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Achieving carbon neutrality requires deploying renewable energy at unprecedented
speed and scale'?, yet countries sometimes implement policies that increase costs
by restricting the free flow of capital, talent and innovation in favour of localizing
benefits such as economic growth, employment and trade surpluses®*. Here we assess
the cost savings from aglobalized solar photovoltaic (PV) module supply chain. We
develop atwo-factor learning model using historical capacity, component and input
material price data of solar PV deployment in the United States, Germany and China.
We estimate that the globalized PV module market has saved PV installers US$24
(19-31) billionin the United States, US$7 (5-9) billion in Germany and US$36 (26-45)
billionin Chinafrom2008to 2020 compared with a counterfactual scenario in which
domestic manufacturers supply anincreasing proportion of installed capacities over

aten-year period. Projecting the same scenario forwards from 2020 results in
estimated solar module prices that are approximately 20-25 per cent higher in 2030
compared with a future with globalized supply chains. International climate policy
benefits from a globalized low-carbon value chain®, and these results point to the need
for complementary policies to mitigate welfare distribution effects and potential
impacts on technological crowding out.

Solar energy is promised to play a crucial role in achieving a sustain-
able, low-carbon energy future and avoiding the worst impacts of
climate change’. Over the past 40 years, solar photovoltaic (PV) prices
have fallen by over two orders of magnitude, and during the period
2010 to 2021, the global weighted-average levelized cost of energy
of newly commissioned utility-scale solar PVs fell by 88% (ref. ),
making solar PVs cheaper than fossil fuel power in some parts of the
world. Installed costs (excluding the cost of capital) fell by 81% over
this period®. Although these dramatic price declines have been aboon
for accelerating low-carbon energy deployment$, further declines
will be necessary to deploy renewables at the speed and scale that
is needed to achieve climate targets, especially in the remaining
parts of the world where fossil fuel power is still cheaper’. Recent
research suggests that therates of solar and wind energy deployment
in even the fastest-deploying nations are not high enough to meet
the targets necessary to avoid the worst consequences of climate
change®.

Nonetheless, rapid price declinesin solar PV have not been without
controversy. China, for example, has played an outsized role in scal-
ing up the mass production of solar PV cells and modules, comprising
78% of global production in 2021°° (Fig. 1). Greg Nemet went as far
as to call this outcome China’s “gift to the world”", referring to the
dramatic manufacturing cost reductions achieved by Chinese firms
in the past decade’. Yet other nations view the concentration of PV
manufacturingin Chinaasacompetitive threat, and some have attrib-
uted this outcome to unfair trade practices and industrial policies

implemented by China’s government'. Countries seeking to capitalize
on the growing clean energy sector are looking to protect and grow
domestic manufacturers’.

In response to these concerns, the United States and the European
Union haveimposed steep solar tariffs onimports from Chinaand other
countries.Injune 2022, the Biden administrationinvoked the Defense
Production Act to accelerate the onshoring of solar PV manufacturing'.
These efforts could lead to less efficient national learning processes
replacing the learning processes associated with global supply
chains that have led to drastic price declines*. The free flow of capital
(for example, foreign finance-backed start-ups), talent (for example,
international collaborations with Chinese researchers) and innovations
(forexample, technologies pioneeredinlabs overseas and licensed and
mass-produced in China) were essential to the rise of China’s competi-
tive solar PV industry™. Each of these activities is increasingly under
scrutiny by the United States and other governments®. In the event
of strict nationalization policies (including, inter alia, trade barriers
in final or intermediate solar goods, restrictions on cross-national
researchand development, and barriers to cross-borderinvestment),
subsequent cost and performance improvements could derive pri-
marily from activities, knowledge and capital within national borders,
potentially slowing the rate of price declines in globally traded solar
PV components and, consequently, the rate of solar PV deployment.

International climate policy and renewable energy deployment
policy now face acrossroads: continue relying on global supply chains,
or pivot towards domestic technology development and production.
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Fig.1|Annualsolar PV cell production by origin, 2010-2021. Over the past
decade, solar PV celland module production hasincreasingly been
concentrated in China®. ROW, rest of world. Data taken fromref.°.

This study attempts to quantify the difference between these two
pathsin terms of the costs of deploying solar PV to achieve ambitious
low-carbon goals. We collect detailed historical capacity, component
and input material cost data of solar PV deployment in the United
States, Germany and China, and develop a two-factor learning model
to estimate alearning curve associated with the historical (globalized)
solar PV supply chain. We then use these learning models to compare
counterfactual historical prices and potential future prices of solar PV
modules under ‘global’ versus ‘national’ market conditions. The global
market scenarios reflect learning under historical market conditions
whereas the national market scenarios reflect a gradual transition to
fully domestically supplied markets over a ten-year period in each
country.

Wefocus our scope on PV modules for two reasons. First, modules are
aglobally traded component and comprise between20% and 40% of the
installed system cost formost PVinstallations'®; combined withinverters,
modules comprised 61% of the global weighted-average total installed
price decline between 2010 and 2020° (although they are expected to
account for lower portions of cost in the future). Second, other ‘soft
costs’ (such as permitting, installation and marketing) vary widely by
country and have geographically limited learning and spillover effects";
asaresult, we expect these cost components to remain relatively similar

Table 1| Solar PV 2030 installation targets for projection
scenarios

Country National trends Sustainable development
2030target Implied 2030target Implied
(GW) CAGR (%) (GW) CAGR (%)

United States 295 12 628 21

China 750 12 1106 17

Germany 103 7 147 "

World 2,115 n 3,125 16

regardless of where modules are manufactured. Our analysisis limited
toinstalled prices, not the levelized cost of energy as reflected in power
purchase prices for solar energy, which also vary by country and project
according to the cost of capital and other factors.

Modelling historical prices and savings

Using nation-specific, component-level price dataand global PV instal-
lation and silicon price data, we estimate learning rates for solar PV
modulesinthethreelargestsolar-deploying countries (China, Germany
and the United States) between 2006 and 2020 using atwo-factor learn-
ingmodel. Combined, these three markets comprised 54% of all global
installed PV capacity during this period'®. Estimated learning rates
during this period are 20% in Germany, 26% in the United States and
33%in China. We then compute the counterfactual ‘national markets’
scenario by assuming that startingin2006 countries beganimplement-
ing nationalistic policies that gradually restrict learning to installa-
tions within their country borders over a ten-year period (for China,
the starting year is 2007 owing to data availability). Annual installed
capacities are assumed unchanged in the counterfactual ‘national
markets’ scenario to provide the most policy-relevant results (see more
discussion in ‘Limitations’ in Methods). Figure 2 shows the resulting
price curves between the ‘global market’ and ‘national market’ scenarios
ineach country as well as the true historical prices.

Comparingthe two scenarios, ifeach country had pursued agradual
transition to strict nationalistic policies while installing at the same
rate over a ten-year period, our results imply that solar PV module
pricesin 2020 would have been substantially higher than their actual
historical prices: 54% higher in China (US$387 per kW versus US$250
per kW), 83%in higher Germany (US$652 per kW versus US$357 per kW)
and 107% higher in the United States (US$877 per kW versus US$424
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Fig.2|Comparison ofestimated solar PV module prices under global
versus national market scenariosin China (2007-2020), and Germany and
the United States (2006-2020). Points are historical module prices, and the
twosolid lines reflect the modelled prices using global (blue) versus national
(orange) markets scenarios. Ineachmodelled curve, thelearning rates are
held constant by country and silicon prices follow historical global trends
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(Extended DataFig. 6). The global market scenario uses global capacities
and the national market scenario uses aweighted sum of national and global
capacities thatreflects agradual transition to fully domestically supplied
markets over aten-year period. Uncertainty bands represent 95% confidence
intervals from the estimated learning models, which were computed via
simulation.
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Fig.3|Estimated annual savings from deployed annual solar PV modules
using global versus national market scenarios in China, Germany and the
United States (2008-2020). Savings are calculated by multiplying the

per kW). Early learning, boosted in part by Germany’s generous solar
feed-in-tariffs, led to compounded improvements over time for the
United States and China, which led to steep increases in installations
inthe second half of the period. The combined estimated cumulative
savings across all three countries during this period from global versus
national markets is US$67 billion (2020 $US), with a 95% confidence
interval of US$50-84 billion (Fig. 3).

Future trajectories

Asmore countriesintroduce policies aimed at protecting local manufac-
turers, suchasimporttariffs on PV modules, continued learning-based
reductions in module prices may be delayed. To assess this effect, we
project solar PV module prices out to 2030 based on continued global
versus national market scenarios starting from historical 2020 PV prices.
These projections assume that capacity grows at a constant annual
growth rate (CAGR) from 2020 installed capacity levels out to 2030
targets for each country. We consider two different future scenarios:
‘national trends’, which projects recent deployment trends out to 2030,
and ‘sustainable development’, which reflects more aggressive installa-
tion growth to meet climate targets based on the Sustainable Develop-
ment Scenariointhe International Energy Agency World Energy Outlook
2020’. Table1summarizes the specific 2030 targets for each countryin
each scenario, and Fig. 4 shows the results of these projections.

These projectionsimply that prices would be substantially higherin
2030 if strict nationalistic policies were gradually implementedin each
country from2020 to 2030. Under the national trends scenario, 2030
prices would be approximately 20% higher ineach country: US$162 per
kW versus US$135 per kW in China, US$298 per kW versus US$251 per
kW in Germany, and US$320 per kW versus US$262 per kW in the United
States. Under the sustainable development scenario, the differencesin
prices would be approximately 25% higher in each country: US$136 per
kW versus US$108 per kW in China, US$276.2 per kW versus US$220.9
per kW in Germany, and US$276.2 per kW versus US$221.3 per kW in
the United States. For comparison, the US National Renewable Energy
Laboratory 2021 Annual Technology Baseline report predicts that solar
PV modules will reach US$170 per kW, US$190 per kW and US$320 per
kW by 2030 in advanced, moderate and conservative improvement
scenarios, respectively”. Therefore, the differences attributed just to
domestic production are up to half of the gap between worst-case and
baseline cost scenarios. On the basis of the projected installed capaci-
ties, the estimated cumulative future savings from 2020 t0 2030 across
allthree countries from global versus national markets is US$15 billion
(2020 $US) witha 95% confidence interval of US$13-16 billion under the
national trends scenario, and US$36 (33-39) billion under the sustain-
able development scenario (Extended Data Fig. 1).
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installed national capacity in each year with the difference between the
modelled prices from the national and global markets scenarios. Error bars
represent 95% confidence intervals computed viasimulation.

Discussion

The manufacturing of solar PV modules—aglobally traded commodity
thatis crucial to addressing climate change—is increasingly contested
by governments seeking to localize benefits of the current and future
scale of the industry. Yet achieving the rapid rates of solar PV deploy-
mentrequired to address climate change will necessarily require con-
tinued price declines at the same or greater rates as those experienced
during the past decade, a period during which the free flow of global
talent, capital and innovations were instrumental to cost reductions.
Inthis paper, we contribute to understanding the implications of strict
nationalistic policies by assembling component-specific solar PV price
data (Extended Data Figs. 2-4) across major markets, establishing
national-level estimates of learning rates that incorporate silicon
prices (Extended Data Fig. 6), and quantifying the potential impact
of restricted national learning on historical and projected prices and
savings from solar PV deployment. The results may extend to other
low-carbon technology sectors, such as wind-generating systems and
electric vehicles, with caveats related to the supply chain integration
and complexity of technological components. Wind-generating sys-
tems, for example, have avery globally integrated and specialized trade
inintermediate components®’; asaresult, achieving ‘national markets’
for the entire wind supply chain could lead to even larger disruptions
interms of costs and delayed learning.

We identify three dilemmas facing policymakersin preserving estab-
lished globalized supply chains: trade disputes and domesticemploy-
ment, ‘crowding out’ of alternative technology pathways, and additional
benefits and drivers of domestic sourcing. Resolving these through
complementary policies that mitigate impacts on global learning are
difficult butimportant tasks moving forwards.

Trade disputes and domestic employment
Some have attributed the concentration of PV manufacturingin China
tounfair trade practices and industrial policiesimplemented by China’s
government™. Although constant cost multipliers would be absorbed in
the nationallearning rates, we do not attempt to disaggregate the con-
tributionsto these rates nor do we account for changes in national-level
producer subsidies or tariffs faced by importers. The ‘learning curve’
isasyntheticindicator that captures the cumulative effect of impact-
ing factors on the cost evolution of a technology. Data limitations of
time-varying government subsidies, industrial policies, tariffs and
firmrelocations prevent us from disaggregating these precise effects
on price and are beyond the scope of this study.

The loss of potential manufacturing jobs in importing countries
coupled with trade disputes is prompting much of the impetus for
nationalistic policies. The National Renewable Energy Laboratory
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Fig.4|Comparison of projected solar PVmodule prices (2020-2030) using
global versus national market scenarios in China, Germany and the United
States. Projections assume CAGRsin PVinstallations to achieve nationaland
global2030 installation targets. Each curve starts at historical 2020 module
prices and follows a nation-specificlearning rate. In the global market
scenarios, global projected installed capacities are used to project prices

estimates that there are ten times more annual jobs in system instal-
lation compared with those in the entire manufacturing supply chain
(although within manufacturing, solar module productionis the most
labour intensive per gigawatt)?. Hence, if higher prices associated with
nationalistic policies resultinless deployment, totalemployment may
decline, althoughthere may be other redistributive concerns and politi-
cal realities shaping preferences for certain types of jobs?.

Our national markets counterfactual scenariois anillustrative exam-
ple of more extreme decoupling, although because of the difficulty of
onshoring, countries may instead opt to ‘near-shore’ productionto a
subset of countries or onshore only select parts of the supply chain.
Eventhethree countries studied could not costlessly onshore entire sup-
ply chains; hence, our results probably represent an underestimate of
the future costs of strict onshoring policies. Reciprocity in trade poli-
cies is another barrier limiting the extent to which nations can fulfil
onshoring policy goals: for example, the US polysilicon industry was
once adominantglobal supplier to solar PV manufacturers butbecame
the first casualty of the solar trade war between China and the United
States when Chinaretaliated for tariffs onimported Chinese modules.

Technological ‘crowding out’
Some have argued that the rapid price declines of monocrystalline
silicon (c-Si) PV cells, driven in part by Chinese industrial policies to
ramp up production in China, might have ‘crowded out’ other emerging
solar technologies, such as ‘thin film’ solar cells for which the United
States has asizable global market share and that could have achieved
evenlower prices without fierce competition from ¢-Si***. Such anargu-
mentis not without precedent. For example, ref. % found that offshor-
ing manufacturingin the optoelectronicsindustry to developing East
Asialed tosuchnotable pricereductionsintheincumbenttechnology
thatemerging and potentially groundbreaking technologies could not
compete and were largely abandoned.

Althoughthese concernsare not withoutmerit, they are not necessarily
the only forces at play in the global PV industry. Indeed, PV cell and
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whereasin the national market scenarios aweighted sum of national and global
capacitiesis used that reflects agradual transition to fully domestically
supplied markets over aten-year period. Uncertainty bands represent 95%

confidenceintervals from the estimated learning models, whichwere
computed viasimulation.

module manufacturing has followed a developmental path commonto
many industries in whichinitial, intense experimentation is followed by
the emergence of a‘dominant design™® and a shift in productive activity
away from productinnovations and towards productionimprovements
to increase scale and reduce costs?*°, This shift in focus towards pro-
ductiontendsto precipitate two related phenomena: (1) unit costs drop
dramatically as firms identify successful production innovations, and
(2) many competing firms fail as production tends to concentrate
around the handful of firms that are able to compete on lower costs.
In some industries, this also coincides with offshoring production in
search of lower-cost production environments, although this is not
always the case®. Thus, it remains unclear whether the concentration of
PV celland module productionin Chinawas purely a result of government
intervention or perhaps a combination of factors, such as the natural
evolution of amaturing industry®. Chinese policies may have acceler-
ated cost declines in c-Si cells and modules, but whether they alone led
tothe crowding out of other potential technologies remains debatable.

Additional domestic and diversified sourcing drivers

A domestic manufacturing base insolar PV may provide other benefits
besides direct employment worthy of future study. Our model does
notincorporate any spillover benefits to adjacent industries, such as
semiconductors and electronics. For example, polysilicon produc-
tion is part of both advanced chip and solar supply chains, although
solar-grade polysilicon has purity requirements several orders of mag-
nitude lower®. Establishing astronger link between public funding of
research and development and the private sector has been identified
as important to achieving climate technology innovation goals, both
by reducing therisks of scale-up and by providing access to markets*.
Foreign manufacturers may be undesirable or infeasible partners with
public money. However, private sector-led efforts can be effective inter-
nationally: Chinese solar firms largely innovated through improved
manufacturing processes and strategic international partnerships,
including with US-based start-ups unable to scale domestically>*.



Reliance on asingle or small set of countries in crucial supply chain
bottlenecks, evenifreducing costs and enhancing learning, may gen-
erate risks of disruption based on natural disasters or geopolitical
conflict. A managed diversification—instead of national onshoring—
could provide a pathway to mitigate the cost impacts of hardening
supply chains.

Finally, maintaining adequate environmental, health and labour
standards in the production of traded goods is important for ethi-
cal reasons and is increasingly raised in the context of maintaining a
level-playing field in trade agreements. The Xinjiang region of China,
where much of the world’s solar-grade polysilicon is produced, has
come under increased scrutiny owing to allegations of forced labour.
The solar industry has responded with proposed traceability proto-
cols, which if effective could obviate the need to onshore production
for ethical reasons®. Further work is needed on the feasibility of such
protocols.

This study presents a quantitative estimation of the historical and
future cost savings fromaglobalized solar PV supply chain. The results
provide evidence of the benefits of global learning processesin terms
ofachievinglower pricesto accelerate low-carbon technology deploy-
ment, which could potentially be delayed by emerging nationalistic
policy efforts. When negotiators meet to discuss accelerating action
towards the goals of the Paris Agreement, and when policymakers plan
for pathways to achieve mid-century carbon neutrality, they should rec-
ognize that these aspirations may be difficult orimpossible toachieve
without globalized low-carbon supply chains. Complementary policies
are necessary to address dilemmas and debates with respect to local-
izing manufacturing and to ensure continued price declines.

Online content

Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competinginterests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41586-022-05316-6.

1. Net Zero by 2050 (IEA, 2021).

2. Doerr, J. & Panchadsaram, R. Speed & Scale: An Action Plan for Solving Our Climate Crisis
Now (Portfolio, 2021).

3. Sarah L. etal. Industrial Policy, Trade, And Clean Energy Supply Chains (CSIS &
BloombergNEF, 2021); https://csis-website-prod.s3.amazonaws.com/s3fs-public/
publication/210224_Ladislaw_Industrial_Policy.pdf.

4.  Goldthau, A. & Hughes, L. Protect global supply chains for low-carbon technologies.
Nature 585, 28-30 (2020).

5. Renewable Power Generation Costs in 2021 (IRENA, 2021); https://www.irena.org/
publications/2022/Jul/Renewable-Power-Generation-Costs-in-2021.

6.  Helveston, J. & Nahm, J. China’s key role in scaling low-carbon energy technologies.
Science 366, 794-796 (2019).

7. World Energy Outlook 2020 (IEA, 2020).

8.  Cherp, A., Vinichenko, V., Tosun, J., Gordon, J. A. & Jewell, J. National growth dynamics
of wind and solar power compared to the growth required for global climate targets.
Nat. Energy 6, 742-754 (2021).

9. Jager-Waldau, A. Snapshot of photovoltaics—February 2022. EPJ Photovolt. 13, 9 (2022).

10.  Special Report on Solar PV Global Supply Chains (IEA, 2022); https://www.iea.org/reports/
solar-pv-global-supply-chains.

1. Nemet, G. F. How Solar Energy Became Cheap: A Model for Low-Carbon Innovation
(Routledge, 2019).

12.  Atkinson, R. D. Why China needs to end its economic mercantilism. HuffPost https://www.
huffpost.com/entry/why-china-needs-to-end-it_b_84028 (2008).

13.  Fact Sheet: President Biden Takes Bold Executive Action to Spur Domestic Clean Energy
Manufacturing (The White House, 2022).

14. Green, M. A. How did solar cells get so cheap? Joule 3, 631-633 (2019).

15.  Tillman, B. Red scare or red herring: how the “China Initiative” strategy for non-traditional
collectors is stifling innovation in the United States. Seattle J. Technol. Environ. Innov. Law
11, 6 (2020).

16. Fu, R., Feldman, D. & Margolis, R. U.S. Solar Photovoltaic System Cost Benchmark: Q12018
(NREL, 2018); https://www.nrel.gov/docs/fy190sti/72399.pdf.

17.  Nemet, G.F,, Lu, J., Rai, V. & Rao, R. Knowledge spillovers between PV installers can
reduce the cost of installing solar PV. Energy Policy 144, 111600 (2020).

18. Renewable Energy Statistics 2021 (IRENA, 2021); https://www.irena.org/publications/2021/
Aug/Renewable-energy-statistics-2021.

19. 2021 Annual Technology Baseline (NREL, 2021); https://atb.nrel.gov/electricity/2021/data

20. Surana, K., Doblinger, C., Anadon, L. D. & Hultman, N. Effects of technology complexity
on the emergence and evolution of wind industry manufacturing locations along global
value chains. Nat. Energy 5, 811-821(2020).

21.  Feldman, D. & Margolis, R. H2 2020 Solar Industry Update (NREL, 2021); https://www.nrel.
gov/docs/fy21osti/79758.pdf.

22. Chung, D., Horowitz, K. & Kurup, P. On the Path to SunShot: Emerging Opportunities and
Challenges in U.S. Solar Manufacturing (NREL, 2016); https://www.nrel.gov/docs/
fy160sti/65788.pdf.

23. Hart, D. The Impact of China’s Production Surge on Innovation in the Global Solar
Photovoltaics Industry (ITIF, 2020); https://itif.org/publications/2020/10/05/impact-
chinas-production-surge-innovation-global-solar-photovoltaics.

24. Sivaram, V., Dabiri, J. O. & Hart, D. M. The need for continued innovation in solar, wind, and
energy storage. Joule 2,1639-1642 (2018).

25. Fuchs, E. &Kirchain, R. Design for location? The impact of manufacturing offshore on
technology competitiveness in the optoelectronics industry. Manage. Sci. 56, 2323-2349
(2010).

26. Abernathy, W. J. & Utterback, J. M., others. Patterns of industrial innovation. Technol. Rev.
80, 40-47 (1978).

27. Gort, M. & Klepper, S. Time paths in the diffusion of product innovations. Econ. J. 92,
630-653 (1982).

28. Utterback, J. M. & Suérez, F. F. Innovation, competition, and industry structure. Res. Policy
22,1-21(1993).

29. Utterback, J. M. Mastering the Dynamics of Innovation: How Companies Can Seize
Opportunities in the Face of Technological Change (Harvard Business School, 1994).

30. Agarwal, R. & Gort, M. The evolution of markets and entry, exit and survival of firms.

Rev. Econ. Stat. 78, 489-498 (1996).

31. Carvalho, M., Dechezleprétre, A. & Glachant, M. Understanding the Dynamics of Global
Value Chains for Solar Photovoltaic Technologies. Economic Research Working Paper
No. 40 (WIPO, 2017).

32. Building Resilient Supply Chains, Revitalizing American Manufacturing, and Fostering
Broad-Based Growth (The White House, 2021); https://www.whitehouse.gov/wp-content/
uploads/2021/06/100-day-supply-chain-review-report.pdf.

33. Myslikova, Z. & Gallagher, K. S. Mission Innovation is mission critical. Nat. Energy 5,
732-734(2020).

34. Nahm, J. & Steinfeld, E. S. Scale-up nation: China’s specialization in innovative
manufacturing. World Dev. 54, 288-300 (2014).

35. Solar Supply Chain Traceability Protocol 1.0 (SIEA, 2021); https://www.seia.org/research-
resources/solar-supply-chain-traceability-protocol.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing
agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing

agreement and applicable law.

© The Author(s), under exclusive licence to Springer Nature Limited 2022

Nature | www.nature.com | 5


https://doi.org/10.1038/s41586-022-05316-6
https://csis-website-prod.s3.amazonaws.com/s3fs-public/publication/210224_Ladislaw_Industrial_Policy.pdf
https://csis-website-prod.s3.amazonaws.com/s3fs-public/publication/210224_Ladislaw_Industrial_Policy.pdf
https://www.irena.org/publications/2022/Jul/Renewable-Power-Generation-Costs-in-2021
https://www.irena.org/publications/2022/Jul/Renewable-Power-Generation-Costs-in-2021
https://www.iea.org/reports/solar-pv-global-supply-chains
https://www.iea.org/reports/solar-pv-global-supply-chains
https://www.huffpost.com/entry/why-china-needs-to-end-it_b_84028
https://www.huffpost.com/entry/why-china-needs-to-end-it_b_84028
https://www.nrel.gov/docs/fy19osti/72399.pdf
https://www.irena.org/publications/2021/Aug/Renewable-energy-statistics-2021
https://www.irena.org/publications/2021/Aug/Renewable-energy-statistics-2021
https://atb.nrel.gov/electricity/2021/data
https://www.nrel.gov/docs/fy21osti/79758.pdf
https://www.nrel.gov/docs/fy21osti/79758.pdf
https://www.nrel.gov/docs/fy16osti/65788.pdf
https://www.nrel.gov/docs/fy16osti/65788.pdf
https://itif.org/publications/2020/10/05/impact-chinas-production-surge-innovation-global-solar-photovoltaics
https://itif.org/publications/2020/10/05/impact-chinas-production-surge-innovation-global-solar-photovoltaics
https://www.whitehouse.gov/wp-content/uploads/2021/06/100-day-supply-chain-review-report.pdf
https://www.whitehouse.gov/wp-content/uploads/2021/06/100-day-supply-chain-review-report.pdf
https://www.seia.org/research-resources/solar-supply-chain-traceability-protocol
https://www.seia.org/research-resources/solar-supply-chain-traceability-protocol

Article

Methods

Learning models and simulations

The learning curve model is widely used to describe the evolution of
production costs for technologies as they scale up® . Inits simplest
form, thelearning curve defines arelationship inlog-log space between
cost (or price) and cumulative capacity*. The model can be expanded
to incorporate not only the processes of ‘learning by doing’ but also
‘learning by researching’ and changes in material input prices****. Here
we adopt a two-factor learning model relating the unit price in year ¢
and country i of solar PV modules, p,, to the cumulative installed PV
capacity inyear ¢, q,, and globally averaged polysilicon prices in year
t, s, (the primary input material to PV modules):

Inp,, =Ina; + BIng, + ylns, 00

Here, a;is a constant related to starting year conditionsin country i,
y:measures the sensitivity to polysilicon prices, and g;is the learning
coefficientin country i, which is related to the learning rate (L,) by:

L=1-2% (2)

Foreach country, i, we estimate learning coefficients (Extended Data
Table 1), 8;, under historical ‘global market’ conditions using linear
least-squares regression on equation (1). These learning models set
abaseline for learning rates under historical market conditions and
assume that variations in country-level module pricing were due to
transportation, administrative and other non-learning costs.

We then construct counterfactual ‘national market’ scenarios by
assuming that the learning-related price decreases in country i from
the starting year, ¢,, are derived from incrementally more nationally
installed PV capacity:

9= 9= (G~ G )+ (I_At)(qjt_qjt—l) (3

where g, is the cumulative installed capacity in country iinyear ¢, g
is the cumulative installed capacity in all other countries in year ¢,
and A,is a value ranging from O to 1. This defines a scenario whereby
incremental capacity installed in each year increasingly comes from
national as opposed to globalinstallations as A, shifts from O to 1. Inour
baseline simulations, A,ranges from 0.1to 1.0 in increments of 0.1 as
tgoesfrom1to10,simulatingagradual transition toascenariowhereall
new national PV capacity isdomestically supplied. At the starting year
ofboth the historicaland projectionscenarios, A, = 0 and the cumulative
capacityis set to the globally installed capacity in that year. Unit price
declines under national market conditions thus evolve more slowly
according to how rapidly A,approaches 1.

The national market scenarios propose that national-specific learn-
ing is proportionally derived from national versus global cumulative
installed capacities, and by definition g, < g,. Extended DataFig. Sillus-
trates the relationship between A, and the proportion of national to
global cumulative installed capacity over all years for each country.
Itis noted that the same value of A;does not translate to the same pro-
portion of national learning for each country. For example, if ;= 0.4,
then the proportion of national learning is 15% in the United States,
44%in Chinaand 40% in Germany.

Uncertainty in parameter estimates is propagated throughout all of
our analyses using multivariate normal draws from the full covariance
matrix of model parameters. Lower and upper bounds onresults reflect
a95% confidence interval taken from the 2.5% and 97.5% percentiles
from these draws.

Limitations
Learning-rate analyses, although widely used, are subject to critiques
in terms of under-specifying learning mechanisms*****, In our

application of these models, we include exogenous factors that
could influence module prices but are not directly linked to learning
(forexample, polysilicon prices). Otherwise, we estimate asingle learn-
ing coefficient for each country that captures the average learning
owingtoavariety of nation-specific factors that contribute tolearning,
suchaslearning by doing (average plantsize), learning by researching
(research and development) and so on. Although other studies have
estimated learning models that attempt to disaggregate learning into
constituent components*, our research focuses on the nation-specific
priceimplications of trade barriers. Data gaps and insufficient observa-
tions preclude explaining the contributing factors tolearning in each
country. This introduces potential biases if learning mechanisms are
differentially affected by globalization. Given the concentration of PV
panel manufacturingin China, itis possible thataportion of the learning
in Chinawas due to achieving higher economies of scale than manufac-
turersinthe United States and Germany. If so, then the savings reported
from the differences in the global versus national market scenarios
may be overestimated, assuming that US and German manufacturers
would have achieved similar economies of scale in a counterfactual
scenario where national producers meet domestic demand. Three
alternative models were estimated to disaggregate module production,
installation capacity and average plant size. Those results are shownin
Extended Data Tables 2-4. Improving ease of access to credit for solar
projects, as reflected in declining trends in weighted-average cost of
capital, hasand will continue to have alarge impact on reducing power
purchase prices for solar>¥. Therefore, restrictions in capital flows
following from nationalistic policies could lead to even larger costs
on developers. Installed capacities are unchanged across scenarios,
ignoring any effects of price elasticity of demand which, ifincorporated,
would result in fewer installations in higher-cost ‘national markets’
scenarios. Finally, the specific outcomesin terms of estimating savings
from global versus national market scenarios are sensitive to simula-
tion parameters, such asthe number of years until all national capacity
is domestically supplied. These parameters can be varied and the
outcomes compared using an open-source application available at
https://jhelvy.shinyapps.io/solar-learning-2021/.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

We compile a comprehensive dataset of historical solar capacity and
component price globally and in the United States, Chinaand Germany.
Alldataare publicly available at https://doi.org/10.5281/zenod0.6989075.
Globalinstalled PV capacity and price data are from the open database
of the International Renewable Energy Agency (IRENA)™. For the United
States, solar capacity data are from the Solar Energy Industries Asso-
ciation (SEIA)*8, and module prices are assembled from two sources:
the Lawrence Berkeley National Laboratory (LBNL)*’ and the National
Renewable Energy Laboratory (NREL)". The LBNL data are used for the
2006-2018 period as thisseriesendsin 2018, and the NREL dataare used
for2019-2020 to extend the series to 2020. This was chosen because the
NREL data only startin2010, and thus the LBNL series covers abroader
range (Extended Data Figs. 2-4). For China, both the installed capa-
city and module price data (2007-2018) were extracted from reports
and presentations by the Energy Research Institute (ERI)*°, and the
2019-2020 data were extracted from China Photovoltaic Industry
Association where the historical data are identical to that of ERI*.. For
Germany, capacity data are from IRENA, and module price data were
extracted from Fraunhofer ISE® All prices arein 2020 US$, and we adopt
inflationadjustments using the IMF (https://data.imf.org/) and exchange
rates from the Federal Reserve Bank (https://www.federalreserve.gov/
releases/h10/hist/). Source data are provided with this paper.
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Code availability

All of the code used to process the data and produce all analyses and
figuresis publicly available at https://doi.org/10.5281/zenod0.6989075.
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Projected Annual Module Savings Under Global vs. National Market Scenarios (2020 - 2030)
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Extended DataFig.1| Comparison of projected annual savings (2020-2030)
using global versus national market scenarios in China, Germany and
the United States. Savings are calculated by multiplying the installed national
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Comparison of installed capacity by type and data source
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Extended DataFig. 2| Comparison ofthe US installed solar PV capacity by type and datasource. The datalargely agree between NREL' and SEIA*S. However,
SEIA dataare updated to 2020 and therefore are used in this study.
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Comparison of cumulative installed data
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Extended DataFig. 3| Comparison of the US cumulative installed solar PV capacity by datasource. The datalargely agree between NREL' and SEIA*® while the
datafrom IRENA®suggest slightly lower installed capacities in the last five years.



Comparison of price per kW by data source
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Extended DataFig.4 | Comparison of the US solar PV module prices by data
source. We used the LBNL data* for the 2006-2018 period in this study as this
seriesendsin2018, as well as the NREL data' for 2019-2020 to extend the

series t02020. We opted for thisbecause the NREL data only startin 2010, and
thusthe LBNL series coversabroaderrange.
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Historical global silicon prices (1980 - 2020)
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Extended DataFig. 6 | Historical globalssilicon prices (1980-2020)%.
Siliconis akey material input butis not directly linked to learning. Silicon prices
experienced amajor spike from US$171 perkgin 2006 to a peak at US$395 perkg

in2008, which could influence module prices notably, so we include thisin our
two-factor learning model.
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Extended Data Table 1| Estimated learning model coefficients

United States China Germany
Est. (Std. Err.) Est. (Std. Err.) Est. (Std. Err.)
(Intercept) 15 (1.04)*** 18 (1.58)*** 12 (0.96)***
log(cum_capacity kw) -0.44 (0.045)*** -0.57 (0.070)*** -0.33 (0.042)***
log(price_si) 0.15 (0.058)* 0.23 (0.079) 0.21 (0.054)

*p<0.05; **p<0.01; ***p<0.001

This table reports correlations between cumulative installed capacities (cum_capacity_kw), polysilicon prices (price_si) and unit prices of solar PV modules: the two-factor learning model that
we construct in this study. Standard errors are reported in parentheses. Asterisks indicate the level of significance: *5%; **1%; ***0.1%.



Extended Data Table 2 | Estimated learning model coefficients from alternative model 1, which includes an additional
covariate for cumulative national module production capacity

United States China Germany
Est. (Std. Err.) Est. (Std. Err.) Est. (Std. Err.)

(Intercept) 16 (2.47)*** 15 (4.89)* 18 (2.28)***

log(cum_installed_kw) -0.23 (0.347) 0.04 (0.906) -0.14 (0.103)

log(cum_production_kw) -0.35 (0.505) -0.42 (0.686) -0.52 (0.203)*

log(price_si) 0.05 (0.146) 0.21(0.216) 0.02 (0.105)

*p<0.05; **p<0.01; ***p<0.001

Alternative model 1 generates a multi-factor log-log learning model with covariates for cumulative national module production capacity (cum_production_kw) and cumulative global installed
capacity (cum_installed_kw). However, these two variables are highly correlated in each country. This table shows that adding cumulative national production capacity into the model
eliminates the statistical significance of the cumulative installed capacity term for all countries, rendering the coefficients unidentifiable. In addition, the standard errors (reported in
parentheses) are likely to be artificially low as standard errors are not correctly computed in basic linear regression when highly correlated variables are included in the regression. Thus,
including national module production capacity directly in the regression is an infeasible approach. Asterisks indicate the level of significance: *5%; **1%; ***0.1%.
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Extended Data Table 3 | Estimated learning model coefficients from alternative model 2, which includes an additional
covariate for cumulative national installed capacity

United States China Germany
Est. (Std. Err.) Est. (Std. Err.) Est. (Std. Err.)
(Intercept) 15 (1.08)*** 19 (2.09)*** 15 (2.14)*
log(cum_installed_kw) -0.41 (0.073)*** -0.60 (0.166)** -0.26 (0.063)**
log(cum_installed_kw_i) -0.04 (0.077) 0.03 (0.103) -0.21 (0.157)
log(price_si) 0.16 (0.064)* 0.18 (0.117) 0.16 (0.063)*

*p<0.05; **p<0.01; ***p<0.001

Alternative model 2 considers adding cumulative national installed capacity (cum_installed_kw_i) into the model. This table shows that the nation-specific installed capacity terms are not
statistically significant. Furthermore, the primary coefficient of interest, 3, is very close to those in our main regression model (see Extended Data Table 1). Asterisks indicate the level of
significance: *5%, **1%, ***0.1%.



Extended Data Table 4 | Estimated learning model coefficients from alternative model 3, which includes an additional
covariate for global average plant size

United States China Germany
Est. (Std. Err.) Est. (Std. Err.) Est. (Std. Err.)
(Intercept) 18 (1.57)** 17 226} 13 (1.60)***
log(cum_installed_kw) -0.32 (0.150) -0.37 (0.216) -0.49 (0.153)*
log(ave_plant_size_kw) -0.22 (0.166) -0.22 (0.239) 0.19 (0.170)
log(price_si) 0.20 (0.140) 0.38 (0.201) 0.09 (0.143)

*p<0.05; **p<0.01; ***p<0.001

Alternative model 3 controls for economies of scale (EOS) by including a proxy variable: global average plant size (ave_plant_size_kw). This table shows that including the plant size data
eliminates the statistical significance of all terms. Asterisks indicate the level of significance: *5%; **1%; ***0.1%.
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rationale behind them, indicating whether exclusion criteria were pre-established.

State how many participants dropped out/declined participation and the reason(s) given OR provide response rate OR state that no
participants dropped out/declined participation.
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Randomization If participants were not allocated into experimental groups, state so OR describe how participants were allocated to groups, and if
allocation was not random, describe how covariates were controlled.

Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description Briefly describe the study. For quantitative data include treatment factors and interactions, design structure (e.g. factorial, nested,
hierarchical), nature and number of experimental units and replicates.

Research sample Describe the research sample (e.g. a group of tagged Passer domesticus, all Stenocereus thurberi within Organ Pipe Cactus National
Monument), and provide a rationale for the sample choice. When relevant, describe the organism taxa, source, sex, age range and
any manipulations. State what population the sample is meant to represent when applicable. For studies involving existing datasets,
describe the data and its source.
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Sampling strategy Note the sampling procedure. Describe the statistical methods that were used to predetermine sample size OR if no sample-size
calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.

Data collection Describe the data collection procedure, including who recorded the data and how.
Timing and spatial scale |/ndicate the start and stop dates of data collection, noting the frequency and periodicity of sampling and providing a rationale for
these choices. If there is a gap between collection periods, state the dates for each sample cohort. Specify the spatial scale from which

the data are taken

Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the rationale behind them,
indicating whether exclusion criteria were pre-established.

Reproducibility Describe the measures taken to verify the reproducibility of experimental findings. For each experiment, note whether any attempts to
repeat the experiment failed OR state that all attempts to repeat the experiment were successful.

Randomization Describe how samples/organisms/participants were allocated into groups. If allocation was not random, describe how covariates were
controlled. If this is not relevant to your study, explain why.

Blinding Describe the extent of blinding used during data acquisition and analysis. If blinding was not possible, describe why OR explain why
blinding was not relevant to your studly.

Did the study involve field work? [ _]Yes [ ]No

Field work, collection and transport

Field conditions Describe the study conditions for field work, providing relevant parameters (e.g. temperature, rainfall).
Location State the location of the sampling or experiment, providing relevant parameters (e.g. latitude and longitude, elevation, water depth).

Access & import/export Describe the efforts you have made to access habitats and to collect and import/export your samples in a responsible manner and in
compliance with local, national and international laws, noting any permits that were obtained (give the name of the issuing authority,
the date of issue, and any identifying information).

Disturbance Describe any disturbance caused by the study and how it was minimized.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |:| |:| ChIP-seq
Eukaryotic cell lines |:| |:| Flow cytometry
Palaeontology and archaeology |:| |:| MRI-based neuroimaging

Animals and other organisms
Human research participants

Clinical data

OoOo0Oodos
OoooooQ

Dual use research of concern




Antibodies

Antibodies used

Validation

Describe all antibodies used in the study, as applicable, provide supplier name, catalog number, clone name, and lot number.

Describe the validation of each primary antibody for the species and application, noting any validation statements on the
manufacturer’s website, relevant citations, antibody profiles in online databases, or data provided in the manuscript.

Eukaryotic cell lines

Policy information about cell lines

Cell line source(s)

Authentication

State the source of each cell line used.

Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated.

Mycoplasma contamination Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for

mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines  ngme any commonly misidentified cell lines used in the study and provide a rationale for their use.

(See ICLAC register)

Palaeontology and Archaeology

Specimen provenance

Specimen deposition

Dating methods

Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the
issuing authority, the date of issue, and any identifying information). Permits should encompass collection and, where applicable,
export.

Indicate where the specimens have been deposited to permit free access by other researchers.
If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), where

they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new dates are
provided.

|:| Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight

Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals

Wild animals

Field-collected samples

Ethics oversight

For laboratory animals, report species, strain, sex and age OR state that the study did not involve laboratory animals.

Provide details on animals observed in or captured in the field, report species, sex and age where possible. Describe how animals were
caught and transported and what happened to captive animals after the study (if killed, explain why and describe method; if released,
say where and when) OR state that the study did not involve wild animals.

For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature,
photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Human research participants

Policy information about studies involving human research participants

Population characteristics

Recruitment

Ethics oversight

Describe the covariate-relevant population characteristics of the human research participants (e.g. age, gender, genotypic
information, past and current diagnosis and treatment categories). If you filled out the behavioural & social sciences study
design questions and have nothing to add here, write "See above."

Describe how participants were recruited. Outline any potential self-selection bias or other biases that may be present and
how these are likely to impact results.

Identify the organization(s) that approved the study protocol.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Clinical data

Policy information about clinical studies

All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration  Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.

Study protocol Note where the full trial protocol can be accessed OR if not available, explain why.
Data collection Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.
Qutcomes Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.

Dual use research of concern

Policy information about dual use research of concern

Hazards

Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented
in the manuscript, pose a threat to:

Yes

[] Public health

|:| National security

|:| Crops and/or livestock
|:| Ecosystems

O0Oodfs

|:| Any other significant area

Experiments of concern
Does the work involve any of these experiments of concern:
Yes
Demonstrate how to render a vaccine ineffective
Confer resistance to therapeutically useful antibiotics or antiviral agents
Enhance the virulence of a pathogen or render a nonpathogen virulent
Increase transmissibility of a pathogen
Alter the host range of a pathogen
Enable evasion of diagnostic/detection modalities

Enable the weaponization of a biological agent or toxin

OO0oodoods
Ooogdoogo

Any other potentially harmful combination of experiments and agents

ChlP-seq

Data deposition

|:| Confirm that both raw and final processed data have been deposited in a public database such as GEO.

|:| Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links For "Initial submission" or "Revised version" documents, provide reviewer access links. For your "Final submission" document,
May remain private before publication. | provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.
Genome browser session Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to
(e.g. UCSC)

enable peer review. Write "no longer applicable" for "Final submission" documents.

Methodology

Replicates Describe the experimental replicates, specifying number, type and replicate agreement.

Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and

>
QO
L
c
)
e,
o)
=
o
=
—
@
S,
o)
=
>
Q
wv
C
3
3
QO
<




Sequencing depth whether they were paired- or single-end.

Antibodies Describe the antibodies used for the ChIP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and lot
number.

Peak calling parameters | Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files

used.
Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.
Software Describe the software used to collect and analyze the ChiP-seq data. For custom code that has been deposited into a community

repository, provide accession details.

Flow Cytometry

Plots

Confirm that:
|:| The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).
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|:| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
|:| All plots are contour plots with outliers or pseudocolor plots.

|:| A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.

Instrument Identify the instrument used for data collection, specifying make and model number.

Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a
community repository, provide accession details.

Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the
samples and how it was determined.

Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell

population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

|:| Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type Indicate task or resting state; event-related or block design.

Design specifications Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial
or block (if trials are blocked) and interval between trials.

Behavioral performance measures  State number and/or type of variables recorded (e.q. correct button press, response time) and what statistics were used
to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across

subjects).
Acquisition
Imaging type(s) Specify: functional, structural, diffusion, perfusion.
Field strength Specify in Tesla
Sequence & imaging parameters Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size,
slice thickness, orientation and TE/TR/flip angle.
Area of acquisition State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

Diffusion MRI [ ]Used [ ] Notused




Preprocessing

Preprocessing software Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction,
segmentation, smoothing kernel size, etc.).

Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for
transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g.
original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and
physiological signals (heart rate, respiration).

Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and
second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether
ANOVA or factorial designs were used.

Specify type of analysis: [ | Whole brain [ | ROI-based [ | Both

Statistic type for inference Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.
(See Eklund et al. 2016)

Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte Carlo).

Models & analysis

n/a | Involved in the study
|:| |:| Functional and/or effective connectivity

|:| |:| Graph analysis

|:| |:| Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation,
mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph,
subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency,
etc.).

Multivariate modeling and predictive analysis Specify independent variables, features extraction and dimension reduction, model, training and evaluation
metrics.
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