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Summary

We deliver comprehensive, high-resolution estimates of annual vehicle miles trav-
eled (VMT) in the United States for battery electric vehicles (BEVs), plug-in hybrids
(PHEVS), hybrids (HEVs), and conventional vehicles (CVs) using odometer readings
from 12.5 million used cars and 11.4 million used SUVs listed between 2016 and 2022.
While CVs, HEVs, and PHEVs are driven similarly, BEV cars average 4,477 fewer miles
annually. Teslas are driven more than other BEVs, yet still less than CVs. Similar
differences in VMT across powertrains exist for SUVs, though SUVs are driven more
than cars in all powertrains. Driving range has a non-linear relationship with VMT for
BEV cars: every 10 additional miles of range equates to 631 additional annual miles
for low-range BEVs (<100 miles of range) but only 85 annual miles for high-range
BEVs (>200 miles of range). BEV cars also show less sensitivity in annual VMT to
operating cost changes compared to CVs. Results provide an important context for
modelers anticipating increased electricity consumption from PEV adoption.

Keywords: Electric Vehicles, Mileage, Behavior, Vehicle Miles Traveled (VMT),
eVMT.



Introduction

Mass adoption of plug-in electric vehicles (PEVs) is a critical component of plans to decar-
bonize the United States (U.S.) energy system3>?0. As a result, PEVs are anticipated to
be one of the largest sources of new electricity demand in coming decades®?. Because the
scale of this electricity consumption hinges on PEV utilization patterns, precise estimates of
PEV vehicle miles traveled (VMT) are crucial for policymakers and modelers preparing for
a world with more PEVs.

Many studies that attempt to quantify the electricity demand from PEV usage (and the
associated environmental impacts) assume equal VMT between PEVs and gasoline-powered
conventional vehicles (CVs) 11218192742 "hyt this assumption could lead to unrealistic con-
clusions if actual VMT differs. Likewise, the environmental benefits from PEVs scale with
usage?!, and those benefits may be over-estimated if true usage is lower than assumed. Ac-
curate VMT estimates may also become important for future government budget planning as
scholars are increasingly calling to replace the gasoline tax with a vehicle mileage tax?6:4%:6.
Finally, VMT is informative for assessing how well PEVs are performing as a direct substitute
for CVs*, which has important implications for their overall adoption rate.

Despite the significance of such an important metric, prior published estimates of PEV
VMT have conflicting results, concluding that battery electric vehicle (BEV) cars are driven
as little as 6,300 annual miles* and as much as 12,522 annual miles*'. Table 1 summa-
rizes prior studies that have attempted to quantify BEV VMT. One data source used in
prior studies is the National Household Travel Survey (NHTS), a relatively large-scale and
nationally-representative dataset collected by the Federal Highway Administration®®. Anal-
yses of the latest NHTS survey suggest that BEVs are driven approximately 66% as much
as CVs on an annual basis*?°. Nonetheless, despite the survey’s nationwide reach, only 436
responses were obtained from BEV owners, and the survey data (from 2017) is now rela-
tively outdated. As a result, the relatively lower BEV mileage estimates from these studies
may not be representative of how BEVs are being driven today, both because earlier BEV
generations had significantly shorter driving ranges than today’s BEVs®, and because the
earlier generation of BEV owners may have substituted some trips with other household
vehicles3%38:5,

[Table 1 here]

Another approach to estimating VMT is to extrapolate it from related data sources, such
as electricity meter readings.? collected home meter readings from 2014 to 2017 in California
and combined them with vehicle registration data to create a sample of 57,290 BEVs—the
largest-scale sample of BEVs in a related study to date. Using a discrete event approach,
they analyzed the increased electricity consumption after households purchased a BEV and
then extrapolated the results into the expected miles driven. Their results suggest BEVs
were driven 6,700 miles on average each year. While this estimate benefits from a large
sample size, the results rely on assumptions about where drivers charged their vehicles and
may underestimate true VMT if more charging was done outside of the home?®*2. These data
also only represent BEVs in California operating between 2014-2017, which is not nationally
representative nor up to date given the advances in BEV technology and landscape since
then.



To overcome the limitations of indirectly measured VMT, some researchers have used on-
board vehicle sensors to directly observe real-world BEV usage patterns?:3535:1732 - Tp the
detailed analysis by*! on the driving patterns of BEV and PHEV owners in California, data
loggers were installed on PEVs in 264 households in California. After one year of observation,
the average annual VMT for BEVs was 12,522 miles—mnearly double the estimate from? for
California BEV owners in the same time period. The study also concluded that BEVs with
higher ranges were driven further than those with lower ranges and that BEV owners tended
to substitute longer-distance trips with other household CVs*'. Other similar studies that
use sensors to directly measure VMT also found relatively higher BEV VMT than the studies
that indirectly measured VMT?*3%31 Nonetheless, despite the high data quality of these
studies, the samples obtained are relatively small (100 to 200 participants) and limited to
California households. These studies may also suffer from selection effects if participants
were unusually high-mileage drivers.

In this study, we attempt to overcome these prior limitations by using a direct mea-
surement of mileage (odometer readings) collected from a large, nationally representative
data set of used vehicle listings in the U.S. Used vehicle listings have been used before to
assess annual VMT; a 2022 report by Argonne National Laboratory estimated annual BEV
cars drove 8,838 miles per year on average, though the data used were median mileage es-
timates from Edmunds.com rather than raw odometer readings3’. The listing data used in
this study are licensed from marketcheck.com, a market research firm that collects vehicle
listing data from individual dealership websites on a daily basis. The data include the listing
date, the dealership address, and data about the vehicle, including the make, model, trim,
model year, listing price, powertrain, and (most crucially) the odometer reading. Additional
data on BEV and PHEV electric driving ranges as well as estimated operating costs for all
vehicles was added to control for these important features. BEV and PHEV range as well as
all vehicle efficiencies (miles per gallon for gasoline-powered vehicles, and kWh per 100 miles
for electricity-powered vehicles) are primarily from fueleconomy.gov®, with a small amount
of missing values added from carsheet.io®. Monthly gasoline prices!® and annual average
electricity prices? in different states are from the U.S. Energy Information Administration
(EIA). These prices were combined with vehicle efficiencies to compute an estimated average
operating cost (in cents per mile) over the vehicle’s life up until being listed in the used
market. For PHEVSs, a utilization factor (0 to 1) from fueleconomy.gov was used to compute
the gas and electric portions of operating costs (a more detailed description of the operating
cost calculation is included in the Experimental Procedures).

We focus on car and SUV listings since few BEV pickups were listed in the time period
captured in the dataset (January 2016 to February 2022). In addition, we censored the data
to only include vehicles with ages between 2 to 9 years as few BEV listings were present in
the dataset outside of this period, and because mileage may accumulate differently for used
vehicles listed before two years of age (e.g. vehicles listed quickly after being bought new
may need repairs and thus may have fewer miles than otherwise is typical). We also only
include vehicle models that comprised at least 1% of the listings within each powertrain as a
practical compromise between including a representative sample of vehicles while remaining
computationally reasonable as the majority of the listings are comprised of a smaller number
of models and a large number of models have very few listings (e.g. exotic cars). The final
dataset includes 12,511,667 unique used car listings and 11,391,430 unique used SUV listings



from 66,641 dealerships. Table 2 summarizes the dataset by powertrain and vehicle type (car
or SUV), with Tesla and non-Tesla BEVs separated out given Tesla’s unique prominence
and features in the BEV market, including higher-range vehicles and a private fast charging
network. Extended Data Tables S1 and S2 summarize each car and SUV model included in
our analyses, respectively.

[Table 2 here]

Results

Using odometer readings to model vehicle mileage

Figure 1 compares the rate of mileage accumulation of CV cars with that of HEV, PHEV,
and BEV cars, where the median (solid lines) and interquartile ranges (bands) of odometer
readings were computed for all listings in each month of age. While HEVs and PHEVs
accumulate miles at a relatively similar slope to CVs, BEVs appear to be driven significantly
less, a finding consistent with several previous studies*??2. Extended Data Figure S1 shows
the separate curves for Tesla and Non-Tesla BEVs.

[Figure 1 here]

To quantify this difference, we estimate a linear model of odometer readings versus age
(in years) interacted with the vehicle powertrain to identify differences between the annual
VMT slopes by powertrain. Table 3 shows the estimation results. Models 1a and 2a pool all
BEVs together, and Models 1b and 2b separate the BEVs into Tesla and non-Tesla, under
the expectation that Teslas would be driven differently given their higher driving ranges
and well-established charging infrastructure. For cars, CV VMT increases on average by
11,642 miles per year. While HEV cars are driven slightly more at 11,941 miles per year and
PHEVs slightly less at 11,113 miles per year, BEVs are driven substantially less at just 7,165
miles per year (approximately 39% less than CVs). Tesla BEV cars are driven more at 8,786
annual miles compared to just 6,235 annual miles for non-Teslas, but still approximately
25% less than CVs annually. Similar differences in VMT across powertrains exist for SUVs,

though SUVs are driven more than cars in all powertrains with annual mileages of 12,979
for CVs, 12,126 for HEVs, 8,970 for Tesla BEVs, and 8,553 for non-Tesla BEVs.

[Table 3 here]

Figure 2 shows the odometer readings versus age from every listing with the resulting
slope from Models 1b and 2b overlaid. The figure illustrates that in addition to having a lower
annual VMT, BEVs also appear to have less variance in mileage accumulation compared to
CVs and HEVs, with with Root Mean Square Error measures of 23.8 for CV cars and 14.7
for BEV cars on separate models estimated on each powertrain. It is clear that BEVs are
not yet being used as substitutes for many CV trips, and in particular high-mileage drivers.
Nonetheless, there are observations of higher-mileage BEV users in the dataset. A best-fit
line using only the top 10% of the highest mileage BEV cars in each month of age (17,611



BEVs) has a slope of 12,135 annual miles—higher than the average slope for all CV users.
Across the sample of CVs, 46% of observations (5,365,367 CVs) have odometer readings at
or below this annual VMT.

[Figure 2 here]

To further investigate relationships between annual VMT and other features, we estimate
four additional models (one for each powertrain) for cars and SUVs, shown in Tables 4 and
5. To understand the relationship between BEV driving range and annual VMT, we divide
the BEV cars into three groups based on natural clusters in the data: low-range (< 100
miles), mid-range (between 100 - 200 miles), and high-range (>200 miles). For BEV SUVs
we ignore this clustering as the sample contains only three unique vehicle models (the Tesla
Model X and Y, and the Audi e-tron). Results suggest that additional BEV driving range
matters much more for lower-range cars compared to higher-range cars: every 10 additional
miles of range equates to 631 additional annual miles for low-range BEVs, 412 additional
annual miles for mid-range BEVs, and only 85 annual miles for high-range BEVs. This
suggests there may be limits to achieving higher annual VMT from increasing range alone.
The Tesla coefficients in Model 3a are also noteworthy as they are the highest among the
BEV car models. Even after controlling for Tesla’s higher driving ranges, Model 3a suggests
Teslas are driven further at 1,056 and 538 more annual miles relative to a Nissan Leaf for the
Model 3 and Model S, respectively. While similarly large differences are also observed across
models in other powertrains, Teslas are the only BEVs in our sample that have access to a
well-established fast charging network across the U.S.; enabling Tesla drivers to travel longer
distances and encouraging long-distance drivers to purchase Tesla BEVs over alternatives.

[Table 4 here]
[Table 5 here]

Operating cost is another important feature explored in the models in Table 4. We
find that for cars BEV VMT is less sensitive to changes in operating cost compared to
other powertrains: for every 1 cent per mile increase in operating costs, CVs are driven 140
fewer miles but BEVs just 59 fewer miles per year. This is an intuitive finding consistent
with prior research that has found drivers have higher elasticity to gasoline prices than
to electricity prices?®24. Gasoline prices are also heavily advertised on roads, and drivers
interact with them at each refueling, increasing their salience. Electricity is observed less
frequently (usually via a monthly utility bill), and the total electricity cost is not itemized,
making vehicle charging costs less obvious. Finally, since BEVs are much more efficient than
other powertrains, drivers may be less sensitive to increases in electricity prices. Fig 3 shows
the distribution of operating costs across all cars and SUVs in our sample. For both cars and
SUVs, the highest operating cost BEV is near the lower bound of the interquartile range of
operating costs for the CVs.

While a positive sign on the operating cost term for PHEV cars is unexpected, there
are several reasons that could explain this outcome. First, our estimate of operating costs
for PHEVs may be inconsistent with true costs for PHEV owners. This could be due to
the assumptions used to compute operating costs, which are aligned with the calculations



made by the Department of Energy’s fueleconomy.gov®, or due to a mismatch between these
assumptions and true user behavior. Prior research has found that shorter-range PHEVs
tend to be charged less frequently, and as much as 1/3 of PHEV owners may rarely charge
their vehicle®®. If the estimated operating costs for certain PHEVs are mis-aligned with
their true costs while others are aligned, then estimated outcomes could vary substantially.
Another possible explanation is the potential for intra-household substitution for multi-
vehicle households. That is, households that own a PHEV and CV may tend to drive the
PHEV more often than the CV if gasoline prices are higher, leading to a positive relationship
between mileage and operating cost. For these reasons, we caution drawing conclusions from
the operating cost coefficients for PHEVs in this analysis.

[Figure 3 here]

Exploring Low BEV Mileage

The low BEV mileage observed in the listing data could be the result of a number of factors.
While fully explaining the underlying causes is not possible with the listings data alone,
we conduct additional analyses to provide some suggestive evidence and greater context for
future studies to build upon.

Time effects

The first additional analysis is to examine whether or not BEV mileage is changing over time.
The availability of longer-range BEV models and the construction of charging infrastructure
have both increased substantially during the period our data captures; as a result, it is
reasonable to expect that more recent BEV models may having higher VMT than earlier
models. Unfortunately, this is difficult to measure using vehicle listings data as the number
of observations (and the majority of the variability in vehicle age) is concentrated in older
rather than newer model year vehicles. This is a natural outcome from the fact that older
model years have had more time to show up at used vehicle dealerships and thus appear
more often in the database. For example, the oldest that a 2021 model year car in our
dataset could be is only 1 year old (if listed in 2022), but a 2012 model year car could be
anywhere from 4 to 9 years old (listed anytime between 2016 and 2022). As a result, fitting
a linear model for newer model years may be less reliable as the slope will be determined by
a smaller number of observations and from a narrower range of vehicle age. Furthermore,
since BEV range is correlated with vehicle model year (newer models have higher driving
ranges), it is difficult to separately identify range and age effects.

With these limitations in mind, we attempt to measure time effects by estimating addi-
tional models on BEV cars, presented in Extended Data Table S3. Model 5a is the same as
model 3a in Table 4 and listed for comparison purposes. Model 5b includes a squared term
on age to allow for the possibility of a non-linear mileage accumulation over time. Model
5¢ includes the model year of each vehicle as dummy variables to account for potential
VMT changes with newer models, and Model 5d includes these model year variables and the
squared age term.

All of the models in Extended Data Table S3 have similar vehicle model fixed effects (e.g.
both Tesla vehicle models have positive VMT effects in all models). The negative sign on the
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squared age effect in Models 5b and 5d suggests that older BEVs are accumulating mileage
slower that newer ones, though the effect size is relatively small. When model year effects are
added (Models 5c and 5d), the range effect increases and the differences by range category
lose significance, which is unsurprising as newer model years have higher driving ranges and
differences are being captured by the model year effects. Models 5¢ and 5d provide little
evidence that annual mileage is increasing in model years 2013 to 2018; however, both models
show a large, positive effect in model year 2019. While this does suggest that we may be
entering a period where BEVs are driven more, it is important to keep in mind the limited
amount of data available (and more importantly the limited variation in age) for this model
year. The model year 2019 has just 10,484 listings, and the maximum age is 3.2 years old;
as a result, the higher mileage for 2019 model years could be an artifact of those vehicles all
being younger. Further investigating this trend will be a primary motivation to replicate this
study when newer data become available as newer BEVs age and enter the resale market.

Multi-vehicle households

Another plausible explanation for low BEV VMT is if BEVs are purchased as a secondary
rather than primary household car. Unfortunately, the listings data do not reveal any in-
formation about the buyers of the listed vehicles, and therefore we are unable to include
household demographics in our analyses. However, the 2017 NHTS data does include house-
hold demographics, and while the survey contains few BEV observations, it does include a
large sample of CVs, which can be used to investigate the effects of household characteristics
on CV mileage. While households with BEVs may have different usage patterns, under-
standing differences in the usage of primary versus secondary vehicles in households with
multiple CVs is still informative as a status quo for vehicle usage in multi-vehicle household.

Results from additional models examining household characteristics in the NHTS data
are presented in Extended Data Table S4. Model 6a and 6¢ use CV cars and Model 6b uses
Hybrid cars. While the NHTS data does not have a variable for distinguishing which vehicle
is used as the primary vehicle, we use odometer readings as a proxy, where we define any
vehicle as “secondary” if it has less miles than that of the vehicle with the highest odometer
reading in the household. In Model 6¢, we loosen this definition to any vehicle that has less
miles than that of the top two vehicles with the highest odometer readings in the household.
We interact this variable for whether a vehicle is primary or secondary in a household with
the vehicle age to assess differences in annual mileage accumulation between the vehicle
types. To control for heterogeneity in driving demands, we also interact vehicle age with
household size as dummy variables.

As expected, the model coefficients suggest that secondary vehicles are not driven as
much as primary vehicles and that larger households have higher annual mileage than smaller
households, all else being equal. Secondary CVs accumulate 1,063 fewer annual miles than
primary CVs according to Model 6a. The gap is larger (2,169 annual miles) for households
with a hybrid as the primary vehicle (Model 6b). Results are similar when a more flexible
definition of “secondary” is used (Model 6¢). While the gap in secondary vehicle mileage
accumulation is substantial, it is still a smaller gap than that between CVs and BEVs in
the listings data (4,492 on average across all BEV cars). This suggests that being used as
a secondary vehicle may not fully explain the lower BEV mileage observed in the listings



data, though it very well could play a considerable role. This analysis also motivates the
hypothesis that BEVs will be driven more in households that only own a BEV and no other
vehicle.

Discussion

Our finding that BEVs have not accumulated miles as quickly as vehicles with other power-
trains is consistent with several prior studies. Our estimate of 7,165 annual miles on average
is higher than the NHTS survey results from* and the electricity usage results from?, which
underestimate our results by 865 and 465 annual miles, respectively, and lower than the es-
timate of 8,838 annual miles from?3”, which overestimates our results by 1,673 annual miles.
The general alignment with the results from? supports the method of using electricity con-
sumption as a proxy for mileage, which may be able to provide more up-to-date mileage
estimates for newer BEVs compared to using used vehicle listings, which take time to ap-
pear on the market. Our results also suggest that the studies that have directly measured
BEV usage with onboard sensors may have experienced selection effects or other factors
that have led to the small samples of participants in those studies driving BEVs substan-
tially more than the average from our sample??4!. While this study is not immune from
selection effects, the large sample size provides a more comprehensive estimate of historical
BEV usage compared to prior studies.

Although assessing the underlying causes of lower BEV mileage is beyond the scope of
this study, additional analyses on the potential effects of time and multi-vehicle households
provide suggestive evidence and greater context for future studies to build upon and make
causal explanations. Low BEV mileage could be the result of a number of factors. With
limited BEV driving ranges and immature charging infrastructure, some BEV drivers may
drive less due to “range anxiety,” which has been shown to affect driving patterns3%:3323,
Likewise, BEVs may have been disproportionately purchased by drivers with lower annual
VMT needs, inducing a selection effect that results in lower mileage accumulation in the
aggregate. Finally, because the majority of early BEV adopters own more than one ve-
hicle®>3%2 these owners may choose to drive their BEV less, substituting it with another
household vehicle for some trips and resulting in overall lower VMT for the BEV. Evidence
from the 2017 NHTS data supports the multi-vehicle household hypothesis for CVs and re-
mains a plausible source of at least some of the lower BEV mileage observed. Finally, there
is some evidence that the most recent BEV models from model year 2019 and on may be
driven more than previous model years, though the limitations of the listings data available
prevent a strong conclusion about this phenomenon. Regardless of the underlying causes to
lower BEV mileage, the much wider variance in observed VMT for CVs relative to BEVs
suggests that few BEVs are being used to replace higher-mileage CV trips and that BEVs
have been used more consistently among current owners.

This study provides an important context for modelers estimating the impacts of BEV
adoption and usage. Models that assume equal substitution between BEV and CV usage
are implicitly assuming an optimistic scenario that is inconsistent with historical usage.
Accounting for true BEV usage would lead to lower expected emissions reductions from BEVs
relative to CVs and lower electricity demand from BEVs?'. While it is certainly possible



that future BEVs may be driven similarly to CVs, such scenarios may require changes to
the operating environment, such as increased charging infrastructure, longer-range BEV
availability, and potentially higher gasoline prices.

Finally, our findings also contribute to prior research on relationships between range
and PEV usage. Prior studies suggests that range is a major factor restricting BEV uti-
lization332%4! While we cannot make a causal link between lower range and lower annual
mileage, we do observe a statistically significant relationship between range and annual VM'T
as well as evidence that this relationship may be non-linear. As prior studies have found,
BEV buyers exhibit a non-linear preference towards BEV range where the willingness to pay
for additional mileage declines with increasing range!*. Our study also reveals a similar non-
linear relationship where increasing driving range equates to an order of magnitude larger
increase in annual VMT for lower-range compared to higher-range BEVs, suggesting that
there may be a limit to how much increased range translates to increased VMT. Likewise,
results on operating costs are also consistent with prior research on “rebound” effects where
more efficient vehicles are driven further, at least partially replacing some of the emissions
and fuel savings from their higher efficiencies'®1>17. We find that when increasing operating
costs, less efficient vehicles are associated with a larger reduction in annual VMT compared
to more efficient vehicles like HEVs and BEVs.

This study has several important limitations. First, because the odometer readings are
taken from used vehicle listings, they do not reflect the VMT of vehicle owners that never
sell their vehicles. So long as the difference in VMT across powertrains does not vary
between used vehicles and vehicles that are never re-sold, then this feature of the data
should not impact our conclusions. Nonetheless, a plausible mechanism that could lead to
lower estimated BEV mileage (but perhaps not affect mature technologies like HEVs and
CVs) is if many of the BEV adopters discovered it was a poor fit for their needs and ended up
driving it less before selling it. Another considerable limitation is the lack of demographic and
household information about previous vehicle owner(s). It is certainly possible that the early
PEV adopters who originally purchased the PEVs in our sample could exhibit substantial
demographic differences, such as age, income, and the number of vehicles owned, compared
to the general CV driver population. Such differences could influence or explain the relative
differences in vehicle usage found in this study, and further research is needed to assess this
possibility. In addition, the linear models used in this study imply an assumption that miles
accumulate evenly and that vehicles are driven equally over their lifetimes. Although we find
this to be generally valid in aggregate measures over the age range used in this study (vehicles
between 2 to 9 years old), we acknowledge that changes in lifestyle and vehicle condition could
influence the usage of individual vehicles by their owners (which we cannot observe using
listings data) as well as the decision to sell or buy individual vehicles, inducing a selection
process that may match drivers of a certain behavior to particular vehicles or powertrains.
Finally, due to the nature of the data, older model year vehicles in the database appear in
larger numbers and across greater age ranges than newer model years, limiting the ability to
assess time trends. This is a fundamental limitation of using used vehicle listings as a data
source, and future studies that use the same approach will also be limited in their ability to
understand the behaviors of more recent vehicles compared to older ones.



Experimental procedures

Resource Availability

Lead contact

Further information and requests for resources and materials should be directed to and will
be fulfilled by the lead contact, John Paul Helveston (jph@gwu.edu).

Materials availability

This study did not generate new unique materials.

Data and code availability

All of the code used to process the data, estimate models, and produce all analyses and
figures are publicly available at https://doi.org/10.5281/zenodo.8371109. The vehicle
listings data that support the findings of this study are available from marketcheck.com, but
restrictions apply to the availability of these data, which were used under a license agreement
for the current study and so are not publicly available. A sample of the data is included in
the GitHub repository to aid in evaluating the calculations made in this study. The relevant
variables in the full original database can be provided on an individual bases for review
purposes only to reproduce the study results by contacting the lead contact. All other data
used in the study on vehicle specifications and fuel prices are publicly available and also
posted in the repository.

Data preparation

We use used vehicle listings provided by marketcheck.com as the primary source for odometer
readings. The primary interest of this study was comparing CV and BEV mileage. Unfor-
tunately, before 2020 there were few BEV SUVs available, and the majority of used BEV
SUVs in the listings data are Tesla Model X SUVs. Popular SUV BEVs models such as
Tesla Model Y were not available until later in 2020 and did not yet appear in the used
market in the listing database. No BEV pickup trucks were available in the database. As a
result, our primary analysis is on cars, but we also include an analysis of the limited num-
ber of SUVs as well. We limit our dataset to vehicle ages between 2 and 9 as fewer BEV
listings are available outside of this range (fewer vehicles are listed used within 2 years of
being new, and few used BEVs are older than 9 years old as of February 2022). We also
only include vehicle models that comprised at least 1% of the listings within each powertrain
as a practical compromise between including a sample that represents typical common cars
while remaining computationally reasonable. As shown in Extended Data Table S1, just 25
vehicle models comprise 59% of the CV listings; the remaining 41% is comprised of 852 ad-
ditional vehicle models. Including these vehicle models would require far more coefficients to
estimate (which is computationally expensive), and a considerable number of these vehicles
are exotic or luxury cars, which are less representative of the typical car market. While this
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1% rule resulted in the inclusion of only 59% of the CV listings (nearly 13 million listings),
it resulted in the inclusion of the vast majority of the other powertrains since they have far
fewer vehicle models (96.3% of the BEVs, 97.1% of the PHEVs, and 94.7% of the HEVs).

BEV and PHEV ranges as well as all vehicle efficiencies (miles per gallon for gasoline-
powered vehicles, and kWh per 100 miles for electricity-powered vehicles) are primarily from
fueleconomy.gov®, with a small amount of missing values added from carsheet.io®. Monthly
gasoline prices!'’ and annual average electricity prices? in different states are from the U.S.
Energy Information Administration (EIA). These data were joined onto the listings data
based on the year, make, model, and trim.

Operating costs

Operating costs are estimated based on vehicle efficiencies and fuel prices at the U.S. state
level. For gasoline and electricity prices, we compute the mean price over the age of the
vehicle in the state it was listed in using monthly gasoline prices and annual electricity
prices. Operating costs for CVs and HEVs are computed as 100 % p9° /9% where p® is
the mean gasoline price and e9% is the vehicle fuel economy in miles per gallon. For BEVs,
operating costs are computed as p°ec x ee¢ /100, where p is the mean electricity price and
e is the BEV efficiency in kWh per 100 miles. For PHEVSs, a utilization factor (0 to 1)
from fueleconomy.gov was used to compute the gas and electric portions of operating costs
using the respective equations above for each portion. Since our dataset only provides the
date and zipcode of the vehicle listing, we use this information as the proxy to actual vehicle
usage location and period.

Linear models

To quantify annual VMT for each powertrain, we first estimate a linear model of vehicle
mileage versus age interacted with the vehicle powertrain to identify differences between the
annual VMT slopes by powertrain (the models in Table 3). To estimate the model, we treat
each listing as an independent observation in the following model:

m = o+ Ba+ ypa + € (1)

where m is mileage (odometer readings in thousands of miles), a is age (in years), p is
a matrix of dummy-coded vehicle powertrain variables with the CV powertrain set as the
reference level, and € is the error term. The [ coefficient determines the annual VMT for
CV powertrains and the coefficients in 7 determine the difference in annual VMT for each
other powertrain (HEV, PHEV, and BEV). The only difference between models 1a and 1b
(and likewise 2a and 2b) is that the BEV powertrain is separated into Tesla and non-Tesla.

To further explore the heterogeneity within BEVs and PHEVSs, we estimate the following
model (the models presented in Tables 4 and 5):

m = a+ Ba+ dac + pard + pav + os + € (2)
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where m is mileage, a is age, c is operating cost (in cents per mile), r is electric driving range
(in miles), d is a matrix of dummy-coded variables determining the BEV range category (low
is 7 < 100, mid is 100 < r < 200, and high is the reference level at r > 200), v is a matrix of
dummy-coded vehicle model variables, s is a matrix of dummy-coded U.S. state variables,
and e is the error term. Note that the age term (a) is interacted with all variables except
states (s), and the range term (r) only applies to BEVs and PHEVs (Models 3a, 3b, 4a, and
4b). The d variables are only included in the BEV car regression (Model 3a) as a simplified
approach to allow for non-linear range effects. The decision to break BEV car ranges into
three categories was made because 1) it facilitates ease of interpretation (the coefficients can
be immediately understood), 2) there are three naturally-occurring groups in BEV car range
in the data (below 100 miles, between 100 to 200 miles, and above 200 miles).

For the NHTS model results in Extended Data Table S4, we estimate the following model
on CV and HEV cars:

m = a+ fa+ dac+ pad + pah + vy +os + € (3)

where m is mileage, a is age, ¢ is operating cost, d is a dummy-coded variable for whether
a car is a “secondary” car, h is a matrix of dummy-coded variables representing household
size, y is a matrix of dummy-coded variables representing the vehicle model year, and s is
a matrix of dummy-coded U.S. state variables.
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Figures and Tables
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Fig. 1 | Comparison of the median and interquartile ranges of car odometer readings by
powertrain and age. The solid line shows the median mileage and the bands reflect the 25th
and 75th percentiles. The same curve for CVs (in grey) is shown for comparison in each

sub-figure
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Fig. 2 | Scatterplot of vehicle odometer readings (thousands of miles) versus age (years) by vehicle powertrain. The red lines

are the best fit linear models for each powertrain (Model 1b for cars and 2b for SUVs), and the dotted lines are extrapolations
beyond the range of observed data.
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Fig. 3 | Distribution of operating costs across cars and SUVs in sample by powertrain.
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Estimated

Study Annual Sample Sample Data Data Source
VMT Location Size” Year(s)
Davis
(2019) 6,300 U.S. 436 2017 NHTS!
Burlig et al. . .
(2021)> 6,700 California 57,290 2014 - House'hf)ld
2017 electricity
meter readings
gg;)gi al. 8,838 Us. Unknown 2013 - Edmunds
2021 vehicle listings
Jia and
Chen 10,000 California 184 2019 2019
(2022)* California
Vehicle Survey
Tal et al. . .
(2020)1 12,522 California 100 2015 - Qn—board
2018 vehicle sensors
This 7,165 US. 175,773 2016 - Used vehicle
Study (cars) (cars) 2022 listings
(2023) %&?32) 12,623
(SUVs)

"BEV sedans only.

fNational Household Travel Survey '3.

Table 1 | Summary of estimated BEV mileage from previous studies.
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Conventional Hybrid PHEV BEV BEV
(Non- (Tesla)
Tesla)

Cars
Vehicle listings 11,643,966 562,747 128,850 118,911 57,193
Vehicle models 25 15 7 10 2
Miles (1,000)

mean 51 54 43 27 36

sd 31 33 25 15 21
Age (years)

mean 4.3 4.5 4.1 4.1 4.2

sd 1.7 1.7 1.4 1.4 1.5
Price ($USD)

mean 16,205 15,943 19,311 15,025 50,181

sd 6,814 4,932 12,820 9,287 12,380
FElectric Range (miles)

mean - - 32 104 251

sd - - 14 49 50

min - - 11 58 139

max - - 53 259 402
SUVs
Vehicle listings 11,333,997 44,190 0 1,732 11,511
Vehicle models 35 8 - 1 2
Miles (1,000)

mean 51 46 - 13 33

sd 31 28 - 9 18
Age (years)

mean 4.2 4.1 - 2.7 3.8

sd 1.6 1.6 — 0.4 1
Price ($USD)

mean 21,413 29,049 - 61,779 71,613

sd 7,788 10,248 - 6,576 14,135
FElectric Range (miles)

mean - - - 204 266

sd - - - 0 31

min - - - 204 200

max - - - 204 371

Table 2 | Summary statistics of used car and SUV listings.
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SUVs

Model 1a Model 1b Model 2a Model 2b
Intercepts
(Intercept) 0.716** 0.716** —4.104* —4.104**
(0.019) (0.019) (0.018) (0.018)
powertrain_hybrid —0.124 —0.124 0.634* 0.634*
(0.093) (0.093) (0.295) (0.295)
powertrain_phev —4.005%** —4.005%**
(0.203) (0.203)
powertrain_bev —0.302 —3.081***
(0.177) (0.710)
powertrain_bev_non_tesla 0.777*** —6.371
(0.219) (3.657)
powertrain_bev_tesla —1.291** 2.722%
(0.299) (0.800)
age_years 11.642** 11.642%** 12.979** 12.979***
(0.004) (0.004) (0.004) (0.004)
Interactions with age_years
powertrain_hybrid 0.299** 0.299*** —0.853** —0.853***
(0.019) (0.019) (0.068) (0.068)
powertrain_phev —0.529*** —0.529***
(0.046) (0.046)
powertrain_bev — 4477 —2.795***
(0.040) (0.186)
powertrain_bev_non_tesla —5.407** —4.425"
(0.050) (1.344)
powertrain_bev_tesla —2.856"** —4.009***
(0.067) (0.202)
Num. obs. 12,511,667 12,511,667 11,391,430 11,391,430
R? 0.405 0.406 | 0.480 0.480

***p < 0.001; **p < 0.01; *p < 0.05

Table 3 | Model coefficients from linear models of vehicle mileage versus age with power-
train interactions. Mileage is in units of 1,000 miles.
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Powertrain: Model 3a Model 3b Model 3c Model 3d
BEV PHEV Hybrid Conventional
age_years 5.835™ 12.902*** 13.3727 11.518**
(0.422) (0.399) (0.356) (0.033)
Operating cost and range interactions with age_years
cents_per_mile —0.059** 0.522*** 0.071* —0.140™
(0.020) (0.039) (0.030) (0.002)
range 0.009** —0.182***
(0.001) (0.011)
range*range_low 0.055**
(<100mi) (0.010)
range*range_mid 0.033***
(100 - 200mi) (0.009)
Select model interactions with age_years
Reference Nissan Toyota Honda BMW
level: Leaf Prius Prime Accord 3 Series
bolt ev —5.672%*
(0.293)
model 3 1.056**
(0.292)
model s 0.538*
(0.244)
i8 —9.179***
(0.338)
volt 2.108**
(0.288)
civic 1.966*** 1.723*
(0.393) (0.026)
fusion hybrid —3.510"
(0.334)
corolla 0.359***
(0.028)
mustang —1.418"**
(0.031)
outback 3.178**
(0.031)
Num. obs. 175,773 128,850 528,674 11,643,966
R? 0.412 0.460 0.394 0.449

*p < 0.001; **p < 0.01; *p < 0.05

Table 4 | Coefficients from linear models estimated on each separate powertrain with state
and model year fixed effects (cars only). Age is interacted with operating costs (in cents
per mile), vehicle model, and electric driving range for BEVs and PHEVs. For conciseness,
intercept terms are omitted and only vehicle model interactions with the highest and lowest

estimated effects are included. Mileage is in units of 1,000 miles.
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Powertrain: Model 4a Model 4b Model 4c
BEV Hybrid Conventional
age_years 12.104** 12.867** 16.644***
(1.885) (0.979) (0.049)
Operating cost and range interactions with age_years
cents_per_mile —0.343*** —0.257*** —0.279***
(0.095) (0.072) (0.003)
range —0.005
(0.008)
Select model interactions with age_years
Reference Audi Porsche Toyota
level: e-tron Cayenne 4runner
model x 0.477
(0.988)
model y 4.926
(9.001)
escape —7.588*** —1.188***
(0.651) (0.030)
highlander 2,705 —0.328**
(0.399) (0.033)
ravd 4.450 1.847**
(2.447) (0.146)
expedition 2.096™*
(0.058)
wrangler —3.475"
(0.039)
Num. obs. 13,243 44,190 11,333,997
R? 0.376 0.492 0.519

***p < 0.001; **p < 0.01; *p < 0.05

Table 5 | Coefficients from linear models estimated on each separate powertrain with state
and model year fixed effects (SUVs only). Age is interacted with operating costs (in cents
per mile), vehicle model, and electric driving range for BEVs. No PHEVs observations were
available. For conciseness, intercept terms are omitted and only vehicle model interactions
with the highest and lowest estimated effects are included. Mileage is in units of 1,000 miles.
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Supplemental information

125,000

100,000 Conventional
[5)
g 75,000 Tesla BEV
=
@
=
S 50,000 Non-Tesla BEV
>

25,000

0

O

5 6 7 8
Vehicle age (years)

N
w
S

Fig S1 | Comparison of the median and interquartile ranges of car odometer readings by
powertrain and age. The solid line shows the median mileage and the bands reflect the 25th
and 75th percentiles. CVs are in grey while Tesla BEVs are in blue and Non-Tesla BEVs
are in green.
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Table S1 | Counts of car model listings included in analyses.

Powertrain Make Model Count Percent Cumulative
Percent

Nissan Leaf 84,144 0.260 0.260
Chevrolet Bolt 48,801 0.151 0.412
Tesla Model S 48,773 0.151 0.562
Tesla Model 3 39,783 0.123 0.686
BMW I3 38,136 0.118 0.804
Fiat 500e 12,971 0.040 0.844

BEV Volkswagen  e-Golf 8,747 0.027 0.871
KIA Niro 7,350 0.023 0.894
Porsche Taycan 5,374 0.017 0.910
Chevrolet Spark 4,706 0.015 0.925
KIA Soul 4,360 0.013 0.938
Ford Focus 4,152 0.013 0.951
Smart Fortwo 3,683 0.011 0.963
Chevrolet Volt 80,282 0.399 0.399
Ford Fusion 49,474 0.246 0.645

Energi
Toyota Prius 41,228 0.205 0.850
Prime

Toyota Prius 13,639 0.068 0.918

PHEV Plug-In
BMW i8 6,014 0.030 0.948
Cadillac ELR 2,320 0.012 0.960
Hyundai Sonata 2,294 0.011 0.971
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Table S1 | Counts of car model listings included in analyses. (cont.)

Powertrain Make Model Count Percent Cumulative
Percent
Toyota Prius 424,619 0.379 0.379
Ford Fusion 130,801 0.117 0.495
Toyota Prius C 68,535 0.061 0.557
Toyota Camry 64,860 0.058 0.614
Hyundai Sonata 58,011 0.052 0.666
Lexus ct 42,354 0.038 0.704
Lincoln MKZ 36,826 0.033 0.737
Ford Fusion 30,219 0.027 0.764
Honda Accord 28,161 0.025 0.789
HYBRID Honda Insight 23,201 0.021 0.809
KIA Niro 21,094 0.019 0.828
KIA Optima 20,965 0.019 0.847
Toyota Prius V 20,144 0.018 0.865
Lexus ES 18,261 0.016 0.881
Honda Civic 18,253 0.016 0.898
Toyota Avalon 16,803 0.015 0.913
Buick Lacrosse 16,234 0.014 0.927
Chevrolet Malibu 11,575 0.010 0.937
Honda CR-Z 11,236 0.010 0.947
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Table S1 | Counts of car model listings included in analyses. (cont.)

Powertrain Make Model Count Percent Cumulative
Percent
Toyota Camry 1,809,448 0.050 0.050
Honda Accord 1,761,206 0.049 0.099
Honda Civic 1,670,320 0.046 0.145
Toyota Corolla 1,539,561 0.043 0.188
Nissan Altima 1,369,133 0.038 0.226
Nissan Sentra 1,055,638 0.029 0.255
Ford Fusion 1,055,271 0.029 0.284
Chevrolet Malibu 976,393 0.027 0.311
Hyundai Elantra 968,141 0.027 0.338
Hyundai Sonata 930,253 0.026 0.364
Chevrolet Cruze 862,213 0.024 0.388
Ford Mustang 746,479 0.021 0.409
CV BMW 3 Series 715,274 0.020 0.428
Volkswagen  Jetta 648,119 0.018 0.446
Subaru Outback 608,624 0.017 0.463
KIA Optima 608,198 0.017 0.480
KIA Soul 550,557 0.015 0.495
Dodge Charger 508,984 0.014 0.509
Chevrolet Camaro 490,499 0.014 0.523
Mazda Mazda3 479,885 0.013 0.536
KIA Forte 444,832 0.012 0.549
Dodge Challenger 421,275 0.012 0.560
BMW 5 Series 379,421 0.011 0.571
Nissan Maxima 372,633 0.010 0.581
Lexus ES 368,555 0.010 0.591
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Table S2 | Counts of SUV model listings included in analyses.

Powertrain Make Model Count Percent Cumulative
Percent
Tesla Model 16,246 0.194 0.194
X
BEV Audi e-tron 10,826 0.129 0.323
Tesla Model 5,261 0.063 0.704
Y
Toyota RAV4 47,039 0.240 0.240
Lexus RX 38,518 0.197 0.437
Toyota Highlander 28,462 0.145 0.582
Ford Escape 9,165 0.047 0.683
BMW X5 6,238 0.032 0.801
HYBRID Subaru XV 6,005 0.031 0.832
Crosstrek
Porsche Cayenne 4,538 0.023 0.855
Lexus NX 3,904 0.020 0.875
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Table S2 | Counts of SUV model listings included in analyses. (cont.)

Powertrain Make Model Count Percent Cumulative
Percent

Honda CR-V 1,706,212 0.049 0.049
Toyota RAV4 1,507,128 0.043 0.092
Ford Escape 1,488,216 0.043 0.135
Nissan Rogue 1,073,001 0.031 0.166
Chevrolet Equinox 930,195 0.027 0.192
Jeep Grand 927,907 0.027 0.219

Chero-

kee
Toyota Highlander 882,930 0.025 0.244
Jeep Cherokee 877,204 0.025 0.269
Chevrolet Traverse 823,064 0.024 0.293
Jeep Wrangler 799,060 0.023 0.316

Unlim-

ited
Honda Pilot 777,143 0.022 0.338
Ford Explorer 755,941 0.022 0.360
KIA Sorento 641,640 0.018 0.378
Toyota 4runner 641,617 0.018 0.396
Ford Edge 630,817 0.018 0.415
Lexus RX 605,245 0.017 0.432
Subaru Forester 587,590 0.017 0.449
Hyundai Tucson 580,673 0.017 0.465

(G4 Hyundai Santa 577,097 0.017 0.482

Fe
Jeep Compass 566,082 0.016 0.498
Gmc Acadia 529,328 0.015 0.513
Nissan Pathfinder 480,441 0.014 0.527
KIA Sportage 416,946 0.012 0.539
Buick Enclave 406,382 0.012 0.551
Mazda CX-5 395,472 0.011 0.562
Dodge Journey 382,336 0.011 0.573
Volkswagen  Tiguan 382,204 0.011 0.584
Gmc Terrain 372,629 0.011 0.595
Acura MDX 371,089 0.011 0.605
Chevrolet Trax 361,101 0.010 0.616
Buick Encore 361,083 0.010 0.626
Nissan Murano 360,982 0.010 0.636
Jeep Patriot 359,392 0.010 0.647
Ford Expedition 355,704 0.010 0.657
Jeep Wrangler 350,373 0.010 0.667
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Table S2 | Counts of SUV model listings included in analyses. (cont.)

Powertrain Make Model Count Percent Cumulative
Percent
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Powertrain: Model ba Model 5b Model 5¢ Model 5d
age_years 5.835%* 6.639** 1.813* 3.746%
(0.422) (0.449) (0.573) (0.632)
age_years> —0.093*** —0.156***
(0.018) (0.022)
Operating cost and range interactions with age_years
cents_per_mile —0.059** —0.058** —0.033 —0.033
(0.020) (0.020) (0.022) (0.022)
range 0.009*** 0.007*** 0.016** 0.016**
(0.001) (0.001) (0.002) (0.002)
range*range low 0.055"** 0.034** —0.031 —0.038*
(<100mi) (0.010) (0.011) (0.016) (0.016)
range*range_mid 0.033*** 0.032** —0.016 —0.014
(100-200mi) (0.009) (0.009) (0.010) (0.010)

Select model interactions with age_years (reference level: Nissan Leaf)

bolt ev —5.672* —5.495* —4.582"* —4.507
(0.293) (0.295) (0.352) (0.352)
model 3 1.056™* 1.200%** 1.425** 1.512%*
(0.292) (0.293) (0.328) (0.328)
model s 0.538* 0.968"** 1.240** 1.340%*
(0.244) (0.257) (0.327) (0.327)
Model year interactions with age_years (reference level: my2012)
my2013 1.431* 1.311
(0.158) (0.159)
my2014 1.852%* 1.580***
(0.195) (0.199)
my2015 1.626*** 1.175%
(0.194) (0.204)
my2016 1.097*** 0.473*
(0.200) (0.218)
my2017 0.184 —0.616*
(0.237) (0.261)
my2018 1.531*** 0.597
(0.296) (0.323)
my2019 4.146* 3.021%
(0.469) (0.494)
Num. obs. 175,773 175,773 171,701 171,701
R? 0.412 0.413 0.412 0.412

***p < 0.001; **p < 0.01; *p < 0.05

Table S3 | Coefficients from linear models estimated on BEV cars. Age is interacted
with operating costs (in cents per mile), vehicle model, electric driving range, and vehicle
model year fixed effects. For conciseness, intercept terms are omitted and only vehicle model
interactions with the highest and lowest estimated effects are included. Mileage is in units
of 1,000 miles. 29



Powertrain: Model 6a Model 6b Model 6¢
Conventional Hybrid Conventional
age_years 12.839** 15.157 12.332%*
(0.875) (3.964) (0.880)
Interactions with age_years
cents_per_mile —0.243*** —0.378 —0.239***
(0.040) (0.346) (0.040)
secondary vehicle —1.063*** —2.169* —1.586™**
(0.180) (0.849) (0.309)
HHSIZE 3 1.419** 1.096 1.501%**
(0.230) (1.035) (0.232)
HHSIZE 4 1.541** 1.356 1.627*
(0.265) (1.195) (0.268)
HHSIZE 5 2.644** 2.019 2.676"*
(0.447) (2.248) (0.451)
HHSIZE 6+ 0.340 0.661 0.446
(0.703) (4.386) (0.711)
Num. obs. 32,169 2,139 32,169
R? 0.368 0.409 0.358

***p < 0.001; **p < 0.01; *p < 0.05

Table S4 | Coefficients from linear models estimated on the 2017 NHTS data with state
and model year fixed effects (cars only). Age is interacted with operating costs (in cents per
mile), dummy coefficients for household size, and a dummy coefficient for whether the car
is a “secondary” vehicle, defined as any vehicle with less than the highest odometer reading
in a household in Models 6a and 6b, and any vehicle with less than the top two highest
odometer readings in a household in Model 6¢. For conciseness, intercept terms are omitted.
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