in where electric 

vehicles transact today, despite the battery cost decreases already delivered over the past 

decade. In December 2022, the average transaction price for of an electric vehicle was 

$61,448 (before incentives) approximately equivalent to an entry-level luxury vehicle 

[147]. The Tesla Model 3 set high price expectations with a promised entry price of 
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$35,000 when it was launched in 2018, however this version was never really sold in 

high volume, and currently the cheapest Tesla on their website is $40,630 excluding taxes 

[148]. While recognizing the COVID-related impact to supply chain shortages and price 

increases across the entire automotive industry recently, PEVs currently transact at a 

level that makes them unrealistic for most households. Policy could address this by 

giving automakers and battery suppliers incentives for targeting lower price points for 

PEVs and adding further consumer incentives to the used PEV market, which this 

dissertation explored as a more affordable option. In regards to PEV technology costs, 

battery prices still need to decrease further in order to attract more consumers, which will 

necessitate much more investment across the entire battery supply chain [149]. 

Technology advances are an important part of how PEVs continue their path to 

adoption. The past decade has delivered exponential advances in the range, price and 

charging delivered to consumers and increased PEV adoption over the past decade to 

today. If you compare PEVs produced ten years ago to those today the level of innovation 

is evident, but the rate at which these technological innovations deliver further advances 

will slow as the technology matures and improvements become more incremental [150]. 

The next significant phase of technological innovations will require billions of dollars in 

investments and come with an uncertain or long lead time; solid state batteries, 5-minute 

PEV charging, and other innovations are still under development, (without any specific 

timeline for consumer introduction), which means for the impending years it is important 

to consider what other mechanisms outside the technological advances should be 

implemented in order to continue driving consumer adoption. This is why applying the 
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lessons from this dissertation to policy mechanisms for PEV adoption in the US will be 

so critical in the nearer term to deliver more zero-emissions vehicles. 

5.3  Policy Developments and Future Mechanisms for Driving PEV Adoption 

To further encourage PEV adoption—while technological attributes like range 

and charging have time to further improve and gain consumer acceptance—there are 

numerous policy mechanisms to consider. Policy can also be used to address equity 

issues in innovation diffusion by bridging the known gap between socioeconomic 

statuses. 

In the US currently, the main policy drivers for increasing PEV adoption are 

prescriptive, through regulatory targets and enforcement aimed at OEM sales 

percentages. Most notably, the state of California and CARB approved updates to its 

ZEV mandate via Advanced Clean Cars II to deliver Governor Newson’s executive order 

target of 100% of in-state sales of new passenger cars and trucks to be zero-emission by 

2035 [151]. Penalties for OEM non-compliance of current ZEV mandate include 

significant civil penalties for every vehicle out of compliance [152]. This has also been 

adopted by 12 other states (and DC) explicitly planning to follow Advanced Clean Cars II 

and also potentially for other states that follow today’s CA ZEV mandate regulations 

under Section 177 of the Clean Air Act [153]. Also, at the federal level President Biden 

signed an executive order that sets a target of 50% of all new vehicles sold in the US to 

be zero-emission vehicles, though there are currently no consequences associated with 

this executive order target [154]. These actions are helpful in providing regulatory 

enforcement and establishing timeframes and PEV adoption rates for OEMs to target in 

order to avoid negative consequences, both legal and PR. However, they don’t actually 

generate increased consumer demand of PEVs and don’t address some of the key 
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underlying issues as identified in this dissertation such as lack of experience and 

knowledge of PEVs, and affordability and equity. 

Policies aimed at consumers for amplifying PEV adoption tend to focus on 

incentives due to their demonstrated effectiveness. In Norway, the majority of new car 

sales are PEVs due to strong, positive incentives for PEVs, (exempt from 25% VAT tax, 

no road traffic insurance tax, 50% toll pricing, and additional benefits depending on 

municipalities), combined with negative consequences for ICEs, (25% VAT tax, 20% 

carbon tax, smaller weight/NOx taxes, and a car scrapping fee) [32]. Research and real-

world examples conclusively demonstrate financial incentives specifically are effective in 

increasing PEV sales [24], [45], [76], [155]–[160]. Currently in the US we fall short in 

these policies, especially financial incentives, which are needed in order to support the 

near-exponential growth projected over the next decades. Nationally, The Energy Policy 

Act of 2005, the Energy Independence and Security Act of 2007, and the Energy 

Improvement and Extension Act of 2008 supported the initial creation of the current 

federal tax credit for PEVs, with a maximum subsidy of $7,500 [161]. Beyond the federal 

tax credit, some states offer PEV financial incentives (subject to budget availability and 

other factors) that can take many different forms (frequently tax/excise credits) [122]. So, 

for federal and many state incentives, consumers still pay the full price for the PEV at the 

dealer (and higher sales tax etc.) and then must wait until filing taxes to get the credit, 

subject to individual tax circumstances. In fact, delving further into the impact of 

individual tax circumstances, households with children and lower incomes are less 

eligible to receive full PEV tax credit [162]. This has led to consumers devaluing a tax 

credit incentive as compared to a rebate that could be delivered at time of sale, as noted 
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by this dissertation. It has also created an equity issue where lower-income households 1) 

are not eligible for the full tax credit amount currently based on today’s tax system; 2) 

more heavily devalue a tax credit vs. time of sale rebate than those with higher incomes; 

and 3) may not utilize it all, because it does not apply to used PEVs.  

Updates to the federal PEV tax credit policy have been introduced in 2023 via the 

Inflation Reduction Act (IRA), which implemented many changes to sustainable policies; 

however, the revamped PEV tax credit is subject to new local production, battery and 

mineral thresholds that have shifted its intent as well as made it confusing to consumers. 

One key enhancement that has come via the IRA for 2024 and beyond is the ability to 

apply the federal tax credit at time of sale and while a notable improvement over prior 

policy design, research from this dissertation found time of sale tax credits remained less 

valuable to consumers vs. rebates and in addition there are far less vehicles that qualify 

for this version of the tax credit (20 PEVs, including 14 BEVs as of March 2024 [163]), 

so it does not substantially tackle the lack of effectiveness and equity issues presented by 

the previous federal tax credit [44]. 

PEV rebates have also been discussed, with some states that are focused on ZEV 

sales implementing time-of-sale rebates, but due to the constraints of state budgets and 

operations these rebates can exhaust their funding and lapse throughout the year and can 

require an application/approval process, thus still not truly being delivered at time of sale 

and also are subject to further additional constraints like maximum vehicle MSRP limits 

and minimum electric range requirements [122] , [164]. In addition, some states have 

reduced or repealed prior PEV incentives before adoption had a chance to substantially 

grow. Figure 5-5 illustrates a case study in Georgia where a $5,000 tax credit was 
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abruptly dismantled, causing an immediate drop off in alternative fuel license plates and 

clearly demonstrating the importance of financial incentives to PEV adoption [165]–

[167]. To really be effective in the policy space for PEV consumer adoption, there needs 

to be a holistic, consistent national approach to financial incentives that offer PEV time-

of-sale rebates with an emphasis on creating an effective and equitable implementation 

subject to less constraints for simplification to consumers. This could be done with 

specific secondary policies aimed at lower-income PEV adoption, assistance in receiving 

loans for vehicle purchases, and government-funded access to charging in multi-home 

dwellings. Also, as demonstrated throughout this dissertation, there is a lack of 

knowledge surrounding current federal PEV incentives that needs to be addressed 

through further consumer outreach, education, and campaigning. 
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Figure 5-5: Alternative Fuel Vehicle License Plates Issued in Georgia During and After 
Availability of State Tax Credit.  
Figure recreated by author utilizing digitized data from Atlantic Journal Constitution and GA 
Department of Revenue [165]. 

The IRA also introduced a vehicle incentive to be given in the used market, which 

is an advantage as used PEVs also stand to make a big impact equity-wise, with generally 

lower transaction prices, and environmentally, with older, less-efficient vehicles being 

replaced. However, there has been very little done to promote or explain this incentive so 

far and again, this is still implemented as a tax credit with specific stipulations on 

qualifying vehicles, number of owners, and more [168]. More can be done in this space to 

truly offer a value PEV to those consumers who need it most and create more equity. 

Advancing these types of policies along with regulatory targets and other incentives 

would offer a more substantive path for US PEV adoption.  
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One critical thing to note is while these important PEV policy developments over 

the past few years have made an attempt to promote PEV adoption in the US, there is 

emerging research showing that US PEV consideration and adoption is becoming 

increasingly politicized. Socio-political attitudes can influence consumer behaviors, and 

with new environmental innovations begin introduced, political affiliation can affect 

consumers’ intention and adoption of these sustainable technologies [169]. Partisan 

dynamics have directly impacted PEV consideration and adoption with opinion of PEV 

car brands (like Tesla, Rivian etc.) and potential to purchase a PEV reflecting a polarized 

contrast depending on political affiliation [170]. This extends even further with research 

showing Democrats are significantly more willing to adopt PEVs than Republicans in the 

US [171]. This presents a pressing obstacle in continuing to grow PEV adoption in the 

US. This dissertation identifies some key themes that can be extended to address this 

specific challenge in the coming years. Further education and experience to these 

communities with messaging focused on PEV benefits, financial motivations to consider 

PEVs and consistent federal political direction would help demonstrate a societal 

commitment to PEVs and future sustainable endeavors. 

In general, for the US to demonstrate its continued commitment to PEV adoption 

and push beyond the early adopter and niche technology phase, there needs to be a more 

holistic, robust, and consistent policy approach. The technology will continue to develop 

and mature, offering further benefits to consumers, but the near term will require more 

creative thinking and approaches to policy measures. The federal government recently 

phased out the only national consumer-facing mechanism for encouraging PEV adoption, 

a policy developed in 2005-2008, in favor of a complex, multi-step policy that serves to 
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incentivize localized vehicle and battery production over consumer interests; there is still 

much opportunity in these areas and examples and benchmarks to investigate for 

increasing PEV adoption. Now, more than ever, we are aware of the negative 

consequences to the environment and the market has reached a point where high levels of 

adoption, like those in Norway, are possible. First, rebates as incentives have the best 

consumer impact and allow a more equitable environment for consumers. There also 

need to be less administrative details for consumers to consider. Other PEV incentive 

policy avenues to consider is better incentivization for charging access (both public and 

private) as well as regionalized non-financial incentives. Depending on region, incentives 

like HOV access and others can be effective in the right setting [172].  

There also needs to be a much higher degree of emphasis on communication, 

experience, and promotion around PEVs. Right now, creating mandates is not generating 

the organic consumer demand that is critical to moving towards mass adoption in the US. 

With any innovative technology there is a possibility of incomplete or discouraged 

adoption and these next five to ten years will need mass communication and PR 

campaigns around PEVs illustrating the advantages and benefits that may not be obvious 

or apparent to adopters. This dissertation has demonstrated a consistent lack of basic 

knowledge around PEVs; a holistic digital, physical, and media campaign administered at 

a federal level would kick off a much broader and universal knowledge-sharing 

imperative for increasing awareness and reducing uncertainty. Mass communication to 

the public regarding available federal subsidies for new and used vehicles with clear, 

concise information on their utilization. Short experimental events could be facilitated by 

different stakeholders, including local governments with PEV fleets and dealers with 
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PEV products. Promotion of growing charging networks and efforts should be more 

heavily publicized and solutions for homeowners, developers, businesses and multifamily 

dwellings should be supported, promoted, and mandated with clear strategic and 

administrative support. Borrowing from Rogers’ attributes of innovations, exploring 

more trialability for PEV ownership would help reduce this uncertainty and increase the 

rate of adoption. A 3-month trial program or subscription service promoted by local 

governments, automakers or dealers would also offer the ability to test a PEV and offer 

the flexibility some adopters are looking for in their decision process. Finally, 

demonstrating a push for PEVs hand-in-hand with other sustainable technologies (solar 

panels, battery packs, vehicle to grid charging technology) would give adopters holistic 

exposure to a wider set of sustainable concepts and technologies that are critical to 

creating and adopting more sustainable technologies and innovations for our future. 
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Chapter 6: Conclusion and Broader Theoretical and Policy Implications 

This dissertation delivers insights into accelerating PEV adoption in the US 

through three applied research studies. Each study provides specific contributions, 

including the benefit of short experiences for increasing PEV consideration, PEV rebates 

as effective and equitable financial incentives, and improvements to PEV resale value 

over time. While these studies provide critical observations into consumers’ perception of 

PEVs, there is also more to gain by considering the overall theoretical and policy 

implications from this dissertation. 

There are many common themes between this dissertation and prior research on 

new innovation adoption in general. When considering the broader theoretical impacts 

from this dissertation, the context of PEV adoption in the US at the time these studies 

were conducted is a key consideration. According to Rogers’s technology adoption curve, 

most prior research (including the research from this dissertation) occurred during the 

“early innovators” / “early adopters” phase of innovation adoption. PEVs have currently 

not yet crossed the “chasm” into the early majority phase. With the goal of majority 

adoption of PEVs in mind, this dissertation demonstrates that there is potentially greater 

importance on the theoretical individual inputs as highlighted by Ajzen and Rogers at this 

early adoption phase [9], [15]. In other words, to break out past early adoption phases, 

this research suggests early phase individual inputs like experience, knowledge, 

incentives, and accessibility are more important in shifting attitudes, perceptions, and 

building knowledge, as is described in prior theoretical works. There is also a clear 

reinforcement between the relationship of these individual input traits to the overall 

consideration or intention to adopt an innovative technology. This again emphasizes the 
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further benefit of considering these inputs with higher significance in trying to bring an 

innovative technology past early adopter phase into a majority adoption and transition 

into the dominant technology.  

 

Figure 6-1: Dissertation and context of adoption demostrates increased important of early 
phase individual inputs 
Figure created by author utilizing concepts from Ajzen, Rogers and Moore [9], [15], [127] 

 

With this theoretical construct in mind, the results of the three studies in this 

dissertation can be translated into actionable policy for the many stakeholders focused on 

increasing PEV adoption beyond the early adopter phase. It is also important to note that 

these policy implications may not apply in later stages of PEV adoption (a time when 

different policies may be needed). From the research in this dissertation, I summarize two 

main policy suggestions: 1) augment current PEV subsidies from tax credits to immediate 

rebates for both new and the used market, and 2) support both direct experience and 

education campaigns to increase consumer awareness and knowledge about PEV 

technology.  
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To date, the vast majority of government incentives are focused on tax credits for 

new PEV purchases, with little to no allocation towards experience and / or education 

campaigns. This dissertation highlights that both experience and education matter, and 

creating a more comprehensive suite of policies that integrates this could yield more 

positive adoption results. Such policies could be adopted at the state and federal levels of 

government. 

From a state perspective, California and 12 other states (and DC) are currently 

planning to follow Advanced Clean Cars II to a target of 100% ZEV new car sales by 

2035. These states in particular should consider revised policies to deliver on the ZEV 

sales targets in a short amount of time, and doing so may not be prohibitively expensive. 

Virginia makes for an interesting case study. While the state has committed to Advanced 

Clean Cars II targets, it historically has not implemented significant policy towards 

increasing PEV adoption. With a state budget forecasted to increase in general fund 

revenue of $5B [173], [174] over the next couple of years, there is opportunity to earmark 

a portion of these funds to support PEV adoption. Namely, allocating funding for both a 

new and used vehicle state rebate, a ride-and-drive experience campaign, and a PEV 

education campaign would harness the learnings from this dissertation into a 

comprehensive set of policies aimed at delivering the target growth in PEV adoption. It is 

important to note that these policies would only consume a small percentage of the $5B 

increased revenue projections. For example, 6% of the budget ($262M) could be 

allocated as follows: a $2,500 new PEV rebate for 35% (2026 Clean Air II target ZEV % 

sales) of roughly 300,000 new vehicles in VA [175]; $3M for ride-and-drive experiences 

at $10,000 (benchmarked Smart Columbus estimates [176]) per event for biannual events 
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at 133 counties in VA; $2M for various public relations and educational executions (e.g., 

social media campaigns, mailers, bulletins, community advertising, PR campaigns etc.), 

and the remaining $33M for used PEV rebates (sufficient for 33,000 used vehicle sales). 

With just 1% or 2% more, additional policies could be funded, like programs for charging 

equipment installation and additional PEV rebates for lower-income households. And 

further activities could occur at the city and county level using existing resources, such as 

holding ride and drive events with PEVs the city fleet already owns, creating a more 

holistic outlook for PEVs utilizing the learnings from this dissertation. This dissertation 

highlights the lack of experience and knowledge that consumers have with respect to 

PEVs and also the positive impact that improving experience and knowledge can have on 

PEV adoption considerations. If states like VA are serious about achieving the ZEV 

adoption targets they have planned, then strategically allocating funding to a suite of 

well-designed policies that align with consumers’ preferences is necessary. 

 While state policies have an important role to play in PEV adoption in the US, 

the federal government could have an even larger impact and create more consistent and 

significant policies to support PEV adoption. The federal government has access to 

resources much greater than those of individual states and capabilities across the whole 

US. The most significant change from current federal policies is to transform the PEV tax 

credit to a rebate at the time of sale. The IRA bill came close to achieving that change as 

the tax credit can now be applied at the time of sale, but only if dealers are properly 

registered with the IRS to participate in the program, which means an immediate tax 

credit is not guaranteed to be available to all customers. Furthermore, very few vehicles 

currently qualify for the full tax credit due to supply chain sourcing requirements for key 
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PEV components, such as the battery. In addition, this dissertation found that tax credits 

at time of sale are still valued less than rebates by roughly $1,100 dollars, so while the 

timing of the credit is an improvement, it could still be further improved by converting it 

into a rebate. 

For example, if every PEV sold in 2023 received a $7,500 tax credit, that results 

in almost $10B in tax credits to be refunded to individuals through April 2024. An 

alternative is to collect that sum in taxes and instead of issue refunds, allocate it towards a 

PEV rebate fund that is used to pay OEMs or financial institutions based on their PEV 

sales documentation. These entities already have infrastructure in place to accommodate 

incentive payments made to dealerships for other sales and discount programs, so this 

should be technically feasible. Dealers in turn can market the discount as an immediate 

rebate to consumers, taken off at the point of sale. 

Of course, while reallocating funds from a tax credit program to a direct rebate 

program would benefit the consumer, it might not be politically feasible, so at a minimum 

a significant rebrand should go on to reposition the tax credit in consumers’ minds as a 

time-of-sale “rebate” rather than as a tax credit. Since there is an ability to use the 

incentive at time of sale, the mechanics behind the scenes are less relevant and 

advertising a rebate verbiage has been demonstrated to be more effective in consumers’ 

valuation. In addition, many of the various restrictions on today’s PEV tax credit that do 

not address equity concerns should be removed to lower the barrier of entry for 

consumers, including battery component/mineral restrictions, location of final assembly 

and model year and sales price restrictions for used credits. Finally, there needs to be 
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consistency in terms of incentives available to consumers from the federal government 

for more effective awareness and utilization of this important program.  

Beyond financial incentives, there is a need for policies aimed at introducing 

more consumers to PEVs and facilitating more direct experience with the technology 

throughout the country. A policy creating PEV ride-and-drive grants for states and a fund 

for the government to partner with certain organizations to execute their own events 

would allow more citizens to gain exposure to this new technology. Allocating $4M for 

50 states and $50M for federal events translates to $250M to deliver a nation-wide fund 

to experience a PEV. If that amount of funding were instead applied as an immediate 

rebate, it would translate to only 33,333 PEVs receiving a subsidy—a small quantity 

considering the millions of PEVs needed to be sold in the coming decade. It is plausible 

that instead allocating that funding to an experience campaign may result in even greater 

overall PEV adoption as the campaign could reach millions of potential PEV buyers. 

Likewise, consumer PEV knowledge and awareness is quite low, suggesting a 

large-scale, federal public education campaign is warranted. Similar efforts have been 

made in other contexts on similar scales, such as the $250M FDA efforts to prevent youth 

smoking and a $265M campaign from DHHS encouraging adoption of COVID-19 health 

measures[177], [178]. A similar widespread campaign aimed at educating consumers on 

PEVs’ benefits and especially available financial incentives is necessary to grow 

familiarity and consideration of PEVs. Combined, an experience and education campaign 

could cost around $0.5B—just 0.05% of the $917B non-defense discretionary budget 

[179]. There could be opportunities to find bipartisan support for such a small amount of 

funding for these programs, especially if they generated greater economic activity in 
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across all regions of the country. There is also potential for further revenue generating 

activities to fund these policies, like increasing gasoline fuel taxes or vehicle miles 

traveled (VMT) taxes, or further payroll/corporate taxes. And none of these proposals 

consider the costs of future climate change down the road that are difficult to quantify – 

extreme weather impacts to people and property, pollution health impacts, and more 

[180]. These simply reallocate or utilize revenue generating activities that already exists 

to policy makers in order to deliver further PEV adoption in the US. 

In conclusion, PEV adoption in the US has made progress, but there are risks to 

our future planning and achieving environmental goals. By applying the results of this 

dissertation, these can become opportunities to further promote and educate consumers 

on PEVs and their benefits, financial and otherwise. Particular attention must be focused 

on ensuring equitable access to PEVs as historically this has be overlooked and current 

policies do not holistically address. And fundamentally this research has demonstrated a 

need to address a general lack of experience and knowledge throughout the US. With 

more consumer-centric policies and attention to innovative technology adoption theory, 

there is potential for further PEV growth in the US.  
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Appendix A: Supplemental Data for Chapter 2 

The raw data and code to reproduce all results found in the main text and the 

appendix can be found at GitHub. 

A.1  PHEV Response Results 

The pre- and post-experience survey asked about the participants’ level of 

consideration to purchase a BEV or PHEV in separate questions. Results show similar 

responses for both technologies. As a result, we chose to only present the BEV responses 

in the models in the main text as representative of both technologies. Responses for BEV 

and PHEV consideration can be compared in Table A-1 and Figure A-1, which is a 

replication of Figure 2-2 in the main text except for PHEVs. 

Table A-1: Summary of Before / After Consideration Rating Responses for BEVs and 
PHEVs. 

BEV Before PHEV Before 
rating count percent rating count percent 
Definitely not 221 3.4% Definitely not 219 3.4% 
Probably not 535 8.2% Probably not 445 6.8% 
Maybe / Not sure 4,494 69.0% Maybe / Not sure 4,524 69.4% 
Probably yes 882 13.5% Probably yes 1,029 15.8% 
Definitely yes 386 5.9% Definitely yes 301 4.6% 
BEV After PHEV After 
rating count percent rating count percent 
Definitely not 118 1.8% Definitely not 122 1.9% 
Probably not 272 4.2% Probably not 246 3.8% 
Maybe / Not sure 3,366 51.6% Maybe / Not sure 3,278 50.3% 
Probably yes 1,682 25.8% Probably yes 1,867 28.6% 
Definitely yes 1,080 16.6% Definitely yes 1,005 15.4% 

https://github.com/jhelvy/pev-experience-2019
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Figure A-1: Change in PHEV Consideration Rating Before and After Experience. 
The change in consideration of PHEVs is similar to that of the change for BEVs. 

A.2  Additional Details on Model Estimation Methods 

To make the coefficients in Table 2-5 easier to interpret, we converted them into 

probabilities of choosing a rating by taking the inverse logit, given by equation (2.4) in 

the main text. Confidence intervals on these probability estimates (shown in Figure 2-3, 

Figure 2-5, Figure 2-6, Figure 2-7) were then computed via simulation as follows. First, 

we took 105 draws from a multivariate distribution using the estimates and the variance-

covariance matrix that results from the model estimation. For each set of draws, we 

computed the probabilities of choosing each rating. We then find a 95% confidence 

interval for each rating level by taking the 2.5% and 97.5% percentiles from the 

distribution of the draws for each rating level and report these as the confidence intervals 

in our figures. 
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In order to present consistent coefficient estimates that can be replicated from the 

raw data, all model coefficients presented in the main text and appendix were estimated 

using the full set of observations. We then also estimated the same models using 

randomly chosen training and testing data sets from the full sample. For each model, we 

estimated the model 100 times using a different random sample of 70% of the data for 

training and 30% for testing. Our results shows consistent estimates across each training 

set. While we find variations in predictive accuracy across the different models, in all 

cases the models predicted better than random chance.  

A.3  Additional Models 

A.3.1  Main Model Results for PHEV Consideration Ratings 

Table A-2 shows the results of the OLR model for the same models as models 1 – 

5 in the main text but for the PHEV consideration ratings instead of the BEV ratings. 

Results are similar to those of the BEV ratings shown in Table 2-5 in the main text. 
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Table A-2: Estimated Coefficients From Ordinal Logistic Regression Models for PHEV Ratings 

Model #:  A1 A2a A2b A3 A4 A5 

Description:  PHEV Before/After PHEV Knowledge: 
Fueling 

PHEV Knowledge: 
Subsidy 

PHEV Neighbor 
Effect 

PHEV Car Models 
Rode In 

PHEV Full Model – 
Main Variables 

N:  13,036 13,036 13,036 13,036 13,036 13,036 

M
ai

n 
ef

fe
ct

s 

𝛽𝛽 timePeriod 1.049 (0.036) *** 1.123 (0.047) *** 1.099 (0.039) *** 1.080 (0.041) *** 0.989 (0.100) *** 1.068 (0.105) *** 

𝛾𝛾𝑖𝑖 

pluginFuel  -0.113 (0.080)     -0.171 (0.081) * 
gasFuel  0.171 (0.083) *    0.107 (0.084)  
bothFuel  0.335 (0.070) ***    0.162 (0.074) * 
subsidy   0.598 (0.074) ***   0.499 (0.078) *** 
neighborPEV    0.498 (0.064) ***  0.449 (0.064) *** 
etron     0.122 (0.065)  0.082 (0.065)  
kona     0.041 (0.067)  0.022 (0.067)  
leaf     0.237 (0.096) * 0.198 (0.097) * 
nexo     0.003 (0.184)  0.037 (0.185)  

In
te

ra
ct

io
n 

ef
fe

ct
s 

𝛿𝛿𝑖𝑖 

pluginFuel  -0.046 (0.109)     -0.026 (0.110)  
gasFuel  -0.065 (0.113)     -0.033 (0.114)  
bothFuel  -0.340 (0.095) ***    -0.258 (0.101) * 
subsidy   -0.344 (0.100) ***   -0.256 (0.106) * 
neighborPEV    -0.122 (0.087)    -0.085 (0.088)  
etron     0.017 (0.088)  0.051 (0.088)  
kona     0.115 (0.091)  0.139 (0.091)  
leaf     -0.237 (0.132)  -0.201 (0.133)  
nexo     0.230 (0.249)  0.204 (0.249)  

In
te

rc
ep

ts
 

𝛼𝛼𝑗𝑗  

definitelyNot | 
probablyNot 

-3.221 (0.056) *** -3.163 (0.060) *** -3.151 (0.057) *** -3.137 (0.057) *** -3.118 (0.088) *** -3.004 (0.090) *** 

probablyNot | 
maybeNotSure 

-2.049 (0.035) *** -1.993 (0.040) *** -1.982 (0.036) *** -1.964 (0.036) *** -1.947 (0.077) *** -1.833 (0.079) *** 

maybeNotSure | 
probablyYes 

1.306 (0.028) *** 1.371 (0.036) *** 1.391 (0.031) *** 1.410 (0.032) *** 1.411 (0.075) *** 1.563 (0.078) *** 

probablyYes | 
definitelyYes 

2.822 (0.038) *** 2.890 (0.044) *** 2.915 (0.040) *** 2.934 (0.041) *** 2.929 (0.079) *** 3.097 (0.082) *** 

Significance codes:  ***=0.001, **=0.01, *=0.05  
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A.3.2  BEV/PHEV Models for Multicar Households 

PEVs have been framed in the past as a more viable option as a second vehicle in 

a multi-vehicle household. Thus, one might hypothesize that participants with multi-car 

households may make different ratings than those with zero or single-car households. 

Table A-3 shows results for the OLR models for households with or without multiple 

vehicles available in their household. Results show that this variable has an almost 

negligible and statistically insignificant effect on the overall consideration of PEVs.  

Table A-3: Estimated Coefficients from Ordinal Logistic Regression Models for Multi-Car 
Households 
Model #:   A6a A6b 
Description
: 

  BEV ratings PHEV ratings 

N   13,036 13,036 

Main 
effects 

𝛽𝛽 timePeriod 1.024 (0.050) *** 1.079 (0.050) *** 
𝛾𝛾𝑖𝑖 multicar -0.006 (0.051) 0.018 (0.051) 

Interaction 
effects  𝛿𝛿𝑖𝑖 multicar 0.019 (0.070) -0.062 (0.070) 

Intercepts 

 definitelyNot | probablyNot -3.233 (0.062) *** -3.212 (0.061) *** 
 probablyNot | maybeNotSure -1.939 (0.042) *** -2.041 (0.043) *** 
 maybeNotSure | probablyYes 1.362 (0.038) *** 1.314 (0.038) *** 
 probablyYes | definitelyYes 2.679 (0.044) *** 2.831 (0.045) *** 

Significance codes:  ***=0.001, **=0.01, *=0.05 
 

A.3.3  BEV / PHEV Model for Dedicated Home Parking Access 

Access to home charging for PEVs was determined utilizing the survey responses 

to participants’ parking access. Those that selected options with dedicated spots (i.e. 

driveway / carport, single family home) and could feasibly incorporate a home charging 

system were designated as “Yes” and other responses were “No”. Table A-4 show the 

results for the OLR models including the variable for access to home charging. For both 

BEV and PHEV consideration ratings, the home charging access coefficient was not 

statistically significant.  
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Table A-4: Estimated Coefficients from Ordinal Logistic Regression Models for Access to 
At-Home Charging 
Model #:   A7a A7b 
Description:   BEV ratings PHEV ratings 
N   13,036 13,036 

Main effects 
𝛽𝛽 timePeriod 1.053 (0.056) *** 1.059 (0.056) *** 
𝛾𝛾𝑖𝑖 homeParking 0.074 (0.052) -0.020 (0.052) 

Interaction 
effects  𝛿𝛿𝑖𝑖 homeParking -0.033 (0.071) -0.018 (0.071) 

Intercepts 

 definitelyNot | probablyNot -3.188 (0.064) *** -3.232 (0.064) *** 
 probablyNot | maybeNotSure -1.894 (0.045) *** -2.061 (0.046) *** 
 maybeNotSure | probablyYes 1.409 (0.042) *** 1.294 (0.042) *** 
 probablyYes | definitelyYes 2.725 (0.048) *** 2.810 (0.049) *** 

Significance codes:  ***=0.001, **=0.01, *=0.05 
 

A.3.4  BEV / PHEV Model for Powertrains of Vehicles Ridden In 

Out of the five vehicles at the experience, three were BEVs, one was a PHEV, and 

one was a FCEV. We tested the hypothesis that the type of powertrain ridden in (BEV/ 

PHEV/FCEV) might affect the participants’ ratings of BEVs and PHEVs. Table A-5 

shows the results for these tests (the baseline is BEV). The impact of the powertrain on 

the overall consideration of BEVs and PHEVs was not statistically significant. 

Table A-5: Estimated Coefficients from Ordinal Logistic Regression Models for Effect of 
Type of Powertrain of Vehicle(s) Ridden In 
 
Model #:   A8a A8b 
Description:   BEV ratings PHEV ratings 
N   13,036 13,036 
Main effects 𝛽𝛽 timePeriod 1.033 (0.037) *** 1.047 (0.037) *** 

𝛾𝛾𝑖𝑖 PHEVpowertrain 0.785 (0.532) 0.910 (0.515) 
FCEVpowertrain -0.097 (0.179) -0.08 (0.179) 

Interaction 
effects 

𝛿𝛿𝑖𝑖 PHEVpowertrain -0.627 (0.712) -0.888 (0.718) 
FCEVpowertrain 0.124 (0.244) 0.205 (0.242) 

Intercepts  definitelyNot | probablyNot -3.231 (0.057) *** -3.221 (0.056) *** 
 probablyNot | maybeNotSure -1.937 (0.034) *** -2.050 (0.035) *** 
 maybeNotSure | probablyYes 1.365 (0.029) *** 1.306 (0.029) *** 
 probablyYes | definitelyYes 2.682 (0.037) *** 2.823 (0.038) *** 

Significance codes:  ***=0.001, **=0.01, *=0.05 
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A.3.5  BEV / PHEV Model for Number of Vehicles Ridden In 

During the test drive experience participants could opt to ride in as many vehicles 

as they wanted. While the average vehicles ridden in was 1.2, there was some participants 

that opted to experience more than 1 vehicle. We tested the hypothesis that the number of 

vehicles ridden in might affect the participants’ ratings of BEVs and PHEVs. As Table 

A-6 shows, while the number of vehicles ridden in does have a positive effect on the 

overall consideration of BEVs and PHEVs, the effect size is relatively small, and smaller 

than any of the significant effects in Table 2-5 in the main text. 

Table A-6: Estimated Coefficients from Ordinal Logistic Regression Models for Number of 
Vehicles Ridden In 
 
Model #:   A9a A9b 
Description:   BEV ratings PHEV ratings 
N   13,036 13,036 

Main effects 
𝛽𝛽 timePeriod 0.977 (0.099) *** 1.035 (0.099) *** 
𝛾𝛾𝑖𝑖 countCarsDriven 0.094 (0.057) 0.115 (0.057) * 

Interaction 
effects 𝛿𝛿𝑖𝑖 countCarsDriven 0.048 (0.077) 0.013 (0.077) 

Intercepts 

 definitelyNot | probablyNot -3.120 (0.088) *** -3.084 (0.087) *** 
 probablyNot | maybeNotSure -1.825 (0.075) *** -1.913 (0.076) *** 
 maybeNotSure | probablyYes 1.478 (0.074) *** 1.444 (0.074) *** 
 probablyYes | definitelyYes 2.796 (0.077) *** 2.961 (0.078) *** 

Significance codes:  ***=0.001, **=0.01, *=0.05 
 

A.3.6  BEV / PHEV model for all variables 

In order to demonstrate the robustness of the models utilized, a model was 

compiled with all variables that were considered throughout this analysis. Due to perfect 

multicollinearity in some instances, some variables were dropped and the information 

below considers all variables without perfect multicollinearity. Overall, the same 

conclusions that have been discussed throughout the paper and the appendix remain 

intact. 
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Table A-7: Estimated Coefficients from Ordinal Logistic Regression Models for All 
Variables 

Model #:   A10a A10b 
Description:   BEV ratings PHEV ratings 
N   13,036 13,036 

Main effects 

𝛽𝛽 timePeriod 1.010 (0.114) *** 1.080 (0.114) *** 

𝛾𝛾𝑖𝑖 

pluginFuel -0.100 (0.080)  -0.165 (0.081) * 
gasFuel 0.037 (0.084)  0.113 (0.084)  
bothFuel 0.262 (0.075) *** 0.169 (0.074) * 
subsidy 0.658 (0.079) *** 0.500 (0.078) *** 
neighborPEV 0.559 (0.064) *** 0.449 (0.064) *** 
etron -0.643 (0.541)  -0.771 (0.526)  
kona -0.681 (0.541)  -0.832 (0.526)  
leaf -0.533 (0.550)  -0.659 (0.535)  
nexo -0.703 (0.583)  -0.841 (0.567)  
multicar -0.087 (0.053)  -0.022 (0.053)  
homeParking 0.060 (0.054)  -0.039 (0.054)  
PHEVpowertrain --- --- 
FCEVpowertrain --- --- 
countCarsDriven 0.687 (0.538)  0.854 (0.523)  

Interaction effects 𝛿𝛿𝑖𝑖 

pluginFuel -0.111 (0.110)  -0.028 (0.110)  
gasFuel -0.006 (0.115)  -0.035 (0.114)  
bothFuel -0.146 (0.101)  -0.259 (0.101) * 
subsidy -0.212 (0.107) * -0.252 (0.106) * 
neighborPEV -0.016 (0.087)  -0.082 (0.088)  
etron 0.674 (0.728)  0.887 (0.736)  
kona 0.655 (0.728)  0.975 (0.736)  
leaf 0.433 (0.740)  0.643 (0.748)  
nexo 0.733 (0.784)  1.062 (0.790)  
multicar 0.057 (0.073)  -0.028 (0.073)  
homeParking -0.035 (0.074)  0.006 (0.074)  
PHEVpowertrain -- -- 
FCEVpowertrain -- -- 
count_cars_driven -0.560 (0.723)  -0.837 (0.732)  

Intercepts 

 definitelyNot | probablyNot -3.008 (0.096) 
*** -3.034 (0.096) *** 

 probablyNot | maybeNotSure -1.714 (0.085) 
*** -1.863 (0.086) *** 

 maybeNotSure | probablyYes 1.652 (0.085) *** 1.534 (0.084) *** 
 probablyYes | definitelyYes 3.003 (0.088) *** 3.068 (0.088) *** 

Significance codes:  ***=0.001, **=0.01, *=0.05 
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A.4  BEV / PHEV Model for Change in Rating 

Another approach to modeling the results of this experiment is to model the 

probability of the change in rating (before versus after the PEV experience) rather than 

the rating itself. In this specification, instead of equation 3, we would use the following 

model: 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙[𝑃𝑃(𝑌𝑌 ≤ 𝑗𝑗)] = 𝛼𝛼𝑗𝑗 −�𝛾𝛾𝑖𝑖𝑧𝑧𝑖𝑖
𝑖𝑖

,     (A.1) 

where  𝑗𝑗 = 1, … , 𝐽𝐽 − 1 and 𝑖𝑖 = 1, … ,𝑀𝑀 independent variables. The 𝛼𝛼𝑗𝑗 coefficients 

are intercepts that represent the dividing points between each level of the change in the 

ordered rating, where 𝛼𝛼1 denotes the division between “Negative” and “No Change”, and 

𝛼𝛼2 denotes the division between  “No Change” and “Positive”. The 𝛾𝛾𝑖𝑖 coefficients reflect 

the interaction effect between independent variables 𝑧𝑧𝑖𝑖 and the time period, we tested a 

model that would predict the probabilities of changes in ratings. Here any participant 

consideration that went up in the rating scale after the PEV ride along experience would 

be labeled as having a “Positive” change (for example a positive change is a participant 

that before the EV experience gave the rating “Probably Not” and moved to “Maybe / 

Not Sure” after the EV experience). A “Negative” would be consideration that went 

down (for example “Maybe / Not Sure” to “Probably Not”). Finally, participants whose 

scores did not change before/after the EV experience are represented as “No Change”. 

Results from this specification are shown in Table A-8. The coefficients presented in this 

table reflect the interaction effects shown in Table 2-5 in the main text. 

Although we considered presenting this specification in the main text, we decided 

against it for several reasons. First, our model specification in the main text allows us to 

easily identify the significance and magnitude of the effect we are most interested in: the 



 

 138 

before / after effect of having the PEV ride experience. This is the β coefficient in 

equation 3. A positive, significant β coefficient would imply that the PEV experience led 

to more favorable ratings. Second, this specification in the main text allows us to directly 

predict probabilities for each of the rating questions shown to respondents. We feel this 

more accurately reflects the outcomes than predicting the change in ratings as the 

magnitude of the change may not be equal across different ratings. For example, the 

change from “Definitely no” to “Probably no” may not be the same as the change from 

“Probably no” to “Maybe / not sure”, even though both would still be “positive” changes. 

Finally, modeling only the change in the rating probabilities tells us less information 

about the participants. For example, the fact that the coefficient for the subsidy 

coefficient in model A11b is large, positive, and significant tells us that participants that 

correctly answered the subsidy question chose higher ratings before the PEV experience. 

While this may not be surprising, it tells us that people who know more about PEVs came 

to the experience with higher consideration ratings for PEVs. Estimating a model that 

only considers the change in ratings for these individuals would not capture this 

information. 
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Table A- 8: Estimated Coefficients for Ordinal Logistic Regression of the Change in Before 
/ After Consideration Ratings 

Model #:  A11a A11b 

Description:  BEV change in 
ratings 

PHEV change in 
ratings 

N  6,518 6,518 

 

pluginFuel -0.064 (0.056) 0.030 (0.055) 
gasFuel 0.093 (0.058) 0.034 (0.057) 
bothFuel -0.080 (0.051) -0.234 (0.051) *** 
subsidy -0.124 (0.055) * -0.121 (0.054) * 
neighborPEV 0.067 (0.045) -0.031 (0.045) 
etron 0.125 (0.045) ** 0.076 (0.045) 
kona 0.136 (0.046) ** 0.127 (0.046) ** 
leaf -0.152 (0.068) * -0.167 (0.067) * 
nexo 0.069 (0.128) 0.112 (0.125) 

 priusPrime -0.754 (0.439) -0.755 (0.430) 

Intercepts 

Negative|No 
change 

-2.866 (0.064) 
*** -2.812 (0.062) *** 

No 
change|Positive 0.773 (0.053) *** 0.663 (0.053) *** 

Significance codes:  ***=0.001, **=0.01, *=0.05 
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A.5  Full PEV Experience Literature Table (Summarized version in main text Table 2-1) 

Table A- 9: Full PEV Experience Literature Summary Table 
Author Year Location 

of Study 
Year of 
Study 

Length 
(days 
with 
EV) 

Vehicle Used Sample 
Size 

Key Results Change in 
Perception 

Change in 
Knowledge 

WTP 

Gärling 
et. al. 
[181] 

2001 Sweden October 
1998-Feb. 
2000 

11 weeks Renault Clio 
Electrique 

42 - EV users’ attitudes did not 
change with increasing 
experience, but willingness to 
purchase and perceived safety 
decreased over time. 
- Post experience stated that 
the driving range of the 
vehicle was too short and that 
the cargo capacity was too 
small 

No change didn’t assess 
knowledge 
post 
experience, 
<25% knew 
correct 
answers for 
max speed, 
recharging 
time and 
driving range 

NA 

Carroll 
[58] 

2010 UK 2010 (not 
specified) 

drive on 
planned 
route 

2007 smart 
fortwo 
passenger car 

69 - Experiential qualities ratings 
increased, +25% of 
participants that would use an 
electric vehicle as their 
regular car before vs. after 

+ NA, 
participants 
were stated as 
no/low 
knowledge 
pre drive 

NA 

Turrentine 
et. al. 
[182] 

2011 LA, NY, 
NJ 

June 2009- 
June 2010 

1 year Mini E 102 - Overall positive experience, 
exceeded expectations in 
terms of general utility. 
- 67% of respondents had 
their opinion changed of EVs 
after end of leasing time, 71% 
of respondents more likely to 
purchase than previously 

+ NA NA 

Burgess 
[57] 

2013 UK 2008-2012 6-12 
months 
(data 
analysis 
at 3 
months) 

Specific EVs not 
able to be 
specified 

55 - Positive perception of EVs 
qualities including 
performance, including the 
speed, acceleration, and low 
noise 

+ NA NA 
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Author Year Location 
of Study 

Year of 
Study 

Length 
(days 
with 
EV) 

Vehicle Used Sample 
Size 

Key Results Change in 
Perception 

Change in 
Knowledge 

WTP 

Jensen et. 
al. [59] 

2013 Denmark 2012 (not 
specified) 

3 months Mitsubishi 
ImiEV, Citroën 
C-Zero, Peugeot 
I-on, Citroën C1 
EVIE 

369 - Importance attached to 
range and top speed doubled; 
environmental importance 
increased. 

+/- NA -/+ 
measured 
WTP for 
individual 
EV qualities 

Bühler et. 
al. [56] 

2014 Berlin, 
Germany 

June 2009-
Jan.2010 
and Feb. 
2010-August 
2010 

6 months 
total 
(check in 
at 3 
months) 

Mini E 77 - Advantages - experiential 
qualities (e.g. low noise, 
driving experience, charging 
benefits) more important over 
time 
- Barriers - limited range 
concerns remained, limited 
space concerns increased 
- General Perception and 
Willingness to 
Recommend/Purchase of EV 
increased over time, 
Satisfaction/Usefulness/WTP 
decreased over time 

+ NA - 
Not willing 
to pay more 
for EV 

Franke 
[183] 

2014 Germany 2014 (not 
stated) 

12 weeks BMW 
ActiveE/i3 

29 
(prelim) 

-Participants had consistently 
high perceptions and 
willingness to recommend 
throughout study 

No Change NA NA 

Wikström
, et al. 
[62] 

2014 Sweden 2011-2012 18 
months 

Mitsubishi 
iMiEV, Fiat 500 
EV,  
Peugeot ion, 
Citroën C Zero, 
Volvo C30 
Electric 

50 Greater willingness to 
integrate EVs into fleet as 
time went on 

+ NA NA 
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Author Year Location 
of Study 

Year of 
Study 

Length 
(days 
with 
EV) 

Vehicle Used Sample 
Size 

Key Results Change in 
Perception 

Change in 
Knowledge 

WTP 

Skippon 
et. al. [60] 

2016 UK 2016 (not 
stated) 

36 hours modern medium 
family 
hatchback EV 

393 - Performance qualities of 
BEVs were rated higher than 
ICE comparison utilized in 
this study, but willingness to 
consider having a BEV of any 
range dropped after the usage 
experience 

+/- NA - 

Schmalfu
ß et. al. 
[20] 

2017 Germany 2017 (not 
stated) 

1 day 
(24 hr.) 

Mini E 30 - High positive changes in 
Low Noise Emission and 
environmental friendliness 
- medium positive changes for 
acceleration and enjoyment, 
reputation and 
safety/reliability 
- No changes in perceptions 
of range/charging or WTP 
though min/max amounts 
increased 

+ NA No change 
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A.6  Copy of Survey Instrument 

Entry Survey 
 
Page One 

Please enter your email address (Open Text Box) 
ZIP Code / Postal Code (Open Text Box) 
First Name (Open Text Box) 
Last Name (Open Text Box) 

 
Page Two  

1. How many cars do you currently have in your household? (Slider) 

a. 0 
b. 1 
c. 2 
d. 3 
e. 4 
f. 5+ 

2. Please select your current primary vehicle 
a. Year (Drop down) 
b. Make (Drop down) 
c. Model (Open Text Box) 

3. Where can you park at home? (Multiple checkboxes)  
a. Street parking 
b. Driveway / carport 
c. Single-family garage 
d. Shared parking garage 
e. Shared parking lot 
f. Other 

4. How soon are you planning on buying / leasing your next vehicle? (Slider) 
a. 0-3 months  
b. 3-6 months  
c. 6-9 months  
d. 9-12 months  
e. 1+ years 
f. Not in the market 

 
Page Three  

1. Do any of your neighbors own / lease a plug-in hybrid or pure electric 
vehicle? (Select one)  

a. Yes 
b. No 
c. I’m not sure 

2. Please select which vehicle(s) can run on gasoline: (Multiple checkboxes) 
a. Hybrid Electric Vehicle 
b. Plug-in Hybrid Electric Vehicle 
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c. Pure Electric Vehicle  
3. Please select which vehicle(s) can be plugged-in: (Multiple checkboxes) 

a. Hybrid Electric Vehicle 
b. Plug-in Hybrid Electric Vehicle 
c. Pure Electric Vehicle  

4. Do you know the current maximum subsidy available from the federal 
government for purchasing an electric vehicle? (Slider)  

a. $1,000 
b. $2,500 
c. $5,000 
d. $7,500 
e. $10,000 
f. I’m not sure 

 
Page Four  
1. Would you consider a Plug-in Hybrid Electric Vehicle as your next vehicle? 

(Slider)  
a. Definitely not 
b. Probably not 
c. Maybe / Not sure  
d. Probably yes 
e. Definitely yes 

2. Would you consider a Pure Electric Vehicle as your next vehicle? (Slider)  
a. Definitely not 
b. Probably not 
c. Maybe / Not sure  
d. Probably yes 
e. Definitely yes 

3. Would you recommend a Plug-in Hybrid Electric Vehicle to a friend or family 
member? (Slider)  

a. Definitely not 
b. Probably not 
c. Maybe / Not sure  
d. Probably yes 
e. Definitely yes 

4. Would you recommend a Pure Electric Vehicle to a friend or family member? 
(Slider)  

a. Definitely not 
b. Probably not 
c. Maybe / Not sure  
d. Probably yes 
e. Definitely yes 

5. Button Link to waiver 
6. Are there any minors accompanying you? (Dropdown) 

a. Yes 
b. No 
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7. # minors that are accompanying you (max 3) (Dropdown) 
a. 1 
b. 2 
c. 3 

8. 1st Minor’s full name (Open Text Box) 
9. 2nd Minor’s full name (Open Text Box) 
10. 3rd Minor’s full name (Open Text Box) 

 
Page Five 

1. Please talk to a representative to receive your wristband! Scan your 
wristband  
 

Exit Survey  
 

1. Please enter the 5-digit number on your green and white wristband (Open 
Text Box) 

2. Which vehicle(s) did you just ride in? (Multiple checkboxes) 
a. Audi e-tron 
b. Hyundai Kona Electric 
c. Hyundai Nexo Fuel Cell 
d. Nissan Leaf 
e. Toyota Prius Prime  
f. I don’t know 

3. Would you consider a Plug-in Hybrid Electric Vehicle as your next vehicle? 
(Slider)  

a. Definitely not 
b. Probably not 
c. Maybe / Not sure  
d. Probably yes 
e. Definitely yes 

4. Would you consider a Pure Electric Vehicle as your next vehicle? (Slider)  
a. Definitely not 
b. Probably not 
c. Maybe / Not sure  
d. Probably yes 
e. Definitely yes 

5. Would you recommend a Plug-in Hybrid Electric Vehicle to a friend or 
family member? (Slider)  

a. Definitely not 
b. Probably not 
c. Maybe / Not sure  
d. Probably yes 
e. Definitely yes 

6. Would you recommend a Pure Electric Vehicle to a friend or family 
member? (Slider)  

a. Definitely not 
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b. Probably not 
c. Maybe / Not sure  
d. Probably yes 
e. Definitely yes 

7. What brand(s) are you considering for your next vehicle purchase? (Multiple 
checkboxes) 

a. Audi 
b. BMW 
c. Chevrolet 
d. Chrysler 
e. FIAT 
f. Ford 
g. Honda 
h. Hyundai 
i. Jaguar 
j. Karma 
k. Kia 
l. Mercedes 
m. MINI 
n. Mitsubishi 
o. Nissan 
p. Porsche 
q. Smart 
r. Tesla 
s. Toyota 
t. Volkswagen 
u. Volvo 

8. I would like to OPT-OUT from receiving free information and deals on 
electric vehicles from EZ-EV. (single checkbox)  

9. I would like to OPT-OUT from receiving free information from the OEM 
whose car I rode in. (single checkbox) 
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Appendix B: Supplemental Data for Chapter 3 

B.1  Sample Summary Tables – Vehicle Purchasing, PEV Questions and 
Demographics 

Table B-1: Sample Summary - Vehicle Purchase Questions 
Sample - Vehicle Purchase questions N = 2,5081 
Timeframe for Purchase  
0-3 months 896 (36%) 
1 year 1,050 (42%) 
No timeline 562 (22%) 
New or Used  
New 1,445 (58%) 
Used 331 (13%) 
Both 544 (22%) 
Not sure 188 (7.5%) 
Car Type Shopping (Select All) 
Hatch 322 
Sedan 1,073 
SUV 1,473 
Truck 462 
Van 172 
Lease or Purchase  
Lease 237 (9%) 
Purchase 2,045 (82%) 
Not sure 226 (9%) 
Car Budget (in thousands)  
Under $10 192 (7.7%) 
$10-$15 135 (5.4%) 
$15-$20 203 (8.1%) 
$20-$25 349 (14%) 
$25-$30 363 (14%) 
$30-$35 356 (14%) 
$35-$40 325 (13%) 
$40-$45 177 (7.1%) 
$45-$50 283 (11%) 
$50-$100 98 (3.9%) 
Over $100 27 (1.1%) 
1n (%) 
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Table B-2: Sample Summary - PEV Related Questions 
 

Sample - PEV related questions N = 2,5081 
Please select which vehicle(s) can run on gasoline: 
BEV 56 (2.3%) 
HEV 1,314 (54%) 
HEV, BEV 13 (0.5%) 
HEV, PHEV 834 (34%) 
HEV, PHEV, BEV 13 (0.5%) 
PHEV 192 (7.9%) 
PHEV, BEV 7 (0.3%) 
(NA) 79 
Please select which vehicle(s) can be plugged-in: 
BEV 117 (4.8%) 
HEV 146 (6.0%) 
HEV, BEV 11 (0.5%) 
HEV, PHEV 59 (2.4%) 
HEV, PHEV, BEV 598 (25%) 
PHEV 511 (21%) 
PHEV, BEV 982 (41%) 
(NA) 84 
What is the current maximum subsidy available from the US 
federal government for purchasing an electric vehicle? 
1000 36 (1.4%) 
10000 89 (3.6%) 
2500 111 (4.4%) 
5000 206 (8.2%) 
7500 380 (15%) 
Not sure 1,685 (67%) 
(NA) 1 
Do any neighbors own / lease a plug-in hybrid or pure electric 
vehicle? 
Yes 433 (17%) 
No 1,382 (55%) 
Not sure 690 (28%) 
(NA) 3 
Household Vehicles  

Sample - PEV related questions N = 2,5081 
0 59 (2.4%) 
1 1,175 (47%) 
2 988 (39%) 
3 203 (8.1%) 
4 50 (2.0%) 
5 26 (1.0%) 
6 4 (0.2%) 
(NA) 3 
Household Vehicle Types [ie Gas, HEV, PHEV, BEV] (Select 
All) 
Gas 2,240 
HEV 237 
PHEV 44 
BEV 39 
Would you consider a Plug-in Hybrid Electric Vehicle as your 
next vehicle? 
Definitely Yes 372 (15%) 
Probably Yes 580 (23%) 
Maybe / Not sure 820 (33%) 
Probably Not 428 (17%) 
Definitely Not 305 (12%) 
(NA) 3 
Would you consider a Pure Electric Vehicle as your next 
vehicle? 
Definitely Yes 334 (13%) 
Probably Yes 407 (16%) 
Maybe / Not sure 678 (27%) 
Probably Not 559 (22%) 
Definitely Not 527 (21%) 
(NA) 3 
1n (%)  
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Table B-3: Sample Summary – Demographics Questions
Sample - Demographics N = 2,5081 
Gender Identity  
Female 1,127 (45%) 
Male 1,364 (54%) 
Non-Binary 11 (0.4%) 
Prefer not to say 2 (<0.1%) 
(NA) 4 
Income  
< $50k 939 (38%) 
> $50k 1,553 (62%) 
Prefer not to say 12 (0.4%) 
(NA) 4 
Highest Degree of Education  
Associate degree (e.g. AA, AS) 306 (12%) 
Bachelor’s degree (e.g. BA, BS) 760 (30%) 
Doctorate (e.g. PhD, EdD) 66 (2.6%) 
High school degree or equivalent (e.g. GED) 398 (16%) 
Less than a high school diploma 20 (0.8%) 
Master's degree (e.g. MA, MS, MEd) 368 (15%) 
Prefer not to say 2 (<0.1%) 
Professional degree (e.g. MD, DDS, DVM) 67 (2.7%) 
Some college or university, no college degree 414 (17%) 
Trade/technical/vocational training, no degree awarded 103 (4.1%) 
(NA) 4 
Current Employment Status  
Disabled, not able to work 95 (3.8%) 
Employed, working 1-39 hours per week 446 (18%) 
Employed, working 40 or more hours per week 783 (31%) 
Full time student 47 (1.9%) 
Not employed, looking for work 115 (4.6%) 
Not employed, NOT looking for work 102 (4.1%) 
Prefer not to say 6 (0.2%) 
Retired 910 (36%) 
(NA) 4 

Sample - Demographics N = 2,5081 
Housing Type  
Mobile 113 (4.5%) 
Apartment 327 (13%) 
Condo 130 (5.2%) 
Townhome 202 (8.1%) 
Detached 1,720 (69%) 
Prefer not to say 12 (0.5%) 
(NA) 4 
Housing Ownership  
Own 1,912 (76%) 
Rent 576 (23%) 
Prefer not to say 16 (0.6%) 
(NA) 4 
Geographical Location  
Rural 1,625 (65%) 
Urban/suburban 859 (35%) 
(NA) 24 
Political Views  
Very Conservative 327 (13%) 
Conservative 550 (22%) 
Moderate 989 (39%) 
Liberal 386 (15%) 
Very Liberal 200 (8.0%) 
Prefer not to say 52 (2.1%) 
(NA) 4 
Did COVID-19 impact employment status? 
No 2,023 (81%) 
Yes 457 (18%) 
Prefer not to say 24 (1.0%) 
(NA) 4 
1n (%) 
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B.2  Additional Models 

 
Table B-4: Summary of Models Without Cost-Of-Living Adjustments 

Model: 
(1) 
Multinomial 
Logit 

(2) 
Mixed Logit 
(mean)              (st. dev) 

(3a) 
Above Median 
Income 

(3b) 
Below Median 
Income 

(4a) 
New Car 
Buyers 

(4b) 
Used Car 
Buyers 

(5a) 
Budget  
>$30k 

(5b) 
Budget  
<$30k 

 Respondents: N = 2508 N = 2508 N = 1553 N = 939 N = 1445 N = 1063 N = 1266 N = 1242 
Scale 
parameter 

0.531 ***  
(0.0) 

0.662 ***  
(0.0) 

   --- 0.567 ***  
(0.0) 

0.484 ***  
(0.0) 

0.539 ***  
(0.0) 

0.523 ***  
(0.0) 

0.555 ***  
(0.0) 

0.502 ***  
(0.0) 

Sales Tax -0.556 ***  
(0.1) 

-0.515 ***  
(0.1) 

1.922 ***  
(0.1) 

-0.482 ***  
(0.1) 

-0.685 ***  
(0.1) 

-0.583 ***  
(0.1) 

-0.519 ***  
(0.1) 

-0.369 ***  
(0.1) 

-0.817 ***  
(0.1) 

Tax Credit -1.440 ***  
(0.1) 

-1.679 ***  
(0.1) 

-2.015 ***  
(0.1) 

-1.007 ***  
(0.1) 

-2.224 ***  
(0.2) 

-1.181 ***  
(0.1) 

-1.798 ***  
(0.1) 

-1.024 ***  
(0.1) 

-1.860 ***  
(0.1) 

Tax Deduction -2.675 ***  
(0.1) 

-2.962 ***  
(0.1) 

2.388 ***  
(0.1) 

-2.432 ***  
(0.1) 

-3.065 ***  
(0.2) 

-2.692 ***  
(0.1) 

-2.650 ***  
(0.1) 

-2.416 ***  
(0.1) 

-2.956 ***  
(0.1) 

Tax Credit: 
Immediate 

0.410 ***  
(0.1) 

0.385 ***  
(0.1) 

-0.299 *  
(0.1) 

0.252 ***  
(0.1) 

0.721 ***  
(0.1) 

0.140 .  
(0.1) 

0.787 ***  
(0.1) 

0.221 *  
(0.1) 

0.601 ***  
(0.1) 

Rebate: 
2-week delay 

-0.068      
(0.1) 

-0.018      
(0.1) 

0.154      
(0.2) 

-0.020      
(0.1) 

-0.152      
(0.1) 

-0.133      
(0.1) 

0.015      
(0.1) 

-0.012      
(0.1) 

-0.123      
(0.1) 

Rebate: 
6-week delay 

-0.324 ***  
(0.1) 

-0.270 ***  
(0.1) 

0.611 ***  
(0.2) 

-0.236 **  
(0.1) 

-0.489 ***  
(0.1) 

-0.330 ***  
(0.1) 

-0.319 **  
(0.1) 

-0.157 .  
(0.1) 

-0.498 ***  
(0.1) 

Rebate: 
Source OEM 

-0.002      
(0.1) 

0.074      
(0.1) 

0.244      
(0.3) 

-0.026      
(0.1) 

0.055      
(0.1) 

-0.056      
(0.1) 

0.075      
(0.1) 

-0.027      
(0.1) 

0.019      
(0.1) 

Rebate: 
Source Dealer 

-0.066      
(0.1) 

-0.055      
(0.1) 

-0.036      
(0.2) 

-0.044      
(0.1) 

-0.086      
(0.1) 

-0.139      
(0.1) 

0.028      
(0.1) 

-0.050      
(0.1) 

-0.086      
(0.1) 

Signif. Codes: ‘***’ = 0.001, ‘**’ = 0.01, ‘*’ = 0.05, ‘.’ = 0.1, ‘ ‘ = 1 
Coefficient amounts in 1000s of dollars 
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Table B-5: Summary of Models Comparing Valuation for Respondents in Every Self-Reported Income Bracket in Survey 
Model: <$25k 

income 
$25k-$35k 
income 

$35k-$50k 
income 

$50k-$75k 
income 

$75k-$100k 
income 

$100k-
$150k 
income 

$150k-
$200k 
income 

$200k-
$250k 
income 

$250k-
$300k 
income 

$300k-
$400k 
income 

$400k+ 
income 

 
Respondents: 

N = 243 N = 277 N = 419 N = 629 N = 437 N = 279 N = 128 N = 37 N = 18 N = 9 N = 16 

Scale 
parameter 

0.395 ***  
(0.0) 

0.457 ***  
(0.0) 

0.565 ***  
(0.0) 

0.632 ***  
(0.0) 

0.601 ***  
(0.0) 

0.473 ***  
(0.0) 

0.518 ***  
(0.0) 

0.486 ***  
(0.1) 

0.630 ***  
(0.1) 

0.554 ***  
(0.2) 

0.466 ***  
(0.1) 

Sales Tax -0.974 **  
(0.3) 

-0.541 *  
(0.3) 

-0.693 ***  
(0.2) 

-0.379 **  
(0.1) 

-0.357 *  
(0.2) 

-0.436      
(0.3) 

-0.493      
(0.4) 

-2.075 *  
(0.9) 

-1.053      
(0.9) 

-4.093 ***  
(1.2) 

1.179      
(1.2) 

Tax Credit -3.100 ***  
(0.4) 

-1.970 ***  
(0.3) 

-1.971 ***  
(0.2) 

-1.335 ***  
(0.2) 

-0.997 ***  
(0.2) 

-0.314      
(0.3) 

-0.547      
(0.4) 

-1.255      
(0.9) 

0.652      
(0.7) 

-3.016 ***  
(0.9) 

-0.297      
(1.3) 

Tax 
Deduction 

-4.022 ***  
(0.4) 

-2.946 ***  
(0.3) 

-2.716 ***  
(0.2) 

-2.532 ***  
(0.2) 

-2.324 ***  
(0.2) 

-2.150 ***  
(0.3) 

-2.207 ***  
(0.5) 

-3.398 ***  
(1.0) 

-1.957 *  
(0.9) 

-3.842 ***  
(1.1) 

-2.371 *  
(1.0) 

Tax Credit: 
Immediate 

1.450 ***  
(0.3) 

0.372      
(0.3) 

0.575 ***  
(0.2) 

0.266 *  
(0.1) 

0.444 ***  
(0.1) 

-0.021      
(0.2) 

0.116      
(0.3) 

-0.400      
(0.5) 

0.368      
(0.6) 

0.476      
(1.2) 

-0.233      
(1.1) 

Rebate: 
2-week delay 

-0.244      
(0.3) 

0.075      
(0.2) 

-0.230      
(0.2) 

0.044      
(0.1) 

-0.109      
(0.1) 

0.049      
(0.2) 

-0.001      
(0.3) 

-0.530      
(0.6) 

0.520      
(0.7) 

-1.831 .  
(1.0) 

-0.133      
(1.0) 

Rebate: 
6-week delay 

-0.707 *  
(0.3) 

-0.582 *  
(0.2) 

-0.348 *  
(0.2) 

-0.300 *  
(0.1) 

-0.243      
(0.2) 

-0.105      
(0.2) 

0.131      
(0.3) 

-0.996      
(0.7) 

0.663      
(0.9) 

-1.797 ***  
(0.4) 

0.237      
(0.9) 

Rebate: 
Source OEM 

0.353      
(0.3) 

0.163      
(0.2) 

-0.126      
(0.2) 

-0.162      
(0.1) 

0.048      
(0.2) 

0.149      
(0.2) 

0.213      
(0.3) 

-0.405      
(0.7) 

-0.337      
(0.9) 

-0.839      
(1.0) 

1.877      
(1.3) 

Rebate: 
Source 
Dealer 

-0.328      
(0.3) 

0.340      
(0.2) 

-0.216      
(0.2) 

-0.152      
(0.1) 

0.114      
(0.1) 

0.069      
(0.2) 

0.168      
(0.3) 

-0.911      
(0.8) 

-1.010      
(0.9) 

-1.483      
(0.9) 

1.036      
(1.1) 

Signif. Codes: ‘***’ = 0.001, ‘**’ = 0.01, ‘*’ = 0.05, ‘.’ = 0.1, ‘ ‘ = 1 
Coefficient amounts in 1000s of dollars 
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Table B-6: Models Between Respondents with Different PEV Knowledge, Consideration, and Experience 

Model: Knowledge Subsidy 
Yes 

Knowledge Subsidy 
No Consider PEV Yes Consider PEV No Neighbor PEV Yes Neighbor PEV No 

 Respondents: N = 380 N = 2127 N = 1051 N = 1454 N = 433 N = 2072 

Scale parameter* 0.546 ***  
(0.0) 

0.530 ***  
(0.0) 

0.506 ***  
(0.0) 

0.555 ***  
(0.0) 

0.358 ***  
(0.0) 

0.584 ***  
(0.0) 

Sales Tax -0.359 .  
(0.2) 

-0.585 ***  
(0.1) 

-0.495 ***  
(0.1) 

-0.574 ***  
(0.1) 

-0.555 *  
(0.3) 

-0.509 ***  
(0.1) 

Tax Credit -0.786 ***  
(0.2) 

-1.553 ***  
(0.1) 

-1.165 ***  
(0.1) 

-1.611 ***  
(0.1) 

-0.927 ***  
(0.3) 

-1.492 ***  
(0.1) 

Tax Deduction -2.490 ***  
(0.2) 

-2.702 ***  
(0.1) 

-2.485 ***  
(0.1) 

-2.789 ***  
(0.1) 

-2.743 ***  
(0.3) 

-2.635 ***  
(0.1) 

Tax Credit: 
Immediate 

0.368 *  
(0.2) 

0.416 ***  
(0.1) 

0.423 ***  
(0.1) 

0.396 ***  
(0.1) 

0.225      
(0.2) 

0.438 ***  
(0.1) 

Rebate: 
2-week delay 

0.223      
(0.2) 

-0.114      
(0.1) 

0.082      
(0.1) 

-0.159 .  
(0.1) 

0.035      
(0.2) 

-0.070      
(0.1) 

Rebate: 
6-week delay 

-0.207      
(0.2) 

-0.343 ***  
(0.1) 

-0.301 **  
(0.1) 

-0.333 ***  
(0.1) 

-0.135      
(0.2) 

-0.338 ***  
(0.1) 

Rebate: 
Source OEM 

0.002      
(0.2) 

-0.002      
(0.1) 

0.018      
(0.1) 

-0.024      
(0.1) 

-0.150      
(0.2) 

0.017      
(0.1) 

Rebate: 
Source Dealer 

-0.444 *  
(0.2) 

-0.004      
(0.1) 

-0.173      
(0.1) 

-0.007      
(0.1) 

-0.193      
(0.2) 

-0.043      
(0.1) 

Signif. Codes: ‘***’ = 0.001, ‘**’ = 0.01, ‘*’ = 0.05, ‘.’ = 0.1, ‘ ‘ = 1 
Coefficient amounts in 1000s of dollars 
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B.3  Full Survey Text 
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Appendix C: Supplemental Data for Chapter 4 

Table C-1: Counts of Car Model Listings Included in Analyses 
Powertrain Make Model N Percent Cumulative 

Percent 
BEV Nissan Leaf 84,144 0.260 0.260 

Chevrolet Bolt 48,801 0.151 0.412 
Tesla Model S 48,773 0.151 0.562 
Tesla Model 3 39,783 0.123 0.686 
BMW I3 38,136 0.118 0.804 
Fiat 500e 12,971 0.040 0.844 
Volkswagen e-Golf 8,747 0.027 0.871 
KIA Niro 7,350 0.023 0.894 
Porsche Taycan 5,374 0.017 0.910 
Chevrolet Spark 4,706 0.015 0.925 
KIA Soul 4,360 0.013 0.938 
Ford Focus 4,152 0.013 0.951 
Smart Fortwo 3,683 0.011 0.963 

PHEV Chevrolet Volt 80,282 0.399 0.399 
Ford Fusion Energi 49,474 0.246 0.645 
Toyota Prius Prime 41,228 0.205 0.850 
Toyota Prius Plug-In 13,639 0.068 0.918 
BMW i8 6,014 0.030 0.948 
Cadillac ELR 2,320 0.012 0.960 
Hyundai Sonata 2,294 0.011 0.971 

Hybrid Toyota Prius 424,619 0.379 0.379 
Ford Fusion 130,801 0.117 0.495 
Toyota Prius C 68,535 0.061 0.557 
Toyota Camry 64,860 0.058 0.614 
Hyundai Sonata 58,011 0.052 0.666 
Lexus ct 42,354 0.038 0.704 
Lincoln MKZ 36,826 0.033 0.737 
Ford Fusion 30,219 0.027 0.764 
Honda Accord 28,161 0.025 0.789 
Honda Insight 23,201 0.021 0.809 
KIA Niro 21,094 0.019 0.828 
KIA Optima 20,965 0.019 0.847 
Toyota Prius V 20,144 0.018 0.865 
Lexus ES 18,261 0.016 0.881 
Honda Civic 18,253 0.016 0.898 
Toyota Avalon 16,803 0.015 0.913 
Buick Lacrosse 16,234 0.014 0.927 
Chevrolet Malibu 11,575 0.010 0.937 
Honda CR-Z 11,236 0.010 0.947 

Conventional Toyota Camry 1,809,448 0.050 0.050 
Honda Accord 1,761,206 0.049 0.099 
Honda Civic 1,670,320 0.046 0.145 
Toyota Corolla 1,539,561 0.043 0.188 
Nissan Altima 1,369,133 0.038 0.226 
Nissan Sentra 1,055,638 0.029 0.255 
Ford Fusion 1,055,271 0.029 0.284 
Chevrolet Malibu 976,393 0.027 0.311 
Hyundai Elantra 968,141 0.027 0.338 
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Powertrain Make Model N Percent Cumulative 
Percent 

Hyundai Sonata 930,253 0.026 0.364 
Chevrolet Cruze 862,213 0.024 0.388 
Ford Mustang 746,479 0.021 0.409 
BMW 3 Series 715,274 0.020 0.428 
Volkswagen Jetta 648,119 0.018 0.446 
Subaru Outback 608,624 0.017 0.463 
KIA Optima 608,198 0.017 0.480 
KIA Soul 550,557 0.015 0.495 
Dodge Charger 508,984 0.014 0.509 
Chevrolet Camaro 490,499 0.014 0.523 
Mazda Mazda3 479,885 0.013 0.536 
KIA Forte 444,832 0.012 0.549 
Dodge Challenger 421,275 0.012 0.560 
BMW 5 Series 379,421 0.011 0.571 
Nissan Maxima 372,633 0.010 0.581 
Lexus ES 368,555 0.010 0.591 

 
 
Table C-2: Regression Coefficients Used to Compute Results in Table 4-3. 

coefficients model1 model2 

(Intercept) -0.232*** 
(0.000) 

-0.232*** 
(0.000) 

powertrain_hybrid 0.014*** 
(0.001) 

0.014*** 
(0.001) 

powertrain_phev 0.073*** 
(0.003) 

0.073*** 
(0.003) 

powertrain_bev -0.107*** 
(0.002)  

powertrain_bev_non_tesla  -0.147*** 
(0.003) 

powertrain_bev_tesla  0.210*** 
(0.005) 

age_years -0.102*** 
(0.000) 

-0.102*** 
(0.000) 

Interactions with age_years   

powertrain_hybrid -0.003*** 
(0.000) 

-0.003*** 
(0.000) 

powertrain_phev -0.076*** 
(0.001) 

-0.076*** 
(0.001) 

powertrain_bev -0.054*** 
(0.001)  

powertrain_bev_non_tesla  -0.074*** 
(0.001) 

powertrain_bev_tesla  -0.040*** 
(0.001) 

Number of observations: 9,015,324 9,015,324 
Adjusted R-squared: 0.32513 0.331 
Signif. codes:  '***' = 0.001, '**' = 0.01, '*' = 0.05, '.' = 0.1, ' ' = 1 
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Table C-3: Regression Coefficients Used to Compute Results in Table 4-4 

coefficients BEV  
(Non-Tesla) 

BEV 
(Tesla) PHEV HEV CV 

(Intercept) -1.429*** 
(0.013) 

0.022    
(0.021) 

-0.319*** 
(0.016) 

-0.115*** 
(0.004) 

0.043*** 
(0.001) 

Fortwo 0.194*** 
(0.018)     

Spark 0.242*** 
(0.018)     

Focus 0.142*** 
(0.012)     

i3 0.577*** 
(0.008)     

e-Golf 0.448*** 
(0.015)     

500e -0.128*** 
(0.010)     

Soul 0.226*** 
(0.020)    -0.055*** 

(0.001) 

Bolt EV -0.097*** 
(0.024)     

Model 3  0.307*** 
(0.028)    

Prius Plug-in   -0.121*** 
(0.010)   

Sonata PHEV   -0.210*** 
(0.021)   

Volt   -0.204*** 
(0.042)   

Camry    -0.020*** 
(0.004) 

-0.254*** 
(0.001) 

Civic    -0.013. 
(0.007) 

-0.060*** 
(0.001) 

CT    -0.009* 
(0.004)  

ES    0.146*** 
(0.005) 

0.090*** 
(0.002) 

Fusion    -0.267*** 
(0.004) 

-0.302*** 
(0.001) 

Insight    -0.093*** 
(0.009)  

MKZ    -0.132*** 
(0.005)  

Niro    -0.111*** 
(0.009)  

Optima    -0.233*** 
(0.005) 

-0.362*** 
(0.001) 

Prius    -0.013*** 
(0.004)  

Prius C    -0.068*** 
(0.004)  

Prius V    0.054*** 
(0.006)  

Sonata Hybrid    -0.179*** 
(0.004)  



 
 
 
Table C-3 (continued): Regression coefficients used to compute results in Table 4-4. 
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coefficients BEV  
(Non-Tesla) 

BEV 
(Tesla) PHEV HEV CV 

5 Series     -0.005* 
(0.002) 

Accord     -0.096*** 
(0.001) 

Altima     -0.292*** 
(0.001) 

Camaro     -0.292*** 
(0.001) 

Challenger     -0.306*** 
(0.002) 

Charger     -0.339*** 
(0.001) 

Corolla     -0.148*** 
(0.001) 

Cruze     -0.153*** 
(0.001) 

Elantra     -0.220*** 
(0.001) 

Forte     -0.257*** 
(0.001) 

Jetta     -0.315*** 
(0.001) 

Malibu     -0.143*** 
(0.001) 

Maxima     -0.164*** 
(0.001) 

Mazda 3     -0.244*** 
(0.003) 

Mustang     -0.099*** 
(0.001) 

Outback     0.053*** 
(0.001) 

Sentra     -0.183*** 
(0.001) 

Sonata     -0.298*** 
(0.001) 

2013 0.166*** 
(0.004) 

0.098*** 
(0.010) 

-0.015*** 
(0.004) 

-0.021*** 
(0.001) 

0.008*** 
(0.000) 

2014 0.234*** 
(0.004) 

-0.120*** 
(0.010) 

0.117*** 
(0.004) 

-0.018*** 
(0.001) 

-0.018*** 
(0.000) 

2015 0.240*** 
(0.004) 

-0.154*** 
(0.010) 

0.113*** 
(0.004) 

-0.041*** 
(0.001) 

-0.052*** 
(0.000) 

2016 0.229*** 
(0.005) 

-0.250*** 
(0.011) 

0.226*** 
(0.025) 

0.008*** 
(0.001) 

-0.044*** 
(0.000) 

2017 0.280*** 
(0.007) 

-0.301*** 
(0.014) 

0.218*** 
(0.025) 

-0.005*** 
(0.001) 

-0.062*** 
(0.000) 

2018 0.384*** 
(0.011) 

-0.623*** 
(0.015) 

0.258*** 
(0.025) 

-0.015*** 
(0.002) 

-0.053*** 
(0.000) 

Subsidy -0.004*** 
(0.000) 

-0.005*** 
(0.000) 

0.008*** 
(0.000)   

Miles -0.005*** 
(0.000) 

-0.004*** 
(0.000) 

-0.005*** 
(0.000) 

-0.005*** 
(0.000) 

-0.005*** 
(0.000) 
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coefficients BEV  
(Non-Tesla) 

BEV 
(Tesla) PHEV HEV CV 

Cents per mile 0.001* 
(0.001) 

0.004** 
(0.001) 

0.003*** 
(0.001) 

0.011*** 
(0.000) 

0.001*** 
(0.000) 

Range 0.006*** 
(0.000) 

0.002*** 
(0.000) 

-0.001    
(0.001)   

age_years -0.048*** 
(0.001) 

-0.166*** 
(0.002) 

-0.034*** 
(0.004) 

-0.071*** 
(0.001) 

-0.143*** 
(0.000) 

Days on market -0.000*** 
(0.000) 

-0.000* 
(0.000) 

-0.000*** 
(0.000) 

-0.000*** 
(0.000) 

-0.000*** 
(0.000) 

age_years:modelfortwo -0.105*** 
(0.004)     

age_years:modelspark -0.049*** 
(0.005)     

age_years:modelfocus -0.025*** 
(0.003)     

age_years:modeli3 -0.084*** 
(0.002)     

age_years:modele-golf -0.086*** 
(0.004)     

age_years:model500e -0.027*** 
(0.003)     

age_years:modelsoul -0.043*** 
(0.006)    0.088*** 

(0.000) 

age_years:modelbolt ev -0.147*** 
(0.008)     

age_years:modelmodel 3  -0.013    
(0.016)    

age_years:modelprius plug-in   -0.020*** 
(0.004)   

age_years:modelsonata plug-
in hybrid   -0.081*** 

(0.008)   

age_years:modelvolt   -0.053*** 
(0.004)   

age_years:modelcamry    0.010*** 
(0.001) 

0.103*** 
(0.000) 

age_years:modelcivic    -0.019*** 
(0.002) 

0.076*** 
(0.000) 

age_years:modelct    -0.001    
(0.001)  

age_years:modeles    -0.028*** 
(0.002) 

0.038*** 
(0.000) 

age_years:modelfusion    -0.013*** 
(0.001) 

0.078*** 
(0.000) 

age_years:modelinsight    -0.002    
(0.002)  

age_years:modelmkz    -0.020*** 
(0.001)  

age_years:modelniro    0.077*** 
(0.004)  

age_years:modeloptima    0.012*** 
(0.002) 

0.115*** 
(0.000) 

age_years:modelprius    0.005*** 
(0.001)  
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coefficients BEV  
(Non-Tesla) 

BEV 
(Tesla) PHEV HEV CV 

age_years:modelprius c    0.025*** 
(0.001)  

age_years:modelprius v    -0.005*** 
(0.002)  

age_years:modelsonata 
hybrid    0.004** 

(0.001)  

age_years:model5 series     -0.008*** 
(0.000) 

age_years:modelaccord     0.066*** 
(0.000) 

age_years:modelaltima     0.077*** 
(0.000) 

age_years:modelcamaro     0.087*** 
(0.000) 

age_years:modelchallenger     0.125*** 
(0.000) 

age_years:modelcharger     0.106*** 
(0.000) 

age_years:modelcorolla     0.111*** 
(0.000) 

age_years:modelcruze     0.075*** 
(0.000) 

age_years:modelelantra     0.098*** 
(0.000) 

age_years:modelforte     0.092*** 
(0.000) 

age_years:modeljetta     0.086*** 
(0.000) 

age_years:modelmalibu     0.055*** 
(0.000) 

age_years:modelmaxima     0.052*** 
(0.000) 

age_years:modelmazda3     0.068*** 
(0.001) 

age_years:modelmustang     0.074*** 
(0.000) 

age_years:modeloutback     0.082*** 
(0.000) 

age_years:modelsentra     0.097*** 
(0.000) 

age_years:modelsonata     0.087*** 
(0.000) 

Number of Observations: 74,331 22,518 58,915 464,560 8,395,000 
Adjusted R-Squared: 0.688 0.604 0.838 0.727 0.587 
Signif. codes:  '***' = 0.001, '**' = 0.01, '*' = 0.05, '.' = 0.1, ' ' = 1 
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Table C-4: Estimated Vehicle Model Effects on Retention Rates, Computed Using 
Coefficients in Appendix Table C-3 

 BEV  
(Non-Tesla) 

BEV 
(Tesla) PHEV HEV CV 

Initial Sale Retention Rate 

exp(intercept) 23.95 
(0.32) 

102.27 
(2.21) 

72.68 
(1.14) 

89.1 
(0.37) 

104.37 
(0.12) 

Vehicle Model Effects 

Reference Level: Nissan Leaf Tesla 
Model S 

Toyota 
Prius Prime Honda Accord BMW 3 

Series 
Difference in Initial Sale Retention Rate (Relative to Reference Level) 

Fortwo 5.11 
(0.53)     

Spark 6.56 
(0.65)     

Focus 3.67 
(0.46)     

i3 18.71 
(0.54)     

e-Golf 13.55 
(0.7)     

500e -2.88 
(0.31)     

Soul 6.08 
(0.67)    -5.61 

(0.11) 

Bolt EV -2.21 
(0.7)     

Model 3  36.64 
(4.8)    

Prius Plug-In   -8.3 
(0.82)   

Sonata Plug-In Hybrid   -13.77 
(1.44)   

Volt   -13.39 
(3.16)   

Camry    -1.79 
(0.23) 

-23.39 
(0.06) 

Civic    -1.17 
(0.5) 

-6.08 
(0.08) 

CT    -0.79 
(0.24)  

ES    14.02 
(0.4) 

9.85 
(0.18) 

Fusion    -20.89 
(0.15) 

-27.19 
(0.06) 

Insight    -7.9 
(0.7)  

MKZ    -10.99 
(0.26)  

Niro    -9.39 
(0.63)  

Optima    -18.52 
(0.27) 

-31.7 
(0.07) 

Prius    -1.14 
(0.16)  



 
 
 
Table C-4 (continued): Estimated Vehicle Model Effects on Retention Rates, Computed 
Using Coefficients in Appendix Table C-3 
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 BEV  
(Non-Tesla) 

BEV 
(Tesla) PHEV HEV CV 

Prius C    -5.9 
(0.2)  

Prius V    4.95 
(0.46)  

Sonata Hybrid    -14.59 
(0.21)  

5 Series     -0.47 
(0.16) 

Accord     -9.6 
(0.08) 

Altima     -26.43 
(0.06) 

Camaro     -26.44 
(0.09) 

Challenger     -27.55 
(0.1) 

Charger     -30.04 
(0.08) 

Corolla     -14.36 
(0.07) 

Cruze     -14.76 
(0.07) 

Elantra     -20.63 
(0.07) 

Forte     -23.65 
(0.1) 

Jetta     -28.2 
(0.08) 

Malibu     -13.86 
(0.07) 

Maxima     -15.81 
(0.11) 

Mazda3     -22.59 
(0.27) 

Mustang     -9.83 
(0.09) 

Outback     5.69 
(0.12) 

Sentra     -17.47 
(0.07) 

Sonata     -26.87 
(0.07) 

Annual Depreciation Rate 

Base 4.71 
(0.11) 

15.32 
(0.19) 

3.35 
(0.4) 

6.87 
(0.12) 

13.35 
(0.02) 

Fortwo 14.17 
(0.38)     

Spark 9.3 
(0.42)     

Focus 7.02 
(0.26)     
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Using Coefficients in Appendix Table C-3 
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 BEV  
(Non-Tesla) 

BEV 
(Tesla) PHEV HEV CV 

i3 12.39 
(0.16)     

e-Golf 12.51 
(0.37)     

500e 7.24 
(0.25)     

Soul 8.75 
(0.54)    5.37 

(0.02) 

Bolt EV 17.74 
(0.66)     

Model 3  16.4 
(1.37)    

Prius Plug-In   5.28 
(0.12)   

Sonata Plug-In Hybrid   10.92 
(0.57)   

Volt   8.32 
(0.08)   

Camry    5.92 
(0.05) 

3.94 
(0.02) 

Civic    8.58 
(0.11) 

6.49 
(0.02) 

CT    6.97 
(0.05)  

ES    9.41 
(0.09) 

10.01 
(0.03) 

Fusion    8.03 
(0.04) 

6.29 
(0.02) 

Insight    7.08 
(0.16)  

MKZ    8.7 
(0.07)  

Niro    -0.57 
(0.41)  

Optima    5.72 
(0.08) 

2.75 
(0.02) 

Prius    6.43 
(0.03)  

Prius C    4.51 
(0.05)  

Prius V    7.33 
(0.08)  

Sonata Hybrid    6.53 
(0.05)  

5 Series     14 
(0.03) 

Accord     7.46 
(0.02) 

Altima     6.44 
(0.02) 

Camaro     5.52 
(0.02) 



 
 
 
Table C-4 (continued): Estimated Vehicle Model Effects on Retention Rates, Computed 
Using Coefficients in Appendix Table C-3 
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 BEV  
(Non-Tesla) 

BEV 
(Tesla) PHEV HEV CV 

Challenger     1.8 
(0.03) 

Charger     3.63 
(0.03) 

Corolla     3.15 
(0.02) 

Cruze     6.57 
(0.02) 

Elantra     4.42 
(0.02) 

Forte     4.97 
(0.03) 

Jetta     5.55 
(0.02) 

Malibu     8.49 
(0.02) 

Maxima     8.68 
(0.03) 

Mazda3     7.24 
(0.06) 

Mustang     6.65 
(0.02) 

Outback     5.96 
(0.02) 

Sentra     4.52 
(0.02) 

Sonata     5.49 
(0.02) 
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