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Highlights
Examining odometer readings of used vehicles from 2016 to 2022, this study

reveals that battery electric vehicles (BEVs) are driven less annually than

conventional gasoline vehicles (CVs). Tesla BEVs accumulate more miles than their

non-Tesla counterparts, and larger BEV ranges correlate with higher annual

mileage, though with diminishing returns with increased driving ranges. With

current BEV usage lagging behind CVs, infrastructural upgrades and longer BEV

ranges may be required for parity in usage patterns.
BEVs accumulate fewer annual

miles than CVs: 7,165 versus

11,642 (cars)

Tesla BEVs have higher annual

miles than non-Teslas: 8,786

versus 6,235 (cars)

Larger range BEVs are driven

more, though diminishing returns

are noticed

CV mileage shows higher

sensitivity to cost increases than

BEV mileage
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Quantifying electric vehicle mileage
in the United States

Lujin Zhao,1 Elizabeth R. Ottinger,1 Arthur Hong Chun Yip,2 and John Paul Helveston1,3,*
CONTEXT & SCALE

Mass adoption of plug-in electric

vehicles (PEVs) is a critical

component of plans to

decarbonize the US energy

system. Understanding current

PEV usage helps inform future

planning. Analyzing the odometer

readings from millions of used

cars and SUVs listed between

2016 and 2022 reveals that

battery electric vehicles (BEVs)

have accumulated fewer annual

miles than conventional gasoline

vehicles (CVs): 7,165 compared

with 11,642 for cars, and 10,184

compared with 12,979 for SUVs.

Tesla BEVs have accumulated

more annual miles than non-

Teslas: 8,786 compared with

6,235 for cars and 8,970

compared with 8,553 for SUVs.

BEVs with larger ranges were

driven more, but increasing range

has diminishing returns in terms of

higher annual mileage. BEV

sensitivity to operating costs was

also less than other powertrains:

for every 1 cent/mile cost

increase, CV cars were associated

with 140 fewer annual miles

compared with only 59 for BEVs.

These results suggest that

assuming equal usage between

BEVs and CVs is, at least in the

short term, an optimistic

assumption. Although future BEV

usage might mirror that of CVs

with more charging infrastructure,

longer-range BEVs, or higher gas

prices, current BEV usage patterns

are well below those of CVs.
SUMMARY

We deliver comprehensive, high-resolution estimates of annual
vehicle miles traveled (VMT) in the United States for battery electric
vehicles (BEVs), plug-in hybrid electric vehicles (PHEVs), hybrid
electric vehicles (HEVs), and conventional gasoline vehicles (CVs)
using odometer readings from 12.5 million used cars and 11.4
million used sport utility vehicles (SUVs) listed between 2016 and
2022. Although CVs, HEVs, and PHEVs are driven similarly, BEV
cars average 4,477 fewer miles annually. Teslas are driven more
than other BEVs, yet still less than CVs. Similar differences in
VMT across powertrains exist for SUVs, though SUVs are driven
more than cars in all powertrains. Driving range has a non-linear
relationship with VMT for BEV cars: every 10 additional miles of
range equates to 631 additional annual miles for low-range BEVs
(<100 miles of range) but only 85 annual miles for high-range
BEVs (>200 miles of range). BEV cars also show less sensitivity in
annual VMT to operating cost changes compared with CVs. Results
provide an important context for modelers anticipating increased
electricity consumption from PEV adoption.

INTRODUCTION

Mass adoption of plug-in electric vehicles (PEVs) is a critical component of plans to

decarbonize the United States (US) energy system.1,2 As a result, PEVs are antici-

pated to be one of the largest sources of new electricity demand in coming de-

cades.3 Because the scale of this electricity consumption hinges on PEV utilization

patterns, precise estimates of PEV vehicle miles traveled (VMT) are crucial for policy-

makers and modelers preparing for a world with more PEVs.

Many studies that attempt to quantify the electricity demand from PEV usage (and

the associated environmental impacts) assume equal VMT between PEVs and gaso-

line-powered conventional gasoline vehicles (CVs),4–9 but this assumption could

lead to unrealistic conclusions if actual VMT differs. Likewise, the environmental ben-

efits from PEVs scale with usage,10 and those benefits may be over-estimated if true

usage is lower than assumed. Accurate VMT estimates may also become important

for future government budget planning as scholars are increasingly calling to replace

the gasoline tax with a vehicle mileage tax.11–13 Finally, VMT is informative for as-

sessing how well PEVs are performing as a direct substitute for CVs,14 which has

important implications for their overall adoption rate.

Despite the significance of such an important metric, prior published estimates of

PEV VMT have conflicting results, concluding that battery electric vehicle (BEV)

cars are driven as little as 6,300 annual miles15 and as much as 12,522 annual miles.16

Table 1 summarizes prior studies that have attempted to quantify BEV VMT. One
Joule 7, 1–15, November 15, 2023 ª 2023 Elsevier Inc. 1



Table 1. Summary of estimated BEV mileage from previous studies

Study Estimated annual VMT Sample location Sample sizea Data year(s) Data source

Davis15 6,300 US 436 2017 NHTSb

Burlig et al.22 6,700 California 57,290 2014–2017 household electricity meter readings

Rush et al.23 8,838 US unknown 2013–2021 Edmunds vehicle listings

Jia and Chen24 10,000 California 184 2019 2019 California Vehicle Survey

Chakraborty et al.25 11,250 California 2,373 2015–2019 California Vehicle Survey

Tal et al.16 12,522 California 100 2015–2018 on-board vehicle sensors

This study (2023) 7,165 (cars) US 175,773 (cars) 2016–2022 used vehicle listings

10,587 (SUVs) 12,623 (SUVs)
aBEV cars only.
bNational Household Travel Survey.17
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data source used in prior studies is the National Household Travel Survey (NHTS), a

relatively large-scale and nationally representative dataset collected by the Federal

Highway Administration.17 Analyses of the latest NHTS suggest that BEVs are driven

approximately 66% asmuch as CVs on an annual basis.15,18 Nonetheless, despite the

survey’s nationwide reach, only 436 responses were obtained from BEV owners, and

the survey data (from 2017) is now relatively outdated. As a result, the relatively

lower BEV mileage estimates from these studies may not be representative of how

BEVs are being driven today, both because earlier BEV generations had significantly

shorter driving ranges than today’s BEVs19 and because the earlier generation of

BEV owners may have substituted some trips with other household vehicles.19–21

Another approach to estimating VMT is to extrapolate it from related data sources,

such as electricity meter readings. Burlig et al.22 collected home meter readings

from 2014 to 2017 in California and combined them with vehicle registration

data to create a sample of 57,290 BEVs—the largest-scale sample of BEVs in a

related study to date. Using a discrete event approach, they analyzed the increased

electricity consumption after households purchased a BEV and then extrapolated

the results into the expected miles driven. Their results suggest BEVs were driven

6,700 miles on average each year. Although this estimate benefits from a large

sample size, the results rely on assumptions about where drivers charged their ve-

hicles and may underestimate true VMT if more charging was done outside of the

home.22,26 These data also only represent BEVs in California operating between

2014 and 2017, which are neither nationally representative nor up to date, given

the advances in BEV technology and landscape since then.

To overcome the limitations of indirectly measured VMT, some researchers have

used on-board vehicle sensors to directly observe real-world BEV usage

patterns.20,27–30 In the detailed analysis by Tal et al.16 on the driving patterns of

BEV and plug-in hybrid electric vehicle (PHEV) owners in California, data loggers

were installed on PEVs in 264 households in California. After 1 year of observation,

the average annual VMT for BEVs was 12,522 miles—nearly double the estimate

from Burlig et al.22 for California BEV owners in the same time period. The study

also concluded that BEVs with higher ranges were driven further than those with

lower ranges and that BEV owners tended to substitute longer-distance trips with

other household CVs.16 Other similar studies that use sensors to directly measure

VMT also found relatively higher BEV VMT than the studies that indirectly measured

VMT.20,24,28 Nonetheless, despite the high data quality of these studies, the samples

obtained are relatively small (100–200 participants) and limited to California house-

holds. These studies may also suffer from selection effects if participants were unusu-

ally high-mileage drivers.
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In this study, we attempt to overcome these prior limitations by using a direct mea-

surement of mileage (odometer readings) collected from a large, nationally repre-

sentative dataset of used vehicle listings in the US. Used vehicle listings have

been used before to assess annual VMT; a 2022 report by Argonne National Labo-

ratory estimated annual BEV cars drove 8,838 miles per year on average, although

the data used were median mileage estimates from Edmunds.com rather than raw

odometer readings.23 The listing data used in this study are licensed from

marketcheck.com, a market research firm that collects vehicle listing data from indi-

vidual dealership websites on a daily basis. These data include the listing date, deal-

ership address, and data about the vehicle, including the make, model, trim, model

year, listing price, powertrain, and (most crucially) the odometer reading. Additional

data on BEV and PHEV electric driving ranges as well as estimated operating costs

for all vehicles were added to control these important features. BEV and PHEV range

as well as all vehicle efficiencies (miles per gallon for gasoline-powered vehicles, and

kWh per 100 miles for electricity-powered vehicles) are primarily from fueleconomy.

gov,31 with a small number of missing values added from carsheet.io.32 Monthly gas-

oline prices33 and annual average electricity prices34 in different states are from the

US Energy Information Administration (EIA). These prices were combined with

vehicle efficiencies to compute an estimated average operating cost (in cents per

mile) over the vehicle’s life up until being listed in the used market. For PHEVs, a uti-

lization factor (0–1) from fueleconomy.gov was used to compute the gas and electric

portions of operating costs (a more detailed description of the operating cost calcu-

lation is included in the experimental procedures).

We focus on car and sport utility vehicle (SUV) listings since few BEV pickups were

listed in the time period captured in the dataset (January 2016 to February 2022).

In addition, we censored the data to only include vehicles with ages between 2

and 9 years as few BEV listings were present in the dataset outside of this period

and because mileage may accumulate differently for used vehicles listed before 2

years of age (e.g., vehicles listed quickly after being bought new may need repairs

and thusmay have fewer miles than otherwise is typical). We also only include vehicle

models that comprised at least 1% of the listings within each powertrain as a prac-

tical compromise between including a representative sample of vehicles while re-

maining computationally reasonable as the majority of the listings are composed

of a smaller number of models and a large number of models have very few listings

(e.g., exotic cars). The final dataset includes 12,511,667 unique used car listings and

11,391,430 unique used SUV listings from 66,641 dealerships. Table 2 summarizes

the dataset by powertrain and vehicle type (car or SUV), with Tesla and non-Tesla

BEVs separated, given Tesla’s unique prominence and features in the BEV market,

including higher-range vehicles and a private fast-charging network. Extended

data Tables S1 and S2 summarize each car and SUV model included in our analyses,

respectively.
RESULTS

Using odometer readings to model vehicle mileage

Figure 1 compares the rate of mileage accumulation of CV cars with that of hybrid

electric vehicle (HEV), PHEV, and BEV cars, where the median (solid lines) and inter-

quartile ranges (bands) of odometer readings were computed for all listings in each

month of age. Although HEVs and PHEVs accumulate miles at a relatively similar

slope to CVs, BEVs appear to be driven significantly less, a finding consistent with

several previous studies.15,22,24 Extended data Figure S1 show the separate curves

for Tesla and non-Tesla BEVs.
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Table 2. Summary statistics of used car and SUV listings

Conventional Hybrid PHEV BEV (non-Tesla) BEV (Tesla)

Cars

Vehicle listings 11,643,966 562,747 128,850 118,911 57,193

Vehicle models 25 15 7 10 2

Miles (1,000)

Mean 51 54 43 27 36

SD 31 33 25 15 21

Age (years)

Mean 4.3 4.5 4.1 4.1 4.2

SD 1.7 1.7 1.4 1.4 1.5

Price ($USD)

Mean 16,205 15,943 19,311 15,025 50,181

SD 6,814 4,932 12,820 9,287 12,380

Electric range (miles)

Mean – – 32 104 251

SD – – 14 49 50

Min – – 11 58 139

Max – – 53 259 402

SUVs

Vehicle listings 11,333,997 44,190 0 1,732 11,511

Vehicle models 35 8 – 1 2

Miles (1,000)

Mean 51 46 – 13 33

SD 31 28 – 9 18

Age (years)

Mean 4.2 4.1 – 2.7 3.8

SD 1.6 1.6 – 0.4 1

Price ($USD)

Mean 21,413 29,049 – 61,779 71,613

SD 7,788 10,248 – 6,576 14,135

Electric range (miles)

Mean – – – 204 266

SD – – – 0 31

Min – – – 204 200

Max – – – 204 371
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To quantify this difference, we estimate a linear model of odometer readings versus

age (in years) interacted with the vehicle powertrain to identify differences between

the annual VMT slopes by powertrain. Table 3 shows the estimation results. Models

1a and 2a pool all BEVs together, andmodels 1b and 2b separate the BEVs into Tesla

and non-Tesla, under the expectation that Teslas would be driven differently, given

their higher driving ranges and well-established charging infrastructure. For cars, CV

VMT increases on average by 11,642 miles per year. Although HEV cars are driven

slightly more at 11,941 miles per year and PHEVs slightly less at 11,113 miles per

year, BEVs are driven substantially less at just 7,165 miles per year (approximately

39% less than CVs). Tesla BEV cars are driven more at 8,786 annual miles compared

with just 6,235 annual miles for non-Teslas, but still approximately 25% less than CVs

annually. Similar differences in VMT across powertrains exist for SUVs, although

SUVs are driven more than cars in all powertrains with annual mileages of 12,979

for CVs, 12,126 for HEVs, 8,970 for Tesla BEVs, and 8,553 for non-Tesla BEVs.

Figure 2 shows the odometer readings versus age from every listing with the result-

ing slope from models 1b and 2b overlaid. The figure illustrates that in addition to
4 Joule 7, 1–15, November 15, 2023



Figure 1. Comparison of the median and interquartile ranges of car odometer readings by powertrain and age

The solid line shows the median mileage and the bands reflect the 25th and 75th percentiles. The same curve for CVs (in gray) is shown for comparison in

each sub-figure.
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having a lower annual VMT, BEVs also appear to have less variance in mileage accu-

mulation compared with CVs and HEVs, with root mean square error measures of

23.8 for CV cars and 14.7 for BEV cars on separate models estimated on each power-

train. It is clear that BEVs are not yet being used as substitutes for many CV trips and,

in particular, high-mileage drivers. Nonetheless, there are observations of higher-

mileage BEV users in the dataset. A best-fit line using only the top 10% of the highest

mileage BEV cars in each month of age (17,611 BEVs) has a slope of 12,135 annual

miles—higher than the average slope for all CV users. Across the sample of CVs, 46%

of the observations (5,365,367 CVs) have odometer readings at or below this

annual VMT.

To further investigate relationships between annual VMT and other features, we es-

timate four additional models (one for each powertrain) for cars and SUVs, shown in

Tables 4 and 5. To understand the relationship between BEV driving range and

annual VMT, we divide the BEV cars into three groups based on natural clusters in

the data: low-range (<100 miles), mid-range (between 100 and 200 miles), and

high-range (>200 miles). For BEV SUVs, we ignore this clustering as the sample con-

tains only three unique vehicle models (the Tesla models X and Y, and the Audi

e-tron). Results suggest that additional BEV driving range matters much more for

lower-range cars compared with higher-range cars: every 10 additional miles of

range equates to 631 additional annual miles for low-range BEVs, 412 additional

annual miles for mid-range BEVs, and only 85 annual miles for high-range BEVs.

This suggests that there may be limits to achieving higher annual VMT from

increasing range alone. The Tesla coefficients in model 3a are also noteworthy as

they are the highest among the BEV car models. Even after controlling for Tesla’s

higher driving ranges, model 3a suggests that Teslas are driven further at 1,056

and 538 more annual miles relative to a Nissan Leaf for the model 3 and model S,

respectively. Although similarly large differences are also observed across models

in other powertrains, Teslas are the only BEVs in our sample that have access to a

well-established fast-charging network across the US, enabling Tesla drivers to

travel longer distances and encouraging long-distance drivers to purchase Tesla

BEVs over other alternatives.

Operating cost is another important feature explored in the models in Table 4. We

find that for cars, BEV VMT is less sensitive to changes in operating cost compared

with other powertrains: for every 1 cent per mile increase in operating costs, CVs are
Joule 7, 1–15, November 15, 2023 5



Table 3. Model coefficients from linear models of vehicle mileage versus age with powertrain interactions

Cars SUVs

Model 1a Model 1b Model 2a Model 2b

Intercepts

(Intercept) 0.716*** ð0:019Þ 0.716*** ð0:019Þ �4.104*** ð0:018Þ �4.104*** ð0:018Þ
Powertrain_hybrid �0:124 ð0:093Þ �0:124 ð0:093Þ 0.634* ð0:295Þ 0.634* ð0:295Þ
Powertrain_PHEV �4.005*** ð0:203Þ �4.005*** ð0:203Þ – –

Powertrain_BEV �0:302 ð0:177Þ – �3.081*** ð0:710Þ –

Powertrain_BEV_non_Tesla – 0.777*** ð0:219Þ – �6:371 ð3:657Þ
Powertrain_BEV_Tesla – �1.291*** ð0:299Þ – 2.722*** ð0:800Þ
Age_years 11.642*** ð0:004Þ 11.642*** ð0:004Þ 12.979*** ð0:004Þ 12.979*** ð0:004Þ
Interactions with age_years

Powertrain_hybrid 0.299*** ð0:019Þ 0.299*** ð0:019Þ �0.853*** ð0:068Þ �0.853*** ð0:068Þ
Powertrain_PHEV �0.529*** ð0:046Þ �0.529*** ð0:046Þ – –

Powertrain_BEV �4.477*** ð0:040Þ – �2.795*** ð0:186Þ –

Powertrain_BEV_non_Tesla – �5.407*** ð0:050Þ – �4.425*** ð1:344Þ
Powertrain_BEV_Tesla – �2.856*** ð0:067Þ – �4.009*** ð0:202Þ
Number of observations 12,511,667 12,511,667 11,391,430 11,391,430

R2 0.405 0.406 0.480 0.480

Mileage is in units of 1,000 miles. *** p < 0.001, **p < 0.01, *p < 0.05. Standard errors are presented in parentheses.
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driven 140 fewer miles, but BEVs, just 59 fewer miles per year. This is an intuitive

finding consistent with prior research that has found drivers have higher elasticity

to gasoline prices than to electricity prices.35,36 Gasoline prices are also heavily

advertised on roads, and drivers interact with them at each refueling, increasing their

salience. Electricity is observed less frequently (usually via a monthly utility bill), and

the total electricity cost is not itemized, making vehicle charging costs less obvious.

Finally, since BEVs are much more efficient than other powertrains, drivers may be

less sensitive to increases in electricity prices. Figure 3 shows the distribution of

operating costs across all cars and SUVs in our sample. For both cars and SUVs,

the highest operating cost BEV is near the lower bound of the interquartile range

of operating costs for the CVs.

Although a positive sign on the operating cost term for PHEV cars is unexpected,

there are several reasons that could explain this outcome. First, our estimate of oper-

ating costs for PHEVs may be inconsistent with true costs for PHEV owners. This

could be due to the assumptions used to compute operating costs, which are

aligned with the calculations made by the Department of Energy’s fueleconomy.

gov31 or due to a mismatch between these assumptions and true user behavior. Prior

research has found that shorter-range PHEVs tend to be charged less frequently and

as much as one-third of the PHEV owners may rarely charge their vehicle.37 If the esti-

mated operating costs for certain PHEVs are misaligned with their true costs while

others are aligned, then estimated outcomes could vary substantially. Another

possible explanation is the potential for intra-household substitution for multi-

vehicle households, that is, households that own a PHEV and CV may tend to drive

the PHEV more often than the CV if gasoline prices are higher, leading to a positive

relationship between mileage and operating cost. For these reasons, we caution

drawing conclusions from the operating cost coefficients for PHEVs in this analysis.
Exploring low BEV mileage

The low BEV mileage observed in the listing data could be the result of a number of

factors. Although fully explaining the underlying causes is not possible with the
6 Joule 7, 1–15, November 15, 2023
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Figure 2. Scatterplot of vehicle odometer readings (thousands of miles) versus age (years) by vehicle powertrain

The red lines are the best-fit linear models for each powertrain (model 1b for cars and model 2b for SUVs), and the dotted lines are extrapolations

beyond the range of observed data.
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listings data alone, we conduct additional analyses to provide some suggestive ev-

idence and greater context for future studies to build upon.

Time effects

Thefirst additional analysis is toexaminewhetherBEVmileage is changingover time.The

availability of longer-range BEV models and the construction of charging infrastructure

have both increased substantially during the period our data captures; as a result, it is

reasonable to expect that more recent BEV models may have higher VMT than earlier

models.Unfortunately, this isdifficult tomeasureusingvehicle listingsdataas thenumber

of observations (and themajority of the variability in vehicle age) is concentrated in older

rather than newer model year vehicles. This is a natural outcome from the fact that older

model years have hadmore time to showup at used vehicle dealerships and thus appear

moreoften in the database. For example, the oldest that a 2021model year car in our da-

taset could be is only 1 year old (if listed in 2022), but a 2012model year car couldbeany-

where from 4 to 9 years old (listed anytime between 2016 and 2022). As a result, fitting a

linear model for newer model years may be less reliable as the slope will be determined

by a smaller number of observations and from a narrower range of vehicle age. Further-

more, since BEV range is correlated with vehicle model year (newer models have higher

driving ranges), it is difficult to separately identify range and age effects.

With these limitations in mind, we attempt to measure time effects by estimating

additional models on BEV cars, presented in extended data Table S3. Model 5a is

the same as model 3a in Table 4 and is listed for comparison purposes. Model 5b

includes a squared term on age to allow for the possibility of a non-linear mileage

accumulation over time. Model 5c includes themodel year of each vehicle as dummy

variables to account for potential VMT changes with newer models, and model 5d

includes these model year variables and the squared age term.
Joule 7, 1–15, November 15, 2023 7



Table 4. Coefficients from linear models estimated on each separate powertrain with state and model year fixed effects (cars only)

Powertrain

Model 3a Model 3b Model 3c Model 3d

BEV PHEV Hybrid Conventional

Age_years 5:835*** ð0:422Þ 12:902*** ð0:399Þ 13:372*** ð0:356Þ 11:518*** ð0:033Þ
Operating cost and range interactions with Age_years

Cents_per_mile � 0:059** ð0:020Þ 0:522*** ð0:039Þ 0:071* ð0:030Þ � 0:140*** ð0:002Þ
Range 0:009*** ð0:001Þ � 0:182*** ð0:011Þ – –

Range * range_low (<100 miles) 0:055*** ð0:010Þ – – –

Range * range_mid (100–200 miles) 0:033*** ð0:009Þ – – –

Select model interactions with Age_years

Reference level: Nissan Leaf Toyota Prius Prime Honda Accord BMW 3 Series

Bolt EV � 5:672*** ð0:293Þ – – –

Model 3 1:056*** ð0:292Þ – – –

Model S 0:538* ð0:244Þ – – –

i8 – � 9:179*** ð0:338Þ – –

Volt – 2:108*** ð0:288Þ – –

Civic – – 1:966*** ð0:393Þ 1:723*** ð0:026Þ
Fusion hybrid – – � 3:510*** ð0:334Þ –

Corolla – – – 0:359*** ð0:028Þ
Mustang – – – � 1:418*** ð0:031Þ
Outback – – – 3:178*** ð0:031Þ
Number of observations 175,773 128,850 528,674 11,643,966

R2 0.412 0.460 0.394 0.449

Age is interacted with operating costs (in cents per mile), vehicle model, and electric driving range for BEVs and PHEVs. For conciseness, intercept terms are

omitted and only vehicle model interactions with the highest and lowest estimated effects are included. Mileage is in units of 1,000 miles. ***p < 0.001,

**p < 0.01, *p < 0.05. Standard errors are presented in parentheses.
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All of the models in extended data Table S3 have similar vehicle model fixed effects

(e.g., both Tesla vehicle models have positive VMT effects in all models). The nega-

tive sign on the squared age effect in models 5b and 5d suggests that older BEVs are

accumulating mileage slower than newer ones, although the effect size is relatively

small. When model year effects are added (models 5c and 5d), the range effect in-

creases and the differences by range category lose significance, which is unsurpris-

ing as newer model years have higher driving ranges and differences are being

captured by the model year effects. Models 5c and 5d provide little evidence that

annual mileage is increasing in model years 2013–2018; however, both models

show a large, positive effect in model year 2019. Although this does suggest that

we may be entering a period where BEVs are driven more, it is important to keep

in mind the limited amount of data available (and more importantly the limited vari-

ation in age) for this model year. The model year 2019 has just 10,484 listings, and

the maximum age is 3.2 years old; as a result, the higher mileage for 2019 model

years could be an artifact of those vehicles all being younger. Further investigating

this trend will be a primary motivation to replicate this study when newer data

become available as newer BEVs age and enter the resale market.

Multi-vehicle households

Another plausible explanation for low BEV VMT is if BEVs are purchased as second-

ary rather than primary household cars. Unfortunately, the listings data do not reveal

any information about the buyers of the listed vehicles, and therefore, we are unable

to include household demographics in our analyses. However, the 2017 NHTS data

do include household demographics, and although the survey contains few BEV ob-

servations, it does include a large sample of CVs, which can be used to investigate

the effects of household characteristics on CV mileage. Although households with
8 Joule 7, 1–15, November 15, 2023



Table 5. Coefficients from linear models estimated on each separate powertrain with state and

model year fixed effects (SUVs only)

Powertrain:

Model 4a Model 4b Model 4c

BEV Hybrid Conventional

Age_years 12:104*** (1.885) 12:867*** ð0:979Þ 16:644*** ð0:049Þ
Operating cost and range interactions with Age_years

Cents_per_mile � 0:343*** ð0:095Þ � 0:257*** ð0:072Þ � 0:279*** ð0:003Þ
Range �0.005 ð0:008Þ – –

Select model interactions with Age_years

Reference level: Audi e-tron Porsche Cayenne Toyota 4runner

Model X 0.477 ð0:988Þ – –

Model Y 4.926 ð9:001Þ – –

Escape – � 7:588*** ð0:651Þ � 1:188*** ð0:030Þ
Highlander – 2:705*** ð0:399Þ � 0:328*** ð0:033Þ
RAV4 – 4.450 ð2:447Þ 1:847*** ð0:146Þ
Expedition – – 2:096*** ð0:058Þ
Wrangler – – � 3:475*** ð0:039Þ
Number of observations 13,243 44,190 11,333,997

R2 0.376 0.492 0.519

Age is interacted with operating costs (in cents per mile), vehicle model, and electric driving range for

BEVs. No PHEVs observations were available. For conciseness, intercept terms are omitted and only

vehicle model interactions with the highest and lowest estimated effects are included. Mileage is in units

of 1,000 miles. ***p < 0.001, **p < 0.01, *p < 0.05. Standard errors are presented in parentheses.
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BEVs may have different usage patterns, understanding differences in the usage of

primary versus secondary vehicles in households with multiple CVs is still informative

as a status quo for vehicle usage in multi-vehicle households.

Results from additional models examining household characteristics in the NHTS

data are presented in extended data Table S4. Models 6a and 6c use CV cars, and

model 6b uses hybrid cars. Although the NHTS data do not have a variable for dis-

tinguishing which vehicle is used as the primary vehicle, we use odometer readings

as a proxy, where we define any vehicle as ‘‘secondary’’ if it has fewer miles than the

vehicle with the highest odometer reading in the household. In model 6c, we loosen

this definition to any vehicle that has less miles than that of the top two vehicles with

the highest odometer readings in the household. We interact this variable for

whether a vehicle is primary or secondary in a household with the vehicle age to

assess differences in annual mileage accumulation between the vehicle types. To

control for heterogeneity in driving demands, we also interact vehicle age with

household size as dummy variables.

As expected, the model coefficients suggest that secondary vehicles are not driven

as much as primary vehicles and that larger households have higher annual mileage

than smaller households, all else being equal. Secondary CVs accumulate 1,063

fewer annual miles than primary CVs according to model 6a. The gap is larger

(2,169 annual miles) for households with a hybrid as the primary vehicle

(model 6b). Results are similar when a more flexible definition of secondary is

used (model 6c). Although the gap in secondary vehicle mileage accumulation is

substantial, it is still a smaller gap than that between CVs and BEVs in the listings

data (4,492 on average across all BEV cars). This suggests that being used as a sec-

ondary vehicle may not fully explain the lower BEV mileage observed in the listings

data, although it very well could play a considerable role. This analysis alsomotivates
Joule 7, 1–15, November 15, 2023 9



Figure 3. Distribution of operating costs across cars and SUVs in sample by powertrain

The boxes represent the values between the first and third quartile, and the whiskers represent 1.5

times the interquartile range beyond the first and third quartile.
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the hypothesis that BEVs will be driven more in households that only own a BEV and

no other vehicle.
DISCUSSION

Ourfinding thatBEVshavenotaccumulatedmilesasquickly asvehicleswithotherpower-

trains is consistent with several prior studies. Our estimate of 7,165 annual miles on

average is higher than the NHTS survey results fromDavis15 and the electricity usage re-

sults from Burlig et al.,22 which underestimate our results by 865 and 465 annual miles,

respectively, and lower than the estimate of 8,838 annual miles from Rush et al.,23 which

overestimates our results by 1,673 annual miles. The general alignment with the results

from Burlig et al.22 supports the method of using electricity consumption as a proxy for

mileage, which may be able to provide more up-to-date mileage estimates for newer

BEVs comparedwithusingusedvehicle listings,which take time toappearon themarket.

Our results also suggest that the studies that have directlymeasured BEV usagewith on-

board sensorsmayhaveexperienced selectioneffectsorother factors thathave led to the

small samples of participants in those studies driving BEVs substantially more than the

average from our sample.16,24 Although this study is not immune from selection effects,

the large sample size provides a more comprehensive estimate of historical BEV usage

compared with prior studies.

Although assessing the underlying causes of lower BEVmileage is beyond the scope

of this study, additional analyses on the potential effects of time and multi-vehicle

households provide suggestive evidence and greater context for future studies to

build upon and make causal explanations. Low BEV mileage could be the result of

a number of factors. With limited BEV driving ranges and immature charging infra-

structure, some BEV drivers may drive less due to ‘‘range anxiety,’’ which has been

shown to affect driving patterns.38–40 Likewise, BEVs may have been disproportion-

ately purchased by drivers with lower annual VMT needs, inducing a selection effect

that results in lowermileage accumulation in the aggregate. Finally, because thema-

jority of early BEV adopters own more than one vehicle,19–21 these owners may

choose to drive their BEV less, substituting it with another household vehicle for

some trips and resulting in overall lower VMT for the BEV. Evidence from the 2017

NHTS data supports the multi-vehicle household hypothesis for CVs and remains

a plausible source of at least some of the lower BEV mileage observed. Finally, there

is some evidence that the most recent BEV models from model year 2019 and on

may be driven more than previous model years, although the limitations of the list-

ings data available prevent a strong conclusion about this phenomenon. Regardless
10 Joule 7, 1–15, November 15, 2023
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of the underlying causes of lower BEV mileage, the much wider variance in observed

VMT for CVs relative to BEVs suggests that few BEVs are being used to replace

higher-mileage CV trips and that BEVs have been used more consistently among

current owners.

This study provides an important context for modelers estimating the impacts of BEV

adoption and usage.Models that assumeequal substitution between BEV andCVus-

age are implicitly assuming an optimistic scenario that is inconsistent with historical

usage. Accounting for trueBEVusagewould lead to lower expected emissions reduc-

tions fromBEVs relative toCVs and lower electricity demand fromBEVs.10 Although it

is certainly possible that future BEVs may be driven similarly to CVs, such scenarios

may require changes to the operating environment, such as increased charging infra-

structure, longer-range BEV availability, and potentially higher gasoline prices.

Finally, our findings also contribute to prior research on relationships between range

and PEV usage. Prior studies suggest that range is a major factor restricting BEV uti-

lization.16,39,41 Although we cannot make a causal link between lower range and

lower annual mileage, we do observe a statistically significant relationship between

range and annual VMT as well as evidence that this relationship may be non-linear.

As prior studies have found, BEV buyers exhibit a non-linear preference toward BEV

range where the willingness to pay for additional mileage declines with increasing

range.42 Our study also reveals a similar non-linear relationship where increasing

driving range equates to an order of magnitude larger increase in annual VMT for

lower-range compared with higher-range BEVs, suggesting that there may be a limit

to howmuch increased range translates to increased VMT. Likewise, results on oper-

ating costs are also consistent with prior research on ‘‘rebound’’ effects where more

efficient vehicles are driven further, at least partially replacing some of the emissions

and fuel savings from their higher efficiencies.43–46 We find that when increasing

operating costs, less efficient vehicles are associated with a larger reduction in

annual VMT compared with more efficient vehicles like HEVs and BEVs.

This study has several important limitations. First, because the odometer readings

are taken from used vehicle listings, they do not reflect the VMT of vehicle owners

who never sold their vehicles. So long as the difference in VMT across powertrains

does not vary between used vehicles and vehicles that are never re-sold, then this

feature of the data should not impact our conclusions. Nonetheless, a plausible

mechanism that could lead to lower estimated BEV mileage (but perhaps not affect

mature technologies like HEVs and CVs) is if many of the BEV adopters discovered it

was a poor fit for their needs and ended up driving it less before selling it. Another

considerable limitation is the lack of demographic and household information about

previous vehicle owner(s). It is certainly possible that the early PEV adopters who

originally purchased the PEVs in our sample could exhibit substantial demographic

differences, such as age, income, and the number of vehicles owned, compared with

the general CV driver population. Such differences could influence or explain the

relative differences in vehicle usage found in this study, and further research is

needed to assess this possibility. In addition, the linear models used in this study

imply an assumption that miles accumulate evenly and that vehicles are driven

equally over their lifetimes. Although we find this to be generally valid in aggregate

measures over the age range used in this study (vehicles between 2 and 9 years old),

we acknowledge that changes in lifestyle and vehicle condition could influence the

usage of individual vehicles by their owners (which we cannot observe using listings

data) as well as the decision to sell or buy individual vehicles, inducing a selection

process that may match drivers of a certain behavior to particular vehicles or
Joule 7, 1–15, November 15, 2023 11
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powertrains. Finally, due to the nature of the data, older model year vehicles in the

database appear in larger numbers and across greater age ranges than newer model

years, limiting the ability to assess time trends. This is a fundamental limitation of us-

ing used vehicle listings as a data source, and future studies that use the same

approach will also be limited in their ability to understand the behaviors of more

recent vehicles compared with older ones.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources and materials should be directed to

and will be fulfilled by the lead contact, John Paul Helveston (jph@gwu.edu).

Materials availability

This study did not generate new unique materials.

Data and code availability

All of the code used to process the data, estimate models, and produce all analyses

and figures are publicly available at https://doi.org/10.5281/zenodo.8371109. The

vehicle listings data that support the findings of this study are available from

marketcheck.com, but restrictions apply to the availability of these data, which

were used under a license agreement for the current study and so are not publicly

available. A sample of the data is included in the GitHub repository to aid in evalu-

ating the calculations made in this study. The relevant variables in the full original

database can be provided on an individual bases for review purposes only to repro-

duce the study results by contacting the lead contact. All other data used in the study

on vehicle specifications and fuel prices are publicly available and also posted in the

repository.

Data preparation

We use used vehicle listings provided by marketcheck.com as the primary source for

odometer readings. The primary interest of this study was comparing CV and BEV

mileage. Unfortunately, before 2020 there were few BEV SUVs available, and thema-

jority of used BEV SUVs in the listings data are Tesla model X SUVs. No BEV pickup

trucks were available in the database. As a result, our primary analysis is on cars, but

we also include an analysis of the limited number of SUVs as well. We limit our data-

set to vehicle ages between 2 and 9 as fewer BEV listings are available outside of this

range (fewer vehicles are listed used within 2 years of being new, and few used BEVs

are older than 9 years old as of February 2022). We also only include vehicle models

that comprised at least 1% of the listings within each powertrain as a practical

compromise between including a sample that represents typical common cars while

remaining computationally reasonable. As shown in extended data Table S1, just 25

vehicle models comprise 59% of the CV listings; the remaining 41% is composed of

852 additional vehicle models. Including these vehicle models would require far

more coefficients to estimate (which is computationally expensive), and a consider-

able number of these vehicles are exotic or luxury cars, which are less representative

of the typical car market. Although this 1% rule resulted in the inclusion of only 59%

of the CV listings (nearly 13 million listings), it resulted in the inclusion of the vast ma-

jority of the other powertrains since they have far fewer vehicle models (96.3% of the

BEVs, 97.1% of the PHEVs, and 94.7% of the HEVs).

BEV and PHEV ranges as well as all vehicle efficiencies (miles per gallon for gasoline-

powered vehicles, and kWh per 100 miles for electricity-powered vehicles) are
12 Joule 7, 1–15, November 15, 2023
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primarily from fueleconomy.gov,31 with a small number of missing values added

from carsheet.io.32 Monthly gasoline prices33 and annual average electricity prices34

in different states are from the EIA. These data were joined onto the listings data

based on the year, make, model, and trim.

All data preparations and visualizations were conducted in the R programming lan-

guage47 using the tidyverse48 and arrow49 packages.
Operating costs

Operating costs are estimated based on vehicle efficiencies and fuel prices at the US

state level. For gasoline and electricity prices, we compute the mean price over the

age of the vehicle in the state it was listed in using monthly gasoline prices and

annual electricity prices. Operating costs for CVs and HEVs are computed as

100 � pgas=egas, where pgas is the mean gasoline price and egas is the vehicle fuel

economy in miles per gallon. For BEVs, operating costs are computed as

pelec � eelec=100, where pelec is the mean electricity price and eelec is the BEV effi-

ciency in kWh per 100 miles. For PHEVs, a utilization factor (0–1) from

fueleconomy.gov was used to compute the gas and electric portions of operating

costs using the respective equations above for each portion. Since our dataset

only provides the date and zip code of the vehicle listing, we use this information

as the proxy to actual vehicle usage location and period.
Linear models

To quantify annual VMT for each powertrain, we first estimate a linear model of

vehicle mileage versus age interacted with the vehicle powertrain to identify differ-

ences between the annual VMT slopes by powertrain (the models in Table 3). To es-

timate the model, we treat each listing as an independent observation in the

following model:

m = a+ ba+gpa+ e (Equation 1)

wherem is mileage (odometer readings in thousands of miles), a is age (in years), p is

a matrix of dummy-coded vehicle powertrain variables with the CV powertrain set as

the reference level, and e is the error term. The b coefficient determines the annual

VMT for CV powertrains and the coefficients in g determine the difference in annual

VMT for each other powertrain (HEV, PHEV, and BEV). The only difference between

models 1a and 1b (and likewise 2a and 2b) is that the BEV powertrain is separated

into Tesla and non-Tesla.

To further explore the heterogeneity within BEVs and PHEVs, we estimate the

following model (the models presented in Tables 4 and 5):

m = a+ ba+ dac +mard + rav + ss+ e (Equation 2)

wherem is mileage, a is age, c is operating cost (in cents per mile), r is electric driving

range (in miles), d is a matrix of dummy-coded variables determining the BEV range

category (low is r<100, mid is 100<r<200, and high is the reference level at r> 200), v

is amatrix of dummy-coded vehiclemodel variables, s is amatrix of dummy-codedUS

state variables, and e is the error term. Note that the age term (a) is interacted with all

variables except states (s), and the range term (r) only applies to BEVs and PHEVs

(models 3a, 3b, 4a, and 4b). The d variables are only included in the BEV car regres-

sion (model 3a) as a simplified approach to allow for non-linear range effects. The de-

cision tobreak BEV car ranges into three categorieswasmadebecause (1) it facilitates

ease of interpretation (the coefficients can be immediately understood), (2) there are
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three naturally occurring groups in BEV car range in the data (below 100 miles, be-

tween 100 and 200 miles, and above 200 miles).

For the NHTS model results in extended data Table S4, we estimate the following

model on CV and HEV cars:

m = a+ ba+ dac +mad + rah+ ny + ss+ e (Equation 3)

where m is mileage, a is age, c is operating cost, d is a dummy-coded variable for

whether a car is a secondary car, h is a matrix of dummy-coded variables represent-

ing household size, y is a matrix of dummy-coded variables representing the vehicle

model year, and s is a matrix of dummy-coded US state variables. All models were

estimated in the R programming language47 using the fixest50 package.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.joule.

2023.09.015.
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