
The cbcTools Package: Tools for Designing and Testing
Choice-Based Conjoint Surveys in R

John Paul Helveston, Ph.D.∗

Abstract

While many open source packages and applications exist for estimating choice
models using data from choice-based conjoint experiments, few packages exist for
generating and evaluating experiment designs prior to collecting data. Furthermore,
existing tools for designing choice-based conjoint survey experiments often focus on
optimizing the design for statistical power under ideal conditions, but they rarely provide
guidance on important design decisions for less ideal conditions, such as when preference
heterogeneity or strong interactions between certain attributes may be expected in
respondent choices. The cbcTools R package was developed to provide researchers
tools for creating and evaluating experiment designs and sample size requirements
under a variety of different conditions prior to fielding an experiment. The package
contains functions for generating experiment designs, examining attribute balance
and overlap, simulating choice data, and conducting power analyses. The package
data format matches that of experiment designs exported from Sawtooth Software,
enabling a smooth integration with the Sawtooth Software workflow. Detailed package
documentation can be found at https://jhelvy.github.io/cbcTools/.

Introduction
Designing a choice-based conjoint survey is almost never a simple, straightforward process.
Designers must consider multiple trade offs between design parameters (e.g., which attributes
and levels to include, how many choice questions to ask each respondent, and how many
alternatives per choice question) and the design outcomes in terms of the user experience and
the statistical power available for identifying effects. The process is typically highly iterative
(R. M. Johnson and Orme 2002).

As a quick example, consider a simple conjoint experiment about cars with just two attributes
with three levels each:

• Price: $20,000, 40,000, & 100,000
• Brand: GM, BMW, & Ferrari
∗Engineering Management and Systems Engineering, George Washington University, Washington, D.C.

USA

1

https://jhelvy.github.io/cbcTools/

A common starting point is to first generate the full factorial set of all possible combinations
of brand and price. These profiles can then be selected into a survey design from which
respondents will make choices. Without any prior knowledge or experience about car prices
and brands, a designer may simply choose to create a survey design by randomly selecting
profiles from the full factorial set of profiles. This often results in a less efficient design, but
it is a starting point for illustrating trade offs in making a design.

Once a survey design is created, one of the first things designers examine is the count of how
often each level of each attribute is shown, or the design “balance” (Hauser and Toubia 2005;
Huber and Zwerina 1996). The table below shows an example of the counts from a design
with just 9 choice sets of 3 alternatives per question, each of which were randomly chosen
from the full factorial set of profiles:

Table 1: Individual and pairwise counts of attributes.

Price: $20,000 $40,000 $100,000
Brand 9 9 9
GM 10 3 0 7
BMW 11 4 5 2
Ferrari 6 2 4 0

Based on the balance alone, it is clear that this design has several problems. First, while
the price levels are perfectly balanced (each level is shown 9 times), the brand levels are not
– GM and BMW are shown 10 and 11 times, respectively, whereas Ferrari is only shown 6
times. And the pairwise counts are particularly troubling. The Ferrari brand is only shown
with a price of $20,000 and $40,000 and never at the $100,000 level (the most logical level for
a Ferrari!). Likewise, GM brand is shown with a price of $100,000 in 7 out of 10 times and
never with a price of $40,000.

This rather poor design is a common outcome when generating a design by randomly selecting
profiles from the full factorial with only a limited number of choice sets. One way to improve
the outcome is to simply increase the number of choice sets used, which often results in a
much better balance (Kuhfeld 2002). For example, if we increase the number of choice sets
from 9 to 90, we obtain the following counts:

Table 2: Individual and pairwise counts of attributes.

Price: $20,000 $40,000 $100,000
Brand 91 84 95
GM 92 31 31 30
BMW 80 25 25 30
Ferrari 98 35 30 35

This design has a much better balance across the attribute levels than the one created from

2

just 9 choice sets, but it too has issues. Consider, for example, that about 1/3 of the time the
Ferrari brand is shown it has a price of just $20,000. This is obviously an unrealistic scenario,
and if a user saw such a profile multiple times they may not take the choice exercise seriously.

As this simple example illustrates, randomly selecting profiles (even with a larger number
of choice sets) can still produce a flawed design1. An alternative approach is to attempt
to identify a statistically optimal design, which is now a rather well-established practice in
the literature on discrete choice experiments (F. R. Johnson et al. 2013). Optimal designs
maximize the expected Fisher information, which depends on the parameters of the assumed
choice model. As a result, a design’s efficiency is related to how accuracy the prior guess is
to the true parameters. Using a “Bayesian” D-efficient design where the designer can specify
prior expected coefficients for each attribute has been proven to outperform other design
approaches when sufficient information on the utility model is known (Kessels, Goos, and
Vandebroek 2006; Walker et al. 2018).

Table 3: Example conjoint attributes and levels.

Attribute Level Prior
Price $20,000 0

$40,000 -1
$100,000 -4

Brand GM 0
BMW 1
Ferrari 2

Using a Bayesian D-efficient design with 90 choice sets and the prior utilities in Table 3, the
counts become much more reasonable (see Table 4). Now the individual attribute counts are
relatively balanced, and the pairwise combinations of attributes are much more plausible.
For example, the GM brand is only shown at price levels of $20,000 and $40,000, and about
half of the time Ferrari is shown at the $100,000 price level.

Table 4: Individual and pairwise counts of attributes.

Price: $20,000 $40,000 $100,000
Brand 97 93 78
GM 93 52 41 0
BMW 90 30 30 30
Ferrari 86 15 22 49

Of course, even Bayesian D-efficient designs have their downsides. In particular, they can
1Note that randomly selecting profiles is different from the kinds of “randomized” designs Sawtooth

Software generates, where respondents are randomly assigned to blocks in the experiment which later are not
randomly constructed.

3

become problematic if there are significant interaction effects between any of the attributes
that the designer did not anticipate.

Figure 1 highlights this trade off. The plots show the standard errors of each coefficients from
the same model estimated using increasing subsets of two simulated data sets: a randomized
design and a Bayesian D-efficient design. In the first row, it is clear that the D-efficient
design produces lower standard errors for the same sample size compared to the randomized
design. However, the second row shows the standard errors on interaction effects, which are
not identifiable using the D-efficient design. This is because interaction effects can become
confounded with main effects in D-efficient designs where the designer did not consider
interactions in their priors. Thus, the accuracy of the designer’s prior model used in obtaining
a D-efficient design is an important factor in the overall performance of the design. If little
to no prior information is known and interactions may be present, a fully randomized design
may be a better choice, though of course this would require larger sample sizes to obtain
significant parameter estimates.

Figure 1: Standard errors with increasing sample size for a multinomial logit model with
interaction effects estimated using a randomized design versus a Bayesian D-efficient design

The cbcTools Package
As the previous example illustrates, designing a choice-based conjoint experiment is an
iterative process requiring careful consideration of a variety of factors. The cbcTools package
was designed as an open source tool to help designers navigate this process and to understand
the impacts that different design decisions could have on the outcomes of a choice-based
conjoint experiment prior to fielding the survey (Helveston 2022).

The package provides a set of functions (each starting with cbc_) for designing surveys and

4

conducting power analyses for choice-based conjoint survey experiments in R. Each function
is associated with a process in the typical design workflow (see Figure 2). The rest of this
paper explains each of these steps using a detailed example.

Figure 2: Diagram of the choice-based conjoint survey design process and associated package
function(s).

Generating profiles
One of the first steps in designing a conjoint experiment is to define the attributes and levels
and then generate all of the profiles for each combination of those attributes and levels,
often referred to as the “full factorial” design. For example, consider designing a conjoint
experiment about apples with the following three attributes: price, type, and freshness.
The full factorial set of profiles for these attributes can be obtained using the cbc_profiles()
function:
profiles <- cbc_profiles(

price = seq(1, 4, 0.5), # $ per pound
type = c('Fuji', 'Gala', 'Honeycrisp'),
freshness = c('Poor', 'Average', 'Excellent')

)

head(profiles)

#> profileID price type freshness
#> 1 1 1.0 Fuji Poor
#> 2 2 1.5 Fuji Poor
#> 3 3 2.0 Fuji Poor
#> 4 4 2.5 Fuji Poor
#> 5 5 3.0 Fuji Poor
#> 6 6 3.5 Fuji Poor
tail(profiles)

#> profileID price type freshness
#> 58 58 1.5 Honeycrisp Excellent
#> 59 59 2.0 Honeycrisp Excellent
#> 60 60 2.5 Honeycrisp Excellent

5

#> 61 61 3.0 Honeycrisp Excellent
#> 62 62 3.5 Honeycrisp Excellent
#> 63 63 4.0 Honeycrisp Excellent

The resulting data frame, profiles, has 63 rows, each defining a unique profile. Depending
on the context of the survey, some profiles may need to be eliminated (e.g., some profile
combinations may be illogical or unrealistic).2 To do so, each level of an attribute can be
defined as a list defining those constraints. In the example below, the type attribute has
constraints such that only certain price levels will be shown for each level. In addition, for
the "Honeycrisp" level of the type attribute, only two of the three freshness levels are
included: "Excellent" and "Average". Note that both the other attributes (price and
freshness) should contain all of the possible levels. With these constraints, only 30 profiles
are available compared to 63 without constraints.
profiles <- cbc_profiles(

price = c(1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5),
freshness = c('Poor', 'Average', 'Excellent'),
type = list(

"Fuji" = list(
price = c(2, 2.5, 3)

),
"Gala" = list(

price = c(1, 1.5, 2)
),
"Honeycrisp" = list(

price = c(2.5, 3, 3.5, 4, 4.5, 5),
freshness = c("Average", "Excellent")

)
)

)

head(profiles)

#> profileID price freshness type
#> 1 1 2.0 Poor Fuji
#> 2 2 2.5 Poor Fuji
#> 3 3 3.0 Poor Fuji
#> 4 4 2.0 Average Fuji
#> 5 5 2.5 Average Fuji
#> 6 6 3.0 Average Fuji
tail(profiles)

#> profileID price freshness type
2Note that including hard constraints in your designs can substantially reduce the statistical power of

your design, so use them cautiously and avoid them if possible.

6

#> 25 25 2.5 Excellent Honeycrisp
#> 26 26 3.0 Excellent Honeycrisp
#> 27 27 3.5 Excellent Honeycrisp
#> 28 28 4.0 Excellent Honeycrisp
#> 29 29 4.5 Excellent Honeycrisp
#> 30 30 5.0 Excellent Honeycrisp

Generating designs
Randomized designs

Once a set of profiles is obtained, a randomized conjoint survey can then be generated using
the cbc_design() function:
design <- cbc_design(

profiles = profiles,
n_resp = 900, # Number of respondents
n_alts = 3, # Number of alternatives per question
n_q = 6 # Number of questions per respondent

)

dim(design) # View dimensions

#> [1] 16200 8
head(design) # Preview first 6 rows

#> respID qID altID obsID profileID price type freshness
#> 1 1 1 1 1 29 1.0 Gala Average
#> 2 1 1 2 1 42 4.0 Honeycrisp Average
#> 3 1 1 3 1 2 1.5 Fuji Poor
#> 4 1 2 1 2 11 2.5 Gala Poor
#> 5 1 2 2 2 19 3.0 Honeycrisp Poor
#> 6 1 2 3 2 35 4.0 Gala Average

For now, the cbc_design() function only generates a randomized design. Other packages,
such as the idefix package, are able to generate other types of designs, including Bayesian
D-efficient designs, and future versions of the cbcTools package will add a wrapper around
the idefix package to integrate some of these features. The randomized design simply
samples from the set of profiles while ensuring that no two profiles are the same in any
choice question.

The structure of the resulting design data frame is such that each row specifies the levels
shown for one alternative in a choice question. In addition to the attribute levels, the design
data frame also includes the following variables for identifying different aspects of the survey:

• respID: Identifies each survey respondent.
• qID: Identifies the choice question answered by the respondent.

7

https://github.com/traets/idefix

• altID:Identifies the alternative in any one choice observation.
• obsID: Identifies each unique choice observation across all respondents.
• profileID: Identifies the profile in profiles.

Labeled designs (a.k.a. “alternative-specific” designs)

A “labeled” design (also known as an “alternative-specific” design) can also be generated. In
labeled designs, the levels of one attribute are used as the labels for each alternative. To do
so, the label argument can be set to one of the attributes. This by definition also sets the
number of alternatives in each question to the number of levels in the chosen attribute, so
the n_alts argument is overridden. In the example below, the type attribute is used as the
label:
design_labeled <- cbc_design(

profiles = profiles,
n_resp = 900, # Number of respondents
n_alts = 3, # Number of alternatives per question
n_q = 6, # Number of questions per respondent
label = "type" # Set the "type" attribute as the label

)

dim(design_labeled)

#> [1] 16200 8
head(design_labeled)

#> respID qID altID obsID profileID price type freshness
#> 1 1 1 1 1 44 1.5 Fuji Excellent
#> 2 1 1 2 1 9 1.5 Gala Poor
#> 3 1 1 3 1 21 4.0 Honeycrisp Poor
#> 4 1 2 1 2 6 3.5 Fuji Poor
#> 5 1 2 2 2 56 4.0 Gala Excellent
#> 6 1 2 3 2 40 3.0 Honeycrisp Average

In the above example, the type attribute is now fixed to be the same order for every choice
question, ensuring that each level in the type attribute will always be shown in each choice
question.

Adding a “no choice” option (a.k.a. “outside good”)

Often times designers may wish to allow respondents to opt out from choosing any of the
alternatives shown in any one choice question. Such a “no choice” (or “outside good”) option
can be included by setting no_choice = TRUE. If included, all categorical attributes will be
dummy-coded to appropriately dummy-code the “no choice” alternative.
design_nochoice <- cbc_design(

profiles = profiles,

8

n_resp = 900, # Number of respondents
n_alts = 3, # Number of alternatives per question
n_q = 6, # Number of questions per respondent
no_choice = TRUE

)

dim(design_nochoice)

#> [1] 21600 13
head(design_nochoice)

#> respID qID altID obsID profileID price type_Fuji type_Gala type_Honeycrisp
#> 1 1 1 1 1 42 4.0 0 0 1
#> 2 1 1 2 1 54 3.0 0 1 0
#> 3 1 1 3 1 35 4.0 0 1 0
#> 4 1 1 4 1 0 0.0 0 0 0
#> 5 1 2 1 2 62 3.5 0 0 1
#> 6 1 2 2 2 33 3.0 0 1 0
#> freshness_Poor freshness_Average freshness_Excellent no_choice
#> 1 0 1 0 0
#> 2 0 0 1 0
#> 3 0 1 0 0
#> 4 0 0 0 1
#> 5 0 0 1 0
#> 6 0 1 0 0

Inspecting designs
The package includes some functions to quickly inspect some basic metrics of a design. The
cbc_balance() function prints out a summary of the counts of each level for each attribute
across all choice questions as well as the two-way counts across all pairs of attributes for a
given design:
cbc_balance(design)

#> ==============================
#> price x type
#>
#> Fuji Gala Honeycrisp
#> NA 5356 5403 5441
#> 1 2280 766 731 783
#> 1.5 2383 793 798 792
#> 2 2400 790 796 814
#> 2.5 2275 737 759 779
#> 3 2277 765 763 749

9

#> 3.5 2276 744 771 761
#> 4 2309 761 785 763
#>
#> price x freshness
#>
#> Poor Average Excellent
#> NA 5430 5384 5386
#> 1 2280 750 752 778
#> 1.5 2383 797 784 802
#> 2 2400 826 795 779
#> 2.5 2275 777 733 765
#> 3 2277 742 787 748
#> 3.5 2276 743 781 752
#> 4 2309 795 752 762
#>
#> type x freshness
#>
#> Poor Average Excellent
#> NA 5430 5384 5386
#> Fuji 5356 1823 1729 1804
#> Gala 5403 1807 1835 1761
#> Honeycrisp 5441 1800 1820 1821

Similarly, the cbc_overlap() function prints out a summary of the amount of “overlap”
across attributes within the choice questions. For example, for each attribute, the count
under "1" is the number of choice questions in which the same level was shown across all
alternatives for that attribute (because there was only one level shown). Likewise, the count
under "2" is the number of choice questions in which only two unique levels of that attribute
were shown, and so on:
cbc_overlap(design)

#> ==============================
#> Counts of attribute overlap:
#> (# of questions with N unique levels)
#>
#> price:
#>
#> 1 2 3
#> 82 1861 3457
#>
#> type:
#>
#> 1 2 3
#> 526 3585 1289
#>

10

#> freshness:
#>
#> 1 2 3
#> 544 3605 1251

Simulating choices
Choices for a given design can be simulated using the cbc_choices() function. By default,
random choices are simulated:
data <- cbc_choices(

design = design,
obsID = "obsID"

)

head(data)

#> respID qID altID obsID profileID price type freshness choice
#> 1 1 1 1 1 29 1.0 Gala Average 1
#> 2 1 1 2 1 42 4.0 Honeycrisp Average 0
#> 3 1 1 3 1 2 1.5 Fuji Poor 0
#> 4 1 2 1 2 11 2.5 Gala Poor 0
#> 5 1 2 2 2 19 3.0 Honeycrisp Poor 1
#> 6 1 2 3 2 35 4.0 Gala Average 0

Choices can also be simulated according to an assumed prior model. The default model used
is a multinomial logit model with fixed parameters. In the example below, the choices are
simulated using a utility model with the following parameters:

• 1 continuous parameter for price
• 2 categorical parameters for type ("Gala" and "Honeycrisp")
• 2 categorical parameters for freshness ("Average" and "Excellent")

Note that for categorical variables (type and freshness in this example), the first level
defined when using cbc_profiles() is set as the reference level. The example below defines
the following utility model for simulating choices for each alternative j:

uj = 0.1pricej +0.1typeGala
j +0.2typeHoneycrisp

j +0.1freshnessAverage
j +0.2freshnessExcellent

j +εj

data <- cbc_choices(
design = design,
obsID = "obsID",
priors = list(

price = 0.1,
type = c(0.1, 0.2),
freshness = c(0.1, 0.2)

11

)
)

The prior model used for simulating choices can also include other, more complex models,
such as models that include interaction terms or mixed logit models. For example, the
example below is the same as the previous example but with an added interaction between
price and type:
data <- cbc_choices(

design = design,
obsID = "obsID",
priors = list(

price = 0.1,
type = c(0.1, 0.2),
freshness = c(0.1, 0.2),
`price*type` = c(0.1, 0.5)

)
)

To simulate choices according to a mixed logit model where parameters follow a normal or
log-normal distribution across the population, the randN() and randLN() functions can be
used inside the priors list. The example below models the type attribute with two random
normal parameters using a vector of means (mean) and standard deviations (sd) for each
level of type:
data <- cbc_choices(

design = design,
obsID = "obsID",
priors = list(

price = 0.1,
type = randN(mean = c(0.1, 0.2), sd = c(1, 2)),
freshness = c(0.1, 0.2)

)
)

Analyzing power
The simulated choice data can be used to conduct a power analysis by estimating the same
model multiple times with incrementally increasing sample sizes. As the sample size increases,
the estimated coefficient standard errors will decrease (i.e. coefficient estimates become more
precise), allowing the designer to identify the sample size required to achieve a desired level
of precision.

The cbc_power() function achieves this by partitioning the choice data into multiple sizes
(defined by the nbreaks argument) and then estimating a user-defined choice model on
each data subset. In the example below, 10 different sample sizes are used. All models are

12

estimated using the logitr package (Helveston 2021), and any arguments for estimating
models with the logitr package can be passed through the cbc_power() function (see the
logitr documentation for more details at https://jhelvy.github.io/logitr/)
power <- cbc_power(

data = data,
pars = c("price", "type", "freshness"),
outcome = "choice",
obsID = "obsID",
nbreaks = 10,
n_q = 6

)

head(power)

#> sampleSize coef est se
#> 1 90 price -0.06040873 0.05240625
#> 2 90 typeGala 0.03472528 0.12674303
#> 3 90 typeHoneycrisp -0.12565853 0.13144507
#> 4 90 freshnessAverage -0.22178262 0.12615250
#> 5 90 freshnessExcellent -0.16133193 0.12941081
#> 6 180 price -0.10413279 0.03691500
tail(power)

#> sampleSize coef est se
#> 45 810 freshnessExcellent -0.0414474109 0.04240707
#> 46 900 price -0.0164465810 0.01645047
#> 47 900 typeGala 0.0765477219 0.04032126
#> 48 900 typeHoneycrisp -0.0003095406 0.04063657
#> 49 900 freshnessAverage -0.0384351906 0.04064535
#> 50 900 freshnessExcellent -0.0297033610 0.04023209

The power data frame contains the coefficient estimates and standard errors for each sample
size. In the example above, it is clear that the standard errors for a sample size of 900 are
much lower than those for a sample size of just 90.

Visualizing the results of the power analysis can be particularly helpful for identifying sample
size requirements. Since the cbc_power() function returns a data frame in a “tidy” (or “long”)
format (Wickham 2014), the results can be conveniently plotted using the popular ggplot2
package (Wickham, Chang, and Wickham 2016). A plot() method is already included in
cbcTools to create a simple ggplot of the power curves:
plot(power)

Of course, designers may be interested in aspects other than standard errors. By setting
return_models = TRUE, the cbc_power() function will return a list of estimated models
(one for each sample size increment), which can then be used to examine other model objects.

13

https://jhelvy.github.io/logitr
https://jhelvy.github.io/logitr/

0.00

0.05

0.10

250 500 750

Sample size

S
ta

nd
ar

d
er

ro
r Coefficient

freshnessAverage

freshnessExcellent

price

typeGala

typeHoneycrisp

Figure 3: Standard errors of each model coefficient with increasing sample size.

The example below prints a summary of the last model in the list of returned models.
library(logitr)

models <- cbc_power(
data = data,
pars = c("price", "type", "freshness"),
outcome = "choice",
obsID = "obsID",
nbreaks = 10,
n_q = 6,
return_models = TRUE

)

summary(models[[10]])

#> ===
#>
#> Model estimated on: Tue Jun 07 16:24:00 2022
#>
#> Using logitr version: 0.6.0
#>
#> Call:
#> FUN(data = X[[i]], outcome = ..1, obsID = ..2, pars = ..3, randPars = ..4,
#> panelID = ..5, clusterID = ..6, robust = ..7, predict = ..8)
#>
#> Frequencies of alternatives:
#> 1 2 3

14

#> 0.32889 0.34519 0.32593
#>
#> Exit Status: 3, Optimization stopped because ftol_rel or ftol_abs was reached.
#>
#> Model Type: Multinomial Logit
#> Model Space: Preference
#> Model Run: 1 of 1
#> Iterations: 9
#> Elapsed Time: 0h:0m:0.03s
#> Algorithm: NLOPT_LD_LBFGS
#> Weights Used?: FALSE
#> Robust? FALSE
#>
#> Model Coefficients:
#> Estimate Std. Error z-value Pr(>|z|)
#> price -0.01644658 0.01645047 -0.9998 0.31742
#> typeGala 0.07654772 0.04032126 1.8984 0.05764 .
#> typeHoneycrisp -0.00030954 0.04063657 -0.0076 0.99392
#> freshnessAverage -0.03843519 0.04064535 -0.9456 0.34434
#> freshnessExcellent -0.02970336 0.04023209 -0.7383 0.46033
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Log-Likelihood: -5.929094e+03
#> Null Log-Likelihood: -5.932506e+03
#> AIC: 1.186819e+04
#> BIC: 1.190116e+04
#> McFadden R2: 5.752026e-04
#> Adj McFadden R2: -2.676115e-04
#> Number of Observations: 5.400000e+03

Piping it all together!
One of the convenient features of how the package is written is that the object generated in
each step is used as the first argument to the function for the next step. Thus, just like in
the overall program diagram (see Figure 2), the functions can be piped together using either
the Base R |> operator or the popular %>% operator from the magrittr package (Bache et
al. 2022). The example below will generate the same power analysis plot as in Figure 3 by
sequentially evaluating each of the main design steps.
cbc_profiles(

price = seq(1, 4, 0.5), # $ per pound
type = c('Fuji', 'Gala', 'Honeycrisp'),
freshness = c('Poor', 'Average', 'Excellent')

) |>

15

cbc_design(
n_resp = 900, # Number of respondents
n_alts = 3, # Number of alternatives per question
n_q = 6 # Number of questions per respondent

) |>
cbc_choices(

obsID = "obsID",
priors = list(

price = 0.1,
type = c(0.1, 0.2),
freshness = c(0.1, 0.2)

)
) |>
cbc_power(

pars = c("price", "type", "freshness"),
outcome = "choice",
obsID = "obsID",
nbreaks = 10,
n_q = 6

) |>
plot()

One benefit of this piped structure is that it enables the designer to quickly observe the
implications of different design choices on statistical power. For example, consider the
following “what if” design questions:

• What if one more choice question was added to each respondent?
• What if the number of alternatives per choice question was decreased to two?
• What if a labeled design were used for the type attribute?
• What if there was an interaction effect between price and type?

Obtaining an answer to each of these questions requires only small modifications to the
arguments in one or more functions inside the analysis “pipeline”. Once the change is
made, the entire analysis can be quickly re-executed and the results compared to those of
an alternative design. Because cbcTools leverages the logitr package (which is highly
optimized for speed) for simulating choices and estimating models, re-executing each analysis
should only seconds to compute the entire process on most modern computers and laptops.

Conclusions
This paper introduces an open source R package, cbcTools, for generating and evaluating
choice-based conjoint experiment designs. The package contains functions for generating
experiment designs, examining attribute balance and overlap, simulating choice data, and
conducting power analyses. In addition to being open source, one of its primary advantages
over alternatives is the ability to examine the statistical power of different designs under a

16

variety of conditions, such as when preference heterogeneity or strong interactions between
certain attributes may be expected in respondent choices. Users can simulate choice data
for designs according to multinomial and mixed logit models and examine sample size
requirements to achieve a desired level of precision for multinomial and mixed logit models.
The package is designed such that each function along the analysis process generates an
object for the next function, enabling the ability to conveniently pipe together a full analysis
from defining attributes and levels, generating an experiment design, simulating choice
data, and examining statistical power. Detailed package documentation can be found at
https://jhelvy.github.io/cbcTools/.

References
Bache, Stefan Milton, Hadley Wickham, Lionel Henry, and Maintainer Lionel Henry. 2022.

“Package ‘Magrittr’.”
Hauser, John R., and Olivier Toubia. 2005. “The Impact of Utility Balance and Endogeneity

in Conjoint Analysis.” Marketing Science 24 (3): 498–507. https://doi.org/10.1287/mksc
.1040.0108.

Helveston, John Paul. 2021. Logitr: Fast Estimation of Multinomial and Mixed Logit
Models with Preference Space and Willingness to Pay Space Utility Parameterizations.
https://jhelvy.github.io/logitr/.

———. 2022. cbcTools: Tools for Designing Choice-Based Conjoint Survey Experiments.
https://jhelvy.github.io/cbcTools/.

Huber, Joel, and Klaus Zwerina. 1996. “The Importance of Utility Balance in Efficient
Choice Designs.” Journal of Marketing Research 33 (3): 307–17.

Johnson, F Reed, Emily Lancsar, Deborah Marshall, Vikram Kilambi, Axel Mühlbacher,
Dean A Regier, Brian W Bresnahan, Barbara Kanninen, and John FP Bridges. 2013.
“Constructing Experimental Designs for Discrete-Choice Experiments: Report of the
ISPOR Conjoint Analysis Experimental Design Good Research Practices Task Force.”
Value in Health 16 (1): 3–13.

Johnson, Richard M, and Bryan K Orme. 2002. “Sawtooth Software How Many Questions
Should You Ask in Choice-Based Conjoint Studies ?” 360. Vol. 98382.

Kessels, Roselinde, Peter Goos, and Martina Vandebroek. 2006. “A Comparison of Criteria
to Design Efficient Choice Experiments.” Journal of Marketing Research 43 (3): 409–19.

Kuhfeld, Warren F. 2002. “Efficient Experimental Designs Using Computerized Searches”
98382 (360).

Walker, Joan L, Yanqiao Wang, Mikkel Thorhauge, and Moshe Ben-Akiva. 2018. “D-Efficient
or Deficient? A Robustness Analysis of Stated Choice Experimental Designs.” Theory
and Decision 84 (2): 215–38.

Wickham, Hadley. 2014. “Tidy Data.” Journal of Statistical Software 59 (10): 1–23.
https://doi.org/10.18637/jss.v059.i10.

Wickham, Hadley, Winston Chang, and Maintainer Hadley Wickham. 2016. “Package
‘Ggplot2’.” Create Elegant Data Visualisations Using the Grammar of Graphics. Version
2 (1): 1–189.

17

https://jhelvy.github.io/cbcTools/
https://doi.org/10.1287/mksc.1040.0108
https://doi.org/10.1287/mksc.1040.0108
https://jhelvy.github.io/logitr/
https://jhelvy.github.io/cbcTools/
https://doi.org/10.18637/jss.v059.i10

	Introduction
	The cbcTools Package
	Generating profiles
	Generating designs
	Randomized designs
	Labeled designs (a.k.a. ``alternative-specific'' designs)
	Adding a ``no choice'' option (a.k.a. ``outside good'')

	Inspecting designs
	Simulating choices
	Analyzing power
	Piping it all together!

	Conclusions
	References

