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Abstract
Automated vehicles (AVs) have the potential to dramatically disrupt current transportation patterns and practices. One par-
ticular area of concern is AVs’ impacts on public transit systems. If vehicle automation enables significant price decreases or
performance improvements for ride-hailing services, some fear that it could undercut public transit, which could have signifi-
cant implications for the environment and transportation equity. The extent to which individuals adopt automated transpor-
tation modes will drive many system-level outcomes, and research on public preferences for AVs is immature and
inconclusive. In this study, we used responses from an online choice-based conjoint survey fielded in the Washington, D.C.
metropolitan region (N = 1,694) in October 2021 to estimate discrete choice models of public preferences for different
automated (ride-hailing, shared ride-hailing, bus) and nonautomated (ride-hailing, shared ride-hailing, bus, rail) modes. We
used the estimated models to simulate future marketplace competition across a range of trip scenarios. Respondents on aver-
age were only willing to pay a premium for automated modes when a vehicle attendant was also present, limiting the potential
cost-savings that AV operators might achieve by removing the driver. Scenario analysis additionally revealed that for trips
where good transit options were available, transit remained competitive with automated ride-hailing modes. These results
suggest that fears of a mass transition away from transit to AVs may be limited by people’s willingness to use AVs, at least in
the short term. Future AV operators should also recognize the presence of an AV attendant as a critical feature for early AV
adoption.
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Automated vehicles (AVs) have the potential to dramati-
cally disrupt current transportation patterns and prac-
tices, and how they will interact with or displace current
transportation modes remains uncertain. Over the past
decade, ride-hailing companies like Uber and Lyft have
raised billions of dollars by promoting the promise of a
future of driverless taxi fleets that could potentially
replace car ownership entirely (1–3). At the same time,
transportation planners are grappling with how AVs
might shape future transportation systems, especially
public transportation systems.

Transit systems have already had to reckon with com-
petition from ride-hailing services that offer greater flexi-
bility and convenience than many transit options (4). If

vehicle automation enables significant price decreases and
increased availability of ride-hailing services, some fear
that it could undercut public transit, which could have
significant implications for the environment and trans-
portation equity (5, 6). Public transit plays a critical role
in reducing emissions from transportation (7), mitigating
road congestion, and providing basic mobility for individ-
uals with limited to no other transportation options. As
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one U.S. Federal Highway Administration report high-
lights, over 90% of public assistance recipients lack access
to a vehicle and rely on public transit (8).

Ultimately, the extent to which individuals adopt
automated transportation modes will drive many system-
level outcomes. Research on preferences for AVs is both
immature and inconclusive, especially with regard to
competition with transit. Some studies have found that
individuals prefer automated modes over public transit
(9, 10), whereas others find that current transit users lack
significant interest in automated modes (11, 12).
Furthermore, public attitudes toward and preferences
for public transit are often context dependent. Despite
the AV testing and pilots occurring in multiple cities
across the United States, limited research exists on the
potential impacts of automation on the billions of annual
public transportation trips taken in the United States
each year (9.9 billion in 2019) (13). Prior U.S.-based
studies have either focused on one mode or omitted tran-
sit, limiting the ability to compare preferences between
different automated modes (11, 14–20). This study aimed
to fill this gap by investigating public preferences for
transit and ride-hailing modes with and without automa-
tion. We centered our analyses on the following two
research questions:

1. What are individuals’ preferences for automated
modes (ride-hailing, shared ride-hailing, bus) and
nonautomated modes (ride-hailing, shared ride-
hailing, bus, rail)?

2. Under what conditions might automated ride-
hailing services be competitive with public transit
modes?

We addressed these questions using data from an online
choice-based conjoint (CBC) survey fielded in the
Washington, D.C. metropolitan region (N = 1,694) in
October 2021. We estimated discrete choice models of
public preferences for different automated and nonauto-
mated transportation modes, and then we used the
estimated models to simulate future marketplace compe-
tition across a range of trip scenarios.

Literature on AV Preferences

Several studies on preferences for AVs have focused on
factors associated with private AV ownership, such as
consumers’ perceived comfort with riding in an AV and
their willingness to pay for features associated with dif-
ferent levels of automation (14, 18, 21, 22). These studies
often employ Likert scales (typically ranging from 1 to 5)
or other similar rating systems to assess attitudes toward
different automated modes. Although these studies pro-
vide insights into general consumer perceptions of AVs,

they lack the ability to gauge potential substitution pat-
terns between automated and nonautomated transporta-
tion modes.

To address this, some researchers have used CBC sur-
veys. In CBC surveys, respondents choose from a set of
options with varying attributes, and researchers estimate
discrete choice models to infer the relative importance of
each attribute and the relative desirability of each option.
Conjoint surveys offer unique advantages, including the
ability to explore hypothetical products, present multiple
choice sets to the same respondent, fix all attributes of a
given option, and avoid multicollinearities (23). Rather
than gauge preferences for different modes in isolation,
conjoint surveys allow researchers to simulate the menu
of transportation options available to an individual, typi-
fied by the experience of looking up directions via
GoogleMaps or via a transportation planning app.
Table 1 presents a selection of recent CBC studies inves-
tigating public preferences for different automated and
nonautomated transportation modes. The majority of
these prior studies compare automated modes with con-
ventional, nonautomated private cars.

The general consensus across most of these studies is
that conventional, nonautomated vehicles continue to
dominate preferences. For example, in Krueger et al.’s
conjoint study of 435 residents of major metropolitan
areas in Australia, respondents chose an automated
mode in only 28% of the choice situations (9). Haboucha
et al. surveyed 721 commuters in Israel, the United
States, and Canada and found that 44% of respondents
preferred conventional vehicles over private or shared
AVs (15). This preference was even more pronounced
among North American respondents, with 54% prefer-
ring conventional vehicles. Yap et al. asked Dutch trave-
lers about their interest in AVs as a transportation
option for filling the last-mile trip between a train station
and a traveler’s final destination, and even in this limited
context respondents mostly selected the individual vehi-
cle alternative over all other transportation options (24).
Etzioni et al. surveyed 1,669 individuals across six EU
countries and similarly found strong preferences for con-
ventional vehicles, with respondents selecting conven-
tional vehicles in 70% of the choices (25). Respondents
in Zhong et al.’s survey of U.S. residents in small and
medium metropolitan areas in the United States pre-
ferred their current private vehicles over private AVs and
AV ride-hailing options (20). These studies signal that
individuals are not likely to relinquish their personal
vehicles in favor of AVs in the near future.

The strong preference for conventional vehicles, how-
ever, may mask other potential substitution effects that
could occur with the introduction of AVs. Several of the
aforementioned studies restricted their survey sample to
individuals who have a driver’s license, with some also
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requiring that respondents drive a personal vehicle fre-
quently (15, 20, 26). In doing so, these studies fail to cap-
ture the preferences of individuals who do not currently
rely on personal vehicles as their primary mode of trans-
portation, including individuals with disabilities or those
who do not own a car. Such individuals are typically the
primary users of public transit. Moreover, even individu-
als who typically use their private vehicles might use tran-
sit for specific types of trips (e.g., traveling within the city
after commuting from the suburbs, trips where parking is
expected to be difficult). Substitution of these trips with
AVs, in conjunction with changing transportation pat-
terns for frequent transit users, is likely to have a greater
impact on transit ridership.

The existing literature on AV substitution with transit
is limited and inconclusive. Some studies find a prefer-
ence for AVs over transit modes, such as in Steck et al.’s
survey of 173 Germans (10). In the study, respondents
could select from among privately owned AVs, auto-
mated ride-hailing (both shared and nonshared), walk-
ing, biking, and public transit. Overall, respondents
found the private AV option most attractive, followed
by AV ride-hailing, and finally transit. Ashkrof et al.
explored preferences for conventional cars, AV ride-hail-
ing, and transit among a sample of 663 Dutch respon-
dents (26). Individuals similarly preferred AVs over
transit, especially when the choice question was framed
as a long-distance trip. Yet other studies suggest more
limited competition of AVs with transit. In Yap et al.’s
study of AVs as a potential egress mode for train trips,
first-class train passengers valued AVs more than transit
modes, but second-class train passengers actually pre-
ferred transit over AVs (24). Winter et al. identified dif-
ferent classes of users among a sample of 796 Dutch
survey respondents and found that respondents who cur-
rently commute by public transport actually show the
lowest preference for automated modes (12), affirming
Krueger et al.’s finding that current transit users were
not more likely to switch to an automated mode (9).

There are some mode features that are particularly
relevant when considering an AV future. Ride-sharing
(i.e., riding with a stranger who is traveling in a similar
direction) is already available in some cities via services
like UberPool and Lyft Shared (27, 28). Though ride-
hailing companies canceled these services during the
COVID-19 pandemic, some are now starting to reintro-
duce them. Sharing rides decreases the cost for both
riders, and these cost-savings could become even more
substantial if the services are automated. Further, sus-
tainability advocates emphasize that fleets of shared AVs
are critical for ensuring a sustainable AV future (5).
Despite enthusiasm from environmental advocates, the
public seems less interested in a future of shared rides.
As of 2017, pooled rides comprised just 20% of all Uber

rides and 40% of all Lyft rides (29), and current litera-
ture suggests that these preferences may persist in an AV
future. In Lavieri and Bhat’s conjoint study on auto-
mated ride-hailing with sharing and nonsharing options,
respondents chose to ride alone in 48.3% of choice occa-
sions with work trips and 54% of choice occasions for
leisure trips (17). Over the past few years, greater expo-
sure to ride-sharing services as well as the COVID-19
pandemic may have altered individuals’ attitudes toward
sharing. Thus, sharing as a feature of automated ride-
hailing services warrants further investigation.

A second mode feature—the presence of an AV
attendant—is associated with additional services that a
driver might fulfill beyond operating the vehicle. Though
AVs would be operated by computer systems, an atten-
dant could help individuals enter and exit the vehicle—a
potential barrier to AV use for elderly individuals and
individuals with disabilities—and provide a social moni-
toring function. This monitoring function might affect
who feels comfortable using shared AV services. The
consensus from many stated-preference (SP) surveys and
choice studies on AVs is that women appear less likely to
use AVs than men (30, 31), and some hypothesize that
this hesitation toward AVs may stem in part from per-
sonal security concerns (18, 32, 33). Dong et al.’s survey
of University of Pennsylvania employees found that only
13% of respondents would agree to ride an automated
bus without an employee on board (34). Similarly, in
their multicountry survey on potential AV use,
Kyriakidis et al. asked respondents about their willing-
ness to use an AV when a human operator was and was
not on board (35). The study found that people were
more willing to travel in an AV and to allow their chil-
dren to travel in an AV with an operator present. These
findings suggest that operator presence might be an
important feature that might affect whether individuals
would prefer AVs over traditional modes. Although
some AV companies are already operating their vehicles
with onboard attendants in small pilots (36), companies
will eventually need to decide whether the attendant fea-
ture is worth the additional operating cost in large-scale
deployments.

Conjoint studies have enabled an avenue of research
to explore potential substitution patterns between vari-
ous transportation modes in an AV future. This area of
research, however, is still quite immature, with several
studies conducted only within the past 6 years. Few stud-
ies have considered the impacts of AVs on current transit
use, and no conjoint studies have examined the impacts
of AVs on transit in a U.S. context. Furthermore, there
is a lack of understanding about key features associated
with AV use, such as ride-sharing and the presence of an
AV attendant. We addressed these gaps by fielding a
United States-based conjoint study on preferences for
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automated (ride-hailing, shared ride-hailing, bus) and
nonautomated (ride-hailing, shared ride-hailing, bus,
rail) modes.

Methods

AV services are primarily in the pilot and development
phases, limiting the availability of revealed-preference
(RP) data. In this study, we used an SP conjoint
approach to measure public preferences for various auto-
mated modes. CBC analysis has a history of use in the
automotive industry for evaluating preferences for both
traditional vehicles and new vehicle technologies such as
electric vehicles (37). It has also been used in several
recent studies on automated driving (9, 14, 15, 20, 24,
38). In CBC surveys, individuals evaluate a series of ran-
domized alternatives and choose which option they pre-
fer. From these selections, we can estimate discrete
choice models to quantify the relative importance of each
attribute and to simulate market competition between
hypothetical choice sets. An advantage of CBC surveys is
that one can create hypothetical choices to tease out pre-
ferences for different attributes that might otherwise be
highly correlated in the marketplace (e.g., determining
the importance of price versus travel time, which are
often directly correlated). Ideally, we would calibrate the
estimated models using real market data or combined RP
and SP data since real-world behavior may deviate from
reported behavior on a survey for reasons such as social
signaling and social adoption (39, 40). Unfortunately,
RP and market data for the various types of automated
modes explored in this study are not currently available.
The inability to effectively calibrate model results
remains a limitation of studies on AVs, though we
attempted to minimize this limitation by briefing respon-
dents on the features of potential automated modes, fur-
ther discussed below. The following sections describe the
design of this study’s CBC survey and subsequent model-
ing approach. Survey design and data analysis were

conducted in R using the cbcTools package (41), and the
full survey, data, and code used are available at https://
github.com/lkaplan25/AV_conjoint_survey_2022.

Survey Design and Target Sample

The survey was created and administered using for-
mr.org—a customizable, R-based survey platform (42).
The survey was fielded within the Washington, D.C. met-
ropolitan region to situate decision tradeoffs within a
local context. The survey included three main parts: 1)
background information and current transportation rou-
tines, 2) CBC questions, and 3) demographic questions.
The background information section included a video
clip describing the six levels of automation as defined by
the Society of Automotive Engineers (43, 44). We defined
automated modes as Level 5 vehicles with the following
description: ‘‘Vehicles that are automated would be oper-
ated by computer systems with no assistance from a
human driver. No option to take control of the vehicle
would be available.’’ We also provided pictures and brief
descriptions for how an automated bus, ride-hailing ser-
vice, and shared ride-hailing service are expected to
function.

In part two, we asked respondents eight CBC ques-
tions. For each question, we asked respondents to imag-
ine they were going out for an evening leisure activity
and to choose between four modes (bus, rail, ride-hail-
ing, and shared ride-hailing) with randomized attribute
values. Figure 1 shows an example choice question. We
selected this framing to provide new insights into AV
preferences for noncommuting trips. The majority of
prior AV preference studies have focused on commuting
journeys, yet noncommuting trips account for approxi-
mately 78% of trips within the Washington, D.C. metro-
politan region (45, 46). We additionally hypothesized
that focusing on evening trips would increase any poten-
tial value of having an attendant on board, per the afore-
mentioned discussion about personal security. Future

Figure 1. Sample choice-based conjoint question.
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studies might investigate the extent to which time-of-day
framing affects individuals’ responses.

The five attributes investigated in this study were
mode, automation (yes/no), attendant (yes/no), total trip
time, and price. Although other attributes, such as wait
time, have been found to affect individuals’ mode choices
(9, 24), the respondents of initial pilot surveys reported
feeling overwhelmed by the complexity of choice ques-
tions that included more attributes, including wait time.
Balancing design complexity with showing realistic
choices remains a challenge with the CBC method, and
as Cherchi and Hensher note, the acceptable level of
design complexity can vary among contexts, with some
researchers recommending inclusion of no more than six
different attributes (47). During the first pilot test of our
survey, respondents reported feeling similarly over-
whelmed by the complexity of the choice questions,
which included wait time as an additional attribute. We
subsequently chose to decrease the number of attributes
to focus on identifying the potential impacts of attendant
presence for automated modes, which has received less
attention in the literature. We acknowledge this narrower
focus as a limitation of our study.

To ensure that the price and time levels shown were
calibrated to local market conditions in the Washington,
D.C. metropolitan region, we determined ranges for the
attribute values for each mode based on current travel
times and prices as determined by GoogleMaps, the
CityMapper transportation planning app, and ride-
hailing price calculators (see Table 2) (47–50). The times
and prices were mode-specific (i.e., a bus trip could cost
$1, $2, $3, $4, or $5, whereas a ride-hailing trip could
cost $5, $7, $10, $12, or $15). We applied discounts of

between 20% and 50% of the regular ride-hailing price
to generate prices for the shared ride-hailing mode to
simulate cost-savings from shared rides. Shared ride-
hailing travel times were also set between 80% and 120%
of the ride-hailing times. Although shared rides often
have longer trip times, shorter times can occur if an
available shared vehicle is already closer to the rider than
a solo vehicle. In addition to capturing status quo prices
and travel times, we also included a limited number of
more extreme values to reflect uncertainty about how
automation might affect prices and travel times in the
future. Only the bus, ride-hailing, and shared ride-hailing
modes could be automated, and only automated modes
could include an attendant. The survey explained the
attendant feature as follows: ‘‘Vehicles with an attendant
would have a company official on board to help passen-
gers. This attendant would not be responsible for operat-
ing the vehicle.’’

To design our choice experiment, we started by creat-
ing a full factorial design of experiment (DOE) matrix
using all of the combinations of attributes for each indi-
vidual mode but with the restrictions previously described
(e.g., only automated modes could have an attendant),
resulting in a total of 40,000 possible choice questions.
The choice questions were then arranged such that each
respondent answered eight choice questions randomly
drawn from this DOE, with checks added to ensure that
no one respondent saw a repeated choice question and
that each choice question showed each of the four avail-
able modes. The use of random choice set assignment
over other design strategies (such as D-optimal designs)
was chosen as a tradeoff in parameter precision and the
ability to observe potential interaction effects; a rando-
mized design avoids confounding interaction and main
effects at the expense of statistical precision (23). Rather
than generate a single fractional factorial design, each
respondent was shown a randomly generated set of
choice sets drawn from the full set of possible combina-
tions. This approach ensured sufficient variation across
all combinations of attributes so as to be able to identify
possible interaction effects. The primary disadvantage of
this approach is that the resulting estimated standard
errors may be larger than they otherwise could have been
had we used a more efficient design. The researchers also
checked to ensure that each respondent saw a variety of
attribute levels and that no attribute level appeared to
dominate. The final section of the survey collected demo-
graphic information including age, gender, race, educa-
tion level, and household income. The survey also
captured information that could help identify individuals
who may face transportation barriers. These questions
included whether the respondent has any type of disabil-
ity, has a smartphone, and has access to a bank account
(full survey available in Appendix A).

Table 2. Full Range of Survey Attributes and Levels. Travel Time
And Price are Mode-Specific

Attribute Levels

Mode Ride-hailing, shared
ride-hailing, bus, rail

Automated Yes/No
Attendant present Yes/No
Travel time (minutes)

Ride-hailing (shared ride-
hailing travel time set at
between 80% and 120%
of ride-hailing time)

15, 20, 25, 30, 35

Bus 20, 25, 30, 35, 40
Rail 15, 20, 25, 30, 35

Price ($)
Ride-hailing (shared ride-

hailing set at 50% to 80%
of the associated ride-hailing
price)

5, 7, 10, 12, 15

Bus 1, 2, 3, 4, 5
Rail 2, 3, 4, 5, 6

6 Transportation Research Record 00(0)



Before a full launch of the survey, we conducted two
pilot surveys using Amazon Mechanical Turk (N=287)
to test for areas of confusion, potential dominant alterna-
tives, and potential survey fatigue. As mentioned above,
we adjusted the survey design following the initial pilot
test and then performed a second pilot test to check the
revised survey design. After pilot testing, we partnered
with Dynata, a market research firm, to recruit the full
survey sample. Dynata recruits survey respondents using
multiple types of incentives including cash and donations
to charity. We limited the survey sample to adults (indi-
viduals over 18) who live within the Washington, D.C.
metropolitan region (screened for using zip codes).

Model Specification

We modeled choice using a random utility framework,
which assumes that individuals will select the alternative
that maximizes an underlying random utility model. The
utility model is comprised of the observable attributes,
uij = fi(xj), as well as an error term, eij, that captures
unobservable attributes. Using this model, we can calcu-
late the probability, Pij, of an individual choosing a given
alternative as the probability that the utility of one alter-
native, j, is greater than the utilities of the other alterna-
tives. We assumed that the error term followed a Gumbel
extreme value distribution, yielding Equation 1, a conve-
nient closed-form expression that an individual will
choose option j from the choice set, JC (cf. Train [51]),

Pij =
evjP

k2Jc
evk
8 c 2 1, 2, 3, . . . Cf g, j 2 JC ð1Þ

where
c indexes a set of C choice sets,
JC represents the cth choice set, and
vj captures the observed portion of the utility model.

The standard multinomial logit (MNL) model assumes
that the error term is independently and identically dis-
tributed. Given that the survey collected several consecu-
tive observations per respondent (often referred to as
having a ‘‘pseudo-panel’’ structure), it violates this
assumption of independence. To account for this pseudo-
panel effect, we instead estimated mixed logit (MXL)
models, a widely used extension of the MNL model (20).
The MXL model allows for flexible substitution patterns
and relaxes the assumption of independence of the error
term (52). For this study, we assumed that the mode
parameters are drawn from independent normal distribu-
tions across the respondent population. We also esti-
mated separate travel time coefficients for each mode to

capture how individuals may value their time differently
when using different modes.

The general utility model yields coefficient estimates
in the ‘‘preference space’’ in which coefficients represent
the respondent utility for marginal changes in attribute
values. We instead specified a ‘‘willingness-to-pay’’
(WTP) space utility model in which coefficient esti-
mates have units of dollars and represent the valuation
for marginal changes in attribute values. This has sev-
eral advantages, in particular the ability the directly
interpret the coefficients independent of one another
and across different models; in contrast, utility coeffi-
cients must be interpreted relative to one another within
each model as each model could have a different error
scaling (53, 54). The general WTP space utility model is
shown in Equation 2,

uj = l(v0xj � pj)+ ej, ð2Þ

where
pj is price,
l is a scale parameter,
xj is all nonprice attributes, and
v is a vector of WTP coefficients for nonprice attributes.

For MXL models, directly estimating WTP provides
greater control over how WTP is assumed to be dis-
tributed across the population, and has been found to
yield more reasonable distributions of WTP compared
with WTP computed from preference space model
coefficients (53–55). Equation 3 shows the full model
used in the study, with explanations of the variable
names in Table 3:

Table 3. Description of Model Variables

Variable Description

pj Price in U.S. dollars
xj

travelTime Total trip travel time in minutes

dbus Dummy coefficient for bus
mode type {1: yes, 0: no} (base
level is rail)

dRH Dummy coefficient for ride-
hailing mode type

dsharedRH Dummy coefficient for shared
ride-hailing mode type

g Dummy coefficient for whether
the mode is automated {1: yes,
0: no}

t Dummy coefficient for whether
there is an attendant present
{1: yes, 0: no}

Kaplan and Helveston 7



uj = l

b1xtime
j +b2xtime

j dbus +b3xtime
j dRH +b4xtime

j dsharedRH

+ b5dbus + b6gdbus + b7tgdbus

+ b8dRH + b9gdRH + b10tgdRH

+ b11dsharedRH + b12gdsharedRH + b13tgdsharedRH

�pj

0
BBBB@

1
CCCCA

+ ej ð3Þ

All models were estimated using the logitr R package,
which uses maximum simulated likelihood estimation to
estimate MXL models (56). The package includes the
ability to appropriately account for data with a pseudo-
panel structure by computing the probability that a
respondent will make a sequence of choices when calcu-
lating the log-likelihood using the equation below (51),
where Pnj is defined by Equation 1,

L=
XN

n

XJ

j
ynj lnPnj, ð4Þ

Given the nonconvex nature of WTP space log-likelihood
functions, we used a randomized multistart search to
identify multiple local minima in a search for a global
solution.

Results

Sample Description

The final sample consisted of 2,023 respondents who com-
pleted the survey between October 4 and October 17,
2021. Respondents who answered all choice questions the
same, whose total survey response times or conjoint ques-
tion response times were too short, who incorrectly
answered a simple attention check question, or who were
missing the demographic information necessary for the pri-
mary model and subgroup analyses were removed. After
filtering the data based on these criteria, the final sample
size was 1,694 respondents for a total of 13,712 CBC
responses. The final sample closely matched the demo-
graphics of the Washington, D.C. metropolitan region, as
reported by the National Capital Region (NCR)
Transportation Planning Board’s 2017/2018 Regional
Travel Survey, a once-in-a-decade survey that collected
detailed demographic and travel behavior information
from approximately 16,000 randomly selected area house-
holds within the Washington, D.C. metropolitan region
(57). The most significant difference between our sample
and the reference sample was the overrepresentation of
individuals who self-identified as male. Our results were
robust with and without weights to account for this gender
imbalance (weighted model results are available in
Appendix B). Table 4 presents descriptive statistics of the
final survey sample.

Table 4. Summary Statistics of Survey Sample Compared with
the Regional Travel Survey as a Reference Sample

Characteristic N = 1,6941
Reference
sample, %

Gender
Female 668 (39%) 52.3
Male 989 (58%) 47.7
Transgender/gender

nonconforming
37 (2.2%) NA

Age
18–24 120 (7.1%) 7.8
25–34 367 (22%) 17.8
35–44 577 (34%) 20.1
45–54 253 (15%) 17.3
55–64 133 (7.9%) 17.7
65–74 181 (11%) 13.4
75–84 51 (3.0%) 4.7
85+ 4 (0.2%) 1.3
Unknown 8 NA

Annual household income
Less than $15,000 66 (3.9%) 3.0
$15,000–24,999 42 (2.5%) 2.7
$25,000–34,999 73 (4.3%) 3.2
$35,000–49,999 126 (7.4%) 6.4
$50,000–74,999 202 (12%) 12.9
$75,000–99,999 189 (11%) 15
$100,000–149,999 260 (15%) 24.8
$150,000 or more 736 (43%) 31.9

Education
No high school or high school 142 (8.4%) NA
Some college/associate’s 342 (20%) NA
Bachelor’s degree 564 (33%) NA
Graduate or professional degree 639 (38%) NA
Unknown 7 NA

Bank account access
No 28 (1.7%) NA
Yes 1,537 (91%) NA
Doesn’t use regularly 129 (7.6%) NA

Phone access
No cellphone 28 (1.7%) NA
No smartphone 290 (17%) NA
Has smartphone 1,376 (81%) NA

Disability
None 993 (59%) NA
Intellectual 61 (3.6%) NA
Physical 537 (32%) NA
Visual 99 (5.8%) NA
Physical and visual 4 (0.2%) NA

Note: NA indicates that information about this category was not available

for the reference sample.
1n (%)
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Effects of Adding Automation and an Attendant

Table 5 presents the estimated coefficients from the mul-
tiple models we estimated. Standard errors are clustered
at the individual level to account for the pseudo-panel
data structure. Using the coefficients from the MXL
model, we computed the WTP for automating the modes
and adding a vehicle attendant for the bus, ride-hailing,
and shared ride-hailing modes. Using nonautomated rail
as the baseline, Figure 2 displays individuals’ WTP for
the three other modes, all things being equal (e.g., same
travel time). A negative WTP can be interpreted as
requiring a discount relative to a rail trip for an individ-
ual to be ambivalent between choosing a specific mode
over rail. Since it does not make sense to consider a zero
minute trip, we plotted mode preferences for a short trip
and a long trip. The longer trip length did slightly
increase the WTP values for the bus, ride-hailing, and
shared ride-hailing modes, but it did not change the
overall trends in how automation and the presence of an
attendant affected mode preferences.

In the status quo (not automated) cases, individuals
had negative WTPs for the bus, ride-hailing, and shared
ride-hailing modes, with the exception of a slightly posi-
tive WTP for the ride-hailing mode for a long trip.
Adding automation did not significantly change WTP
for the three modes for either trip length. The addition
of an attendant to the automated modes, however, did
result in a significant shift to positive WTPs for auto-
mated buses, automated ride-hailing services, and auto-
mated shared ride-hailing services. In the discussion
section, we hypothesize about the interpretation of this
result.

Subgroup Analyses

We performed subgroup analyses to investigate potential
preference differences based on income, race, and gen-
der. The survey sample included 33 individuals who self-
identified their gender identity as transgender male,
transgender female, gender queer, or gender noncon-
forming. We grouped all of these individuals with
respondents who identified as female, given the higher
rates of violence and discrimination that transgender and
gender nonconforming individuals face (58). We
hypothesized that such experiences might affect their
attitudes toward safety, especially in relation to sharing
rides. Alternative groupings did not change the reported
results in aggregate.

To perform the subgroup analyses, we directly esti-
mated MXL WTP models for different subgroups. Since
WTP space estimation is independent of scale, we could
directly compare the results from models for different
groups, as opposed to estimating a single model with
dummy parameter interactions. Prior studies have

demonstrated that income, race, and gender affect atti-
tudes toward conventional transportation modes and
AVs (18, 21, 31). No consistent differences emerged in
our results for racial differences, though we were limited
by our sample, which was mostly white. Higher-income
individuals expressed a higher WTP for automation and
an attendant, perhaps owing to their overall lower price
sensitivity. A gender-based subgroup analysis revealed
that although women and men shared similar baseline
preferences for nonautomated modes, men expressed sig-
nificantly higher WTPs for automated modes and auto-
mated modes that also included an attendant for a long
trip (Figure 3). For a short trip, gender differences only
emerged when the automated modes also included an
attendant.

Even with the addition of the attendant to the auto-
mated modes, women only demonstrated a positive
WTP for the automated ride-hailing mode for a long
trip. The gender subgroup analysis revealed that the pos-
itive WTPs from the whole-group analysis stemmed pri-
marily from the men in our sample.

Scenario Analyses

The WTP estimates provided insights into preferences
for the different modes, all things being equal. In reality,
any one trip is a combination of mode, price, and travel
time. To understand respondent preferences for the joint
combination of these attributes, we used the estimated
MXL choice model to simulate how AVs might compete
with transit. We explored six scenarios of characteristic
trips across Washington, D.C. (Table 6). We used our
‘‘low-income model’’ to conduct the scenario analysis for
Scenario 5 (trip from lower-income area), recognizing
that individuals making those types of trips may be mem-
bers of lower-earning households. Considering the status
quo times and prices as the baseline, we modeled how
demand for each mode (evaluated in relation to predicted
market share) might change in response to automating
ride-hailing and shared ride-hailing services. Given that
automation is expected to decrease the cost of these
modes, we also added in a 30% price decrease for the
automated ride-hailing and shared ride-hailing modes.
We limited the price decrease to 30% based on the cur-
rent operating budgets for Uber and Lyft, which dedicate
only 20% of their annual operating expenses to paying
for drivers (59, 60). These scenario analyses should not
be interpreted as forecasts but rather as illustrative exam-
ples of the substitution patterns that our estimated choice
model predicted for the limited respondent pool from
our survey. The exercise reflects respondent preferences
for the joint set of attributes associated with real trips
individuals might take, as opposed to the all things being
equal context of WTP coefficients (15, 37). Real-world
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forecasts would need to consider preferences of a much
broader population and (ideally) include RP data when
they become available.

The six scenarios we developed aimed to capture vari-
ous trips individuals might take, including those who
might travel to the city from the outlying regions via one
mode (e.g., personal vehicle or train) and then travel
within the city using additional modes. We based the
travel times and prices for the scenarios on estimated val-
ues from Google Maps, Lyft’s, and Uber’s price estima-
tors, the CityMapper travel planning app, and the
Washington Metropolitan Area Transit Authority online
price estimator (48–50, 61, 62). We selected scenarios
that matched the median trip length (distance) for non-
commute trips within the Washington, D.C. metropoli-
tan region (45), as well as edge case scenarios in which
we expected certain modes to be considered generally
preferable. The scenario names indicate their archetypal
trip type. For example, ‘‘pro-metro’’ indicates a trip in

which the rail system (Metrorail) has a direct route
between the trip start and end points. Figure 4 illustrates
the results of the scenario analyses. Status quo indicates
current travel times and prices. As we move across the x-
axis, we introduce automation, a discount, and having
an attendant present for the ride-hailing and shared ride-
hailing modes.

The following observations emerged from the scenario
analyses:

1. Competition between transit modes and auto-
mated ride-hailing services (shared or not)
stemmed more from price discounts than an
inherent interest in automation.

2. For trips in which rail dominates preferences in
the status quo, it remained competitive even
against discounted ride-hailing services that were
automated, though was less competitive once an
attendant was added to the automated modes.

Figure 2. Average willingness-to-pay values with 95% confidence interval bounds for the bus, ride-hailing, and shared ride-hailing modes
relative to nonautomated rail. Results shown for a short trip and a long trip.
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Figure 3. Gender differences in average willingness-to-pay values with 95% confidence interval bounds for a short trip and a long trip.

Table 6. List of Scenarios used in Scenario Analysis and Associated Attribute Values

Bus Rail Ride-hailing Shared Ride-hailing

Scenario Trip type
Distance

(mi)
Price
($)

Time
(min)

Price
($)

Time
(min)

Price
($)

Time
(min)

Price
($)

Time
(min)

1 Long trip 10.8 2.00 80 4.15 31 35.00 25 28.00 30
2 Pro-rail 3.8 2.00 27 2.00 15 13.00 15 10.00 20
3 Rail with

transfer
3.8 2.00 40 2.25 28 15.00 25 12.00 30

4 Pro-bus 1.3 2.00 17 3.00 45 (bus
to rail
transfer)

13.00 15 10.00 20

5 Trip from
lower-income
area

4 2.00 40 2.29 18 11.00 10 9.00 15

6 Bad transit
options

5 2.00 44 3.00 46 (bus
to rail
transfer)

17.00 15 14.00 20
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3. Shared ride-hailing services, though less popular
in the status quo, became more attractive with
additional features and discounts.

4. For trips in which people were already likely to
use ride-hailing services, that likelihood increased
with the addition of automation, an attendant,
and a price discount. This supports the idea that
automated ride-hailing could help to fill existing
transportation gaps.

We were not able to directly compare the status quo
results of the scenario analyses with actual market shares
since we did not have data on real market shares for these
specific types of trips. We were, however, able to com-
pare the status quo results with data on aggregate usage
of these different mode types using data from the NCR
Regional Travel Survey (also used as our reference demo-
graphic sample), which collected information on mode
usage for trips within the entire region and within areas

that are categorized as Equity Emphasis Areas (EEAs)
(Appendix D). EEAs are defined as having higher con-
centrations of low-income individuals and/or tradition-
ally disadvantaged racial and ethnic population groups.
The ‘‘trip from lower-income area’’ fell into one of these
EEAs. We found that the ordering of preferences in the
status quo results of our scenarios generally matched
those of mode use for noncommute trips in the region,
with rail being typically most preferable. Bus and rail had
more similar mode use within the EEAs in the region
than our ‘‘trip from lower-income area’’ scenario esti-
mates. This difference could have resulted from the spe-
cific trip that we selected for that scenario, which, based
on the trip characteristics, favored rail. Although we
acknowledge these differences, we emphasize that the
focus of our study was on trying to understand the poten-
tial impact of automation on overall public transit use
and feel that these minor differences do not detract from
our overall study findings.

Figure 4. Mean estimated values for predicted market share based on introducing automation, an attendant, and price discounts for six
trip scenarios. As one moves left to right across the x-axis, additional features are added to the ride-hailing and shared ride-hailing modes.
‘‘Status quo’’ indicates that none of the modes are automated or have an attendant, and that the modes’ prices reflect current prices. A
version with 95% confidence interval error bars is available in Appendix C.
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Discussion

The results of the study indicate that fears of a mass tran-
sition away from transit to AVs may be limited by peo-
ple’s willingness to use AVs, at least in the short term.
Respondents to our survey on average were only willing
to pay a premium for automated modes when a vehicle
attendant was also present, limiting the potential cost-
savings that AV operators might achieve by removing
the driver. Nonetheless, attendant presence may be a crit-
ical feature for early AV adoption. Even without a dis-
count, respondents demonstrated a positive WTP for
automated modes with an attendant on board.

In many respects, an AV with an attendant on board
is fairly equivalent to current nonautomated ride-hailing
modes with a human driver. It is then perhaps counterin-
tuitive that individuals would pay more for this feature.
One potential explanation is that respondents may per-
ceive computer-driven vehicles as safer or more reliable
than those operated by human drivers. Indeed, some
prior public engagement research has found evidence of
this type of reasoning. Stopher et al. conducted focus
groups with participants of a recent AV pilot program
between the AV ride-hailing company Waymo and the
Valley Metro Regional Public Transportation Authority
in Phoenix, AZ (63). Some focus group discussants
expressed that they felt more comfortable with a com-
puter driver than a traditional ride-hailing driver.
Indeed, Waymo appears to be leveraging this perceived
benefit with promotional advertisements asserting that,
‘‘You want a driver you can trust’’ (64). Yet people may
not be fully comfortable ceding total control to auto-
mated systems, therefore the desire for an attendant.
Though our survey specified that the attendant’s role
was not to operate the vehicle, survey respondents may
still have considered the attendant as a safety backup in
case of emergency. Future qualitative studies could fur-
ther explore perceptions of AV attendants and the multi-
ple roles they might be expected to fill. Some studies
have already started to explore public attitudes toward
different types of attendants, finding preferences for
onboard attendants versus remote monitoring (65). In
the meantime, some AV companies are already
choosing—or may be required by state regulations—to
launch their services with an onboard safety driver (66).

The presence of an AV attendant appears especially
critical for women. Women only became ambivalent
toward automated buses and automated shared ride-
hailing services when the modes included an AV atten-
dant. These results perhaps indicate that the presence of
an attendant is an essential feature for women to con-
sider using either of these modes, even at costs equivalent
to rail.

Overall, competition with public transportation may
remain limited by the types of individuals who currently

express the greatest WTP for AVs: men and higher-
income individuals. These two groups make up a smaller
share of current public transportation users in the United
States (67), thus, ridership losses among those two demo-
graphic groups would yield smaller impacts on overall
ridership numbers. Nevertheless, the authors recognize
that siphoning even small portions of riders away from
public transportation modes could still have a negative
impact on the system.

Although the Washington, D.C. metropolitan region
has featured some AV pilots and testing (68, 69), we
expect that the majority of survey respondents had mini-
mal (if any) experience with an automated vehicle.
Approximately 62% of our sample reported having prior
experience with ride-hailing services. Individuals’ atti-
tudes toward AVs might change as automated transpor-
tation modes become more widespread and they gain
either exposure to or experience with using automated
modes, as has been found with other emerging transpor-
tation technologies. For instance, riding in an electric
vehicle (EV) for just 3 to 5 min was found to significantly
improve individuals’ attitudes toward plug-in EVs (70).
This study provides a valuable data point of preferences
as they currently stand—a snapshot of the market that
both AV developers and transportation planners must
face as they plan for an automated future.

In the six aforementioned simulation scenarios, this
study focused primarily on competition of automated
ride-hailing services with transit. These scenarios did not,
however, consider the potential benefits from automat-
ing buses. Given that buses are already typically the least
expensive transportation option (at least in relation to
user costs), automating buses is not expected to further
decrease costs to consumers. Instead, the proposed bene-
fits include decreasing operating costs, which could allow
for increased service frequency and geographic coverage,
or smaller AV shuttles could help fill gaps in the existing
system (71, 72). To avoid excessive cognitive burden of
the CBC questions, our survey design did not include fre-
quency, wait time, or reliability as choice attributes.
Thus, the final model did not include sufficient informa-
tion to explore scenarios in which buses benefit from
automation. Future studies could further explore public
interest in the potential enhancement of public transpor-
tation with automated modes, in addition to
competition.

Finally, it is important to recognize some of the lim-
itations of our findings. First, we framed our experiment
around taking an evening leisure trip since noncommut-
ing trips account for the majority of trips in the D.C.
area. Results may differ for AV commuting scenarios,
though we cannot conclude whether WTP would be
higher or lower for commute trips since the relative value
of each trip attribute may differ in these scenarios. We
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also selected a particular set of attributes that allowed us
to focus on the potential impacts of automation and an
attendant, but neglected other trip attributes such as wait
time, which may influence individuals’ choice prefer-
ences. Our sample included a large portion of higher-
income and well-educated individuals who may not be as
representative of general public transit users.
Nonetheless, the sample was fairly representative of the
study region, where costs of living are also higher than
many other U.S. cities. Although residents in the study
region may have higher incomes, it does not necessarily
mean that they are any more or less price sensitive to
travel costs than in other locations. Thus, although the
study results may not generalize to all cities, they may
reflect the preferences in other large cities that have simi-
larly high costs of living, higher-earning households (on
average), and multiple transit modes including buses and
rail systems. Moreover, we attempted to highlight the
preferences of lower-income individuals by specifically
using our low-income model as part of our scenario anal-
ysis. Finally, the emergent nature of AVs means that we
are unable to compare our results to actual market data,
though ‘‘status quo’’ outputs of our scenario analyses
generally reflect the relative usage of current rail, bus,
and ride-hailing services.

Conclusions

With the continued development and gradual deploy-
ment of AVs, AV companies, mobility providers, and
transportation planners will all need to understand how
quickly and willing the public is to adopt AVs. In partic-
ular, potential competition between AVs and public tran-
sit systems could further detract from transit usage,
yielding negative environmental and equity impacts.
System-level impacts will largely depend on public uptake
of automated transportation modes.

In this study, we investigated the previously unex-
plored question of the extent to which automated ride-
hailing services might compete with public transit modes
in the United States. Using data from an online CBC
survey fielded in the Washington, D.C. metropolitan
region, we estimated discrete choice models and used
them to simulate choice probabilities for a variety of
trips. We found that public interest in automated ride-
hailing services stemmed primarily from the potential to
achieve lower prices rather than an inherent interest in
automation. Given the current business models for ride-
hailing companies, potential competition of automated
ride-hailing and shared ride-hailing services with transit
modes is likely to be limited, since driver costs only
account for approximately 20% of ride-hailing compa-
nies’ current operating budgets (59, 60). Furthermore,

for trips where desirable transit modes are available (i.e.,
low cost and relatively low travel time), transit modes
remain competitive even against discounted and auto-
mated ride-hailing modes. Thus, investment in improving
transit options could also stem future competition with
AVs.

Our results also suggested that a vehicle attendant is
critically important for increasing AV use. Individuals
primarily expressed a positive WTP for automated modes
only when an attendant was also present. Gender differ-
ences also played a role, with men expressing a greater
average WTP for automated modes than women. On
average, women only expressed a positive WTP for auto-
mated ride-hailing services when an attendant was also
on board.

Gaining a greater understanding of public preferences
for automated and nonautomated modes will enable
transportation planners to begin designing future trans-
portation systems that account for shifting preferences
while still providing critical public transit services.
Automated mobility providers can also use this informa-
tion when making important design and service deci-
sions, such as whether to include an onboard attendant
and setting prices. At present, keeping attendants on
board appears critical for both men and women, though
these preferences could change as AV deployment
expands and users gain more experience with these
systems.
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