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Abstract

Urban transportation systems involve thousands of individuals making choices

between routes with multiple modes and transfers. For transportation system simula-

tions to produce realistic results, modelers need to incorporate these users and their

choices. Choice-based conjoint surveys provide an attractive solution for obtaining

flexible utility models that can be used to predict choices for a wide variety of trips. In

this study, we demonstrate an example using conjoint survey data of commuter mode

choice in theWashington, D.C. metro area (N= 1651).We sample commuters who pri-

marily drive and those that take transit. We examine preferences for different types

of multimodal trips, including those with intramodal and intermodel transfers.We find

that trips involving a bus transfer are the least preferred while both drivers and tran-

sit users both value metro similarly to driving. We also find that walking during transit

trips is an important barrier, with the travel time penalty for walking being 60% higher

than that of time in a vehicle. Our findings highlight the significance of accounting

for differences in modal transfer types in transportation system simulations. Reduc-

ing arrival time uncertainty was not a significant factor in commuter mode choice, and

commuters’ value of time was similar across all vehicle types, suggesting that increas-

ing the relative speed of transit modes may only have a marginal effect on commuter

substitution away from personal vehicles.
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1 INTRODUCTION

Themajority of commuters in theUnitedStatesusepersonal passenger

vehicles, which have multiple negative externalities such as air pollu-

tion, greenhouse gas emissions, congestion, and vehicle crashes.1 The

transportation sector is the largest source of greenhouse gas emis-

sions in the United States, and personal vehicles are responsible for

approximately two thirds of those emissions.2 Rather than attempt to

further accommodate “automobility” via more roadway infrastructure,

amore sustainable development path inmost urban cities is to increase

public transit usage.3,4 Nonetheless, public transit has important draw-

backs for some commuters. The level of service can be less than

desirable depending on factors such as route scheduling, reliability, and

the inconvenience of having to make transfers.5,6 Exogenous factors

such as the socio-economic backgrounds of different commuters also

affects people’s perspective on using public transit.7,8

To accurately measure the impacts of policies aimed at increasing

transit ridership, it is vital to have an accurate model of commuters’

decision-making processes when choosing their commute. Towards

this goal, urban public transit can be modeled as a system involving

a complex network of multiple mode options and travel routes, often

requiring transfers between modes. Several studies have explored
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2 ZHAO ET AL.

models of commuter mode choice, but most use single-mode trips as

alternatives to driving, such as one-leg bus, metro, and bike trips,8

ignoring the complexities of multimodal trips that require transfers.

This study contributes to this prior research by demonstrating how

complex trip alternatives can be disaggregated into sets of features

using a controlled conjoint survey experiment. Preferences for those

features (described jointly via a utility model) can then be used to

assess the impact of policies or changes in features (e.g., reducing trip

transfers) on mode choice and public transit usage.5,6 We use data

collected from a controlled conjoint experiment in the Washington,

D.C. metro area (N= 1651) to estimated discrete choice utility models

and then use those models to simulate commuter choices for different

types of multimodal trips, including those with intramodal and inter-

model transfers. By using a conjoint experiment, we are able to answer

questions about different features of commuter trip choices that are

important for policy makers to consider, including:

1. What is the effect of intramodal and intermodal transfers on

commuter trip choice?

2. How do commuters value time along different components of trips,

including time walking, waiting, transferring, and riding in different

vehicles?

3. How does reducing uncertainty in arrival time affect commuters’

trip choices?

4. How do preferences for car-dependent commuters differ from

those of public transit commuters?

5. Under what conditions are commuters more likely to choose a

transit trip over driving a personal vehicle?

We address questions 1–4 by estimating commuter willingness-to-

pay (WTP) for reduced travel time, reduced arrival time uncertainty,

and different modes on one- and two-leg trips, all else being equal. We

address question 4 via simulations where we compare the probability

of commuters choosing a transit trip over driving a personal vehicle

under different conditions. Our results serve as a case study to illus-

trate the significance of accounting for differences in modal transfer

types in transportation system simulations.

2 BACKGROUND

User behavior is a critical component to model in system simulations

that involve individual user choice. In a transportation system model,

users’ preferences for different trip features will determine how they

respond to a policy or design change, which can dramatically change

the overall system performance as well as outcomes for different user

groups.9

A significant body of research has studied different factors that

affect commuter travel preferences. Earlier work from Bhat et al. indi-

cates that the trip purpose and socio-economic factors of users both

play an important role in commutermode choice.7 An individual’s driv-

ing behavior can also change based on income, car ownership, and

schedule flexibility; high car availability within households is positively

correlated with auto usage, and higher household income is associated

with less auto usage but not less metro usage.8

Researchers have also investigated factors related to the trip itself,

such as the urban environment, trip distance, and trip complexity. For

example, Frank et al.10 studied how urban form affects travel patterns,

finding that land use mix, retail density, and street connectivity near a

commuter’s home and workplace increase walking, cycling, and transit

use. They also found that more shops near commuters’ homes or work

places reduced the overall complexity for home-to-work trips, lead-

ing to greater transit usage.11 similarly found that commuters were

more likely to drive as the trip chain complexity increased. They also

concluded that a bidirectional causality exists between mode choice

and trip complexity; auto-dependency causes the formation of more

complex trip chains, and complex trip chains simultaneously cause

higher auto-dependency. Finally, others have found that trip distance

is another important factor, with more people choosing to drive as the

distance increased.12,13

More recent studies have also begun unpacking the significance

of having to make transfers on whether or not people will choose to

use public transit. For example, Ha et al.13 used a complex trip design

survey to study the effect of transfers and walking segments on pub-

lic transit use, but they only assessed the number of transfers in a

trip rather than the type of transfer (e.g., intermodal or intramodal

transfers were modeled as identical). Multiple studies have focused on

the importance of transfer time between stops. Ceder et al.14 found

that commuters prefer trips with less uncertainty in out-of-vehicle

time. Guo and Wilson15 also emphasized the importance of optimiz-

ing transferwaiting time. However, time is only a portion of the penalty

associatedwithmaking a transfer, and only optimizing for transfer time

may not lead to an optimal transfer experience.

Others have found that simply transferring at all invokes a “pure

transfer” penalty that is not associated with trip time. Hadas and

Ceder,16 for example, found thatmissing a transfer during amultimodel

trip is one of the primary factors for unreliability in the public tran-

sit system, and missing a transfer increased commuters’ mental stress,

leading to aworse overall experience. Refs. 5, 17 further evaluated this

pure transfer penalty and found that commuters may actually prefer a

longer, one-leg trip over shorter trips that involve even one transfer.

While these prior findings have been particularly insightful for

understanding barriers to public transit ridership, many are limited by

their data samples or their experiment design. For example, many prior

studies on transfer preferences have only elicited preferences from

existing transit riders,5,17–19 and others have collected data from only

student survey responses.4,8,20 Many of these studies lack any data on

thepreferencesof commuterswhoprimarily drive towork, andattract-

ing some of the “drive-only” commuters into taking public transit is

important for achieving sustainable transportation goals. Making tran-

sit policy recommendations based on only the preferences of existing

transit users could produce suboptimal results21; for example, found

that car users react to certain transportation policies differently than

transit users.

Many prior studies also do not differentiate the transfer penalty

by the type of transfer. One reason for this is the high dimensionality
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ZHAO ET AL. 3

of the possible intermodal transfers that can occur in a typical trans-

portation system. Designing a study that accounts for all transfer types

could require large sample sizes to obtain precise parameter estimates,

and making simplifying assumptions (e.g., all transfers are equally pre-

ferred) can substantially reduce the necessary sample size. The trade

off is less information about the heterogeneity in preferences for

different types of transit trips.

In this study, we build on this prior body of work on trip transfers

and transit use by focusing on how different types of transfers as well

as uncertainty in arrival time impact the mode choice preferences of

commuters. We capture commuter preferences for different types of

transfers, and we capture both current transit users and car drivers

in our sample, enabling greater insights into heterogeneous commuter

preference towards different types of transit trips.

3 METHODS

We use a stated preference conjoint survey to measure and model

commuter preferences for different types of commute trips. Stated

preference conjoint surveys have been widely used to model choice

and assess consumer stated preferences for transportation mode

choice.22 The general approach is to show survey respondents a series

of randomized alternatives and then ask them to select the alternative

theymost prefer. These stated preference choice data can thenbeused

to estimate discrete choice models to identify attribute preferences.

Using simulated choice sets in a conjoint survey has many advantages

over historicalmarket data, such as the ability to obtainmultiple obser-

vations for each respondent and the fact that the set of alternatives

under consideration (and their attributes) are fully known. In addition,

multicolinearities between attributes and endogeneity biases can be

eliminated. Of course, one disadvantage of stated preference data is

that peoplemay choose differently in a hypothetical survey rather than

an actual choice scenario. The rest of this section provides greater

detail out the survey design andmodeling techniques applied.

3.1 Survey design

Respondents were asked to choose from sets of three commute trip

alternatives, with trip attributes and prices chosen to reflect actual trip

alternatives in theDCmetro area.Most priormode choice studies have

presented trip alternatives in a tabular format where each attribute of

each trip is displayed in rows and each trip is represented by columns,

for example,8,23 However, a tabular display of alternatives does not

emphasize the differences between transfer and nontransfer trips, nor

does it reflect how trips are typically displayedwithmodern navigation

software such as Google Maps. Furthermore, since trip complexity has

previously been found to be important for commuter mode choice,11

we were concerned that a tabular display of trip alternatives might

mask the transfer complexity of different multimodal trips.

As a result of these factors, we represented each trip using a graph-

ical diagram of the trip modes. In our trip graphics, the length of each

F IGURE 1 An example conjoint choice question in the survey.
Each choice question contained three alternatives.

TABLE 1 Attributes used in conjoint survey.

Attribute Level

Price $2, $5, $10, $15

Car express fee $0, $5, $10

Start time 0, 5, 10min

Leg 1 time 10, 20, 30, 45min

Transfer time 0, 5, 10min

Leg 2 time 10, 15, 20min

Additional time uncertainty 5%, 10%, 20%

Tripmode Car

Ride hailing

Bus

Metro

Metro tometro

Metro to bus

Bus to bus

Bus tometro

Walk to bus

Walk tometro

line was proportional to the length of time spent on each mode, and

transfers were indicated with circles. An example choice question is

shown in Figure 1.

Each alternative included the trip graphic, the total trip price, the

total trip time, and how much time would be spent on each leg of the

trip. The total trip time was presented as a range from a lower bound

(the sum of the travel time for each leg) to an upper bound that was

computed as an additional 5, 10%, or 20% of the lower bound. All car

trips were one-leg trips, though some included the use of an express

lane, which had an additional $5 or $10 fee. The final set of conjoint

choice questions used was designed and randomized using the cbc-

Tools R package.24 Table 1 shows the full set of attributes included in

the randomization. To make sure the values shown were reasonable
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4 ZHAO ET AL.

for local commuters, a pilot survey was distributed and the value sets

for attributes were tuned according to the feedback from those initial

participants. Each participant was shown eight separate choice ques-

tions in which they were asked to choose their most preferred trip for

commuting to work.

3.2 Data collection

The survey was hosted on formr.org, an open source online platform

that uses the R programming language to define survey questions.25

The sample was collected via Dynata, a market research firm. The

sample was limited to DC commuters and was distributed between

February 16, 2021 and April 22, 2021. Participants were filtered by

zip code and commute pattern to ensure that the sample only captured

commuters living in the DCmetropolitan area.

A total of 2064 participants completed the survey. Among them,

415 participants were removed due to multiple validity check vio-

lations, including spending too little time to complete survey, failing

attention check questions, and randomly answering questions (e.g.,

choosing the same answer for all eight choice questions). The final

sample used in our analysis was 1651 participants, resulting in 13,208

choice observations.

Table 2 shows summary statistics for our final sample as well

as a comparison with demographics from a previous survey (N =
16,000) conducted by the Metropolitan Washington Council of

Governments,26 whichwas also focused specifically onDCcommuters.

Our sample is consistent with that of theMWCG sample along several

important demographics, including a relative balance across gender

groups and a similar percentage of participants with different lev-

els of car ownership. The majority of our participants are between

25 and 55 years old with a mean of around 40 (we do not have age

demographics from the MWCG survey). While we did over-sample on

home ownership, we expect that this is likely because we included

surrounding counties around the DC metropolitan area where more

home owners live whereas the MWCG survey did not include these

residents.

3.3 Model estimation

Using the stated choice data, commuters’ choices can be modeled

using a randomutility framework,which assumes that individualsmake

choices that maximize an underlying random utility model. Specifically,

the utility uij of alternative j to a consumer i is modeled based on choice

observations as a functionof observable attributes vij = fi(xj) andunob-

servedattributes !ij , such thatuij = vij + !ij. Theunobserved component!ij is modeled as a random variable, making the utility uij also random.

These models predict the probability of choice Pij as the probability

that the utility of one alternative j is greater than the utility of the other

alternatives. Assuming the error term follows a Gumbel extreme value

distribution, the probability that a consumer iwill choose option j from

TABLE 2 Summary statistics of our sample.

N= 1651 MWCG

Age

min 18

max 93

mean (sd) 43.35± 13.24

Gender

Male 869 (53) 49.5%

Female 767 (46) 50.5%

Other 115 (1)

Employment

Employed 1511 (92)

Unemployed 33 (2)

Student 74 (4)

Other 33 (2)

Car ownership

None/Prefer not say 73 (4) 18.5%

1 738 (45) 42.9%

2 611 (37) 29.5%

3 135 (8) 9.2%a

4 72 (4)

5+ 22 (1)

Home ownership

Own 1232 (75) 59.1%

Rent 381 (23) 39.4%

Not to say 38 (2)

Daily commutemethod

Only drive 772 (47) 91%b

Drive transit 701 (42)

Only transit 178 (11) 9%

The number in parenthesis is the percentage for categorical data.
aMWCGpercentage is for car owners with three ormore cars.
bNinety-one percent is travelers using other modes besides transit.

the choice set c follows a convenient, closed form expression27:

Pij = exp
(
vj
)

∑
k∈c exp(vk)

, ∀c ∈ {1,2,3,…C}, j ∈ c, (1)

where c indexes a set of C choice sets and vj is the observed por-

tion of the utility model. We estimate multinomial logit (MNL) models,

which assume that the parameters in vj are fixed across all respon-

dents, and mixed logit (MXL) models, which assume that some of

those parameters vary randomly across the population according to

assumed distributions. To make the results more easily interpretable,

the utility models were specified in the “willingness-to-pay” (WTP)

space28,29 such that estimated model coefficients can be interpreted

as the marginal WTP (with units of US dollars) for marginal changes in
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ZHAO ET AL. 5

One leg trips
Two leg trips

−$10.00 −$7.50 −$5.00 −$2.50 $0.00 $2.50

Bus
Taxi

Metro

Bus to Metro
Bus to Bus

Metro to Bus
Walk to Bus

Metro to Metro
Walk to Metro

2.A Willingness to pay relative to driving

(A)

Time uncertainty

Waiting (start)

Time in taxi

Time on metro

Time on bus

Waiting (transfer)

Time in car

Time walking

−$40 −$30 −$20 −$10 $0 $10
2.B Travel time penalty ($/hr)

(B)

F IGURE 2 EstimatesWTP coefficients frommodel 1.WTP, willingness-to-pay.

each attribute:

uij = $(%′xj − pj
) + !j , (2)

where pj is price and xj is all nonprice attributes for alternative j. For

this study, the utility model for theMXLmodel has the following form:

uij = $(%′xmode
j + (′xtime

j + )xuncj − pj
) + !j (3)

where % is a vector of WTP parameters for all modes except for driv-

ing (the reference level for the mode attribute), xmode
j is a matrix of

dummy-coded variables for each mode, ( is a vector of WTP parame-

ters for each type of time in the trips (start, transfer, and travel times),

xtime
j is a matrix of trip times, ) is the WTP parameter for additional

arrival time uncertainty, xuncj is the percentage of additional travel time

(due to uncertainty in arrival time), and pj is the total price of the trip.

All model estimation was conducted using the logitr R package, written

by Professor John Paul Helveston.30

4 RESULTS

4.1 Willingness to pay

Table 3 presents the estimated coefficients from multiple models,

including a MXL model for the entire respondent population (model 1)

as well as MNL models comparing preferences between essential and

nonessential workers (models 2 and 3), respondents with more or less

flexibility in work arrival times (models 3 and 4), and respondents that

primarily commute by car (model 6), transit (model 8), or a mix of both

(model 7). Figure2plots themeanWTPcoefficients formodel 1, includ-

ing coefficients for each trip type (relative to driving) and the travel

time penalty for each component of a trip. For this model, all WTP

covariates were modeled as normally distributed, with the estimated

means and standard deviations presented in the first two columns of

Table 3.

Figure 2A indicates that DC commuters on average are relatively

indifferent between one-leg metro trips and driving, and that all other

trips are less preferred than driving, all else being equal. Another

important observation is the clustering of two-leg trips with the low-

est WTPs: metro to bus, bus to bus, and bus to metro. All of these

trips involve bus transfers, suggesting that commuters are willing to

pay a substantial premium to avoid trips with bus transfers relative

to driving.

Figure2Bpresents thepenalty associatedwith increasing the length

of time spent on different portions of a trip. All of the in-vehicle time

parameters have insignificant differences between each other, which

indicates that commuters’ in-vehicle value of time is relatively consis-

tent regardless of the mode. Likewise, the value of time while waiting

at the start of the trip and during a transfer in the trip is approxi-

mately equal with the in-vehicle time valuation. The only parameters

that are significantly different from each other are Time Walking and

Time Uncertainty. The larger penalty on Time Walking suggests that

commuters are willing to pay about 50% more to reduce time spent

while walking compared to time spent in a vehicle, which is consistent

with prior research.31 In contrast, the Time Uncertainty parameter is

not statistically significantly different from zero, suggesting that either

respondents are notwilling to pay a premium to reduce the arrival time

uncertainty or that they simply ignored this attribute when evaluating

trip alternatives while taking the survey.

In addition to these mean estimates, the standard deviation param-

eters on many of the trip and time variables in the MXL model were

quite large, suggesting the presence of substantial preference hetero-

geneity. To investigate this further,wedivided the sample into different

subgroups according to demographic variables and responses on other

survey questions (models 2–8). Models 2 and 3 revealed the expect

result that respondents that self-identified as essential workers had

higher time penalties and stronger preferences for driving over any

other trip type compared to nonessential workers. Outcomes were

similar for respondents that self-reported as having greater flexibility

in work arrival times than those that reported having less flexibil-

ity (models 4 and 5), though this outcome is also correlated with
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6 ZHAO ET AL.

TABLE 3 Regression results

Parameters
MXL
$$∖mu$$

MXL
$$∖sigma$$

Essential
worker

Not
essential

Have
flexibility

No
flexibility

Pro
driving

Mixed
preference

Pro
transit

(0.01) (-) (0.00) (0.00) (0.00) (0.01) (0.00) (0.00) (0.01)

Bus to bus −6.48a 1.75 −13.23a −5.06a −6.95a −14.23a −14.03a −4.43a 0.56

(0.93) (0.96) (2.43) (1.25) (1.22) (3.61) (2.05) (1.63) (3.63)

Bus tometro −6.98a 2.20 −12.93a −6.05a −7.01a −15.00a −13.94a −4.05a −3.45
(0.87) (0.98) (2.14) (1.08) (1.06) (3.16) (1.79) (1.42) (3.30)

Metro to bus −6.03a 1.17 −10.13a −5.97a −6.47a −11.99a −11.65a −4.31a −1.27
(0.81) (0.77) (2.11) (1.07) (1.06) (3.11) (1.76) (1.41) (3.27)

Bus −4.39a 0.23 −10.02a −1.59 −3.63a −9.48a −9.26a −2.07 4.90

(0.83) (1.20) (2.06) (1.09) (1.05) (3.07) (1.73) (1.42) (3.32)

Metro tometro −3.54a 3.03 −9.81a −2.97a −4.34a −9.47a −8.40a −1.96 −2.96
(0.93) (0.92) (2.40) (1.23) (1.21) (3.06) (1.97) (1.65) (3.58)

Metro −0.74 2.43 −3.91c 1.10 0.15 −3.64 −2.44 0.53 5.61

(0.86) (1.27) (2.10) (1.11) (1.09) (3.06) (1.77) (1.45) (3.32)

Taxi −4.43a 3.55 −4.42a −1.70c −2.22b −5.07c −5.26a −0.72 3.18

(0.76) (0.68) (1.96) (1.01) (0.99) (2.93) (1.63) (1.30) (3.29)

Walk to bus −4.29a 1.31 −7.97a −2.33c −3.81a −7.68b −9.17a −2.18 5.42

(1.02) (0.88) (2.59) (1.35) (1.31) (3.85) (2.17) (1.75) (4.01)

Walk tometro −3.40a 0.56 −7.97a −2.14 −3.48a −7.44c −8.02a −1.31 2.32

(1.03) (0.93) (2.61) (1.37) (1.32) (3.94) (2.22) (1.76) (3.98)

Time onwalk −36.94a 24.83 −55.09a −40.60a −41.47a −66.66a −54.49a −39.18a −44.70a
(1.65) (1.82) (6.63) (3.23) (3.14) (10.60) (5.71) (4.08) (8.62)

Time in car −33.01a 17.04 −38.11a −21.32a −23.87a −43.80a −33.19a −24.65a −16.11a
(1.65) (1.41) (3.67) (1.63) (1.63) (5.73) (2.91) (2.12) (5.62)

Time in bus −28.03a 15.78 −36.67a −27.31a −28.30a −36.57a −32.02a −29.00a −25.11a
(1.27) (0.89) (3.41) (1.63) (1.61) (5.16) (2.81) (2.18) (3.86)

Time inmetro −26.25a 14.81 −38.35a −24.51a −27.26a −41.58a −37.11a −26.99a −17.75a
(1.22) (0.91) (3.52) (1.52) (1.56) (5.35) (2.93) (2.09) (3.42)

Time in taxi −27.19a 2.86 −40.62a −26.29a −29.05a −41.54a −36.32a −28.54a −26.50a
(1.36) (1.01) (3.98) (1.76) (1.77) (5.94) (3.20) (2.33) (4.85)

Waiting at transfer −30.89a 25.83 −38.51a −29.05a −33.77a −25.34a −34.01a −37.28a −5.30
(2.26) (4.38) (6.33) (3.10) (3.11) (8.94) (5.22) (4.17) (7.84)

Waiting at start −24.14a 14.03 −36.35a −25.20a −28.30a −34.22a −28.48a −29.94a −30.10a
(2.25) (3.81) (5.38) (2.61) (2.59) (7.88) (4.40) (3.47) (6.61)

Time uncertainty −0.39 13.62 −4.02 −3.72 −3.59 −2.90 −3.90 −5.11 5.74

(2.96) (7.66) (6.60) (3.46) (3.36) (9.73) (5.67) (4.45) (8.64)

n 1651 839 812 1196 455 772 701 178

a0.001; b0.01; c0.05; d0.1.

income as jobs with higher salaries tend to have greater arrival time

flexibility.

One of the primary variables where we saw significant differences

in preferences was the respondents’ commute patterns. For this vari-

able, we asked participants about their commute patterns and created

subgroups based on whether they answered that they only drive, only

use transit, or use amixof both.Understanding thepreferencesof com-

muters who primarily drive is particularly important for reducing auto

dependency and promoting greater public transit use.

Figure 3 shows theMNLestimation results for the “driving only” and

“mixed mode” subgroups (models 6 and 7). Except for one-leg metro

trips, commuters who primarily drive have substantially lower WTPs

for all other trips compared to the mixed commute pattern group.

Drivers also have a statistically significantly lower WTP for bus trips
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One leg trips
Two leg trips
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Bus to Bus

Bus to Metro
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Walk to Bus

Metro to Metro

Walk to Metro

Willingness to pay relative to driving

model Driving & Transit Only Drive

F IGURE 3 WTP comparison between drive-only andmixedmode
commuters.WTP, willingness-to-pay.

compared to mixed mode commuters, including both one-leg bus trips

and any two-leg trip that involves the bus.Wealso see thatmost transit

modes for mixedmode commuters are only slightly negative, with only

the two-leg bus trips having statistically significantly negative WTPs

relative to driving.

4.2 Policy simulation

We conduct a series of simulations comparing a transit trip with a driv-

ing trip. In each simulation, all attributes are the same except for the

different mode and the travel time of each trip. Starting with equal

travel times, we incrementally increase the additional travel time on

the transit trip and compute the probability of choosing the transit

trip in each case. The goal is to understand the probability of choosing

transit over driving in different conditions.

In Figure 4, which reflects the preferences from model 1, the one-

leg metro trip is the most preferred of all transit trips, with commuters

being essentially indifferent between it and driving when the travel

times are the same. As the additional travel time increases, the prob-

ability of choosing themetro decreases, down to approximately 30%at

15 extra minutes and 20% at 25 extra minutes. One-leg bus trips are

similar to the metro curve, but the probabilities are all shifted down

by approximately 10 percentage points, highlighting the preference for

metro over bus. We also see a clear drop in the probability of choosing

transit for trips that involve bus transfers.

For a metro-only trip, average commuters are willing to spend one

moreminute to be indifferent with driving. This shows that commuters

on average value one-leg metro trips similarly to driving trips, hold-

ing all else equal. However, commuters are only approximately 30%

likely to choose transit over driving when the trip involves a bus trans-

fer and the travel time is equal to the driving trip. In these cases, the

transit trips need to be significantly faster in order to be indifferent

Metro
Bus
Metro to Metro
Bus Involved Transfers

0.0

0.1

0.2

0.3

0.4

0.5

0 5 10 15 20 25 30
Additional travel time on transit (minutes)

Pr
ob

ab
ilit

y o
f c

ho
os

ing
 tr

an
sit

When will commuters choose transit over driving

F IGURE 4 Probability of choosing the transit trip over driving.
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F IGURE 5 Probability of choosing the transit trip over driving.
Additional travel times for the walking trips were added to the walking
portion of the trip.

with choosing the driving trip. This difference in probability is consis-

tent with Garcia’s finding that commuters will choose a longer trip to

avoid making a transfer.5 This simulation also indicates that instead of

reducing transit travel time, creating transit alternatives that involve

fewer bus transfers may be more effective in promoting public transit

use among commuters.

Another important finding is that commuters place a significantly

higher penalty on walking time comparing to other time factors. In

Figure 5, we include walking trips (“Walk toMetro” and “Walk to Bus”)

in the simulations, comparing them again to the one-leg metro and bus

trips. For trips that involve walking to transit, the additional time was

added to the walking portion of the trip, and thus the probability of

choosing transit for those trips drops at a faster rate than those that

do not involve walking since walking time is penalized at a greater rate

than in-vehicle time.

In these simulations, the effect of increased walking time is

dramatic—just 5 extra minutes of walking decreases the probability of
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8 ZHAO ET AL.

F IGURE 6 Probability of choosing transit over driving for commuters who only drive versus those who take amixture of driving and transit.

choosing transit by approximately 15%. The higher penalty on walk-

ing time has a similar effect as intermodal transfer. When the walking

time is high, commuters would rather choose a longer trip with more

in-vehicle time. For example, commuters have a similar probability of

choosing the transit trip across the following three trips: a 15-min

walk, a 22-min bus trip, or a 27-min metro trip. These results suggest

that reducing walking time is an important factor for increasing transit

ridership and could bemore important than reducing in-vehicle time.

It is important to emphasize that the results of the simulations in

Figures 4 and 5 reflect the average preferences of our entire survey

sample, but this sample contains substantial preference heterogeneity

in termsofWTP for tripmodes and time factors. Figure6highlights this

heterogeneity by showing the results of simulations conducted using

models 6 and 7, which reflect the preferences of commuters who only

drive versus those that take amixture of driving and transit.

These results showthat thedrive-only grouphas amuch lowerprob-

ability of choosing transit trips for nearly all trips except for one-leg

metro trips. When the trip time is close to a driving trip, the drive-only

group is approximately 10 and 6% less likely to choose a bus-involved

trip or metro trip, respectively.

These simulations also suggest that substituting bus-involved trips

with more metro trips could be an effective strategy for recruiting

more drivers into taking transit. For example, a 20% increase in transit

ridership could be achieved by changing a bus-to-metro transfer trip

into a one-leg metro trip among drive-only commuters when the trip

duration is close to a driving trip. This is a much more significant effect

compared to the 11% increase in themixedmode subgroup.

Figure 7 illustrates this substitution difference between the drive-

only and mixed mode commuters. For this figure, we computed the

difference in percentage points between abus-to-metro trip and a one-

leg metro trip for each group of commuters at each additional amount

of time spent on transit compared to driving. When the travel times

between transit and driving are similar, the substitution from an inter-

modal trip to a metro trip is almost twice as large for the drive-only

commuters compared to the mixed mode commuters. However, as the

additional transit travel time increase, both groups converge to simi-

lar gaps. This highlights the importance of sampling and measuring the

Drive and Transit
Only Drive
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F IGURE 7 Comparison of the effect of substituting a
bus-to-metro trip with a one-legmetro trip between drive-only and
mixedmode commuters.

preferences of different groups of commuters when designing studies

aimed at quantifying commuter preferences.

5 LIMITATIONS

In this study, we assume that commuters make route choice decision

at the very beginning of the trip instead of making separate decisions

at each transfer point. We also assume the type of transfer matters to

commuters based on Garcia-Martinez’s finding on intermodal transfer

penalties.5 As a result, we designed 10 different trips in our con-

joint survey to capture multiple different trip combinations. While this

enabled greater insight into commuter preferences for different types

of trips, it also led to larger standard errors on the mode coefficients

in our models. This limits the precision with which we can model the

preferences of different subgroups of commuters.

Another limitation is that we limited trips to only one trans-

fer. This decision was a compromise between including multiple trip
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ZHAO ET AL. 9

combinations while maintaining reasonable sample size requirements

to identify model parameters. Even with just a single transfer, there

were 10 trip combinations between the modes included in our exper-

iment; including a second transfer would result in tens more trip

combinations and several thousand more respondents. As a result, the

data andmodels in this study are limited to only two-leg trips.

Finally, it is important to acknowledge that the sampling period

(February 16 to April 22 2021) was during the COVID19 pandemic,

a time during which commuting by transit was limited and many

residents were still working remotely or had considerably modified

commute patterns compared to pre-pandemic norms. We recognize

this limitation could cause somedistortions in our results. Nonetheless,

wedid informrespondents to answerquestions according to their com-

mute experiences before the start of the pandemic, and much of our

findings are consistent with previous research on intermodal transfers

and time penalties, for example, Refs. 5, 17, 31.

6 CONCLUSION

Public transit is a complex system involving multiple modes and trans-

fers between them. Improving our understanding of commuters’ mode

choice preferences and their WTP for related commute trip features

via conjoint analysis is a promising approach for building system sim-

ulations for examining the potential outcomes of policies aimed at

increasing public transit usage. We demonstrate this using a con-

joint survey to collect stated preference data on multimodal commute

choices for DC commuters, including those that only drive and those

that use transit. We apply multinomial and mixed logit regression to

compare respondents’ WTP for trip modes and travel times, and we

conduct simulations to assess the probability of choosing transit over

driving in different conditions.

We find that the penalty commuters assign for increased trip time is

similar across driving and transit modes but approximately 40% higher

whenwalking, suggesting a strong preference to avoid increasedwalk-

ing time. Single leg metro trips were the most preferred transit trips,

and most commuters are indifferent between these trips and driving,

all else being equal. On average, trips that involve transfers with a bus

were the least-preferred transit modes, and commuters are willing to

pay on average $6–7 to avoid these trips compared to driving, all else

being equal. Our results also suggest that reducing the uncertainty of

arrival time was not significantly important. Policy simulations illus-

trate that reducing walking time and bus transfers are two important

methods for potentially increasing public transit usage, in particular

for commuters who currently drive. These findings are consistent with

prior literature on intermodal transfers and travel time penalties, for

example, Refs. 5, 17, 32.

In comparing two important subgroups (those who commute by

driving versus thosewho drive and take transit), ourWTP analyses and

policy simulations both suggest that trips with bus-involved transfers

have significantly higher penalties for drive-only versus mixed mode

commuters. These groups both prefer one-leg metro trips for transit,

and both are relatively indifferent between these trips and driving, all

else being equal. These results suggest that expanding metro access

and reducing bus-involved transfers could potentially attract com-

muters away fromdriving. The differences revealed in comparing these

two groups highlight the importance of considering preference het-

erogeneity when making transportation policy decisions and building

transportation simulationmodels.Analyses thatonly consider thepref-

erences of current transit users could underestimate or overestimate

the effects of specific policies on increasing or decreasing transit use.
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