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Quantifying the cost savings of global solar 
photovoltaic supply chains

John Paul Helveston1, Gang He2 ✉ & Michael R. Davidson3,4

Achieving carbon neutrality requires deploying renewable energy at unprecedented 
speed and scale1,2, yet countries sometimes implement policies that increase costs  
by restricting the free flow of capital, talent and innovation in favour of localizing 
benefits such as economic growth, employment and trade surpluses3,4. Here we assess 
the cost savings from a globalized solar photovoltaic (PV) module supply chain. We 
develop a two-factor learning model using historical capacity, component and input 
material price data of solar PV deployment in the United States, Germany and China. 
We estimate that the globalized PV module market has saved PV installers US$24  
(19–31) billion in the United States, US$7 (5–9) billion in Germany and US$36 (26–45)  
billion in China from 2008 to 2020 compared with a counterfactual scenario in which 
domestic manufacturers supply an increasing proportion of installed capacities over 
a ten-year period. Projecting the same scenario forwards from 2020 results in 
estimated solar module prices that are approximately 20–25 per cent higher in 2030 
compared with a future with globalized supply chains. International climate policy 
benefits from a globalized low-carbon value chain4, and these results point to the need 
for complementary policies to mitigate welfare distribution effects and potential 
impacts on technological crowding out.

Solar energy is promised to play a crucial role in achieving a sustain-
able, low-carbon energy future and avoiding the worst impacts of  
climate change1. Over the past 40 years, solar photovoltaic (PV) prices 
have fallen by over two orders of magnitude, and during the period 
2010 to 2021, the global weighted-average levelized cost of energy 
of newly commissioned utility-scale solar PVs fell by 88% (ref. 5),  
making solar PVs cheaper than fossil fuel power in some parts of the 
world. Installed costs (excluding the cost of capital) fell by 81% over 
this period5. Although these dramatic price declines have been a boon 
for accelerating low-carbon energy deployment6, further declines 
will be necessary to deploy renewables at the speed and scale that 
is needed to achieve climate targets, especially in the remaining 
parts of the world where fossil fuel power is still cheaper7. Recent 
research suggests that the rates of solar and wind energy deployment 
in even the fastest-deploying nations are not high enough to meet 
the targets necessary to avoid the worst consequences of climate  
change8.

Nonetheless, rapid price declines in solar PV have not been without 
controversy. China, for example, has played an outsized role in scal-
ing up the mass production of solar PV cells and modules, comprising 
78% of global production in 20219,10 (Fig. 1). Greg Nemet went as far 
as to call this outcome China’s “gift to the world”11, referring to the 
dramatic manufacturing cost reductions achieved by Chinese firms 
in the past decade5. Yet other nations view the concentration of PV 
manufacturing in China as a competitive threat, and some have attrib-
uted this outcome to unfair trade practices and industrial policies 

implemented by China’s government12. Countries seeking to capitalize 
on the growing clean energy sector are looking to protect and grow 
domestic manufacturers3.

In response to these concerns, the United States and the European 
Union have imposed steep solar tariffs on imports from China and other 
countries. In June 2022, the Biden administration invoked the Defense 
Production Act to accelerate the onshoring of solar PV manufacturing13. 
These efforts could lead to less efficient national learning processes 
replacing the learning processes associated with global supply 
chains that have led to drastic price declines4. The free flow of capital  
(for example, foreign finance-backed start-ups), talent (for example, 
international collaborations with Chinese researchers) and innovations 
(for example, technologies pioneered in labs overseas and licensed and 
mass-produced in China) were essential to the rise of China’s competi-
tive solar PV industry14. Each of these activities is increasingly under 
scrutiny by the United States and other governments15. In the event 
of strict nationalization policies (including, inter alia, trade barriers 
in final or intermediate solar goods, restrictions on cross-national 
research and development, and barriers to cross-border investment), 
subsequent cost and performance improvements could derive pri-
marily from activities, knowledge and capital within national borders, 
potentially slowing the rate of price declines in globally traded solar 
PV components and, consequently, the rate of solar PV deployment.

International climate policy and renewable energy deployment 
policy now face a crossroads: continue relying on global supply chains, 
or pivot towards domestic technology development and production. 
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This study attempts to quantify the difference between these two 
paths in terms of the costs of deploying solar PV to achieve ambitious 
low-carbon goals. We collect detailed historical capacity, component 
and input material cost data of solar PV deployment in the United 
States, Germany and China, and develop a two-factor learning model 
to estimate a learning curve associated with the historical (globalized) 
solar PV supply chain. We then use these learning models to compare 
counterfactual historical prices and potential future prices of solar PV 
modules under ‘global’ versus ‘national’ market conditions. The global 
market scenarios reflect learning under historical market conditions 
whereas the national market scenarios reflect a gradual transition to 
fully domestically supplied markets over a ten-year period in each 
country.

We focus our scope on PV modules for two reasons. First, modules are 
a globally traded component and comprise between 20% and 40% of the 
installed system cost for most PV installations16; combined with inverters, 
modules comprised 61% of the global weighted-average total installed 
price decline between 2010 and 20205 (although they are expected to 
account for lower portions of cost in the future). Second, other ‘soft 
costs’ (such as permitting, installation and marketing) vary widely by 
country and have geographically limited learning and spillover effects17;  
as a result, we expect these cost components to remain relatively similar 

regardless of where modules are manufactured. Our analysis is limited 
to installed prices, not the levelized cost of energy as reflected in power 
purchase prices for solar energy, which also vary by country and project 
according to the cost of capital and other factors.

Modelling historical prices and savings
Using nation-specific, component-level price data and global PV instal-
lation and silicon price data, we estimate learning rates for solar PV 
modules in the three largest solar-deploying countries (China, Germany 
and the United States) between 2006 and 2020 using a two-factor learn-
ing model. Combined, these three markets comprised 54% of all global 
installed PV capacity during this period18. Estimated learning rates 
during this period are 20% in Germany, 26% in the United States and 
33% in China. We then compute the counterfactual ‘national markets’ 
scenario by assuming that starting in 2006 countries began implement-
ing nationalistic policies that gradually restrict learning to installa-
tions within their country borders over a ten-year period (for China, 
the starting year is 2007 owing to data availability). Annual installed 
capacities are assumed unchanged in the counterfactual ‘national 
markets’ scenario to provide the most policy-relevant results (see more 
discussion in ‘Limitations’ in Methods). Figure 2 shows the resulting 
price curves between the ‘global market’ and ‘national market’ scenarios 
in each country as well as the true historical prices.

Comparing the two scenarios, if each country had pursued a gradual 
transition to strict nationalistic policies while installing at the same 
rate over a ten-year period, our results imply that solar PV module 
prices in 2020 would have been substantially higher than their actual 
historical prices: 54% higher in China (US$387 per kW versus US$250 
per kW), 83% in higher Germany (US$652 per kW versus US$357 per kW) 
and 107% higher in the United States (US$877 per kW versus US$424 
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Fig. 1 | Annual solar PV cell production by origin, 2010–2021. Over the past 
decade, solar PV cell and module production has increasingly been 
concentrated in China6. ROW, rest of world. Data taken from ref. 9.

Table 1 | Solar PV 2030 installation targets for projection 
scenarios

Country National trends Sustainable development

2030 target 
(GW)

Implied 
CAGR (%)

2030 target 
(GW)

Implied 
CAGR (%)

United States 295 12 628 21

China 750 12 1,106 17

Germany 103 7 147 11

World 2,115 11 3,125 16
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Fig. 2 | Comparison of estimated solar PV module prices under global 
versus national market scenarios in China (2007–2020), and Germany and 
the United States (2006–2020). Points are historical module prices, and the 
two solid lines reflect the modelled prices using global (blue) versus national 
(orange) markets scenarios. In each modelled curve, the learning rates are  
held constant by country and silicon prices follow historical global trends 

(Extended Data Fig. 6). The global market scenario uses global capacities  
and the national market scenario uses a weighted sum of national and global 
capacities that reflects a gradual transition to fully domestically supplied 
markets over a ten-year period. Uncertainty bands represent 95% confidence 
intervals from the estimated learning models, which were computed via 
simulation.
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per kW). Early learning, boosted in part by Germany’s generous solar 
feed-in-tariffs, led to compounded improvements over time for the 
United States and China, which led to steep increases in installations 
in the second half of the period. The combined estimated cumulative 
savings across all three countries during this period from global versus 
national markets is US$67 billion (2020 $US), with a 95% confidence 
interval of US$50–84 billion (Fig. 3).

Future trajectories
As more countries introduce policies aimed at protecting local manufac-
turers, such as import tariffs on PV modules, continued learning-based 
reductions in module prices may be delayed. To assess this effect, we 
project solar PV module prices out to 2030 based on continued global 
versus national market scenarios starting from historical 2020 PV prices. 
These projections assume that capacity grows at a constant annual 
growth rate (CAGR) from 2020 installed capacity levels out to 2030 
targets for each country. We consider two different future scenarios: 
‘national trends’, which projects recent deployment trends out to 2030, 
and ‘sustainable development’, which reflects more aggressive installa-
tion growth to meet climate targets based on the Sustainable Develop-
ment Scenario in the International Energy Agency World Energy Outlook 
20207. Table 1 summarizes the specific 2030 targets for each country in 
each scenario, and Fig. 4 shows the results of these projections.

These projections imply that prices would be substantially higher in 
2030 if strict nationalistic policies were gradually implemented in each 
country from 2020 to 2030. Under the national trends scenario, 2030 
prices would be approximately 20% higher in each country: US$162 per 
kW versus US$135 per kW in China, US$298 per kW versus US$251 per 
kW in Germany, and US$320 per kW versus US$262 per kW in the United 
States. Under the sustainable development scenario, the differences in 
prices would be approximately 25% higher in each country: US$136 per 
kW versus US$108 per kW in China, US$276.2 per kW versus US$220.9 
per kW in Germany, and US$276.2 per kW versus US$221.3 per kW in 
the United States. For comparison, the US National Renewable Energy 
Laboratory 2021 Annual Technology Baseline report predicts that solar 
PV modules will reach US$170 per kW, US$190 per kW and US$320 per 
kW by 2030 in advanced, moderate and conservative improvement 
scenarios, respectively19. Therefore, the differences attributed just to 
domestic production are up to half of the gap between worst-case and 
baseline cost scenarios. On the basis of the projected installed capaci-
ties, the estimated cumulative future savings from 2020 to 2030 across 
all three countries from global versus national markets is US$15 billion 
(2020 $US) with a 95% confidence interval of US$13–16 billion under the 
national trends scenario, and US$36 (33–39) billion under the sustain-
able development scenario (Extended Data Fig. 1).

Discussion
The manufacturing of solar PV modules—a globally traded commodity 
that is crucial to addressing climate change—is increasingly contested 
by governments seeking to localize benefits of the current and future 
scale of the industry. Yet achieving the rapid rates of solar PV deploy-
ment required to address climate change will necessarily require con-
tinued price declines at the same or greater rates as those experienced 
during the past decade, a period during which the free flow of global 
talent, capital and innovations were instrumental to cost reductions. 
In this paper, we contribute to understanding the implications of strict 
nationalistic policies by assembling component-specific solar PV price 
data (Extended Data Figs. 2–4) across major markets, establishing 
national-level estimates of learning rates that incorporate silicon 
prices (Extended Data Fig. 6), and quantifying the potential impact 
of restricted national learning on historical and projected prices and 
savings from solar PV deployment. The results may extend to other 
low-carbon technology sectors, such as wind-generating systems and 
electric vehicles, with caveats related to the supply chain integration 
and complexity of technological components. Wind-generating sys-
tems, for example, have a very globally integrated and specialized trade 
in intermediate components20; as a result, achieving ‘national markets’ 
for the entire wind supply chain could lead to even larger disruptions 
in terms of costs and delayed learning.

We identify three dilemmas facing policymakers in preserving estab-
lished globalized supply chains: trade disputes and domestic employ-
ment, ‘crowding out’ of alternative technology pathways, and additional 
benefits and drivers of domestic sourcing. Resolving these through 
complementary policies that mitigate impacts on global learning are 
difficult but important tasks moving forwards.

Trade disputes and domestic employment
Some have attributed the concentration of PV manufacturing in China 
to unfair trade practices and industrial policies implemented by China’s 
government12. Although constant cost multipliers would be absorbed in 
the national learning rates, we do not attempt to disaggregate the con-
tributions to these rates nor do we account for changes in national-level 
producer subsidies or tariffs faced by importers. The ‘learning curve’ 
is a synthetic indicator that captures the cumulative effect of impact-
ing factors on the cost evolution of a technology. Data limitations of 
time-varying government subsidies, industrial policies, tariffs and 
firm relocations prevent us from disaggregating these precise effects 
on price and are beyond the scope of this study.

The loss of potential manufacturing jobs in importing countries 
coupled with trade disputes is prompting much of the impetus for 
nationalistic policies. The National Renewable Energy Laboratory 

Cumulative savings:
US$36 (26–46) billion

Cumulative savings:
US$7 (5–9) billion

Cumulative savings:
US$24 (19–30) billion
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Fig. 3 | Estimated annual savings from deployed annual solar PV modules 
using global versus national market scenarios in China, Germany and the 
United States (2008–2020). Savings are calculated by multiplying the 

installed national capacity in each year with the difference between the 
modelled prices from the national and global markets scenarios. Error bars 
represent 95% confidence intervals computed via simulation.
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estimates that there are ten times more annual jobs in system instal-
lation compared with those in the entire manufacturing supply chain 
(although within manufacturing, solar module production is the most 
labour intensive per gigawatt)21. Hence, if higher prices associated with 
nationalistic policies result in less deployment, total employment may 
decline, although there may be other redistributive concerns and politi-
cal realities shaping preferences for certain types of jobs22.

Our national markets counterfactual scenario is an illustrative exam-
ple of more extreme decoupling, although because of the difficulty of 
onshoring, countries may instead opt to ‘near-shore’ production to a 
subset of countries or onshore only select parts of the supply chain. 
Even the three countries studied could not costlessly onshore entire sup-
ply chains; hence, our results probably represent an underestimate of  
the future costs of strict onshoring policies. Reciprocity in trade poli-
cies is another barrier limiting the extent to which nations can fulfil 
onshoring policy goals: for example, the US polysilicon industry was 
once a dominant global supplier to solar PV manufacturers but became 
the first casualty of the solar trade war between China and the United 
States when China retaliated for tariffs on imported Chinese modules.

Technological ‘crowding out’
Some have argued that the rapid price declines of monocrystalline  
silicon (c-Si) PV cells, driven in part by Chinese industrial policies to 
ramp up production in China, might have ‘crowded out’ other emerging 
solar technologies, such as ‘thin film’ solar cells for which the United 
States has a sizable global market share and that could have achieved 
even lower prices without fierce competition from c-Si23,24. Such an argu-
ment is not without precedent. For example, ref. 25 found that offshor-
ing manufacturing in the optoelectronics industry to developing East 
Asia led to such notable price reductions in the incumbent technology 
that emerging and potentially groundbreaking technologies could not 
compete and were largely abandoned.

Although these concerns are not without merit, they are not necessarily  
the only forces at play in the global PV industry. Indeed, PV cell and 

module manufacturing has followed a developmental path common to 
many industries in which initial, intense experimentation is followed by 
the emergence of a ‘dominant design’26 and a shift in productive activity 
away from product innovations and towards production improvements 
to increase scale and reduce costs27–30. This shift in focus towards pro-
duction tends to precipitate two related phenomena: (1) unit costs drop 
dramatically as firms identify successful production innovations, and  
(2) many competing firms fail as production tends to concentrate 
around the handful of firms that are able to compete on lower costs.  
In some industries, this also coincides with offshoring production in 
search of lower-cost production environments, although this is not 
always the case3. Thus, it remains unclear whether the concentration of 
PV cell and module production in China was purely a result of government 
intervention or perhaps a combination of factors, such as the natural 
evolution of a maturing industry31. Chinese policies may have acceler-
ated cost declines in c-Si cells and modules, but whether they alone led 
to the crowding out of other potential technologies remains debatable.

Additional domestic and diversified sourcing drivers
A domestic manufacturing base in solar PV may provide other benefits 
besides direct employment worthy of future study. Our model does 
not incorporate any spillover benefits to adjacent industries, such as 
semiconductors and electronics. For example, polysilicon produc-
tion is part of both advanced chip and solar supply chains, although 
solar-grade polysilicon has purity requirements several orders of mag-
nitude lower32. Establishing a stronger link between public funding of 
research and development and the private sector has been identified 
as important to achieving climate technology innovation goals, both 
by reducing the risks of scale-up and by providing access to markets33. 
Foreign manufacturers may be undesirable or infeasible partners with 
public money. However, private sector-led efforts can be effective inter-
nationally: Chinese solar firms largely innovated through improved 
manufacturing processes and strategic international partnerships, 
including with US-based start-ups unable to scale domestically34.
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global 2030 installation targets. Each curve starts at historical 2020 module 
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whereas in the national market scenarios a weighted sum of national and global 
capacities is used that reflects a gradual transition to fully domestically 
supplied markets over a ten-year period. Uncertainty bands represent 95% 
confidence intervals from the estimated learning models, which were 
computed via simulation.
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Reliance on a single or small set of countries in crucial supply chain 
bottlenecks, even if reducing costs and enhancing learning, may gen-
erate risks of disruption based on natural disasters or geopolitical 
conflict. A managed diversification—instead of national onshoring—
could provide a pathway to mitigate the cost impacts of hardening 
supply chains.

Finally, maintaining adequate environmental, health and labour 
standards in the production of traded goods is important for ethi-
cal reasons and is increasingly raised in the context of maintaining a 
level-playing field in trade agreements. The Xinjiang region of China, 
where much of the world’s solar-grade polysilicon is produced, has 
come under increased scrutiny owing to allegations of forced labour. 
The solar industry has responded with proposed traceability proto-
cols, which if effective could obviate the need to onshore production 
for ethical reasons35. Further work is needed on the feasibility of such  
protocols.

This study presents a quantitative estimation of the historical and 
future cost savings from a globalized solar PV supply chain. The results 
provide evidence of the benefits of global learning processes in terms 
of achieving lower prices to accelerate low-carbon technology deploy-
ment, which could potentially be delayed by emerging nationalistic 
policy efforts. When negotiators meet to discuss accelerating action 
towards the goals of the Paris Agreement, and when policymakers plan 
for pathways to achieve mid-century carbon neutrality, they should rec-
ognize that these aspirations may be difficult or impossible to achieve 
without globalized low-carbon supply chains. Complementary policies 
are necessary to address dilemmas and debates with respect to local-
izing manufacturing and to ensure continued price declines.
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Methods

Learning models and simulations
The learning curve model is widely used to describe the evolution of 
production costs for technologies as they scale up36–40. In its simplest 
form, the learning curve defines a relationship in log–log space between 
cost (or price) and cumulative capacity41. The model can be expanded 
to incorporate not only the processes of ‘learning by doing’ but also 
‘learning by researching’ and changes in material input prices42,43. Here 
we adopt a two-factor learning model relating the unit price in year t 
and country i of solar PV modules, pit, to the cumulative installed PV 
capacity in year t, qt, and globally averaged polysilicon prices in year 
t, st (the primary input material to PV modules):

p α β q γ sln = ln + ln + ln (1)it i i t i t

Here, αi is a constant related to starting year conditions in country i, 
γi measures the sensitivity to polysilicon prices, and βi is the learning 
coefficient in country i, which is related to the learning rate (Li) by:

L = 1 − 2 (2)i
βi

For each country, i, we estimate learning coefficients (Extended Data 
Table 1), βi, under historical ‘global market’ conditions using linear 
least-squares regression on equation (1). These learning models set 
a baseline for learning rates under historical market conditions and 
assume that variations in country-level module pricing were due to 
transportation, administrative and other non-learning costs.

We then construct counterfactual ‘national market’ scenarios by 
assuming that the learning-related price decreases in country i from 
the starting year, t0, are derived from incrementally more nationally 
installed PV capacity:

q q q q λ q q− = ( − ) + (1 − )( − ) (3)t t it it t jt jt−1 −1 −1

where qit is the cumulative installed capacity in country i in year t, qjt 
is the cumulative installed capacity in all other countries in year t, 
and λt is a value ranging from 0 to 1. This defines a scenario whereby 
incremental capacity installed in each year increasingly comes from 
national as opposed to global installations as λt shifts from 0 to 1. In our  
baseline simulations, λt ranges from 0.1 to 1.0 in increments of 0.1 as  
t goes from 1 to 10, simulating a gradual transition to a scenario where all 
new national PV capacity is domestically supplied. At the starting year 
of both the historical and projection scenarios, λt = 0 and the cumulative 
capacity is set to the globally installed capacity in that year. Unit price 
declines under national market conditions thus evolve more slowly 
according to how rapidly λt approaches 1.

The national market scenarios propose that national-specific learn-
ing is proportionally derived from national versus global cumulative 
installed capacities, and by definition qit < qt. Extended Data Fig. 5 illus-
trates the relationship between λit and the proportion of national to 
global cumulative installed capacity over all years for each country.  
It is noted that the same value of λi does not translate to the same pro-
portion of national learning for each country. For example, if λi = 0.4, 
then the proportion of national learning is 15% in the United States, 
44% in China and 40% in Germany.

Uncertainty in parameter estimates is propagated throughout all of 
our analyses using multivariate normal draws from the full covariance 
matrix of model parameters. Lower and upper bounds on results reflect 
a 95% confidence interval taken from the 2.5% and 97.5% percentiles 
from these draws.

Limitations
Learning-rate analyses, although widely used, are subject to critiques  
in terms of under-specifying learning mechanisms40,44,45. In our 

application of these models, we include exogenous factors that 
could influence module prices but are not directly linked to learning  
(for example, polysilicon prices). Otherwise, we estimate a single learn-
ing coefficient for each country that captures the average learning 
owing to a variety of nation-specific factors that contribute to learning, 
such as learning by doing (average plant size), learning by researching 
(research and development) and so on. Although other studies have 
estimated learning models that attempt to disaggregate learning into 
constituent components46, our research focuses on the nation-specific 
price implications of trade barriers. Data gaps and insufficient observa-
tions preclude explaining the contributing factors to learning in each 
country. This introduces potential biases if learning mechanisms are 
differentially affected by globalization. Given the concentration of PV 
panel manufacturing in China, it is possible that a portion of the learning 
in China was due to achieving higher economies of scale than manufac-
turers in the United States and Germany. If so, then the savings reported 
from the differences in the global versus national market scenarios 
may be overestimated, assuming that US and German manufacturers 
would have achieved similar economies of scale in a counterfactual 
scenario where national producers meet domestic demand. Three 
alternative models were estimated to disaggregate module production, 
installation capacity and average plant size. Those results are shown in 
Extended Data Tables 2–4. Improving ease of access to credit for solar 
projects, as reflected in declining trends in weighted-average cost of 
capital, has and will continue to have a large impact on reducing power 
purchase prices for solar5,47. Therefore, restrictions in capital flows 
following from nationalistic policies could lead to even larger costs 
on developers. Installed capacities are unchanged across scenarios, 
ignoring any effects of price elasticity of demand which, if incorporated, 
would result in fewer installations in higher-cost ‘national markets’  
scenarios. Finally, the specific outcomes in terms of estimating savings 
from global versus national market scenarios are sensitive to simula-
tion parameters, such as the number of years until all national capacity  
is domestically supplied. These parameters can be varied and the  
outcomes compared using an open-source application available at 
https://jhelvy.shinyapps.io/solar-learning-2021/.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this article.

Data availability
We compile a comprehensive dataset of historical solar capacity and 
component price globally and in the United States, China and Germany. 
All data are publicly available at https://doi.org/10.5281/zenodo.6989075. 
Global installed PV capacity and price data are from the open database 
of the International Renewable Energy Agency (IRENA)18. For the United 
States, solar capacity data are from the Solar Energy Industries Asso-
ciation (SEIA)48, and module prices are assembled from two sources: 
the Lawrence Berkeley National Laboratory (LBNL)49 and the National 
Renewable Energy Laboratory (NREL)16. The LBNL data are used for the 
2006–2018 period as this series ends in 2018, and the NREL data are used 
for 2019–2020 to extend the series to 2020. This was chosen because the 
NREL data only start in 2010, and thus the LBNL series covers a broader 
range (Extended Data Figs. 2–4). For China, both the installed capa-
city and module price data (2007–2018) were extracted from reports 
and presentations by the Energy Research Institute (ERI)50, and the  
2019–2020 data were extracted from China Photovoltaic Industry 
Association where the historical data are identical to that of ERI51. For 
Germany, capacity data are from IRENA, and module price data were 
extracted from Fraunhofer ISE52. All prices are in 2020 US$, and we adopt 
inflation adjustments using the IMF (https://data.imf.org/) and exchange 
rates from the Federal Reserve Bank (https://www.federalreserve.gov/
releases/h10/hist/). Source data are provided with this paper.

https://jhelvy.shinyapps.io/solar-learning-2021/
https://doi.org/10.5281/zenodo.6989075
https://data.imf.org/
https://www.federalreserve.gov/releases/h10/hist/
https://www.federalreserve.gov/releases/h10/hist/


Code availability
All of the code used to process the data and produce all analyses and 
figures is publicly available at https://doi.org/10.5281/zenodo.6989075.
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Projected Annual Module Savings Under Global vs. National Market Scenarios (2020 - 2030)

Extended Data Fig. 1 | Comparison of projected annual savings (2020–2030) 
using global versus national market scenarios in China, Germany and  
the United States. Savings are calculated by multiplying the installed national 

capacity in each year with the difference between the modelled prices from the 
national and global markets scenarios. Error bars represent 95% confidence 
intervals computed via simulation.
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Extended Data Fig. 2 | Comparison of the US installed solar PV capacity by type and data source. The data largely agree between NREL16 and SEIA48. However, 
SEIA data are updated to 2020 and therefore are used in this study.
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Extended Data Fig. 3 | Comparison of the US cumulative installed solar PV capacity by data source. The data largely agree between NREL16 and SEIA48 while the 
data from IRENA18 suggest slightly lower installed capacities in the last five years.
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Extended Data Fig. 4 | Comparison of the US solar PV module prices by data 
source. We used the LBNL data49 for the 2006–2018 period in this study as this 
series ends in 2018, as well as the NREL data16 for 2019–2020 to extend the 

series to 2020. We opted for this because the NREL data only start in 2010, and 
thus the LBNL series covers a broader range.
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Extended Data Fig. 5 | Relationship between λ and the proportion of 
national to global cumulative installed capacity (2006–2020). The same 
value of λ does not translate to the same proportion of national learning for 

each country. For example, if λ = 0.4, then the proportion of national learning is 
15% in the United States, 44% in China and 40% in Germany.
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Extended Data Fig. 6 | Historical global silicon prices (1980–2020)8.  
Silicon is a key material input but is not directly linked to learning. Silicon prices 
experienced a major spike from US$171 per kg in 2006 to a peak at US$395 per kg  

in 2008, which could influence module prices notably, so we include this in our 
two-factor learning model.
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Extended Data Table 1 | Estimated learning model coefficients

This table reports correlations between cumulative installed capacities (cum_capacity_kw), polysilicon prices (price_si) and unit prices of solar PV modules: the two-factor learning model that 
we construct in this study. Standard errors are reported in parentheses. Asterisks indicate the level of significance: *5%; **1%; ***0.1%.



Extended Data Table 2 | Estimated learning model coefficients from alternative model 1, which includes an additional 
covariate for cumulative national module production capacity

Alternative model 1 generates a multi-factor log-log learning model with covariates for cumulative national module production capacity (cum_production_kw) and cumulative global installed 
capacity (cum_installed_kw). However, these two variables are highly correlated in each country. This table shows that adding cumulative national production capacity into the model 
eliminates the statistical significance of the cumulative installed capacity term for all countries, rendering the coefficients unidentifiable. In addition, the standard errors (reported in 
parentheses) are likely to be artificially low as standard errors are not correctly computed in basic linear regression when highly correlated variables are included in the regression. Thus, 
including national module production capacity directly in the regression is an infeasible approach. Asterisks indicate the level of significance: *5%; **1%; ***0.1%.
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Extended Data Table 3 | Estimated learning model coefficients from alternative model 2, which includes an additional 
covariate for cumulative national installed capacity

Alternative model 2 considers adding cumulative national installed capacity (cum_installed_kw_i) into the model. This table shows that the nation-specific installed capacity terms are not 
statistically significant. Furthermore, the primary coefficient of interest, βi, is very close to those in our main regression model (see Extended Data Table 1). Asterisks indicate the level of 
significance: *5%, **1%, ***0.1%.



Extended Data Table 4 | Estimated learning model coefficients from alternative model 3, which includes an additional 
covariate for global average plant size

Alternative model 3 controls for economies of scale (EOS) by including a proxy variable: global average plant size (ave_plant_size_kw). This table shows that including the plant size data  
eliminates the statistical significance of all terms. Asterisks indicate the level of significance: *5%; **1%; ***0.1%.
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