

SEMINAR SERIES 2018

DESIGN & CONSTRUCTION OF POST-TENSIONED CONCRETE

Presented by

Concrete NZ – Learned Society

Seminar Notes

(TR68)

Presented by

Concrete NZ – Learned Society

Supported by

The Concrete NZ - Learned Society acknowledges the support of the following organisations for making this seminar series possible:

www.adaptsoft.com

www.bbrnetwork.com

Holmes

www.contech.co.nz

www.holmesgroup.com

Presenters:

Bijan Aalami, Adapt Corporation
Florian Aalami, Adapt Corporation
Juan Maier, BBR VT International Ltd
Jeff Matthews, Holmes Consulting
Marc Stewart, BBR Contech

Design & Construction of Post-Tensioned Concrete Buildings May/June 2018

SEMINAR NOTES DIRECTORY

DAY 1: Wednesday 30 May 2018

Session 1 Post-Tensioning Introduction: Key Benefits, Applications & Systems *Juan Majer*

Economics of Post-Tensioned Construction and Quantities *Florian Aalami*

Session 2 Design Basics of Post-Tensioned Structures Bijan Aalami

> Building Code Requirements for Design of Post-Tensioned Members Bijan Aalami

Session 3 Building Code Requirements for Design of Post-Tensioned Members (cont.)

Bijan Aalami

10-Step Design of Post-Tensioned Floor Systems, followed by Long-Hand Calculation (refer to chapter 7 of the book Post-Tensioned Buildings; Design and Construction)

Bijan Aalami

Session 4 Expeditious Design of Post-Tensioned Floors and Beams using 2D Strip Method

Florian Aalami

DAY 2: Thursday 31 May 2018

Session 5 Design for Shortening of Post-Tensioned Members

Bijan Aalami

Advanced Design of Post-Tensioned Floor Systems using 3D FEM Software

(ADAPT-Builder)
Florian Aalami

Session 6 NZ Post-Tensioned Buildings: Market Activity and Case Studies

Marc Stewart

Stress Losses in Post-Tensioning (refer to chapter 10 of the book Post-

Tensioned Buildings; Design and Construction)

Bijan Aalami

Session 7 Workflow for Integrated Design of Concrete Buildings with Post-Tensioned

Slabs

Florian Aalami

Design of Post-Tensioned Floor Systems in High-Seismic Zones

Bijan Aalami

Session 8 Seismic Design Considerations for Post-Tensioned Floor Systems in NZ

Jeff Matthews

Assessment and Evaluation of Vibration Response of Concrete Floor

Systems

Florian Aalami

Construction Detailing: Layout of Post-Tensioning Tendons and Detailing of

Non-Prestressed Reinforcement

Bijan Aalami

DAY 3: Friday 1 June 2018

Hands-on experience and exposure to the efficient design of posttensioning buildings and becoming familiar with the latest design tools and methods

Florian Aalami

Session 1

Wednesday 30 May

Post-Tensioning Introduction: Key Benefits, Applications & Systems

Juan Maier

Design & Construction of PT Buildings

Intro to PT, key benefits, applications & systems

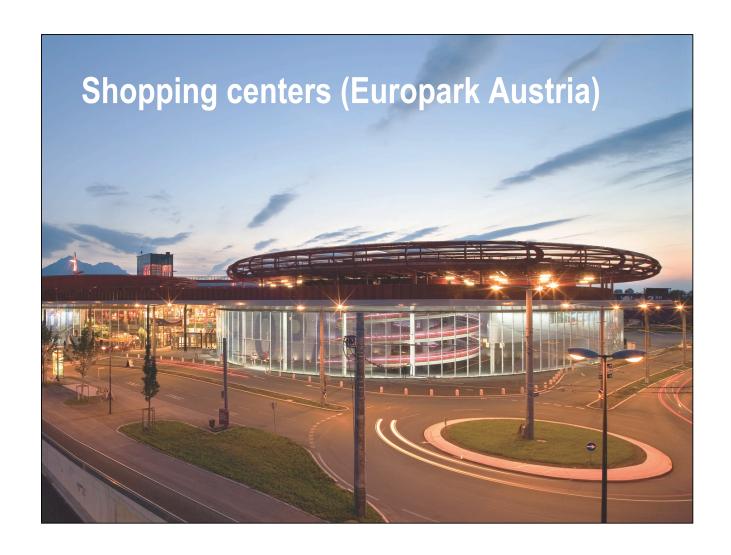
Juan Maier, Head of Business Development BBR VT International Ltd, Switzerland

Outline

- Introduction to post-tensioning
- Key benefits of using post-tensioning
- Terminology of post-tensioning parts
- Post-tensioning materials & properties
- Testing & approval of post-tensioning systems
- Typical post-tensioning systems & their applications
- Benchmarking post-tensioning system performance

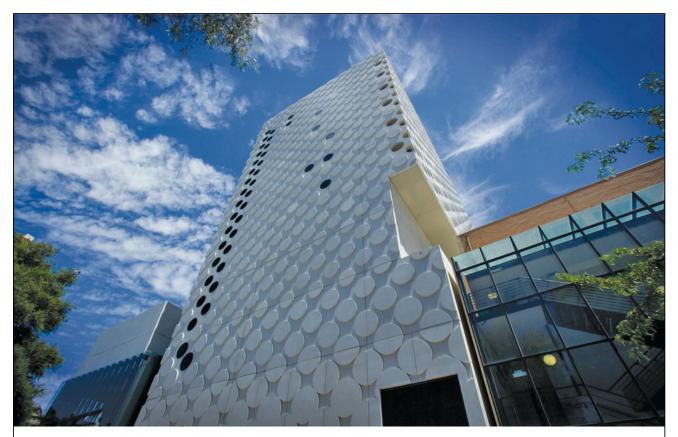
Outline

- Introduction to post-tensioning
- Key benefits of using post-tensioning
- Terminology of post-tensioning parts
- Post-tensioning materials & properties
- Testing & approval of post-tensioning systems
- Typical post-tensioning systems & their applications
- Benchmarking post-tensioning system performance


3

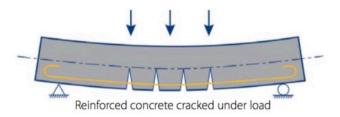
Post-tensioning

"A dream for engineers and architects, a delight for developers and a great tool for builders."



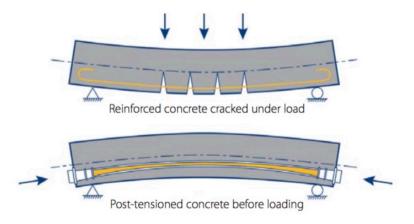
Hospitals (Fiona Hospital Australia)

University buildings (Plymouth UK)

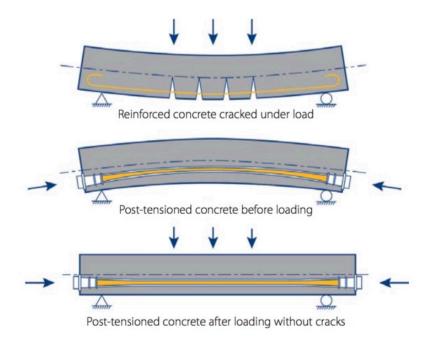

1

History of post-tensioning

Slab post-tensioning (PT) has expanded greatly since 1950 Starting in the US, Australia, Middle East, Asia and Europe Significant benefits for all stakeholders of a project, just to name a few:


- Large uninterrupted floor space (maximum freedom)
- Flexibility of internal layout
- Versatility of use and movement
- Large clear spans
- Fewer columns and supports and reduced floor thickness
- Construction speed

How does post-tensioning work?



43

How does post-tensioning work?

How does post-tensioning work?

15

Outline

- Introduction to post-tensioning
- Key benefits of using post-tensioning
- Terminology of post-tensioning parts
- Post-tensioning materials & properties
- Testing & approval of post-tensioning systems
- Typical post-tensioning systems & their applications
- Benchmarking post-tensioning system performance

Post-tensioning

Value Engineering in construction! Maximizes value on one hand and reduces costs on the other hand.

17

Key benefits

Longer spans

- Standard RC slab spans range from 4 to 8 meters
- PT slab spans range from 7 to 15 meters
- Reduced number of columns
- Larger column free areas
- Increase flexibility of use
- Result in higher rental returns for developer
- More comfort in car parks

Key benefits

Structural costs

Savings in material, labor and formwork

Thinner slabs

- Typically 20-30%* reduction in thickness/concrete
- Usually 70-80%* less reinforcement
- Minimum building height, savings in façade costs
- More floors within same building envelope

*varies by region and country

10

Key benefits

Deflection/ crack free slabs

- Crack free design, waterproof
- Increased durability

Early stripping

- Faster construction
- Re-use of formwork

Materials

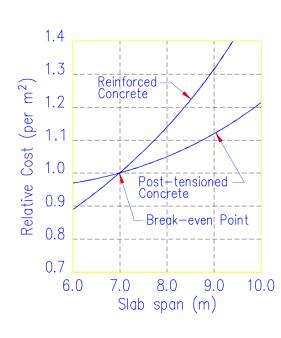
- Less handling on site
- Green rating

Key benefits

Footing design

- Reduced dead loads from superstructure
- More economical footings and columns

Joint free design


- Less maintenance costs
- Less prone to water leakage

Seismic design

- Lower center of gravity, reduced lateral loads and overturning moments
- Restores building geometry after a major earthquake

21

When is PT cost effective

- On average, 30%* of structural costs are for slabs
- Cost-effective from spans exceeding 7 meters
- In general, savings >\$15*
 per square meter can be
 achieved (direct costs) with
 PT, compared to
 reinforced concrete (RC)

*varies by region and country

Speed of construction

- Usually flat plate design
- Initial stressing after 1 day
- 3-5 days after pour, formwork can be stripped and reused
- 5 day cycle
- Reduced construction schedule (several months), less financing costs

23

Economical PT design

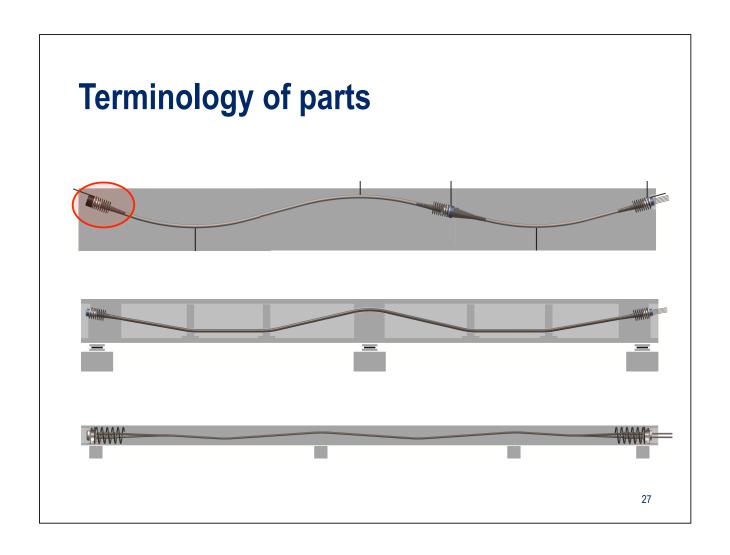
- Usually 8 to 10 meter grids most economical
- Optimized layout of formwork to reduce costs
- FEA methods
- Experienced PT designer

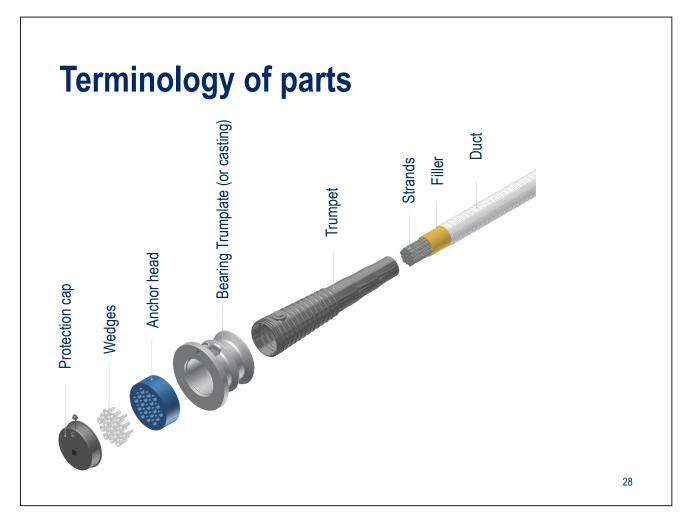
- Min. effective prestress in concrete of 1.0 MPa
- Max. of 3.0 3.5 MPa
- Typically 1.4 2.0 MPa
- For watertight construction, min. of 2.0 MPa

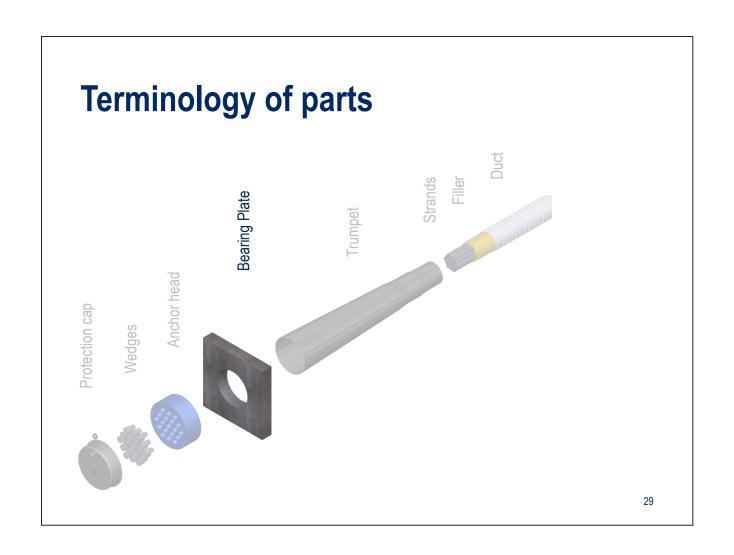
Key benefits of post-tensioning

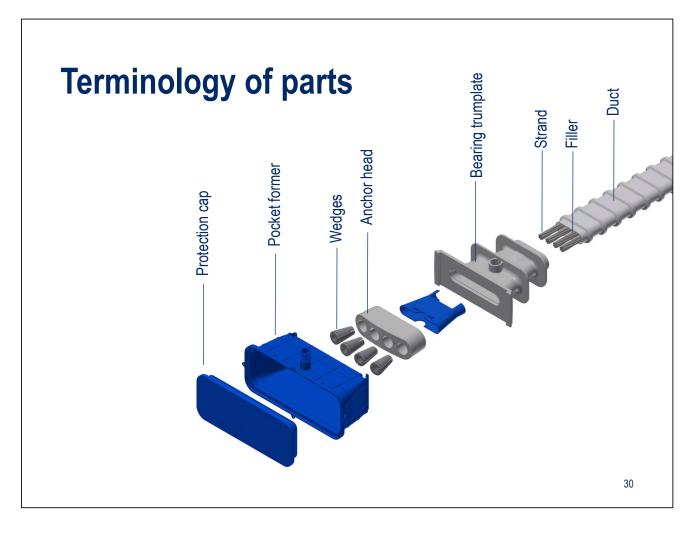
- Direct savings in concrete, rebar, formwork and other building materials
- Joint free design, high crack control, high durability and less prone to water leakage
- Smaller foundations
- Reduced maintenance
- Fastest construction method
- Longer spans & functional flexibility
- Reduced structural depth & lighter structure weight
- Excellent seismic behaviour with lower centre of gravity
- Deflection & vibration control

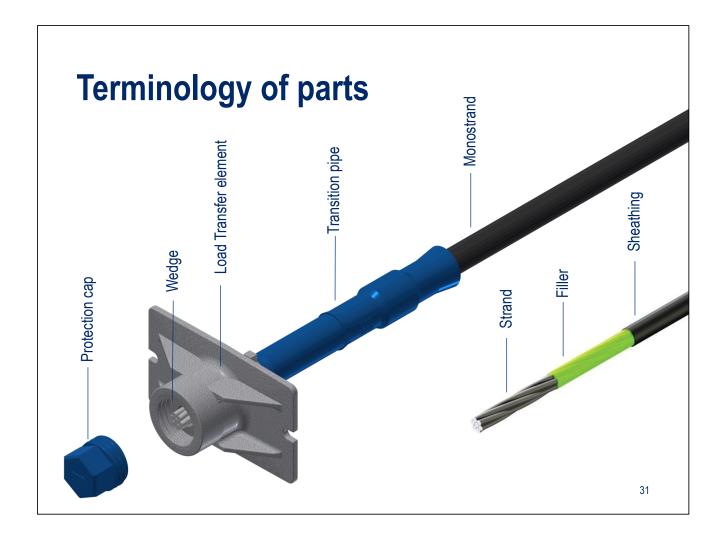
Key benefits for single storey buildings

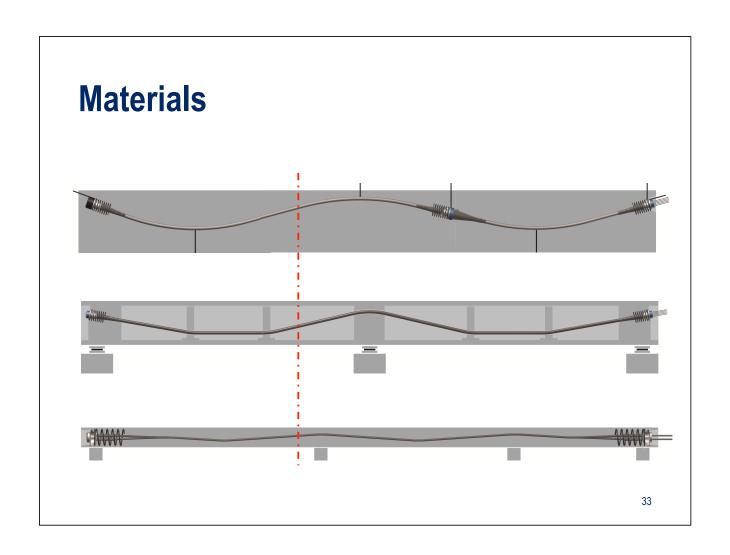

25

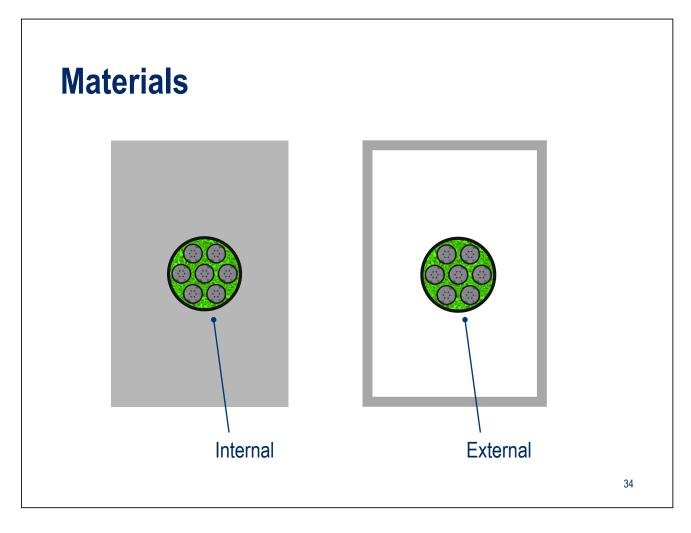

Key benefits for multi-


storey buildings


Outline

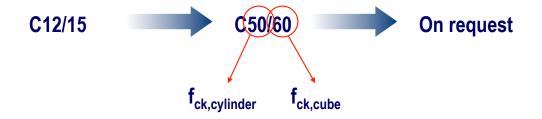

- Introduction to post-tensioning
- Key benefits of using post-tensioning
- Terminology of post-tensioning parts
- Post-tensioning materials & properties
- Testing & approval of post-tensioning systems
- Typical post-tensioning systems & their applications
- Benchmarking post-tensioning system performance





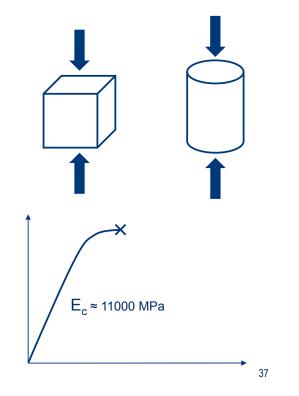
Outline

- Introduction to post-tensioning
- Key benefits of using post-tensioning
- Terminology of post-tensioning parts
- Post-tensioning materials & properties
- Testing & approval of post-tensioning systems
- Typical post-tensioning systems & their applications
- Benchmarking post-tensioning system performance



Materials Reinforced concrete (dense) Strand Filling material

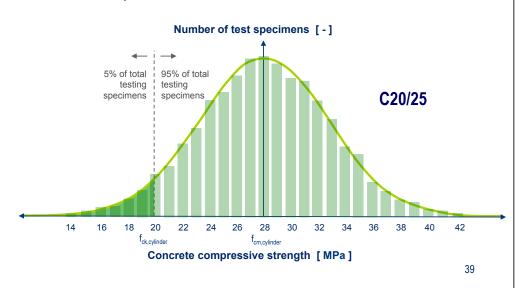
Concrete


- The "core" of a structure
- Designated with cylinder & cubic strength

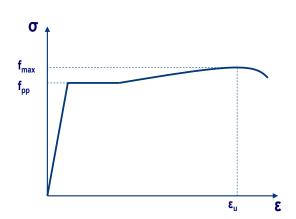
Concrete: testing

- lacktriangledown $f_{ck,cube}$
 - 15 x 15 x 15 cm
- f_{ck,cylinder}
 - Ø15 x 30 cm

Tested 28 days after casting


Concrete: project specific

- f_{cm}
- Specimens subjected to the same conditions as the structure


Concrete: evaluation

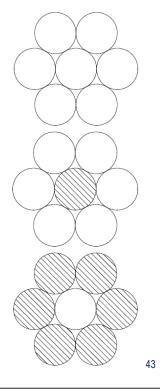
• $f_{ck,cylinder} + 8 \text{ MPa} = f_{cm,cylinder}$

Reinforcement

- Ribbed
- $f_{pp} = 500 \text{ MPa}$
- $f_{\text{max}} / f_{\text{pp}} \ge 1.08$
- $\varepsilon_{\rm u} \geq 5 \, [\%]$

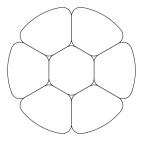
Duct

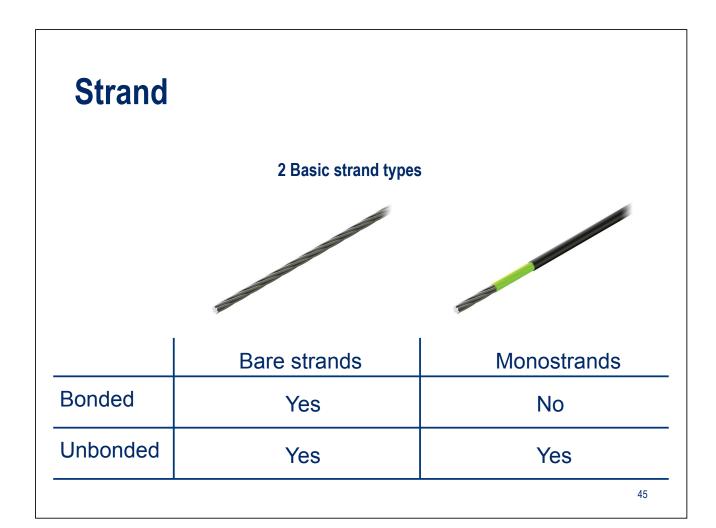
- Creates void for the strands
- Creates conduit for correct alignment
- Provides bond behavior (corrugated duct)
- Provides protection
- Provides electrical isolation

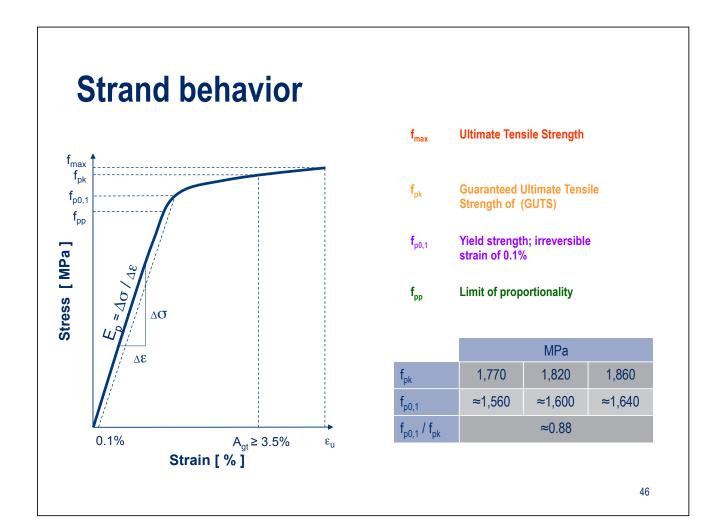

41

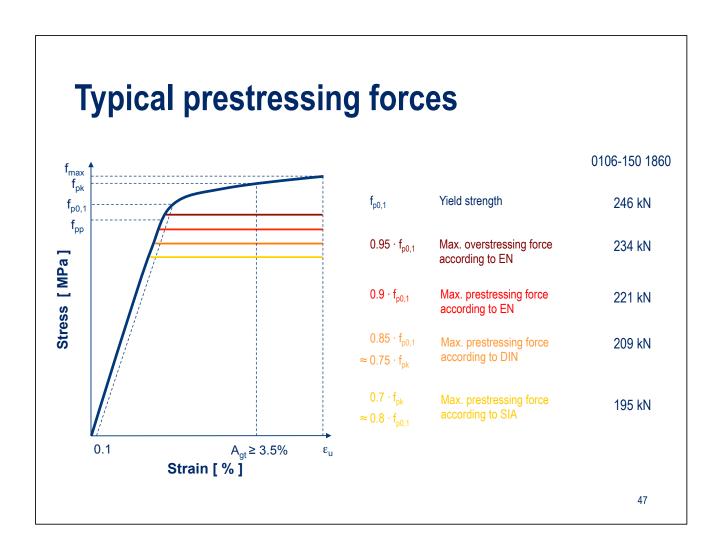
Duct

	Plastic*	Steel					
Smooth (external)							
Corrugated (internal)							

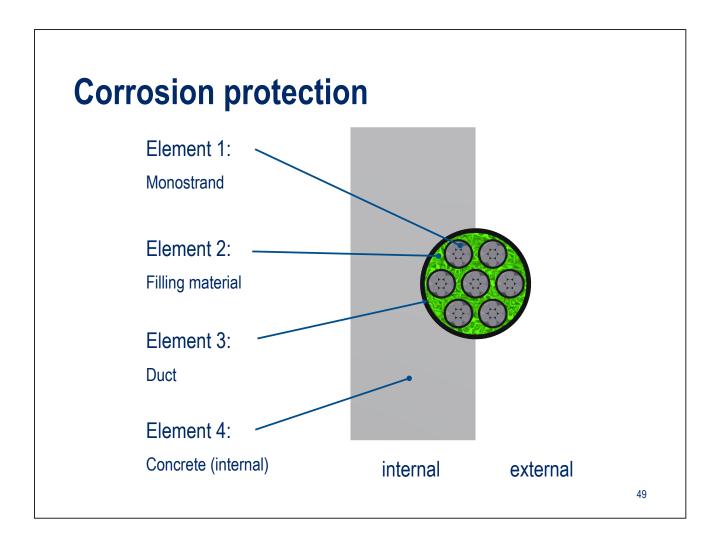

Strand

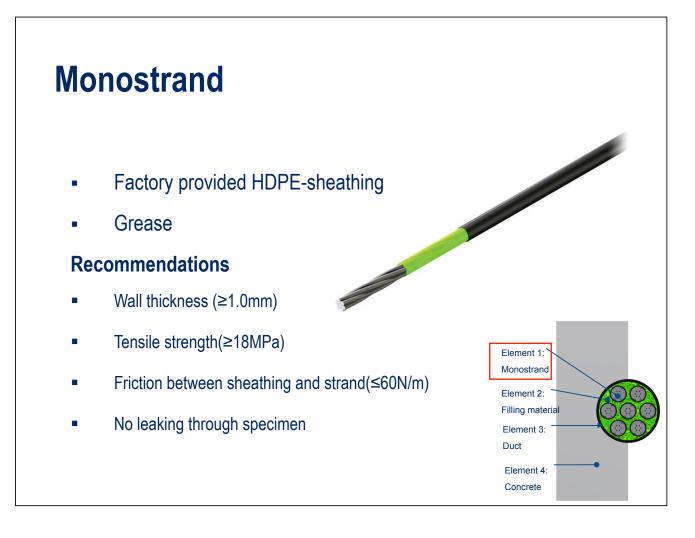

- 7- wire prestressing strand
- Straight central wire (king wire)
- 6 wires twisted around (Pitch: 12-18 D)
- 12.5 mm 15.7 mm in diameter
- 93 mm² 150 mm² in area
- Steel grade 1770, 1860/MPa
- $F_{pk} \le 279 \text{ kN}$




Strand

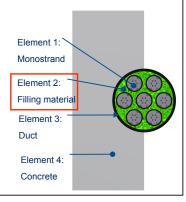
- 7- wire compacted prestressing strand
- Straight central wire (king wire)
- 6 wires twisted around
- 15.2 mm in diameter
- 165 mm² in area
- Steel grade 1820 MPa
- Unbonded
- $F_{pk} \le 300 \text{ kN}$





Filling Material

- Fills the void between duct and strands
- Provides corrosion protection
- Provides bond (grout / bare strand)

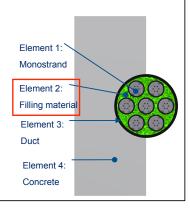


Grout *

- For bonded applications
- Creates an alkaline environment

Recommendations:

- Bleeding (≤0.3%)
- Strength (≥30 MPa)



*according to EN 445, 446 & 447 or similar

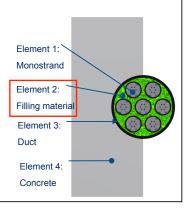
Grout *

Remarks:

- The effectiveness of the grout depends on the propriety of the execution!
- Poor grouting can cause fatal damages!

*according to EN 445, 446 & 447 or similar

Grout *

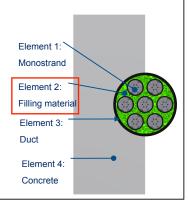

*according to EN 445, 446 & 447 or similar

Grease

For unbonded applications

Recommendations:

- Dropping point (≥150 °C)
- Oil separation (≤2.5% at 40 °C, 72 h)
- No corrosion after 168h at 35 °C



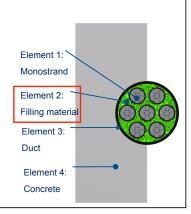
Wax

For unbonded applications

Recommendations:

- Congealing point (≥65 °C)
- Cracks at penetration (at 20 °C)
- Bleeding (≤0.5% at 40 °C)

Circulating dry air

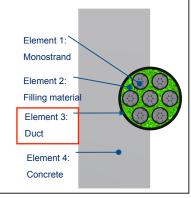

- For unbonded applications
- Applicable only for important structures

Recommendations:

- Monitoring (fulltime)
- Circulating (fulltime)

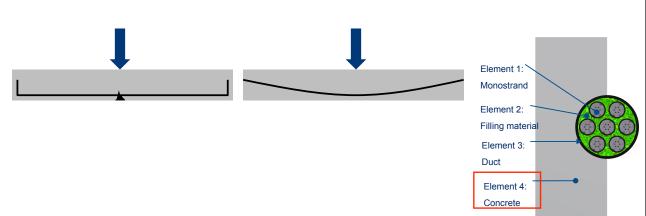
Remarks:

High costs!

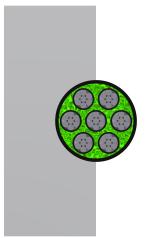


Duct

- Mechanical protection
- Barrier for chlorides
- Plastic > Steel


Recommendations:

- Wall thickness
- Material


Concrete cover

- Dense → no cracks
- Provides an alkaline environment
- Mechanical protection

Layer combinations

- Combination is decisive
- Different combinations → different protection

50

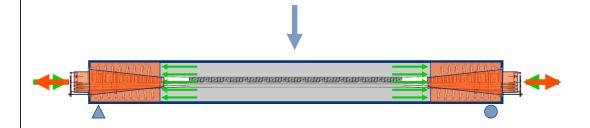
Layer combinations

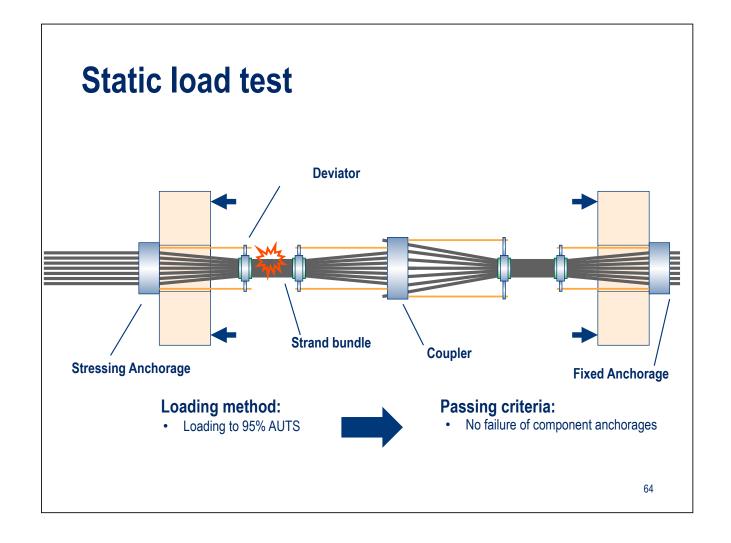
application		strand		duct		duct filler		concrete		layers
internal	bonded	bare	0	steel	 	grout	1	cover	1	3 3+
	unbonded	bare	0	steel plastic	 	grease / wax	1	cover	1	3 +
		monostrand ¹⁾	2	none	0	none	0			3+
				steel	ı	(filler)	0			4
				plastic	1+					4+
				steel	1	grout	1			5
				plastic	1+					5+
external		bare	0	steel	I	grout	1	none	0	2
				plastic	1+					2+
		bare	0	steel	ı	grease / wax	ı			2
				plastic	1+					2+
		monostrand ¹⁾	2	none	0	none	0	none	0	2+
				steel	1	(filler)	0			3
				plastic	1+					3+
				steel	-1	grout	1			4
				plastic	1+					4+

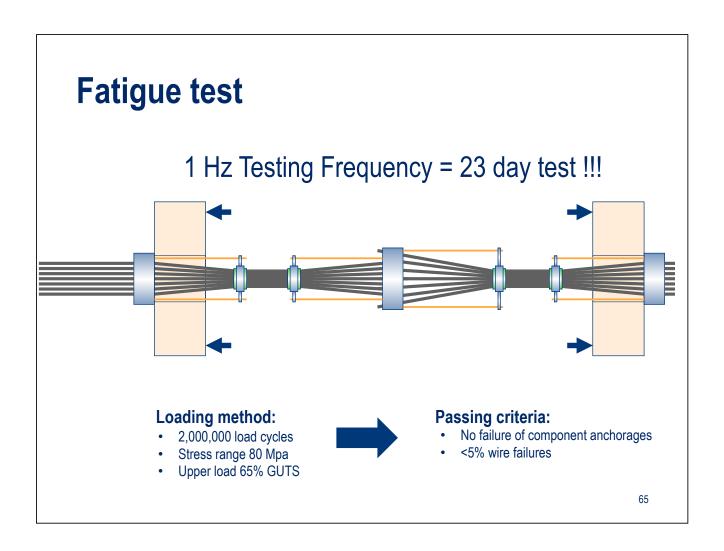
Outline

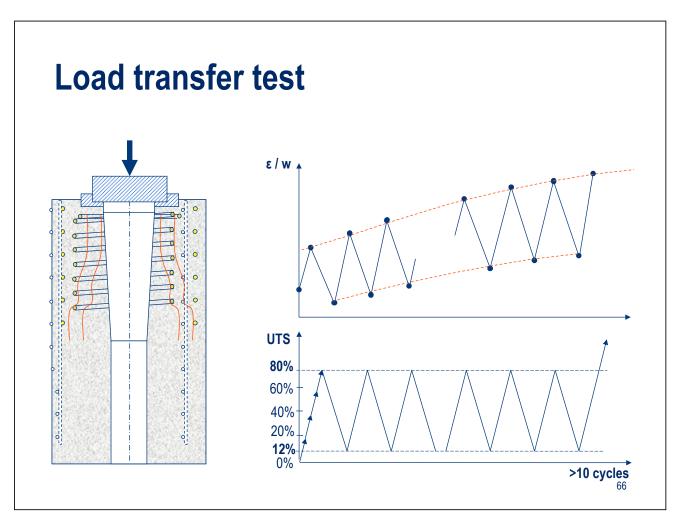
- Introduction to post-tensioning
- Key benefits of using post-tensioning
- Terminology of post-tensioning parts
- Post-tensioning materials & properties
- Testing & approval of post-tensioning systems
- Typical post-tensioning systems & their applications
- Benchmarking post-tensioning system performance

61


Example of testing guidelines


- European Technical Approval / Assessment
- Assessment & testing to ETAG 013 (EAD 16)
- One of the most stringent testing criteria in the world
- Very high quality control & performance
- Factory production control
- CE marking

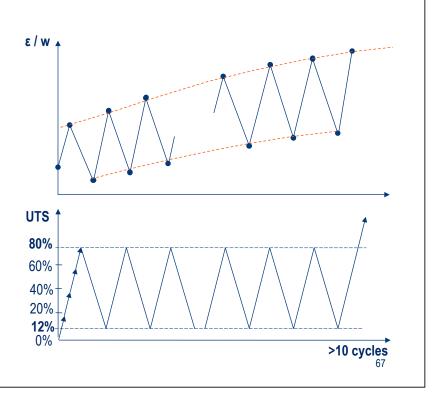



Testing to ETAG 013

- 1. Resistance to static load
- 2. Resistance to fatigue
- 3. Load transfer to the structure

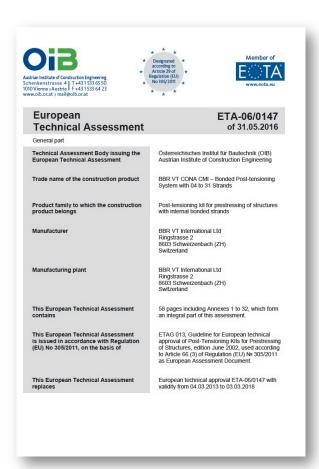
Load transfer test

Maximum Crack Width:


UL: 0.15 mm
n. LL: 0.15 mm
n. LL: 0.25 mm

Stabilization:

- Strains
- Cracks


Passing Criteria:

• Failure Load > 110% UTS

State-of-the-art PT certification

0432

ETA-06/0147 BBR VT CONA CMI

Bonded Post-tensioning System with 04 to 31 Strands

BBR VT International Ltd

Bahnstrasse 23, 8603 Schwerzenbach (Switzerland) www.bbrnetwork.com

043-CPD-11 9181-1/1

07

Factory Production Control (FPC)

Procurement and order fulfillment

Stock management

Installation

71

Quality Control Systems

- Engineering database
- BBR e-Trace
- Procurement
- Stock management
- Installation
- User management
- Communication
- Integrated FPC

Qualified and certified

- Trained and audited by the ETA Holder on a regular basis
- List of all certified PT Specialists
- Certified for assigned territories

Outline

- Introduction to post-tensioning
- Key benefits of using post-tensioning
- Terminology of post-tensioning parts
- Post-tensioning materials & properties
- Testing & approval of post-tensioning systems
- Typical post-tensioning systems & their applications
- Benchmarking post-tensioning system performance

Primary Applications of PT

- Floor slabs
 - Flat slabs
 - Beam and one-way slab frames
- Ground supported slabs
 - Mat foundations
 - Slabs on expansive soil
 - Industrial slabs
- Transfer plates; heavy loads
- Podium slabs (light framing)
- Repair/retrofit (deflection control or added strength)
- Correction of seismic deformation
- Modification of load path
- Redistribution of reactions

75

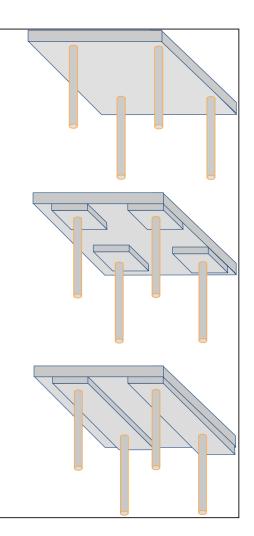
- 1. Floor systems
 - → Flat anchorage or monostrand systems
- 2. Large structural elements such as raft foundations, transfer plates, beams etc.
 - → Multi-strand PT systems
- 3. Repairs and retrofit work
 - → Special PT systems

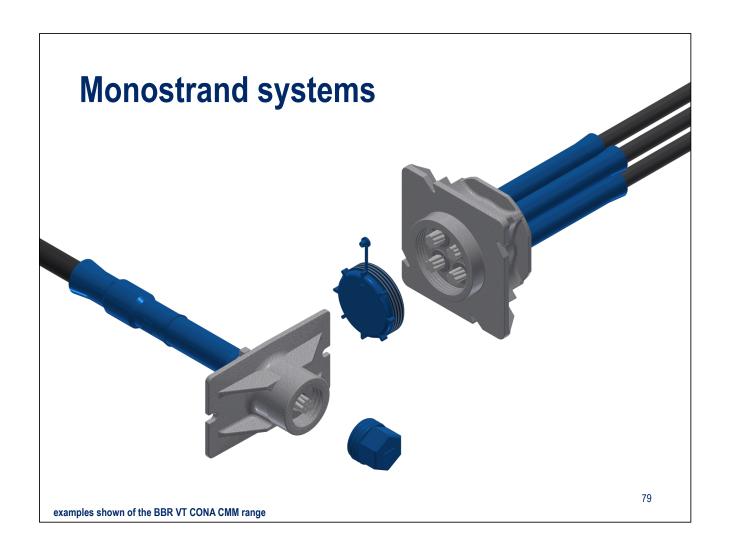
- 1. Floor systems
 - → Flat anchorage or monostrand systems
- 2. Large structural elements such as raft foundations, transfer plates, beams etc.
 - → Multi-strand PT systems
- 3. Repairs and retrofit work
 - → Special PT systems

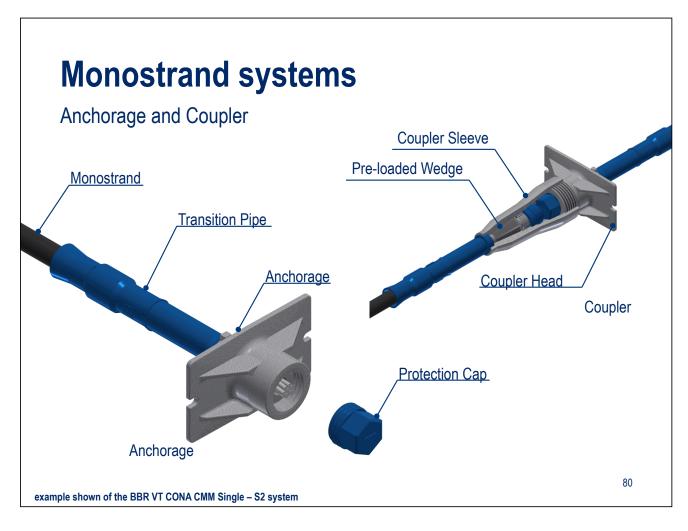
77

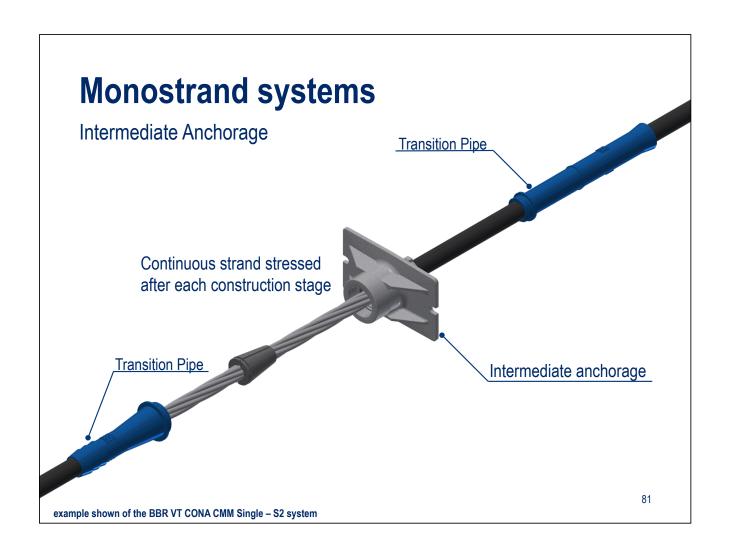
Typical floor systems

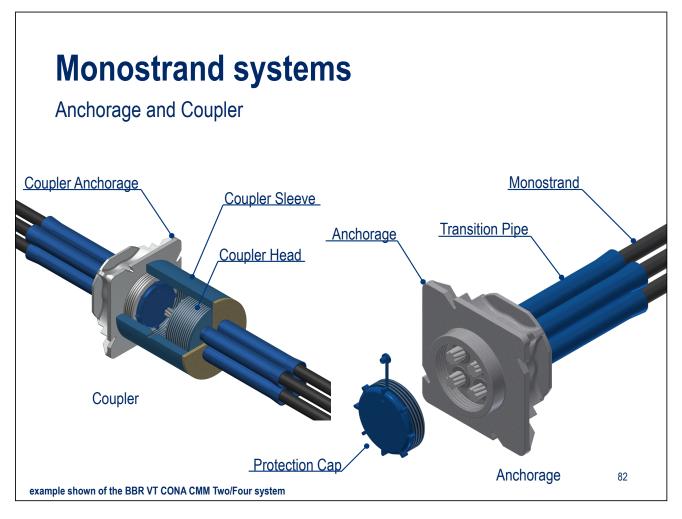
Top: Flat plate


Span 7 – 10 m, imposed loads 2.0 - 7.5 kPa, Span/depth ratio 32 - 45


Middle: Flat slab


Span 8 - 13 m, imposed loads 2.0 - 10 kPa, Span/depth ratio 40 - 52


Bottom: Banded system

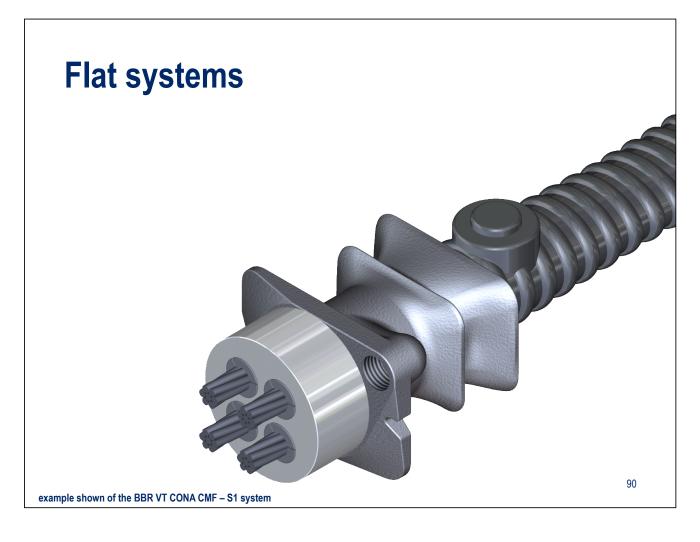

Span 10 - 20 m (6 - 10 m), imposed loads <15 kPa, Span/depth ratio 19 - 27 (40 - 52)

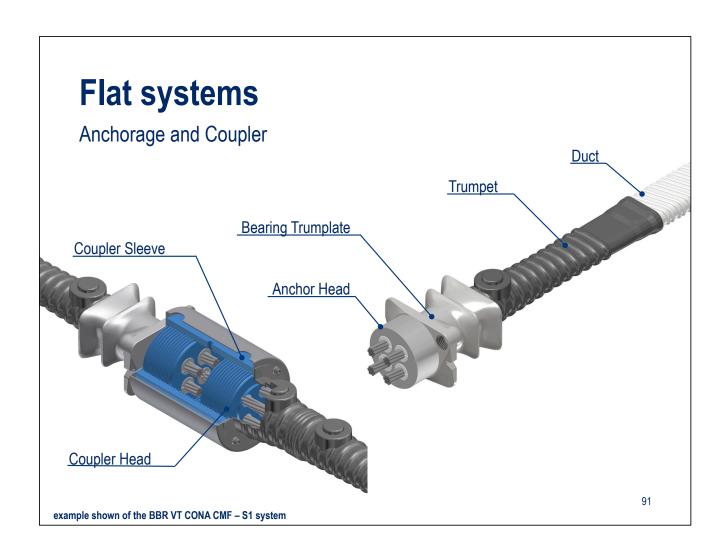
Monostrand systems

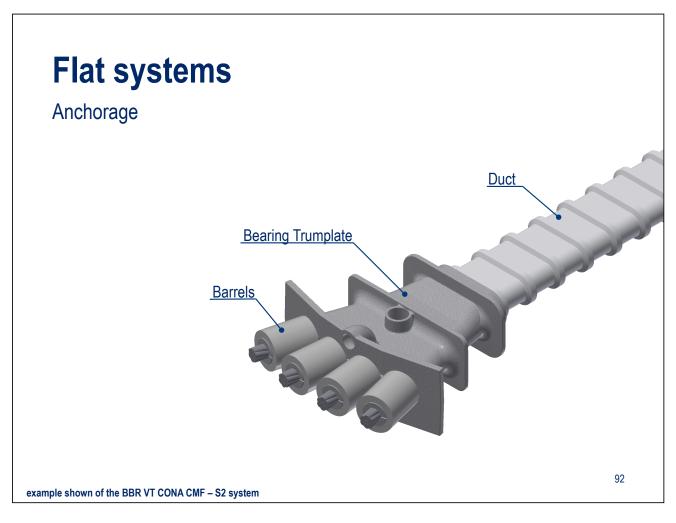
Monostrand systems

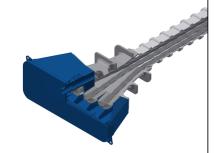
Features

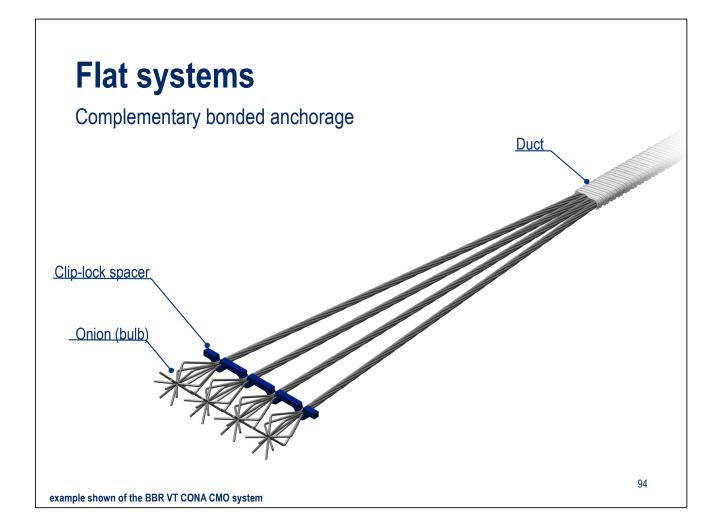
- Unbonded or bonded tendons
- 12.9mm or 15.7mm dia. strands, and
 15.2mm dia. compacted strand
- Optional fully encapsulated anchorage
- Different centre spacings and edge distances depending on amount of anti-bursting reinforcement
- Low concrete strengths at transfer







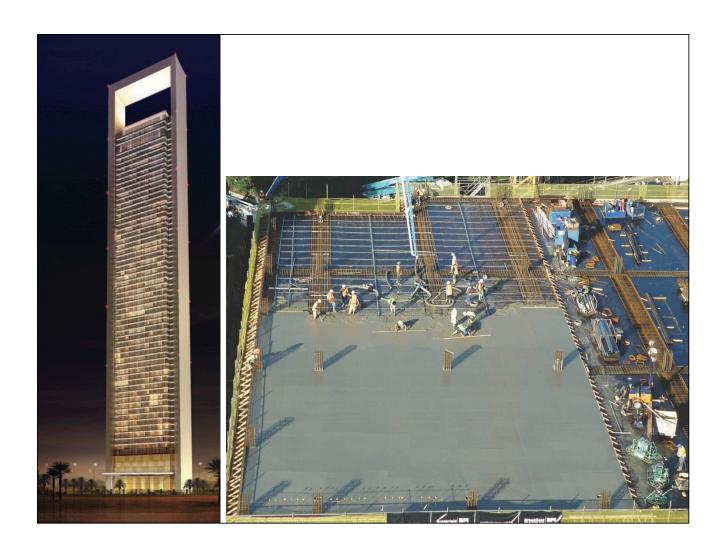


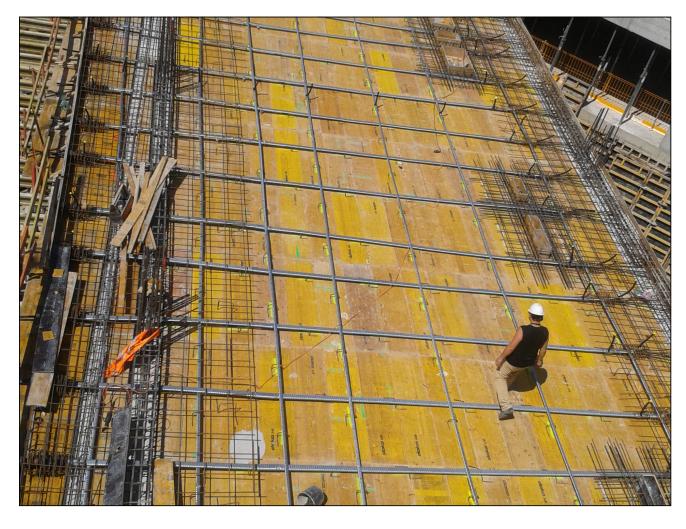


Flat systems

Features

- From 2 to 6 strands
- 12.9mm or 15.7mm dia. strands
- Bonded or unbonded tendon or monostrands
- Plastic or steel ducts
- Different centre spacings and edge distances depending on amount of anti-bursting reinforcement
- Low concrete strengths at transfer

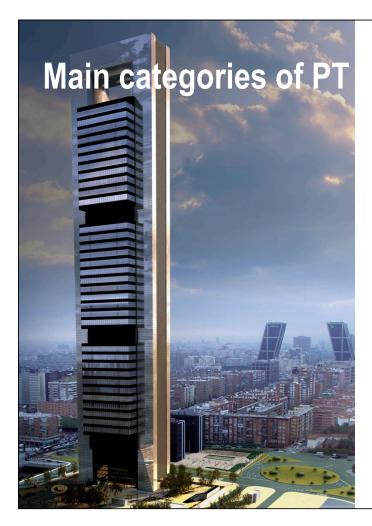


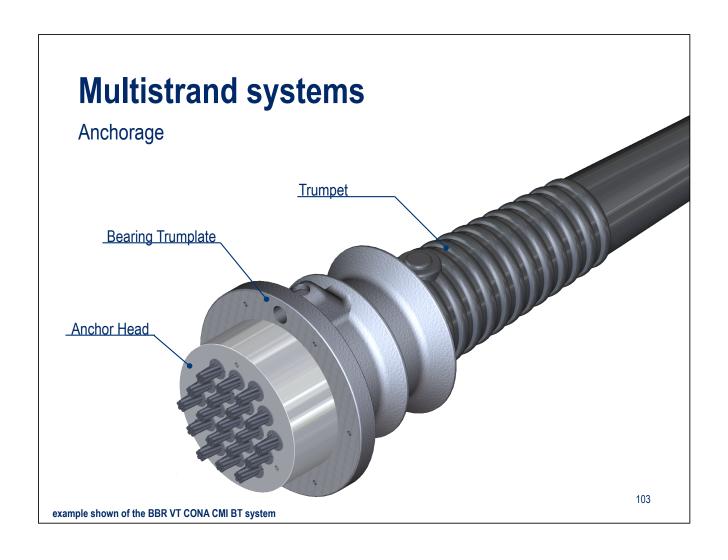

Flat systems

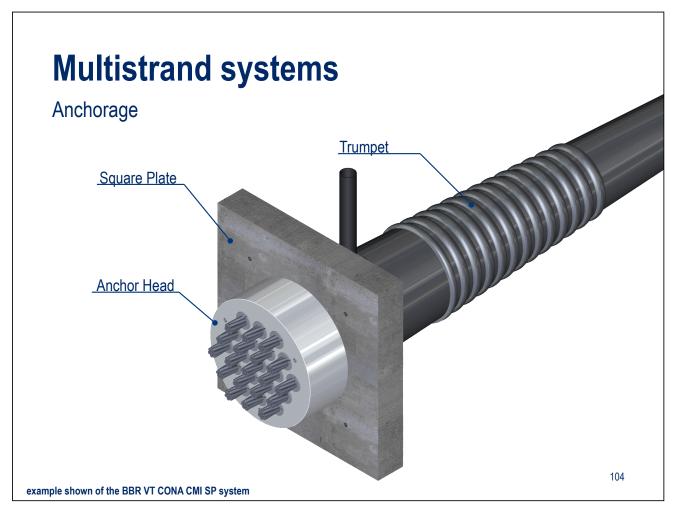
Complementary bonded anchorage

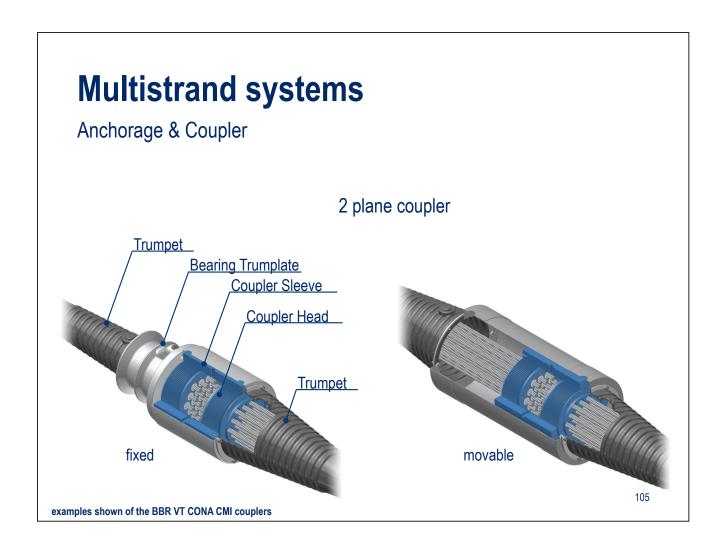
- From 2 to 6 strands
- 12.9mm or 15.7mm dia. strand
- No need for local anti-bursting reinforcement (check refer to the relevant ETA)
- Efficient clip-lock strand spacers
- Low concrete strength at transfer

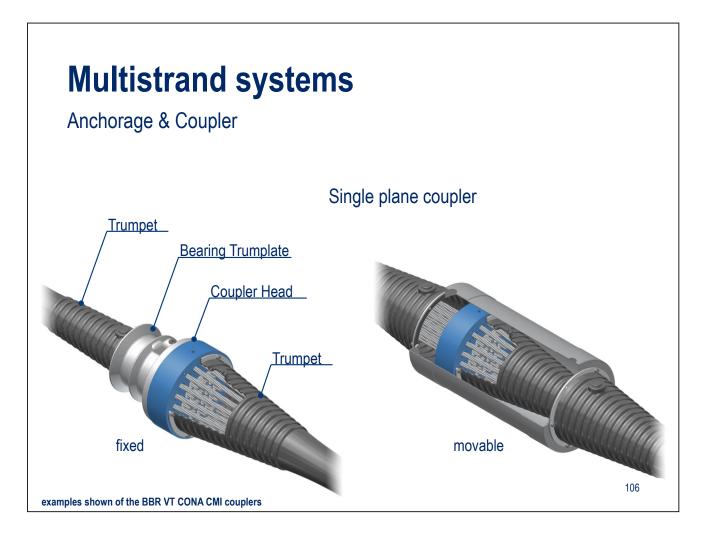




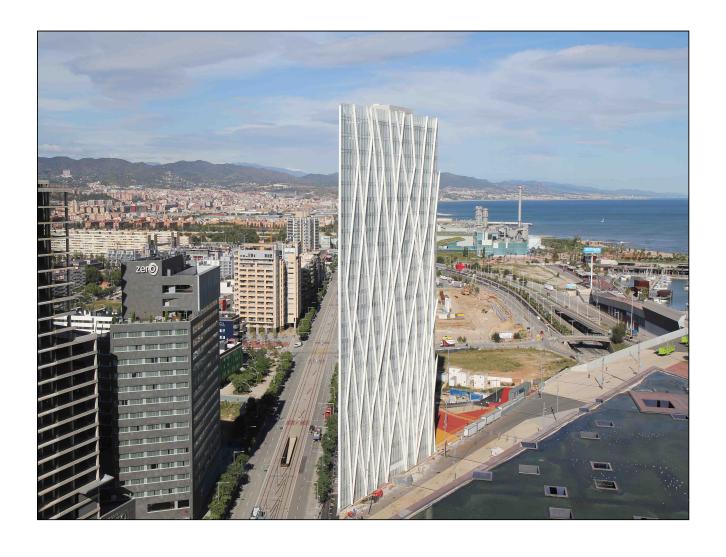




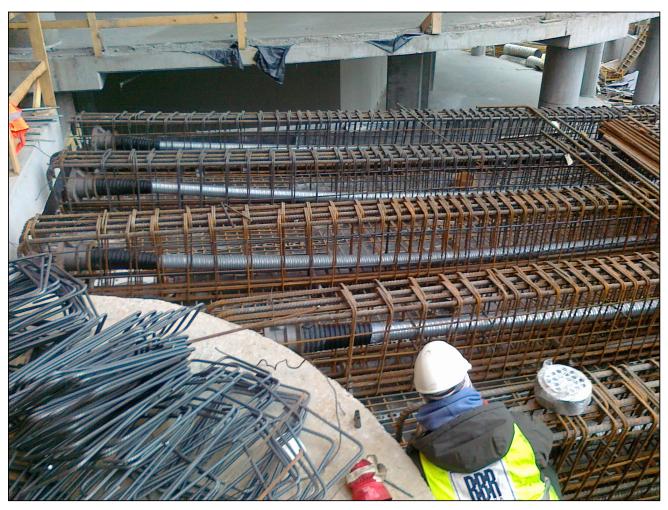




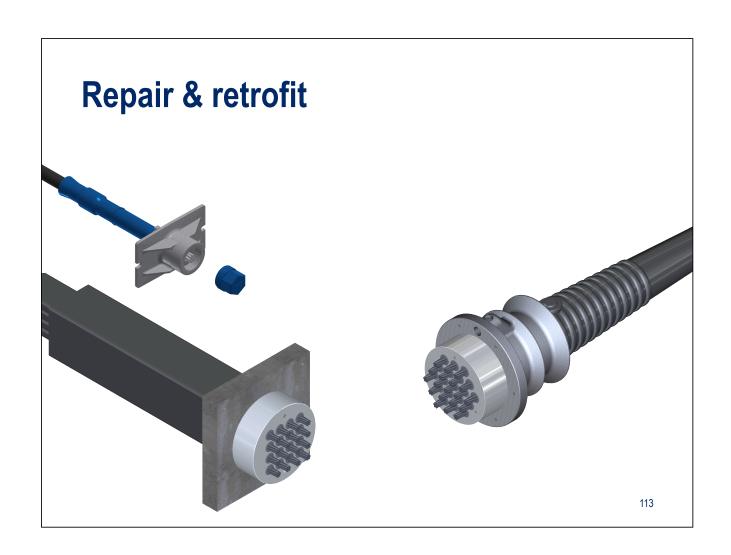
- Floor systems
 → Flat anchorage or monostrand systems
- 2. Large structural elements such as raft foundations, transfer plates, beams etc.
 - → Multi-strand PT systems
- 3. Repairs and retrofit work
 - → Special PT systems

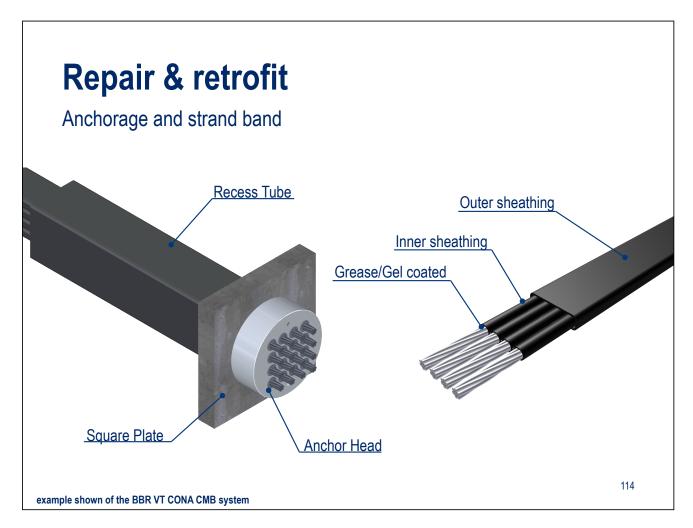


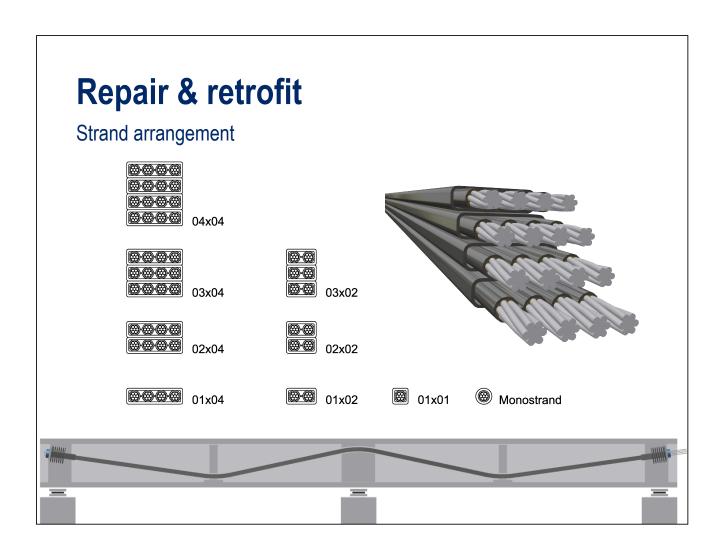
Multistrand systems


Features

- From 1 to 91 strands (larger sizes on request)
- 15.7mm dia. strands are more common (12.9mm also possible)
- Bonded or unbonded tendons
- Plastic or steel ducts
- Low concrete strength at transfer
- Staged stressing is common





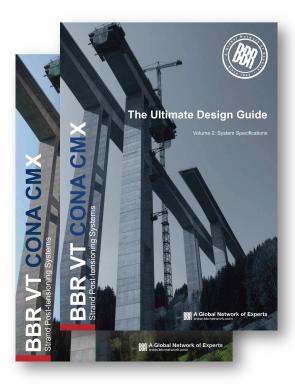


- 1. Floor systems
 - → Flat anchorage or monostrand systems
- 2. Large structural elements such as raft foundations, transfer plates, beams etc.
 - → Multi-strand PT systems
- Repairs and retrofit work
 - → Special PT systems

Repair & retrofit

Repair & retrofit

Repair & retrofit



Outline

- Introduction to post-tensioning
- Key benefits of using post-tensioning
- Terminology of post-tensioning parts
- Post-tensioning materials & properties
- Testing & approval of post-tensioning systems
- Typical post-tensioning systems & their applications
- Benchmarking post-tensioning system performance

Design Guide

- All about post-tensioning
 - Definition of PT systems
 - Materials
 - Design
 - Detailing
 - Calculations

12

What to compare when benchmarking?

- Testing, approvals and level of quality control
- Range of strand and tendon sizes
- Optimized and compact anchorages
- Minimum center spacing distances between tendons
- Minimum tendon to concrete edge distance
- Quantity of anti-bursting reinforcement
- Minimum concrete strength at transfer
- Design features leading to construction productivity enhancements

ETA & CE marking

0432

ETA-06/0147
BBR VT COMA CMI

Bonded Post-tensioning System with 04 to 31 Strands

BBR VT International Ltd

Bahnstrasse 23, 8603 Schwerzenbach (Switzerland)
www.bbrnetwork.com

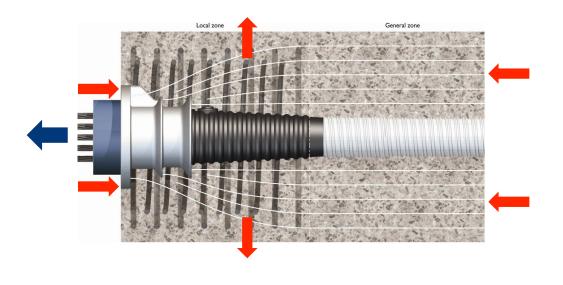
043-CPD-11 9181-1/1

07

123

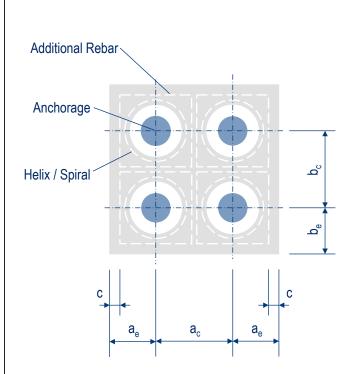
Local back-to-back approvals (RMS)

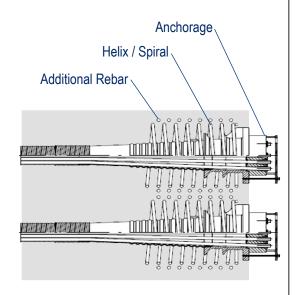
- Approved as per ETA approval ETA-09/0286
- BBR VT CONA CMI BT system
- Range from 2 to 61 strands
- Spheroidal cast iron load transfer element (500 MPa)
- Anti-bursting steel, anchorage spacing and concrete strength as per ETA approval


Factory Production Control (FPC) Procurement and order fulfillment **System Holder Stock** management Component **PT Specialists**

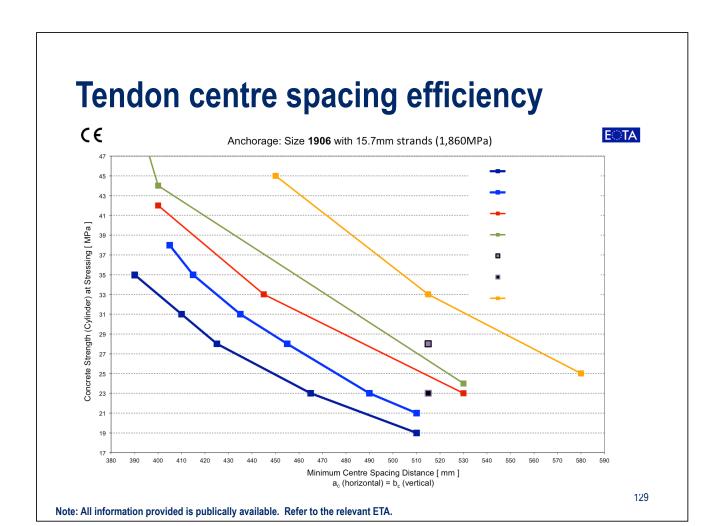
Installation

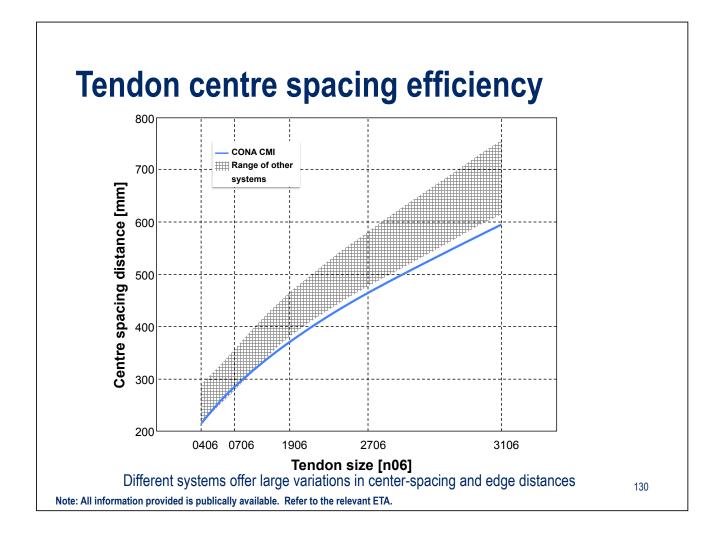
Manufacturers

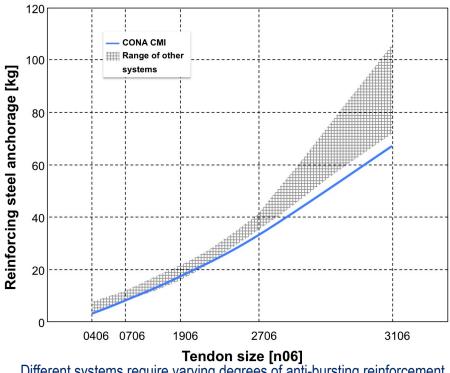

Range of anchorage sizes Typical tendon sizes 22 24 25 27 37 42 43 48 55 61 69 73 System 1 -12 13 15 19 System 2 -12 15 19 22 27 31 37 55 System 3 -3 12 13 19 22 25 27 31 37 55 System 4 -12 19 22 15 126 Note: All information provided is publically available. Refer to the relevant multistrand ETAs.


Anchorage Zone

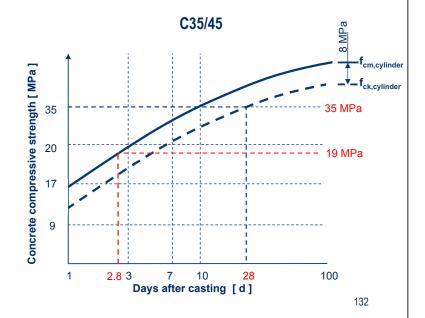
127


Anchorage spacings & reinforcement




$$a_c = 2 x a_e + 20 mm$$

$$b_c = 2 \times b_e + 20 \text{ mm}$$


Different systems require varying degrees of anti-bursting reinforcement

Note: All information provided is publically available. Refer to the relevant ETA.

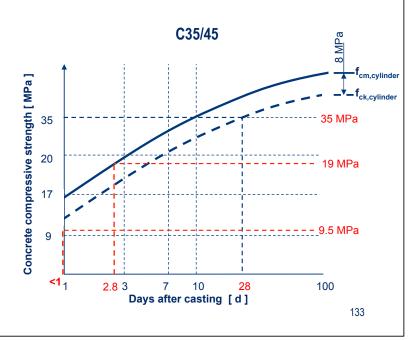
Early prestressing

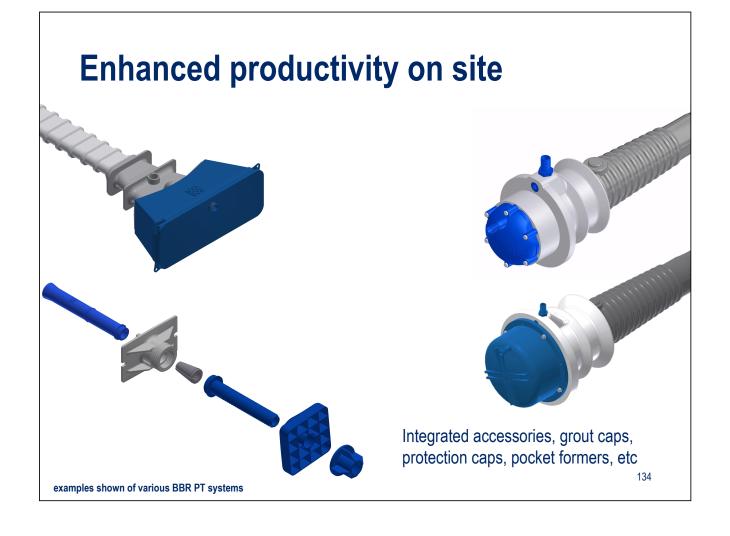
f_{cm,0,min_cylinder} = 19 MPa*

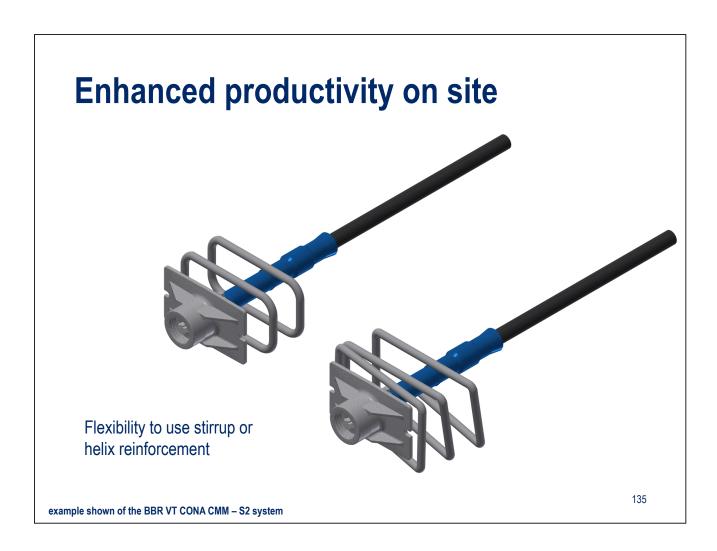
→ Full prestressing after 2.8 days!

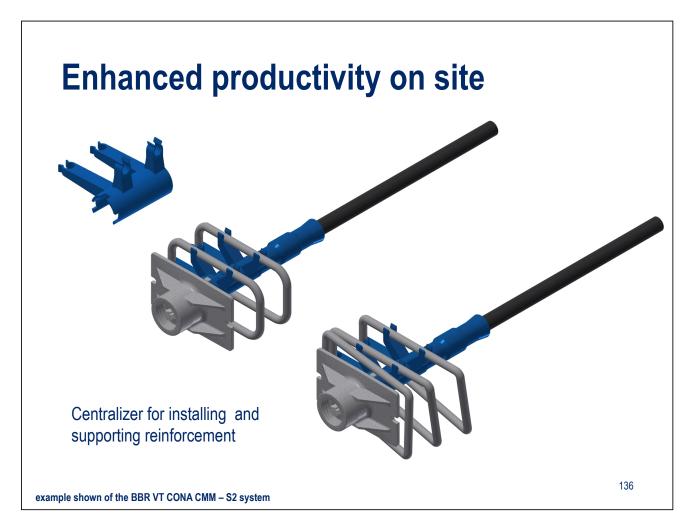
131

*example given of the BBR VT CONA CMI BT system

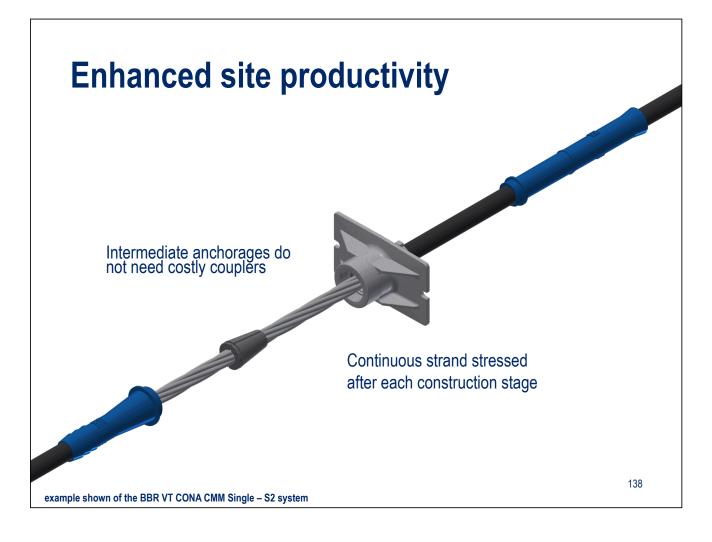

Partial prestressing

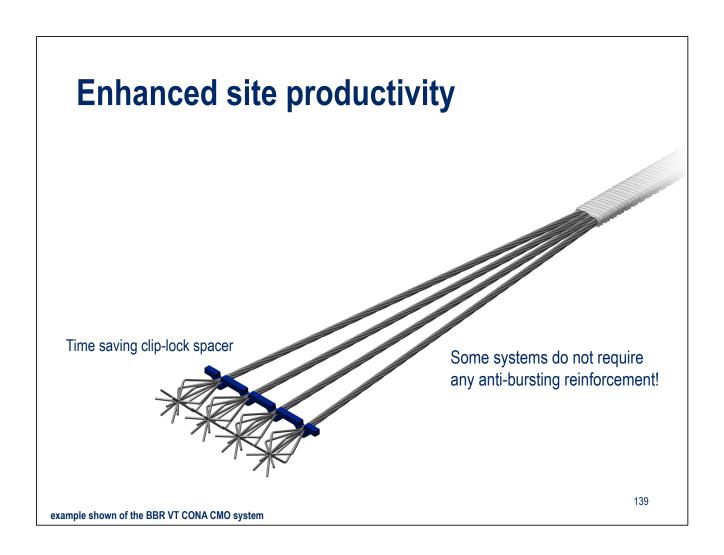

f_{cm,0,min_cylinder} = 19 MPa*


30% of $F_{pm,0}$ might be applied when concrete strength is 50% $f_{\text{cm},0}$


→ Partial prestressing in less than 1 day!

*example given of the BBR VT CONA CMI BT system







Working table references – ETA MPa 19 23 28 31 35 19 23 28 31 35 19 23 28 31 35 19 23 28 31 35 19 23 28 31 35 19 23 28 31 35 19 23 28 31 35 19 23 28 31 35 19 23 28 31 35 mm do 10 lo 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 5 5 5 6 6 5 5 5 6 6 6 6 6 6 6 6 6 6 Good MPa 19 23 28 31 35 19 23 28 31 35 19 23 28 31 35 19 23 28 31 35 19 23 28 31 35 19 23 28 31 35 19 23 28 31 35 19 23 28 31 35 19 23 28 31 35 mm 330 280 275 260 250 375 330 300 280 270 375 330 315 305 305 375 330 310 305 375 330 310 305 420 360 360 340 345 475 420 390 360 340 475 430 410 360 360 520 430 420 390 380 A = 8 mm 99 350 320 310 290 410 370 320 310 290 410 370 340 320 310 490 420 320 310 490 420 320 310 440 420 320 310 450 430 320 320 320 470 450 430 140 Note: Example table given for the BBR VT CONA CMI BT system

Session 1

Wednesday 30 May

Economics of Post-Tensioned Construction and Quantities

Florian Aalami

Economics of Post-Tensioned Construction and Quantities for Buildings

ADAPT Corporation | Redwood City, CA, USA ADAPT Latin America | Miami, FL, USA ADAPT International Pvt. Ltd. | Kolkata, India

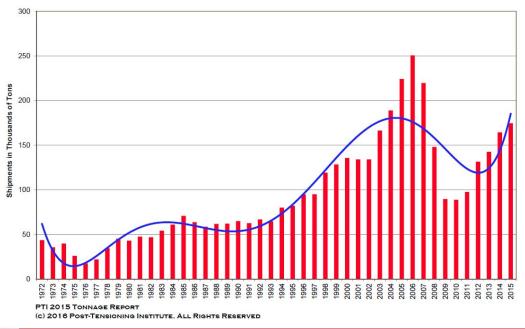
> Dr. Florian Aalami www.adaptsoft.com May 2018

© 2018 ADAPT Corporation, all rights reserved

4

ADAPT Post-Tensioning in Building Structures

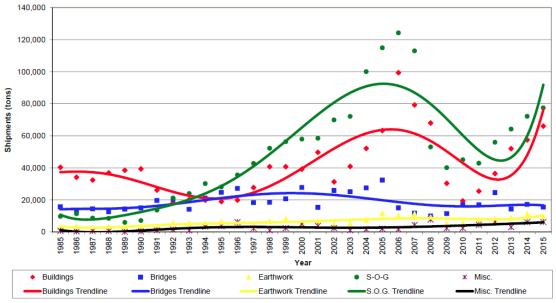
Owners, Developers, Engineers, Architects and Contractors are demanding more from buildings today:


- Cheaper
- Flexible floor layouts: less columns & longer spans

- Unique designs: irregular shapes
- Faster Construction
- Sustainable design

ADAPT Post-Tensioning Usage in North America

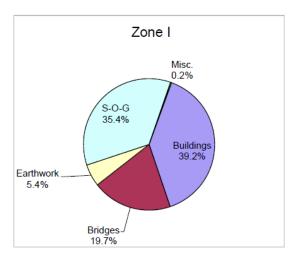
North American Post-Tensioning Shipments 1972 - 2015

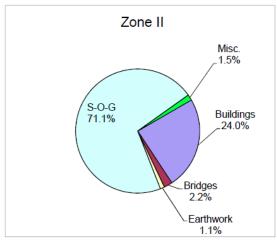


C concretenz

2

ADAPT Post-Tensioning Usage in North America


North American Post-Tensioning Trend Analysis

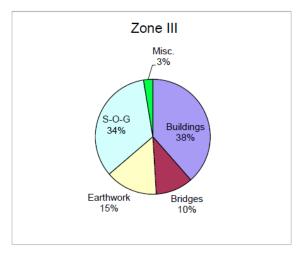


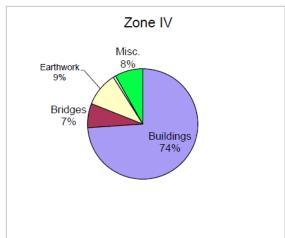
PTI 2015 TONNAGE REPORT
(c) 2016 Post-Tensioning Institute, ALL Rights Reserved

ADAPT Post-Tensioning Usage in North America

Usage of post-tensioning varies greatly by region

West Coast


Rocky Mountain States & Southwest


Courtesy PTI Report

5

ADAPT Post-Tensioning Usage in North America

Southeast

Northeast

Courtesy PTI Report

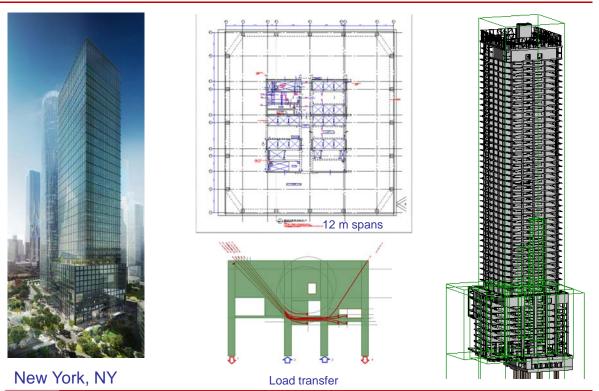
6

Unbonded Post-Tensioning

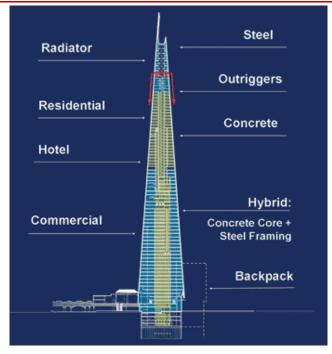
C concretenz

7

ADAPT


Bonded Post-Tensioning

ADAPT Iconic Skyscrapers: Hudson Yards TC


ADAPT Iconic Skyscrapers: 55 Hudson Yards

C concreten

10

Iconic Skyscrapers: The Shard

At the lower retail and office levels above ground, composite steel framing (Levels 3 to 39) was designed for spans of up to 15 meters (50 feet) from the perimeter to the concrete cores (Figure 4). At the upper hotel and residential levels, 200-millimeter (8-inch) thick post-tensioned concrete slabs (Levels 40 to 72) were designed for spans of up to 9 meters (30 feet) from the perimeter to the concrete core. These post-tensioned slabs will provide the maximum number of floors within the limit of the building height, as well as providing the required acoustic separation between the residential levels.

London, UK

C concretenz

11

ADAPT Residential Towers – Seismic Zone

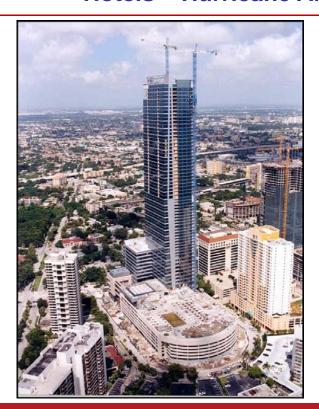
Residential Towers

ADAPT

Residential Towers - Mid Rise

San Francisco, CA

Luxury Residential Towers


Dubai, UAE

15

ADAPT

Hotels – Hurricane Area

Miami, FL

ADAPT Parking Structures – Beam & Slab

San Francisco, CA

17

ADAPT Parking Structures – 2-Way Slab

San Francisco, CA

Malls – Large Open Spans

Dubai, UAE

C concretenz

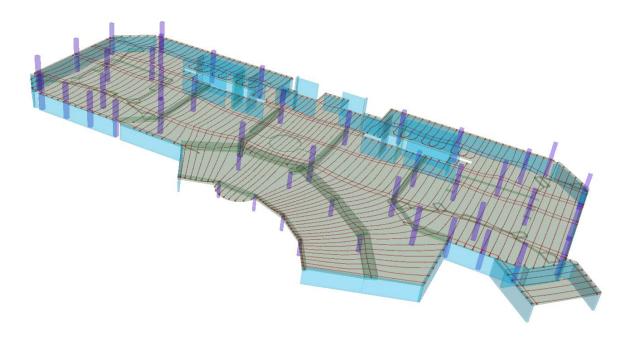
10

ADAPT

Malls

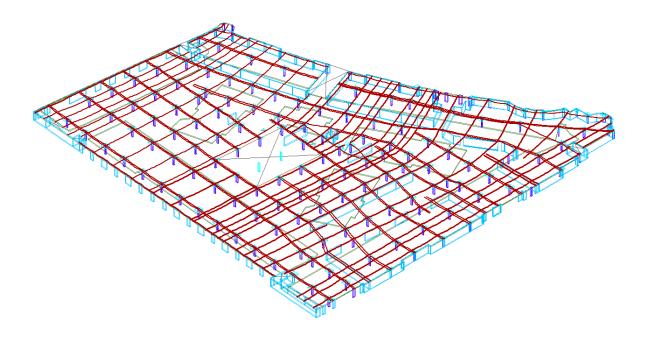
Amman, Jordan

High-Tech Office Parks


London, UK

C concretenz

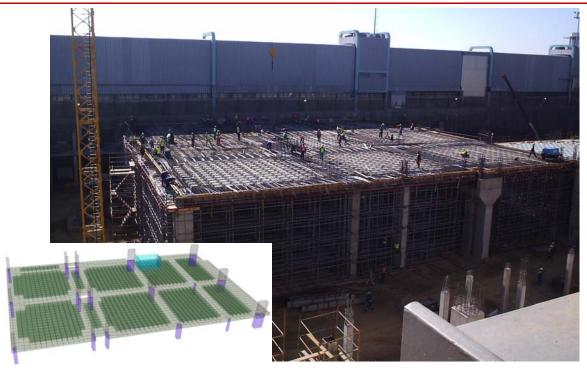
21


ADAPT

Hospitals

Phoenix, AZ

Podium Slabs


Cupertino, CA

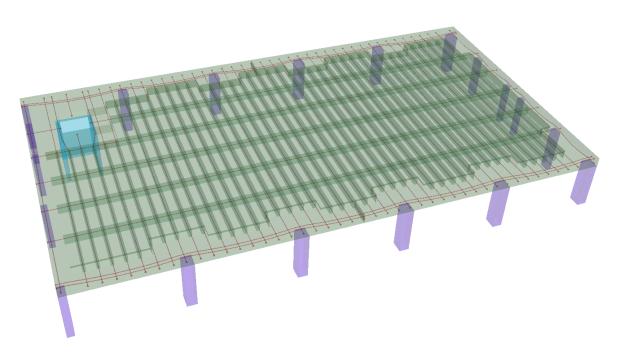
23

ADAPT

Waffle Slabs

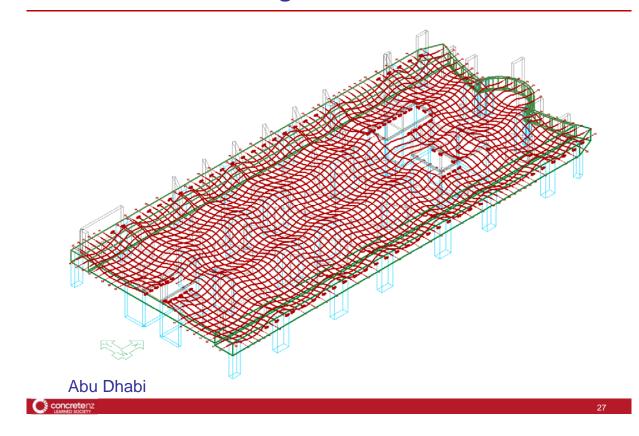
Johannesburg, South Africa

Waffle Slabs

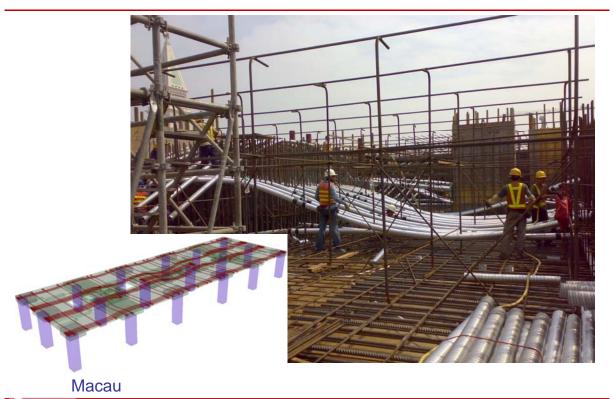

Johannesburg, South Africa

C concretenz

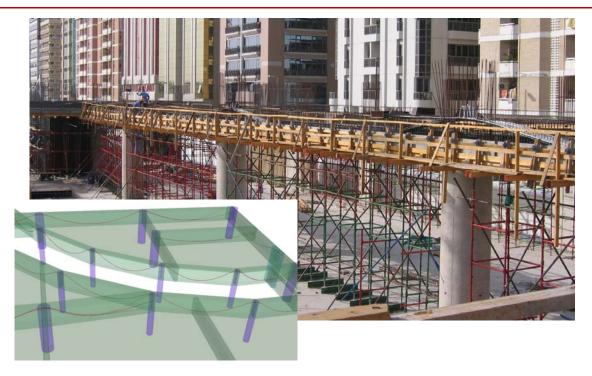
25


ADAPT

Girder & Joist System


Lisbon, Portugal

Single-Pour Transfer Slabs



ADAPT

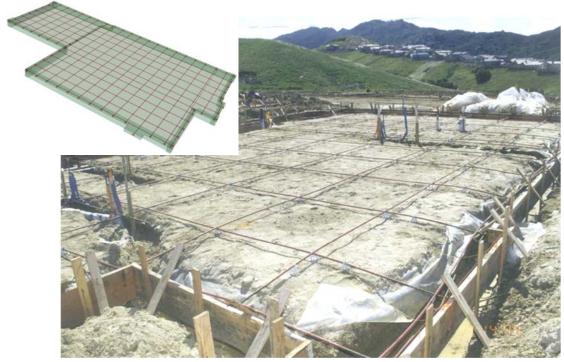
Multi-Pour Transfer Slabs

Post-Tensioned Beams

Abu Dhabi, UAE

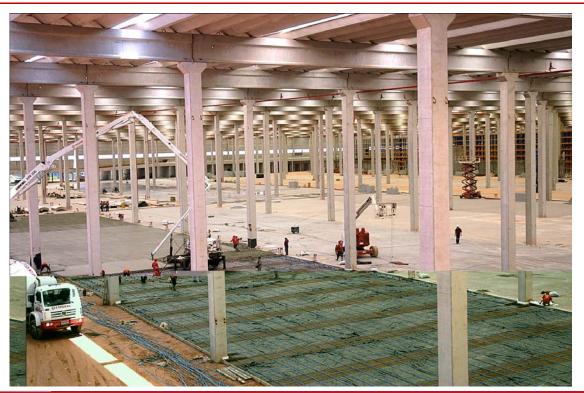
20

ADAPT


Large Transfer Beams

Dallas, TX

Slab-on-Grade (Foundations)



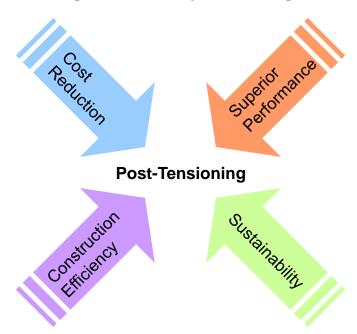
Los Angeles, CA

C concretenz

31

ADAPT Super-Flat Industrial Slabs-on-Ground

Mat (Raft) Foundations



C concretenz

33

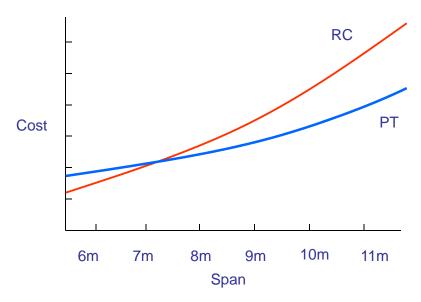
ADAPT Post-Tensioning in Building Structures

Post-Tensioning offers 4 key advantages:

1. Direct Cost Reduction

Post-tensioning offers direct cost reduction over conventionally reinforced slabs primarily by reducing concrete and rebar material quantities as well as rebar installation labor. Typically, savings between 10% - 20% in direct cost are achieved

Factors contributing to direct cost reduction:


- Thinner slab (1/3 of RC alternative) with less reinforcement
 - → Reduction of material quantities and cost
 - → Reduction of labor and material handling costs
 - → Reduced total building height and cladding cost
- Reduction of beams and steps
 - → Simplified and cheaper formwork
- Rapid reuse of formwork
 - → Less formwork needed on jobsite

35

ADAPT Cost Comparison Between RC & PT Slabs

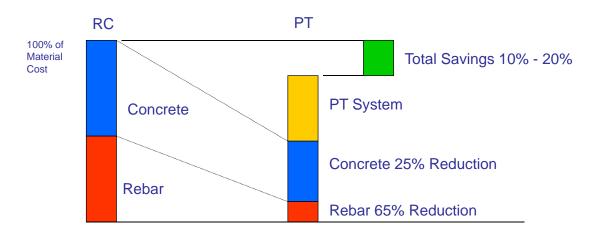
As a rule, the break even mark between conventional and prestressed solutions is approx. 7m spans

ADAPT Cost Comparison Between RC & PT Slabs

The breakeven point for post-tensioning in buildings varies from country to country depending on the relative cost of:

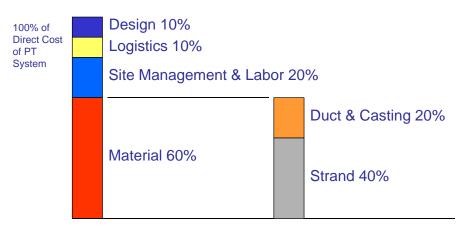
- Rebar
- Tendon
- Concrete
- Labor

	Swiss	Korea	Middle East	Spain	Vietnam	Hong Kong	Malaysia	Singapore	Thailand	USA
Tendon	11,100	4,550	3,805	5,472	3,300	4,260	3,333	3,499	2,667	2,200
Rebar	1,550	890	800	1,176	850	1,160	1,167	1,229	1,000	1,000
Ratio	7.2	5.1	4.8	4.7	3.9	3.7	2.9	2.8	2.7	2.2


(Representative cost of one ton of material USD)

2

ADAPT Cost Structure of RC vs. PT Slabs

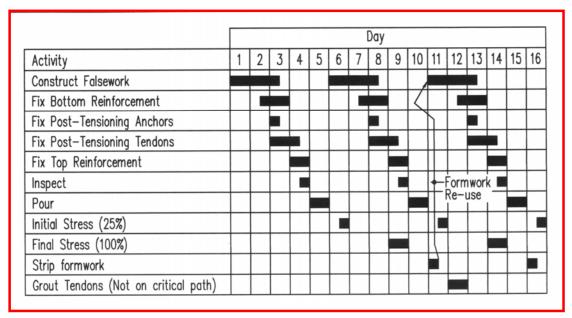

In a typical slab with spans over 7 meters, the net savings in material cost can range between 10% - 20% of original RC alternative

Cost Structure of PT Systems

Material represents 60% of direct cost of a post-tensioning system

39

ADAPT 2. Improved Construction Efficiency


Since post-tensioned slabs are designed to carry their own weight at time of stressing, they can significantly improve construction efficiency and deliver an additional 5%-10% of indirect savings

Factors contributing to improved construction efficiency:

- Shorter construction cycles
- Less material handling and impact on other trades
- Simpler slab soffit less beams and drop caps/panels
- Quicker removal of shoring gives more access to lower slabs

Typical 5-Day Construction Cycle

3-day cycle achievable with early strength concrete and industrial formwork

Schedule for 800 - 1,000 m2 slab

41

ADAPT

Construction Planning

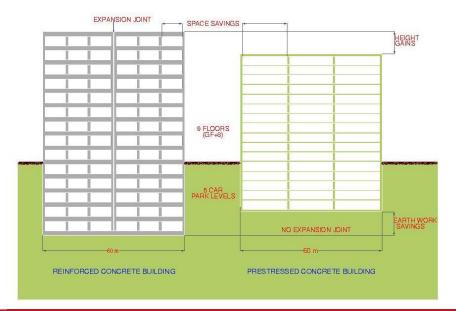
Critical planning considerations:

- Installation is simple, but a sequence has to be maintained
- Stressing of cables is done 3-4 days from concreting of slab
- Stressing is normally done at one stage
- Staged stressing is introduced when final loads are much higher than at time of initial stressing (mat slabs and transfer levels)
- Formwork can be removed after stressing of cables
- Temporary propping is only needed for construction loads
- Grouting of bonded tendons can be done at any time after the stressing

3. Superior Structural Performance

The prestressing in post-tensioned slabs takes optimal advantage of tendon, rebar and concrete properties to deliver an economical structural system

Factors contributing to superior structural performance:


- Use of high-strength materials
- Longer spans are achieved (L/40 45 vs. L/30 for RC alternative)
- Deflection control (DL is balanced by P/T)
- Crack control and water-tightness
- Reduced floor-to-floor height
- Lighter structure requires lighter lateral load resisting system
- Economy in column and footing design
- Reduced noise transmission compared to RC
- Lower total cost of ownership (maintenance) compared to RC alternatives

4

ADAPT Maximizing Structural Performance

To maximize the benefits of post-tensioning at the building project level, the effects of reduced member sizing should be applied early in the design process

Typical Quantities

Post-Tensioning and rebar rates vary greatly depending of span configuration and loading. Compared to other countries, PT projects in US are designed with less loading and lower PT and rebar rates

Bonded System

US values (1 kN/m2 SDL & 2.5 kN/m2 LL)

- 3 4 kg/m 2 of PT
- 5 kg/m2 of Rebar

With higher loading (3 kN/m2 SDL & 3 kN/m2 LL)

- 3.5 5 kg/m 2 of PT
- 7 9 kg/m2 of Rebar

Unbonded System

US values (1 kN/m2 SDL & 2.5 kN/m2 LL)

- 3.75 kg/m2 of PT
- 6 kg/m2 of Rebar

15

ADAPT

4. Sustainable Design

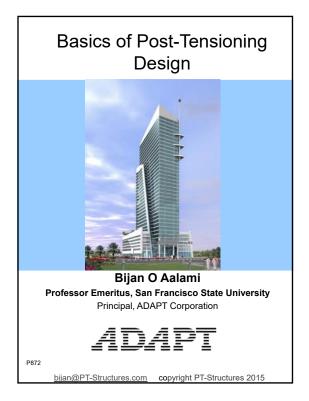
Compared to conventionally reinforced structures, post-tensioned buildings offer a more sustainable design alternative

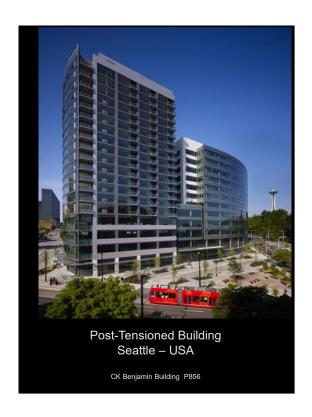
Factors contributing to sustainability:

- Less material use than RC
- Reduced carbon footprint
- Lower cost of ownership
 - Less cracking
 - Lower deflection values
 - Reduced cost for corrosion maintenance

Your Partner in Concrete Design

www.adaptsoft.com


47


Session 2

Wednesday 30 May

Design Basics of Post-Tensioned Structures

Bijan Aalami

Structural Modeling of POST-TENSIONING

Options to Account for Post-Tensioning

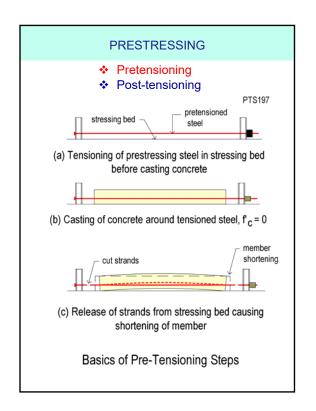
Modeling tendons as applied loads

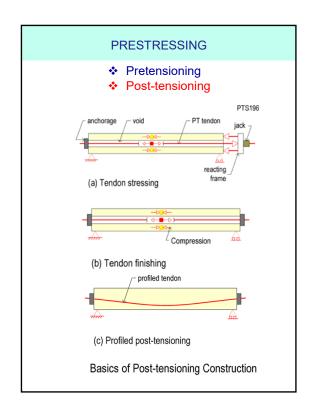
- Balanced loading
- Modeling using primary moments
- Equivalent loads

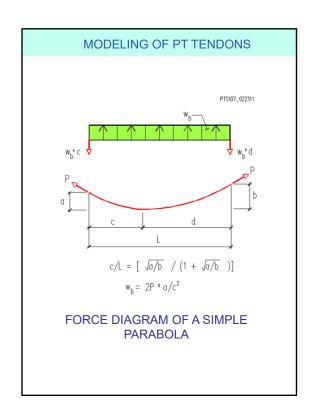
Modeling tendons as resisting reinforcement

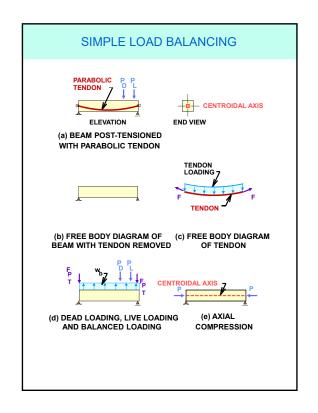
❖ Discrete tendon modeling

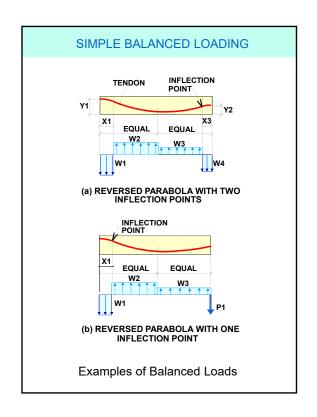
Treatment of post-tensioning and hyperstatic (secondary) actions

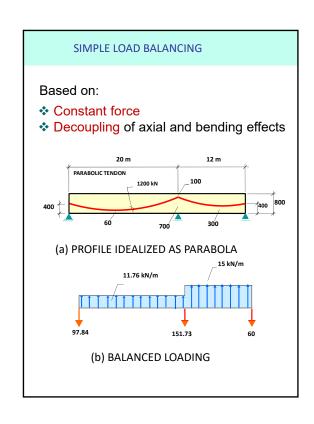


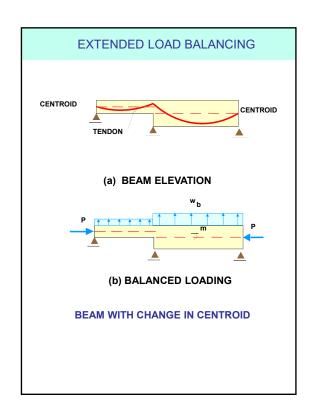

Structural Modeling of POST-TENSIONING

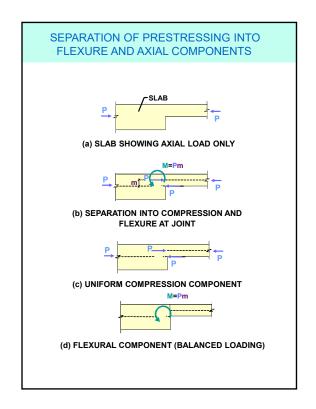

TENDON MODELING AS APPLIED LOADING

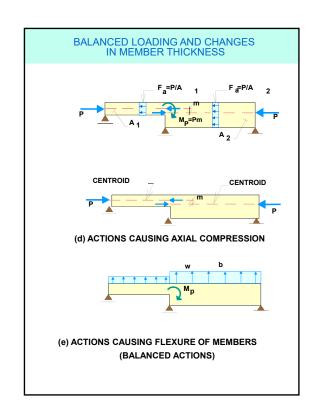

- ❖ Simple load balancing [T Y Lin, 1963]
- Extended Load Balancing [Aalami, 1990]
- Modeling Through Primary Moments
- Modeling Through Equivalent Forces

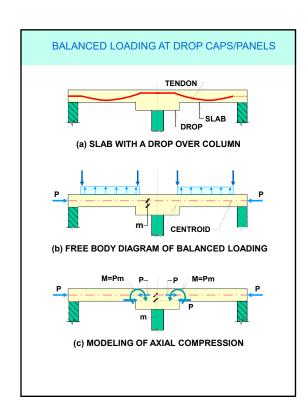

Aalami, B. O. "Structural Modeling of Post-Tensioned Members," Journal of Structural Engineering, ASCE, Vol. 126, Nov. Feb 2000, pp. 157-162







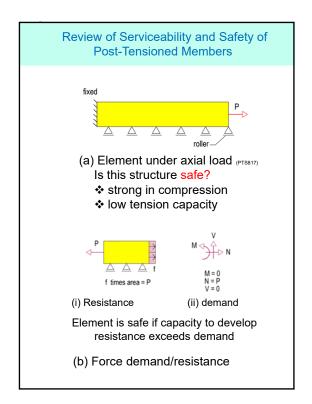


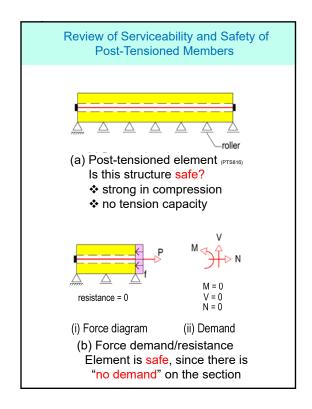


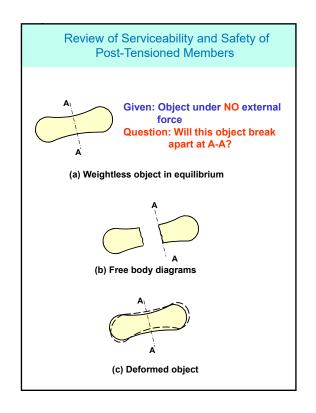
Based on: Constant force Decoupling of axial and bending effects Added feature Recognition and allowance for change in centroidal axis of member

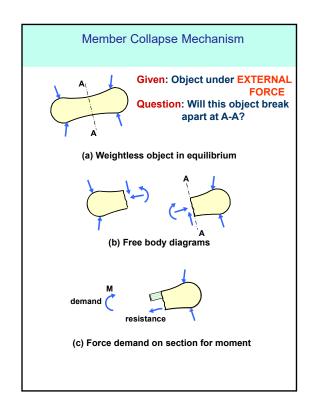
LOAD BALANCING Summary Tendon is replaced by the force it exerts to its container It necessitates the computation of hyperstatic actions and inclusion in design as a separate quantity

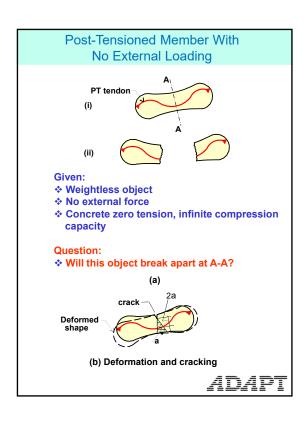
MODELING OF POST-TENSIONING

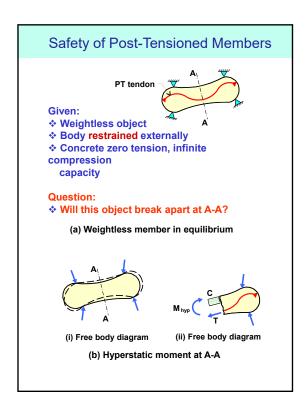

POST-TENSIONING AND STRENGTH CHECK

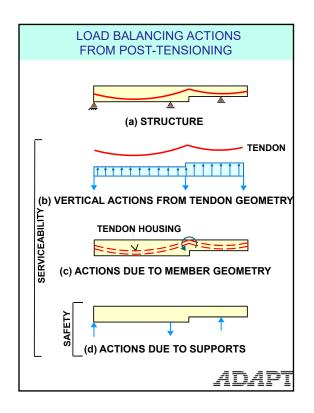

- If load balancing is used to model post-tensioning, hyperstatic actions from post-tensioning should be added to effects of other externally applied loads
- Load combination for safety

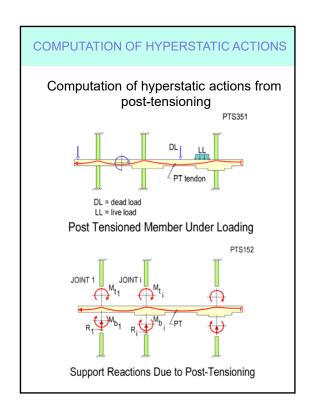

$$U = k_1 DL + k_2 LL + k_3 HYP$$

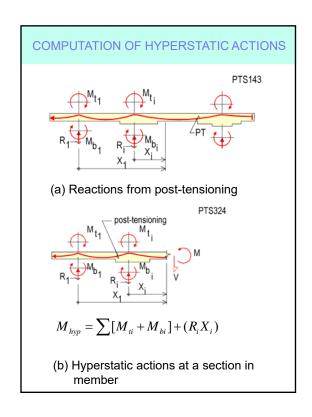

Question

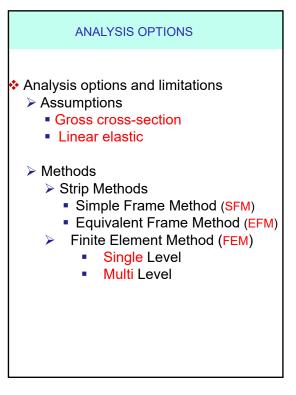

Why hyperstatic actions should be calculated and added to the load combination for safety check?

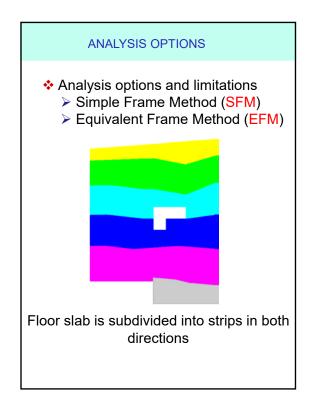


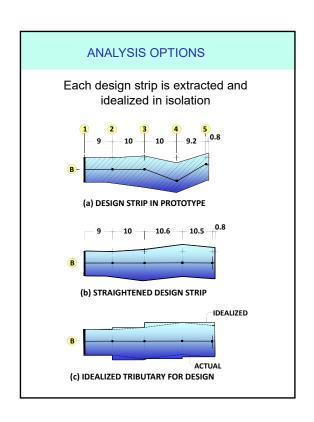


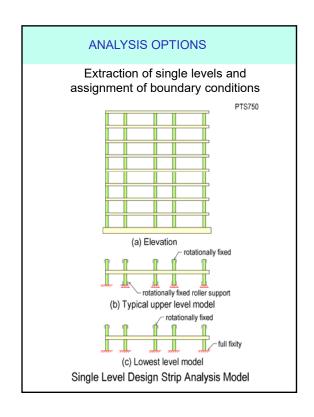


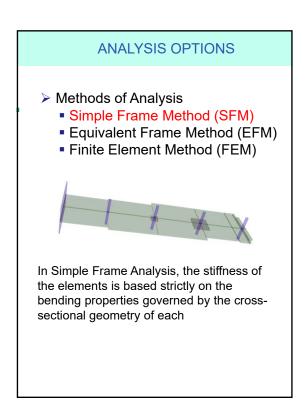


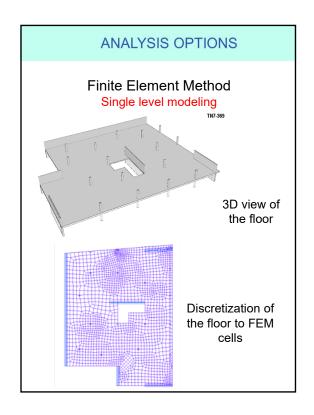


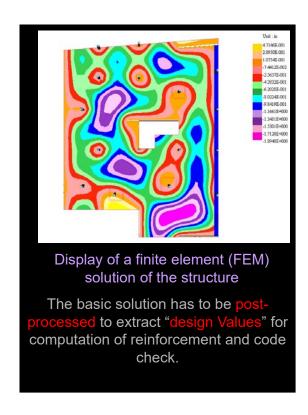

SUMMARY SUMMARY For SERVICE (SLS) conditions use the post-tensioning (balanced) values Deflection Stresses Cracking For SAFETY (ULS) conditions use the hyperstatic (secondary) values Ultimate strength

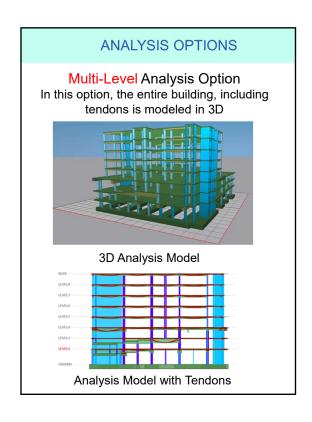


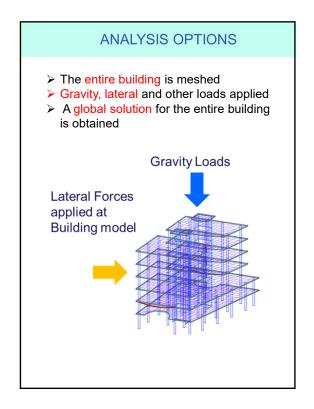


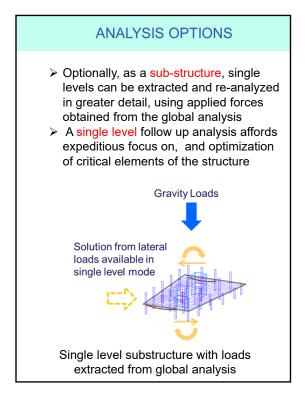


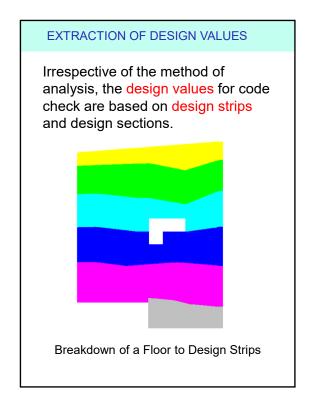


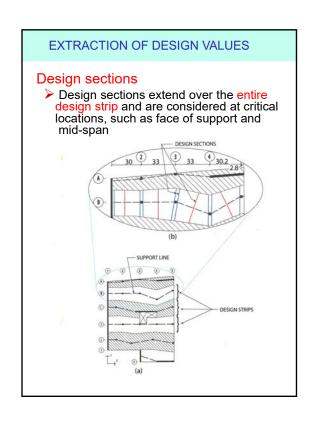


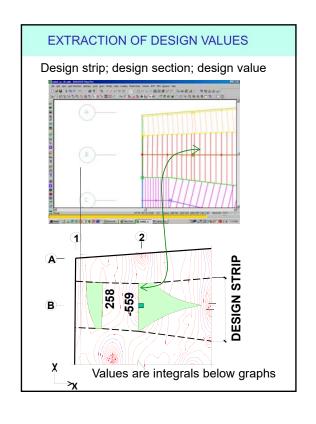












Session 2

Wednesday 30 May

Building Code Requirements for Design of Post-Tensioned Members

Bijan Aalami

Building Codes for Design of Post-Tensioned Buildings

Dr Bijan O Aalami

Professor Emeritus, San Francisco State University Principal, ADAPT Corporation

www.adaptsoft.com

bijan@PT-Structures.com

Copyright Bijan 2017

Building Codes and Post-Tensioning

1 - Current codes

USA

- > ACI 318-14; for general design requirements
- > ASCE 7-16; for loads and analysis options
- ➤ IBC 2015; International Building Code (umbrella code)

European

- > EC2 EN 1992-1-1:2004; for general design
- **EC:** EN 1881-1.1, 2,3,4 for loads
- ➤ EC8 EN 1998-1-3 for design for seismic forces

In both cases, there are also specified requirements for post-tensioning systems and material

Building Codes and Post-Tensioning

Contents of presentation

- 1. Currently applicable building codes
- 2. Code objectives
- Code approach to design; philosophy/methodology
- 4. Common US and European code provisions
- 5. ACI-318 specific provisions
- 6. EC2 specific provisions
- 7. Notable differences between ACI and EC2 code provisions
- 8. Essential aspects of PT design not covered by either of the codes
- Engineering design aspects of posttensioning
- 10. Comparison of designs based on ACI and EC2
- 11.ACI-318 design steps
- 12.EC2 design steps
- 13.Summary

Building Codes and Post-Tensioning

2 - Code Objective

As perceived by design engineers

➤ ACI 318

- Safety of the public, supported by practical evidence
- Economic considerations with lesser priority

► EC2

Safety with due considerations to engineering principles

3 – Code approach to design; philosophy and methodology

➤ACI 318

- Practical demonstration of safe design overrides engineering calculations
- Generally follows three tier approach
 - Simple and expeditious; mostly not the economical alternative Example: service deflection Select recommended span/depth ratio – no calculation required
 - 2 Medium: Allow for loss in secondary moment resulting from cracking of concrete
 - 3 Rigorous: Detailed analysis for cracked sections and improved economy

Building Codes and Post-Tensioning

3 – Code approach to design; philosophy and methodology

≻EC2

- Prescriptive approach for practically all instances, based on principles of mechanics of solids
- Mostly one prescriptive approach for each design scenario

Building Codes and Post-Tensioning

3 – Code approach to design; philosophy and methodology

ACI 318

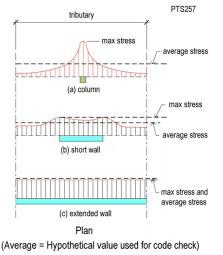
- Performance-based design; non-prescriptive approach
 - Engineer selected methodology, supported by computation or tests to:
 - (i) meet the ultimate serviceability and safety requirements of the code; and
 - (ii) obtain the approval of the building official having jurisdiction over the project

Building Codes and Post-Tensioning

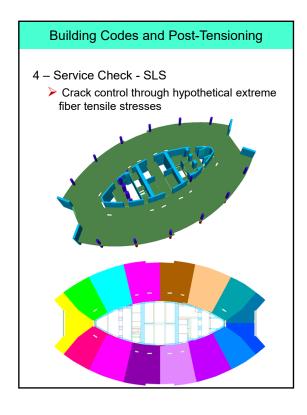
- 4 Common code provisions and practice of ACI 318 and EC2
- Design requirements
 - Serviceability Limit State (SLS)
 - ➤ Sustained (quasi permanent)
 - ➤ Total (Frequent)
 - Safety; Ultimate Limit State (ULS)
 - Initial condition (transfer of prestressing)

- 4 Common code provisions and practice of ACI 318 and EC2
- Load path
 - ➤ Strip method primary focus of both code provisions
- Analysis
 - The primary option is elastic solutions based on
 - Stiffness based on gross crosssection
 - Linear elastic material property
 - ➤ Yield line analysis
 - > Experimental evidence

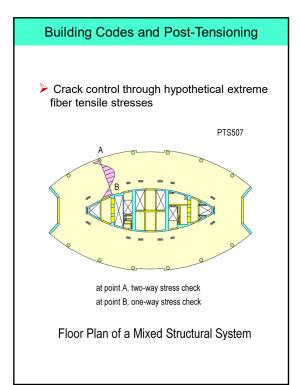
Building Codes and Post-Tensioning


- 4 Common code provisions and practice of ACI 318 and EC2
- Crack control
 - > ACI 318; cracks are greatly limited; controlled through low allowable hypothetical tensile stresses
 - EC2; explicit selection of crack width for design and crack width calculation

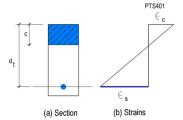
Building Codes and Post-Tensioning


- 4 Common code provisions and practice of ACI 318 and EC2
- Computation of design values for code compliance
 - ➤ Design section values, such as moments based on smeared distributions (total
 - Stresses based on hypothetical values
 - For EC2, the approach is outlined in appendix I

Building Codes and Post-Tensioning

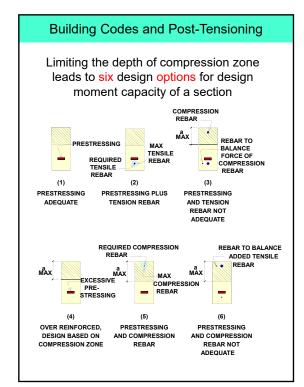

- 4 Service Check SLS
 - Crack control through hypothetical extreme fiber tensile stresses

Distribution of Maximum Bending


- 4 Common code provisions and practice of ACI 318 and EC2
- Deflection control for
 - ➤ Visual/sense of comfort
 - Cause damage to non-structural brittle elements
- Minimum Strength
 - ➢ Bending
 - ➤ Punching shear

Building Codes and Post-Tensioning

- 4 Common code provisions and practice of ACI 318 and EC2
- Section strength
 - Recognition of uncertainty in material properties
 - ACI strength reduction factor phi
 - Bending 0.9
 - Punching shear 0.75
 - Axial compression 0.7
 - EC material properties
 - Concrete 0.65
 - Non-prestressed steel 0.85
 - Prestressing steel 0.85


- 4 Common code provisions and practice of ACI 318 and EC2
- Section strength
 - Provision for ductility
 Ductility check through limitation on depth of compression zone

Depth of compression zone c is limited to 0.35 to 0.5 dt to ensure section failure through yielding of tension reinforcement

Building Codes and Post-Tensioning

- 4 Common code provisions and practice of ACI 318 and EC2
- Safety against cracking moment
 - ACI Design capacity should exceed the cracking moment of the section by a code specified safety factor
 - >ACI 318 1.20
 - ►EC2 1.15
 - The computation is controversial
 - The application is different
- Initial condition; transfer of prestressing
 - ➤ Both codes require control of tensile and compressive stresses at stressing
 - ACI 318 values ??
 - EC2 values ??
- Both require anti-bursting reinforcement at anchorage. In practice the hardware supplier provides the details

Building Codes and Post-Tensioning

5 - ACI-318 specific provisions

- Minimum precompression
 - ➤ Applies to two-way systems
 - ➤ 125 psi (0.86 MPa)
 - Method of computation is based on tendon tributary
 - None is specified for one-way systems
- Minimum rebar based on stress values
 - If hypothetical tensile stresses in span exceeds span $f_t \le 0.16 \sqrt{f_c'}$ SI ($f_t \le 2 \sqrt{f_c'}$ US)
- Tendon layout
 - ➤ Maximum spacing between tendons
 - ➤ Banded/banded not permitted

5 - ACI-318 specific provisions

- * Transfer of column moment
- Limited redistribution of moment to account for post-elastic reserve of strength
- Arrangement of tendon and rebar, including integrity steel (detailing)
 - Specific statement that column strip/middle strip does not apply
 - All top rebar on and around the column
 - Minimum of 4 bars within 4 ft of column top
 - ➤ Integrity steel
 - Specific statement on bar length

Building Codes and Post-Tensioning

6 - EC2-Specific Provisions

- Minimum reinforcement based on crosssectional area
- Maximum reinforcement based on crosssectional area
- Design crack width
 - Suggested values for bonded and unbonded members
- Rebar for crack width control

Building Codes and Post-Tensioning REBAR STRIP DROP 1.5d 1.5d COLUMN (a) SLAB WITH DROP (b) FLAT PLATE REBAR STRIP FRAME DIRECTION (c) VIEW OF A SLAB JOINT

Building Codes and Post-Tensioning

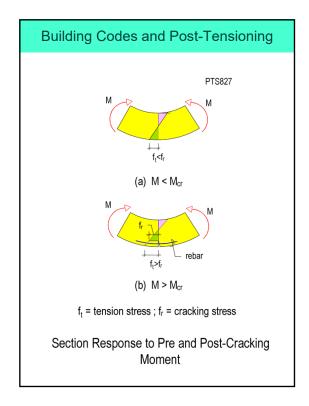
7 – Notable differences between ACI and EC2

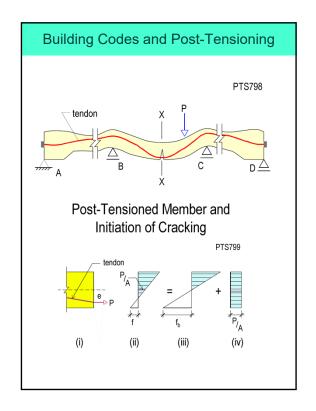
- Contribution of tendon to section strength
 - ➤ Unbonded tendons
 - ACI 318 allows gain in stress up to 60 ksi (413 MPa) over service
 - EC2 allows 100 MPa (14.5 ksi)
 - ➤ Grouted tendons
 - ACI 318 allows 413 MPa (60 ksi) over
 - EC2 allows full value, which can be as much as 700 MPa (100 ksi)
- Punching shear
 - ➤ ACI 318 focus is on control of fictitious stresses make up of shear and bending stresses
 - EC2' s focus if on area top rebar

7 - Notable differences between ACI and EC2

- Application of minimum flexural stress over cracking moment
 - ➤ Both codes have the requirement, but the specified application differs

Building Codes and Post-Tensioning


ACI 318-14


"8.6.2.2.2 – For slabs with bonded prestressed reinforcement, total quantity of A_s and A_{ps} shall be adequate to develop a factored load at least 1.2 times the cracking load calculated on the basis of f_r defined in 19.2.3."

EN 1992-1-1:2004, Section 9.2.1-1(4)

"For members prestressed with permanently unbonded tendons or with external prestressing cables, it should be verified that the ultimate bending capacity is larger than the flexural cracking moment. A capacity 1.15 times the cracking moment is sufficient."

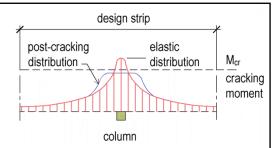
(Canadian code A23.3 18.4)

Cracking Moment

Nominal capacity => cracking moment using PTI's formula and literature

$$M_{cr} = \left(f_t + \frac{P}{A}\right)S + M_{pt}$$

 M_{cr} = cracking moment;


S = section modulus;

 f_t = cracking stress; and

A = cross-sectional area

 M_{pt} = moment from post-tensioning (includes hyperstatic moments)

(Canadian code A23.3 18.4)

Tributary (Design Strip) of a Column Support in Two-Way Slab Construction

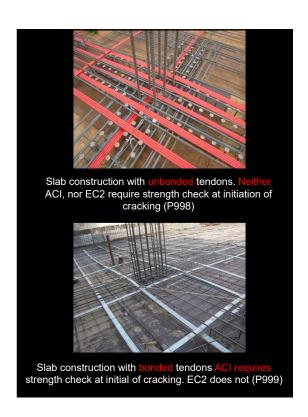
Distribution of moment at the face of column before and after cracking. Loss of capacity due to the cracking spreads the cracking and mobilizes the slab's strength beyond the column (PTSTG1)

The European code EC2 also requires evaluation of the cracking moment, but only for beams reinforced with unbonded tendons. Per EC2 a safety factor of 1.15 is required. EC2 EN 1992-1-1:2004, Section 9.2.1.4

Building Codes and Post-Tensioning

Cracking Moment

Nominal capacity => cracking moment


$$M_{cr} = \left(f_t + \frac{P}{A}\right)S$$

 M_{cr} = cracking moment;

S = section modulus;

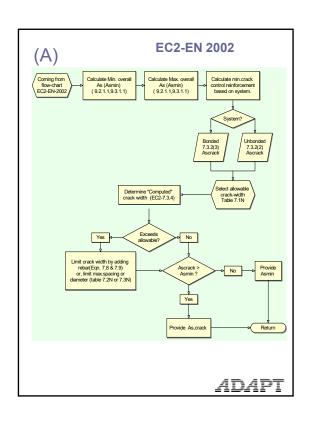
 f_t = cracking stress; and

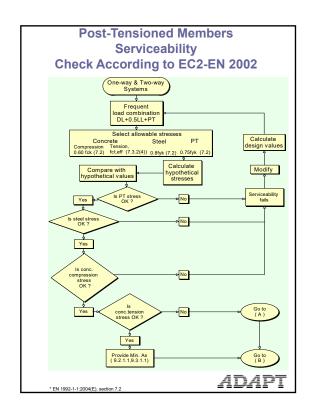
A = cross-sectional area.

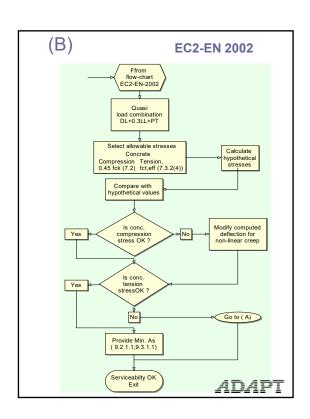
- 8 Essential post-tensioning design Aspects not covered in either of the two codes
- Analysis
 - Tendon modeling for structural design
 - Tendon considered as an applied force
 - There are several alternatives. Most popular is load balancing; give reference
 - Tendon considered as a resisting reinforcement
- Layout
 - ➤ Tendon profile
 - ADAPT has a library that includes reverse parabola; straight and more
 - Other profiles, such as profile assumed under gravity can work but are not yet implemented

Building Codes and Post-Tensioning

- 8 Essential post-tensioning design Aspects not covered in either of the two codes
- ❖ Detailing: support restraint
 - Contribution of precompression from posttensioning is essential in moment capacity of post-tensioned sections
 - Support restraints at the first and possibly second levels of post-tensioned buildings can compromise the contribution of prestressing and need to be recognized in design.


Building Codes and Post-Tensioning


- 8 Essential post-tensioning design Aspects not covered in either of the two codes
- Vibration
 - Application of improved and higher strength concrete property properties; advances in computational technology has resulted in longer spans and inspirational irregular layouts have resulted in the floor vibration from footfall becoming a part of many designs
- Detailing: support restraint
 - Contribution of precompression from posttensioning is essential in moment capacity of post-tensioned sections
 - Support restraints at the first and possibly second levels of post-tensioned buildings can compromise the contribution of


Building Codes and Post-Tensioning

- 9 Comparison of designs based on ACI and EC2
- Both codes result in serviceable and safe designs
- In general a floor slab can be designed with less prestressing using EC2.
- The economic evaluation depends on the unit price of prestressing and non-prestressing steel in place – labor component..
- EC2 is more economical, where prestressing is more expensive.
- In the US, depending of the location and construction the cost of installed unit rebar and PT can be the same. Since PT can provide 3 to 4 times more strength than rebar, in practice it is almost always economical to use PT.

Building Codes and Post-Tensioning 10 - General design steps ▶ Detailed in 10-step design presentation 11 - ACI-318 design steps Outlined in 10-steps 12 - EC2 design steps Outlined in detailed flow chart provided.



Summary

- 1. Currently applicable building codes
- 2. Code objectives
- 3. Code approach to design; philosophy/methodology
- 4. Common US and European code provisions
- 5. ACI-318 specific provisions
- 6. EC2 specific provisions
- 7. Notable differences between ACI and EC2 code provisions
- 8. Essential aspects of PT design not covered by either of the codes
- 9. Engineering design aspects of posttensioning
- 10.Comparison of designs based on ACI and EC2
- 11.ACI-318 design steps
- 12.EC2 design steps

Session 3

Wednesday 30 May

10-Step Design of Post-Tensioned Floor Systems, followed by Long-Hand Calculation

Bijan Aalami

(refer to chapter 7 of the book Post-Tensioned Buildings; Design and Construction)

Session 4

Wednesday 30 May

Expeditious Design of Post-Tensioned Floors and Beams using 2D Strip Method

Florian Aalami

Expeditious Design of Post-Tensioned Floors and Beams Using Strip Method Simple Frame and Equivalent Frame Approaches

- Featuring -

ADAPT-PT®

ADAPT Corporation | Redwood City, CA, USA ADAPT Latin America | Miami, FL, USA ADAPT International Pvt. Ltd. | Kolkata, India

> Dr. Florian Aalami www.adaptsoft.com May 2018

C concretenz

© Copyright 2018 ADAPT Corporation all rights reserved

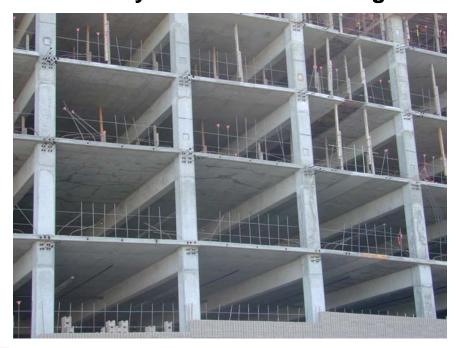
1

Agenda

Post-Tensioned Slab Design using Equivalent Frame Method

- Applicable Project Types
- Review of Design Process
- When to use 2D Strip Approach
- Design Example using ADAPT-PT

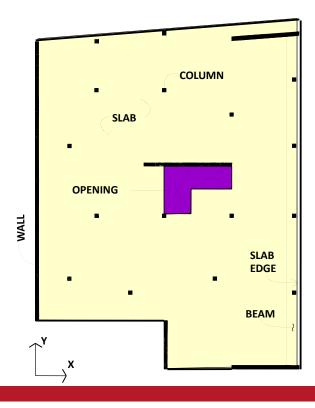
Column supported two-way flat slab systems



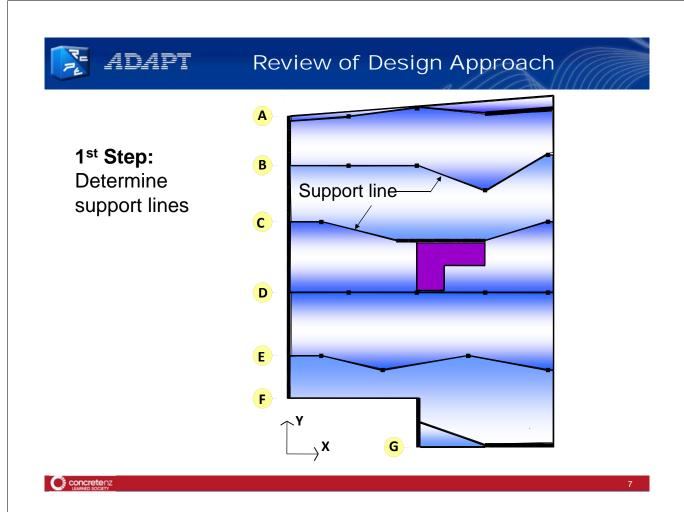
Maria Park ADAPT Complete Solution for Slabs & Beams

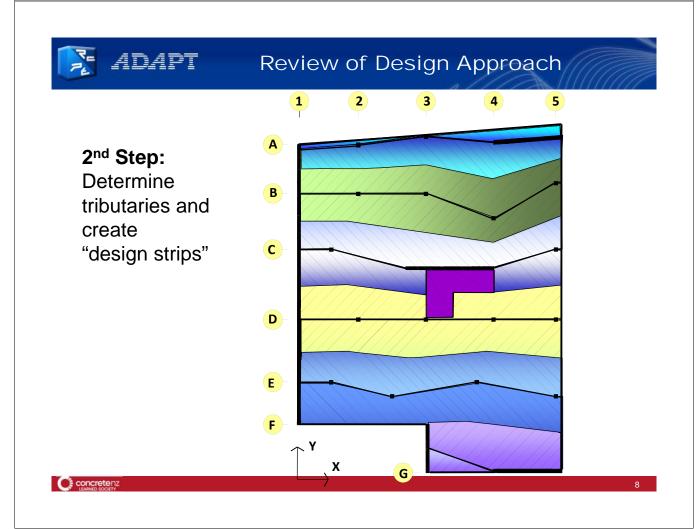
One-way beam and slab design

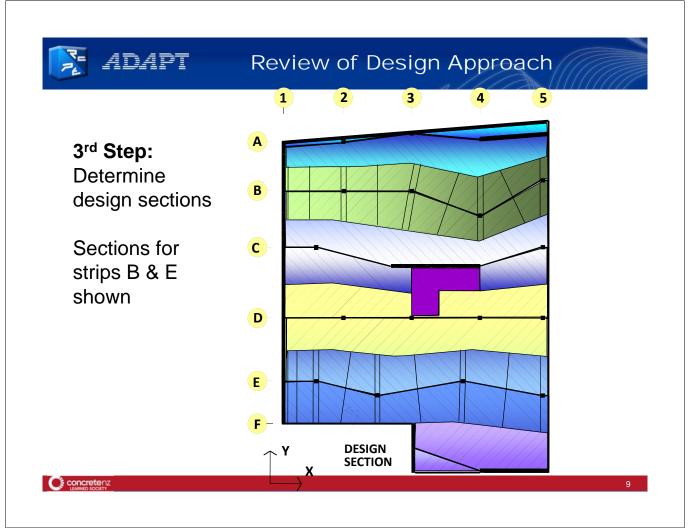
Beam frames and grids

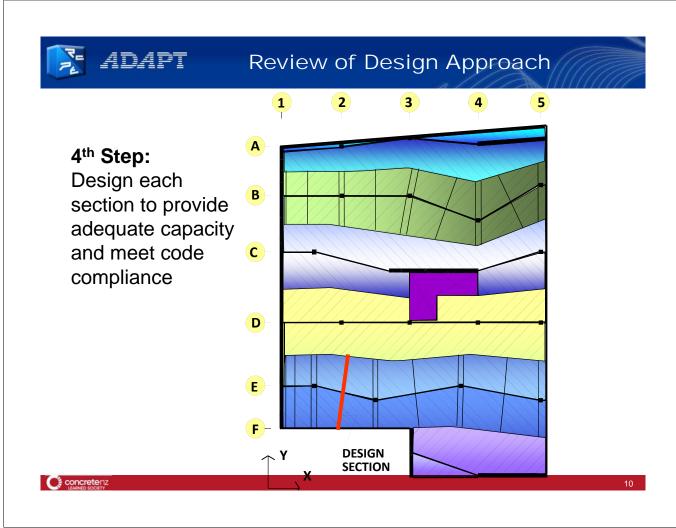


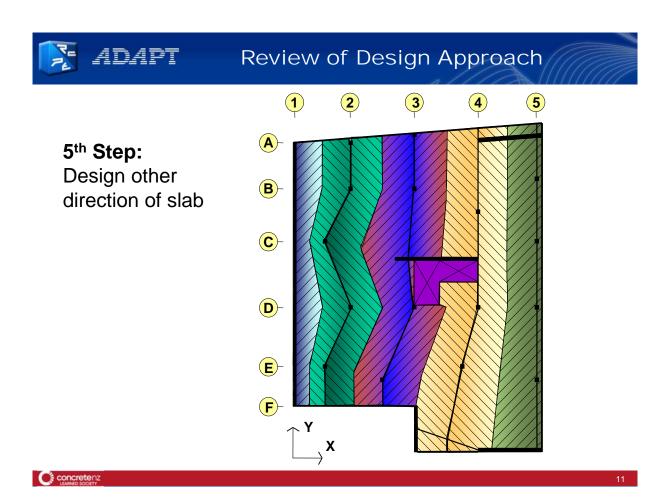
_

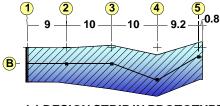



Review of Design Approach

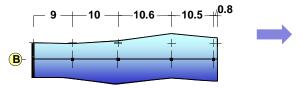

Typical layout of column supported floor system

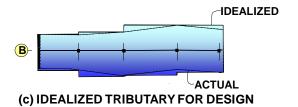


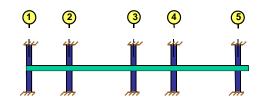

concretenz

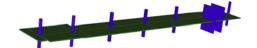


Key Advantages of 2D Strip Method


- Easy to learn and use
- Quickly produces preliminary designs
- Produces optimized PT designs for each strip
- Great learning tool if new to post-tensioning

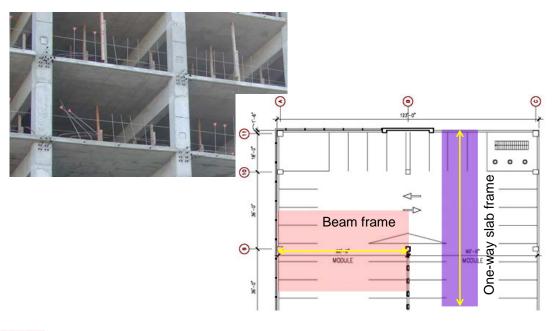

ADAPT Strip Method Approach to Design

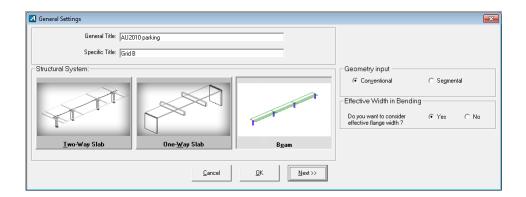

(a) DESIGN STRIP IN PROTOTYPE



(b) STRAIGHTENED DESIGN STRIP

If using ADAPT-PT, develop and model idealized design strips

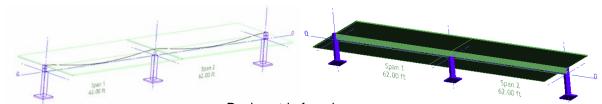



C concretenz

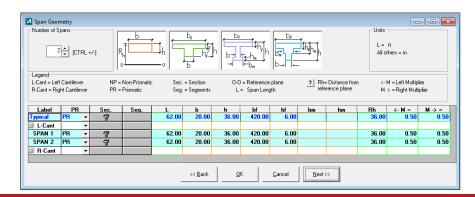
ADAPT Traditional Design of 1-Way Systems

The parking structure is broken down into typical beam and one-way slab frames. A beam frame can span several parking modules.

Start ADAPT-PT modeling process by selecting appropriate structural system.

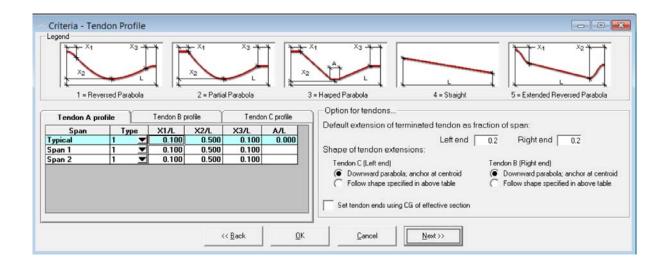


15



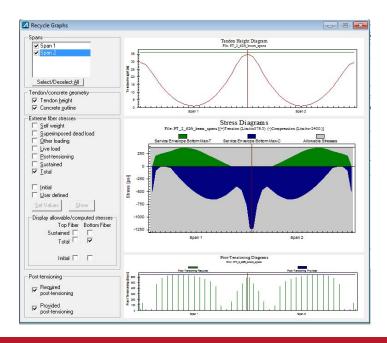
ADAPT Traditional Design of 1-Way Systems

Use geometry table to easily model your design frame.


Design strip for a beam spanning 2 parking modules

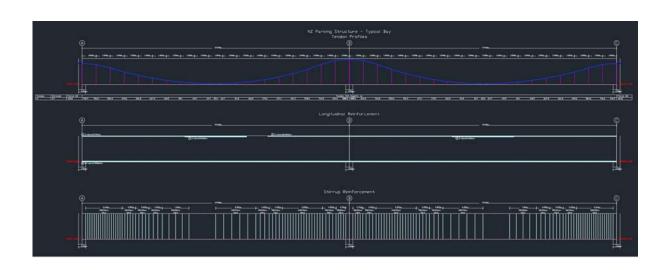
concretenz

16


Select appropriate tendon profile.

Each design strip is designed to meet strength and service requirements of the code.

Amount of post-tensioning and profile are determined as well as any additionally required flexural and shear reinforcement.


C concretenz

19

ADAPT Traditional Design of 1-Way Systems

Export layout of post-tensioning and any required additional reinforcement in DWG CAD format.

C concretenz

www.adaptsoft.com

21

Session 5

Thursday 31 May

Design for Shortening of Post-Tensioned Members

Bijan Aalami

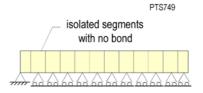
Shortening of Post-Tensioned Elements

Dr Bijan O Aalami

Professor Emeritus,

San Francisco State University

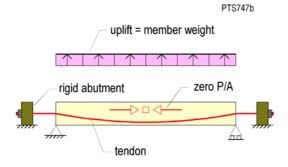
Principal, ADAPT Corporation; bijan@PT-structures.com



P856 www.PT-Structures.com

PT-Structures copyright 2015

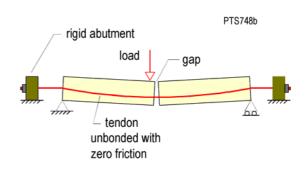
Shortening Post-Tensioned Elements


A question on safety of concrete elements

Concrete element with no Tensile Capacity

- Element is contiguous. The vertical lines are for visualization
- Will this element collapse, if the interior supports are removed?

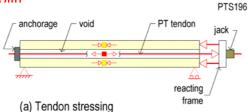
Shortening Post-Tensioned Elements

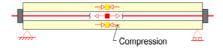


- Concrete has zero tension capacity
- Post-tensioning tendon is anchored at rigid abutments. No abutment movement.
- Tendon uplift is equal to element weight
- > Tendon is unbonded.
- There is no friction between tendon and its sheathing
- > Tendon profile is simple parabola

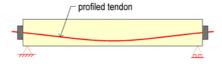
QUESTION?

- 1 Will this element deflect?
- 2 Will this element collapse, if load is added?


Shortening Post-Tensioned elements

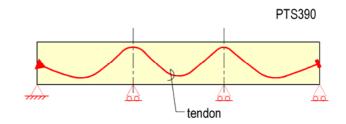


- Concrete has zero tension capacity
- Post-tensioning tendon is anchored at rigid abutments. Zero abutment movement.
- Tendon is unbonded.
- There is no friction between tendon and its sheathing
- Tendon profile is simple parabola
- Element will collapse under added load
- No compression, hence no resisting moment can develop in the element

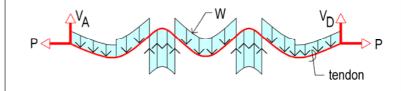

Shortening Post-Tensioned elements

- Post-tensioning is generally designed to provide:
 - Precompression
 - ➤ Unlift

(b) Tendon finishing


(c) Profiled post-tensioning

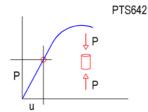
Basics of Post-tensioning Construction


Shortening Post-Tensioned elements

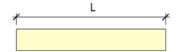
Uplift of tendon is function of

- Tendon geometry
- Tendon force

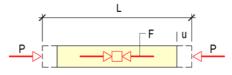
Three Span Post-Tensioned element



Free Body Diagram of Tendon (PTS391)

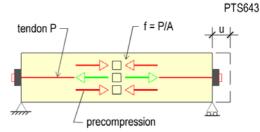

Shortening Post-Tensioned elements

Precompression is achieved through


Shortening of element under prestressing force

(a) Force-displacement relationship

(b) Member with no pre-compression

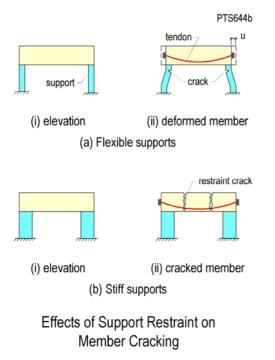


(c) Member with pre-compression

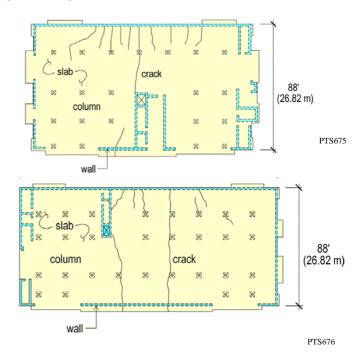
Pre-compression and Shortening

Shortening Post-Tensioned elements

- The primary obstacle to shortening is the restraint of element supports
- Excessive restraint can lead to loss of precompression and through cracks in element resulting from shrinkage

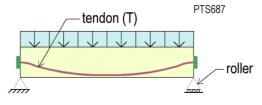

Element Free to Shorten

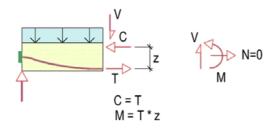
Element Restrained at Supports


Shortening Post-Tensioned elements

Depending on the stiffness of supports and the construction sequence, cracking can occur in the supports or the element

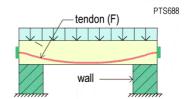
Shortening Post-Tensioned elements


- Examples of through cracks resulting from restraint of walls
- Through cracks eliminate the precompression across the crack

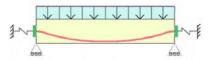

Shortening Post-Tensioned elements

Why precompression is central to the safety of post-tensioned elements?

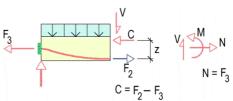
Review the design capacity of the following element



(a) No support restraint



(b) Free body diagram of a beam section


Shortening Post-Tensioned elements

(a) Member with restraining walls

(b) Simplified model of member with axial restraint

(c) Free body diagram of severed member

Contribution of tendon force to provide resistance is reduced by the force diverted to the supports

Shortening Post-Tensioned elements

What do we need to know?

- ❖ How much is the shortening?
- How to allow for shortening crack mitigation
- How to evaluate the impact of cracking, if any?

Shortening Post-Tensioned elements

The shortening of a post-tensioned element is due to:

- Shrinkage;
- Creep;
- Elastic Shortening; and
- Temperature change

There are different techniques to estimate the shortening. These are:

- □Quick, generally conservative and for preliminary estimates
- □ Design engineer's procedure for common residential and commercial building structures; and
- □Rigorous procedure for non-conventional and critical structures

Shortening Post-Tensioned elements

- For a quick and preliminary estimate of common building construction consider 10 mm for every 15 m of slab; 0.75 inch for every 100 ft of slab
- Design engineer's procedure is based on ACI 423, corroborated through observation of satisfactory application. It is outlined in the following with numerical examples

Reference:

SHORTENING ESTIMATE OF POST-TENSIONED ELEMENTS Bijan O. Aalami, 2014; www. PT-Structures.com TN458

Rigorous procedure is based on detailed material properties and geometry of the element as outlined in ACI; EC2 and implemented in ADAPT-ABI

Shortening Post-Tensioned elements

What do we need to know?

- How to allow for shortening?
- What are the crack mitigation options?
- How to evaluate the impact of cracking on serviceability and safety of the element?

Reference:

Crack Mitigation and Evaluation; Shortening of Post-Tensioned elements and Restraint of Supports Bijan O. Aalami, 2014; www. PT-Structures.com TN451

Crack Mitigation in Post-Tensioned Floors

Dr Bijan O Aalami
Professor Emeritus,
San Francisco State University
Principal, ADAPT Corporation; bijan@adaptsoft.com
www.adaptsoft.com

P1179

copyright 2016 PT-Structures.com

Crack Mitigation Schemes

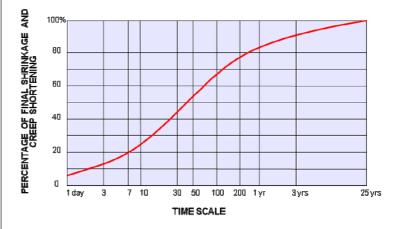
- This presentation covers the practical measures followed in North America to allow for shortening of post-tensioned slabs and avoid excessive cracking
- The objective of crack mitigation schemes is to allow shortening of a post-tensioned floor to an amount that would ensure the designintended contribution of posttensioning to the strength of the floor

Crack Mitigation Schemes

- Post-tensioned floors shorten
- Shortening is necessary for full contribution of post-tensioning
- For common residential and commercial floor slabs, the anticipated floor shortening is approximately 10 mm for every 15 m slab length; (0.75 in. for every 100 ft slab length)
- Where slab supports restrain shortening, shrinkage of concrete results in cracking.
 - Addition of rebar disperses cracks and reduces crack width, but does not compensate for loss in contribution from post-tensioning.

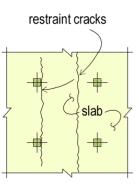
Crack Mitigation Schemes

Adverse effects of support restraints is pronounced in the following instances:

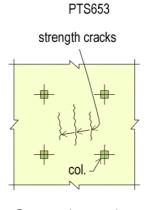

- Subterranean floors with restraining perimeter walls
- First level of elevated floors supported on stiff walls and columns
- ➤ To a lesser extend the second and possibly third elevated floors

Crack Mitigation Schemes

- Generally, upper floors of a building are not subject to support restraint to the extent that it would compromise the strength of the floor slab
- In most cases, crack mitigation for upper levels is not required and not practiced.


Crack Mitigation Schemes

- In detailing for crack mitigation, it is often necessary to also estimate the short-term shortening of a slab
- Short-term shortening can be estimated from the following graph



Characteristics of Restraint Cracks

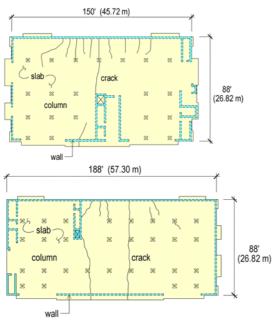
- Restraint cracks are long
- Do not necessarily occur at locations of maximum moment
- Occur where axial strength is least, such as where bars terminate
- Generally extend through the depth of slab (through cracks)

Restraint crack

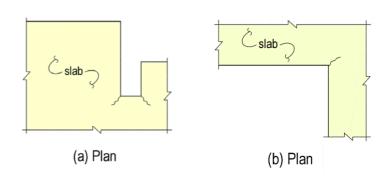
Strength crack

Characteristics of Restraint Cracks

- Restraint cracks are long, deep and few
- Plastic shrinkage cracks are shallow on surface, many and irregular



Shallow plastic shrinkage cracks


Long deep restrain cracks

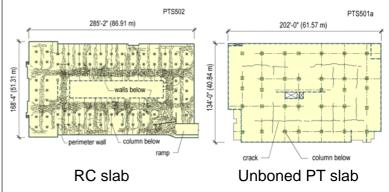
Characteristics of Restraint Cracks


- Restraint cracks generally extend through the depth of the member
- In the above first level post-tensioned floors on perimeter walls the restraint cracks have fully interrupted the precompression

Characteristics of Restraint Cracks

- Cracks at discontinuities are not necessarily related to the restraint of supports
- Cracks at discontinuities do not have the same adverse effect on safety of the floor as cracks from restraint of supports

Characteristics of Restraint Cracks


Trim bars at joint

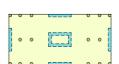
Crack formation at joint

- Example of discontinuity cracks at re-entrant corner of a post-tensioned ground-supported slab.
- Addition of rebar at discontinuity has been partially successful

Characteristics of Restraint Cracks

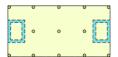
Crack formation resulting from lack of strength

- RC slabs develop numerous short and thin cracks
- Slabs with unbonded tendons develop single long and wide cracks


- 1 Favorable layout of restraining supports
- 2 Structural separation breaking up the floor slab
- 3 Delay (closure) strips; joints; favorable pour sequence
- 4 –Temporary release between the restraining supports and floor slab
- 5 Permanent released connections between the restraining supports floor slab

Crack Mitigation Options

1 - Favorable arrangement of walls allow the slab parts to move toward the point of zero movement



(a) Favorable arrangement of restraining walls

(b) Unfavorable arrangement of restraining walls

Crack Mitigation Options

2 - Structural separation

For floor slabs on stiff supports, such as subterranean and first elevated

- ❖Unless special provisions are made, limit the length of contiguous post-tensioned slabs to 375 ft (115 m). For slabs longer than 375 ft (115 m), provide a structural separation
- ❖For slabs longer than 250 ft (76 m), but not exceeding 375 ft (114 m), provide a central delay strip
- ❖For slabs shorter than 250 ft (76 m), design the slab for the anticipated shortening

Crack Mitigation Options

2 – Structural separation

Separation allowing horizontal movement only

Separation allowing movement in all directions

PT slab PT slab reinforced concrete slab at appendix opening PT slab PT slab reinforced concrete slab at appendix structural separation

Crack Mitigation Options

- 3 Delay strips; joints; pour sequence
- Delay strips are bands of about 3 ft (1 m) wide that subdivide a larger slab area into isolated segments.
- Segments on each side of the strip are cast and allowed to shorten, before the gap is closed
- Reinforcement does not continue from concrete on one side of the strip to the other
- Overlapping reinforcement from the sides to the delay strip provides the continuity

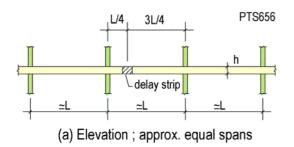
Crack Mitigation Options

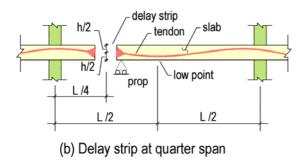
At lower levels between movement-unfavorable slab segments

3 – Delay strips; joints; pour sequence

Concrete cast on one side

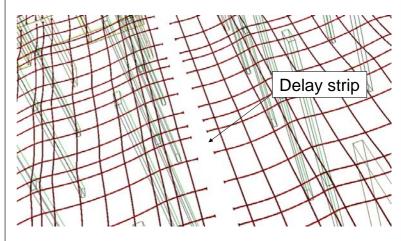
Concrete cast on both sides


Crack Mitigation Options


3 – Delay strips; joints; pour sequence

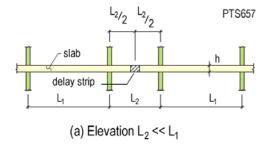
Delay strip in podium slab

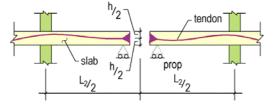
3 – Delay strips; joints; pour sequence



- Equal spans: position strip at ¼ point
- Anchor tendon at centroid

Crack Mitigation Options


3 – Delay strips; joints; pour sequence



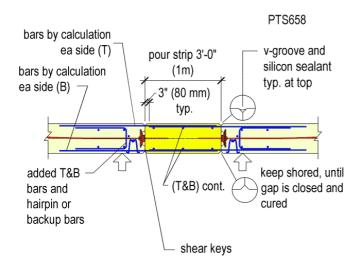
View of interrupted tendons at a delay strip of an analysis model

Crack Mitigation Options

3 – Delay strips; joints; pour sequence

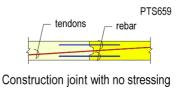
(b) Delay strip at mid span

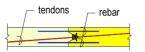
- Unequal spans: position strip at middepth
- Anchor tendon at centroid
- Prop both sides


Crack Mitigation Options

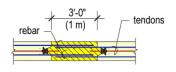
3 – Delay strips; joints; pour sequence

- Typically, delay strips are required for the first and possibly second and third elevated slabs
- It is not generally necessary to continue them to upper levels


3 – Delay strips; joints; pour sequence



- Typical detail example from construction drawings
- The v-grooves are intended to hide anticipated cracks


Crack Mitigation Options

3 – Delay strips; joints; pour sequence

Construction joint with intermediate stressing

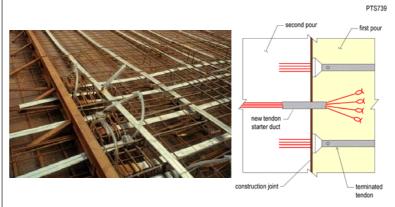
Closure strip

- Construction joints allow time for one side to shorten, before the second side is cast
- For long pours, tendons are stressed at the joint

Crack Mitigation Options

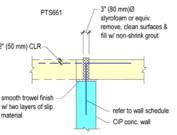
3 – Delay strips; joints; pour sequence

Without intermediate stressing


With intermediate stressing

With intermediate stressing; finished on one side

Crack Mitigation Options

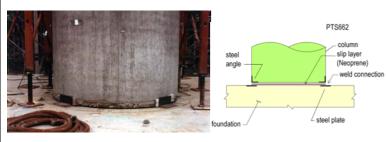

3 – Delay strips; joints; pour sequence

Construction joints of bonded tendons with intermediate stressing is done either using special couplers, or overlapping tendons

4 - Temporary release

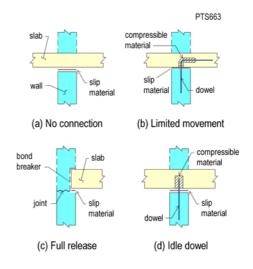
- A bond breaker is placed over the wall
- After slab has undergone the design-intended shortening, the fill in the corrugated tube is removed and the void is filled with strong epoxy

Crack Mitigation Options

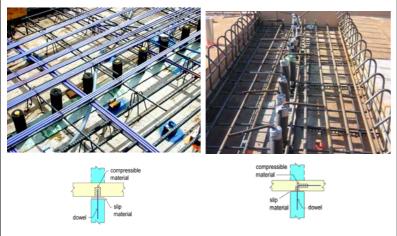

4 – Temporary release

- ❖ A bond breaker is placed over the wall
- After slab has undergone the design-intended shortening, the fill in the corrugated tube is removed and the void is filled with strong epoxy
- The dowels through the tube extend to the wall above

Crack Mitigation Options

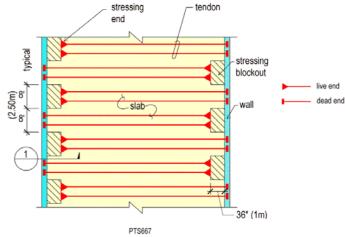

4 – Temporary release

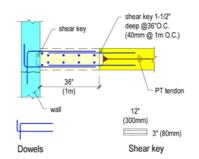
- The stubby column supporting a long-massive post-tensioned exhibition roof is initially supported on Neoprene pads to allow it slide over the foundation.
- Column is welded to the base, once the anticipated shortening of the post-tensioned roof has taken place


Crack Mitigation Options

5 - Permanent release

Permanent release is practical, where shear transfer between the slab and its support is not required

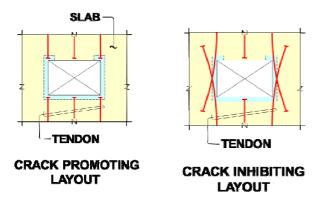

5 - Permanent release



- In both options above, the supporting wall is covered with a bond breaker
- On the left detail, the dowel from the wall terminates within the compressible cover.
- On the right, the dowel is bent into the slab and engages in extreme events

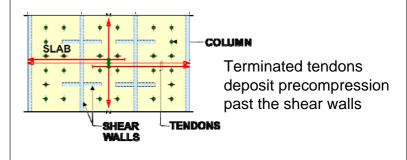
Crack Mitigation Options

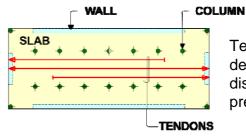
Other release options stressing tendon



Tendons are stressed alternatively from each side between constructed retaining walls

Crack Mitigation Options - Detailing

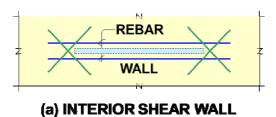

A . Favorable arrangement of tendons

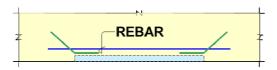


Arrangement of tendons around opening

Crack Mitigation Options - Detailing

A . Favorable arrangement of tendons





Terminated tendons deposit improve distribution of precompression

Crack Mitigation Options - Detailing

B . Addition of rebar

(b) EXTERIOR SHEAR WALL

- Small diameter rebar next to restraining elements disperses cracks and reduces crack width
- This does not compensate for loss from contribution of prestressing to strength of the slab

Crack Mitigation Post-Tensioned Floors

Summary

- Post-tensioned slabs shorten
- Slabs can crack, if shortening is restrained
- Cracks caused by restraint of support impair the design-intended function of post-tensioning
- Common schemes for crack mitigation of slabs are:
 - Favorable arrangement of restraining supports
 - Structural separation (first couple of levels)
 - Delay strips (first couple of levels)
 - Joints; with or without intermediate stressing
 - Releases: temporary; permanent
 - Favorable arrangement of tendons
 - Addition of rebar to disperse cracks

Crack Mitigation Design of Post-Tensioned Floors

Dr Bijan O Aalami

Professor Emeritus,
San Francisco State University

Principal, ADAPT Corporation; bijan@adaptsoft.com www.adaptsoft.com

PT-Structures.inc copyright 2016

Crack Control Design

- This presentation covers the practical measures followed in North America to mitigate the formation of unacceptable cracks in post-tensioned slabs, caused by restraint of supports
- The objective of the crack control design is to allow for shortening of post-tensioned member by an amount that would not lead to
 - Unacceptable cracks from visual and functional standpoint

Crack Control Design

- Post-tensioned floors shorten
- Shortening is necessary for full contribution of post-tensioning to the safety of floor slab
- For common residential and commercial floor slabs, the anticipated floor shortening is approximately 10 mm for every 15 m of slab length; (0.75 in. for every 100 ft slab length)
- Where slab supports restrain shortening, shrinkage cracks can form.
 - Addition of rebar disperses cracks and reduces crack width, but does not restore the full function of posttensioning

Crack Control Design

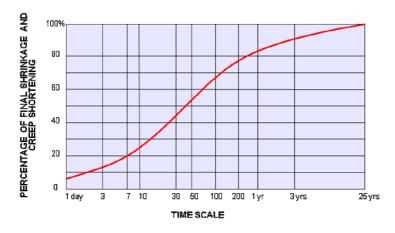
Adverse effects of support restraints are pronounced in the following instances:

- Subterranean floors with restraining perimeter walls
- First level of elevated floors supported on stiff walls and columns
- To a lesser extend the second and possibly third elevated floors

Crack Control Design

- Upper floors of a building are not generally subject to support restraint to the extent that it would compromise the safety of the floor slab
- In most cases, crack mitigation for upper levels is not required, and not practiced.

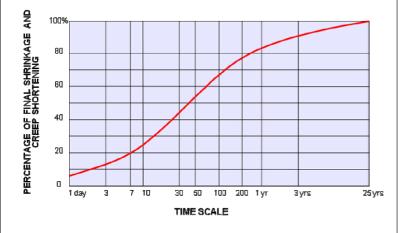
Upper levels of multi-story buildings do not generally require crack mitigation measures


Crack Control Design

Methods for calculating the shortening of floor slabs, with numerical examples are available in the literature

Crack Control design

- In designing for crack mitigation, it is necessary to estimate the short-term shortening of the post-tensioned member
- Short-term shortening can be estimated from the following graph


Aalami, B. O. and Barth, F. G. (1988) "Restraint Cracks and Their Mitigation in Unbonded Post-Tensioned Building Structures," Post-Tensioning Institute, Phoenix, AZ, 49 pp.

Crack Control Design

- The design procedure is entirely empirical
- The validity of the design procedure is based on the satisfactory performance of post-tensioned members that have been detailed accordingly
- The basic assumptions and the steps to follow are:
 - Estimate the total shortening of the member
 - Determine what fraction of the estimated shortening has to be accommodated through special detailing
 - 3. Provide detailing that allows the estimated shortening to take place

Crack Control design

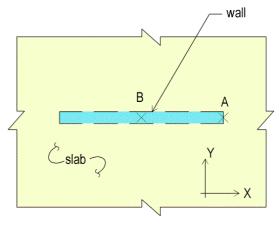
- For a first and approximate estimate, assume 10 mm for every 15 m of the member (0.75" for every 100 ft)
- For interim shortening, use the curve below

Design for Crack Control

steps for shortening design

- 1 Estimate the total shortening of the member
- 2 Based on the long-term nature of shortening, it is impractical to allow for the entire shortening to take place, before the member is locked to the rest of the structure
- 3 Determine what fraction of the shortening must be accommodated through special detailing for satisfactory performance of the member
- 4 Provide detailing that allows for the estimated shortening to take place

Design for Crack Control


- The underlying assumptions and steps are based on observation
- If the computed displacement of a point on a floor does not exceed 0.25-in. (6 mm), the floor is deemed to perform satisfactorily
- Provide detailing such that at no point on the floor, the computed, but not accounted for displacement does not exceed the above limit.

View of a closure strip

Design for Crack Control

- For the first elevated slab above grade and for subterranean slabs assume:
 - Points on slab adjacent to a wall such as A and B in the figure, cannot move in direction of the wall (X-direction), but are free to move normal to the wall (Ydirection). The wall is free to bend about its weak axis

Partial plan

Design for Crack Control

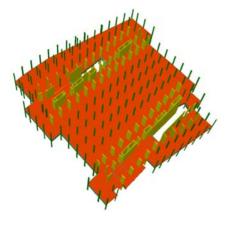
At upper levels walls provide less restraint to shortening. Slabs are considered to perform satisfactorily, if shortening restrained by wall does not exceed the table below:

Level	Single walls	Core/ compound walls	
		wans	
1 st level	0	0	
2 nd level	0.125 in. (3 mm)	0.06 in. (2 mm)	
3 rd level	0.25 in. (6 mm)	0.12 in. (3 mm)	
4 th level	No restraint	0.18 in. (5 mm)	
5 th level	No restraint	0.25 in. (6 mm)	
6 th level	No restraint	No restraint	

Example

For 3rd level above grade a slab attached to a core wall is assumed to work satisfactorily, if its design shortening restrained by the wall does not exceed 0.12-in. (3 mm)

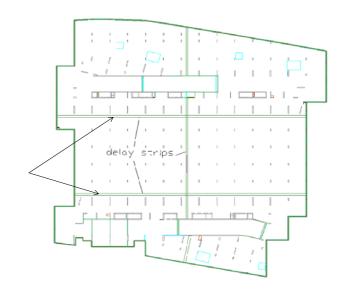
Design for Crack Control


Review the geometry of the first slab above grade, or subterranean slabs

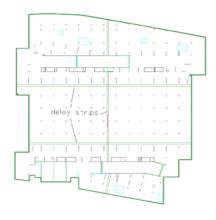
- ❖If longer than 375 ft (115 m), provide a structural separation, in the first and possibly second levels
- ❖ If longer than 250 ft (76 m), provide a delay strip in subterranean slabs, and one in the first and possibly the second levels above grade
- ❖For slabs shorter than 250 ft (76 m) design for crack mitigation
- ❖ If the geometry of the slab is irregular and complex, it may require to add separation or delay strips

Design for Crack Control

Design Example


- the graphic shows the first elevated slab of a two level parking structure with a towers on each side.
- Delay strips are provided to allow for shortening of the slab
- ❖ Based on the arrangement of the delay strips, the contractor needs to know the number of days that the strips must be left open, before they are cast

Design for Crack Control


Design Example

- ❖The distance between the two delay strips marked is 112 ft (34.13 m)
- When should the delay strip be cast?

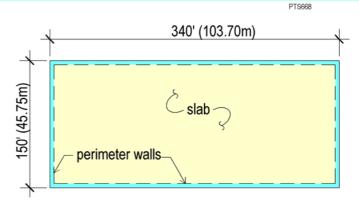
Design for Crack Control

- Using the 0.75-in./100 ft (10 mm/15 m) approximate value, the total shortening is estimated as: 0.75(112/100) = 0.84-in. (21.3 mm)
- ❖ Shortening at each end = 0.5x0.84 = 0.42-in. > 0.25-in.
 (11 mm > 6 mm)
- ❖ Shortening to take place before closing the gap is (0.42 0.25) = 0.17-in. (4 mm)
- ❖ Ratio of unrestrained to restrained shortening 0.17/0.42 = 0.41 41%
- The delay strip has to remain open until 41% of its estimated shortening is taken place

Design for Crack Control

- ➤ The percentage of shortening that needs to take place is 41%
- This requires 25 days delay before gap is closed
- ➤ From the long-term shortening graph, 41% of shortening takes place over approximately 25 days.
- > The gap has to remain open for 25 days

Crack Mitigation Design Example


Post-tensioned subterranean slab on perimeter walls

Example of a building with

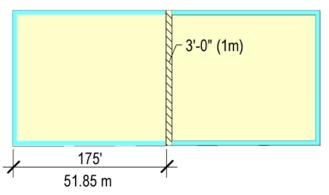
➤ post-tensioned underground parking floors
 ➤ An elevated post-tensioned podium slab roofing the street level retail; and
 ➤ Podium slab that supports four levels of residential light framing superstructure.

Crack Mitigation Design Example

Simplified Plan
Column layout and openings not shown

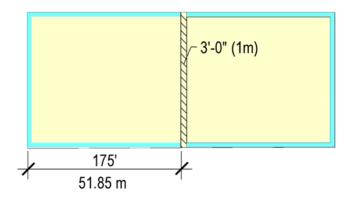
Construction requirements

- ❖Each long wall requires a minimum of 150 ft (45.75 m) of shear wall; full connection of slab to wall.
- ❖Each of the short walls a minimum of 100 ft (30.5 m) shear walls.
- ❖Closure strips, if any, should be closed not later than 20 days to avoid delay in construction


Consult Crack Mitigation Guidelines:

(reference PTI publication on crack mitigation)

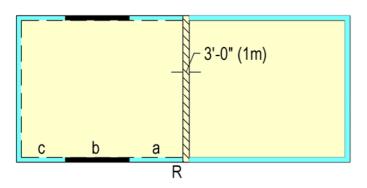
➤ Slab less than 375 ft (114 m), but longer than 250 ft (76 m) requires a delay stip.


➤ A delay strip at center reduces the length for shortening design to

$$340/2 = 170 \text{ ft } (51.85 \text{ m})$$

PTS669c

Crack Mitigation Design Example



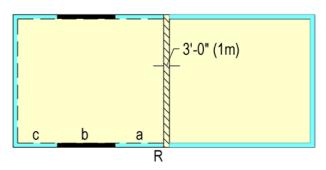
- ➤ In the absence of detailed computation, for preliminary designs, assume 0.75 in. of shortening for every 100 ft of slab length (10 mm shortening for every 15 m of slab length).
- Total shortening at each end of each slab segment =

$$170 \ 0.75/(100 \ 2) = 0.64 \ in. (16 \ mm)$$

> 0.25 in. (6 mm) NG

Crack Mitigation Design Example

Design of connections along the long wall



The length of the wall "b" is determined such that its long-term shortening at each end will be limited to 0.25-in. (6 mm)

$$b = [(2x0.25)/0.75] 100 = 67 \text{ ft } (20.44 \text{ m})$$

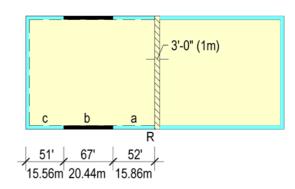
Crack Mitigation Design Example

Determine the position of long wall's initial connection

- ➤ Once the in 20 days the closure strip is cast, the point R is locked in position.
- ➤ Hence, at the time of casting the delay strip, the balance of long-term shortening of point R shall not exceed 0.25-in. (6 mm)
- ➤ Determine the distance "a" with the assumption that in 20 days all if it shortening minus 0.25-in (6 mm) is taken place.

PTS599d

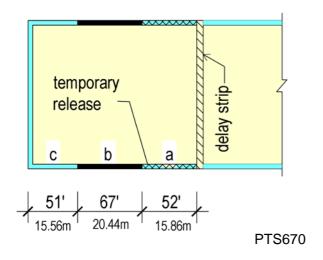
PTS599d


From the following graph on day 20 approx. 36% of the shortening takes place

Distance "a" is given by:

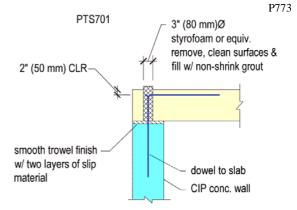
$$a = 100(0.39/0.75) = 52 \text{ ft } (15.85 \text{ m})$$

Crack Mitigation Design Example


Position of initial slab to wall connection

Next, the adequacy of full shear transfer between the slab and wall needs to be verified

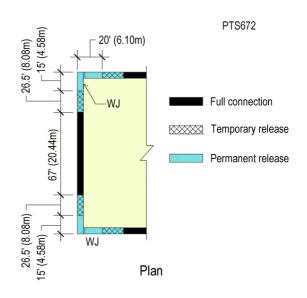

pts699


Crack Mitigation Design Example

- ➤ 150 ft (45.75 m) shear connection is required for each long wall
- ➤ The full connection (b=67 ft; 20.44 m) has to be increased to 75 ft (22.88 m) on each side of the delay strip
- > Select temporary release connection: The length for shear transfer will be:
- \triangleright 67 + 52 = 139 ft (36.30 mm) OK

Crack Mitigation Design Example

Examples of Temporary Release Connection


The remainder of the wall connections are worked out in a similar manner

PTS670

temporary release delay strip delay strip

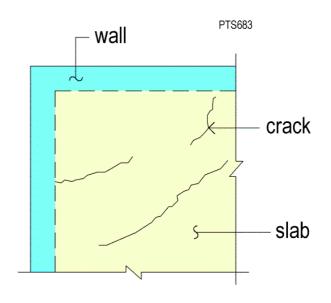
Crack Mitigation Design Example

For improved performance the slab/wall connections are finished as detailed in the following:

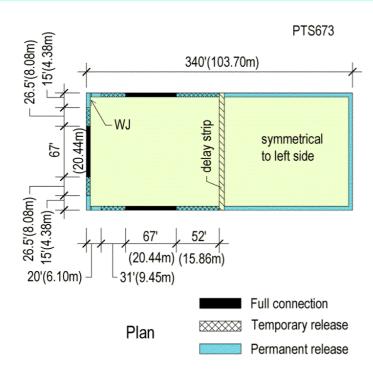
Wall joints and permanent releases are also implemented

Crack Mitigation Design Example

Details of a corner release example, using two layers of Masonite as bond breaker



P809



Crack Mitigation Design Example

Provision of corner release, wall joint, and added rebar help to mitigate they type of cracking shown below

P775

View of completed design showing the position of wall joints

Crack Mitigation Design Example

Slip joint viewed from below

Wall joint viewed from inside

Design for Crack Control

Summary

- ➤ Post-tensioned members must shorten under the precompression, in order to develop their design-intended response
- ➤ It is not always practical for the entire shortening to take place, before a member is locked to its supports
- From standpoint of safety and crack formation, experience has shown that post-tensioned members have performed satisfactorily, if unaccounted shortening of members under precompression is limited to a small value.
- Support release and other measures are generally implemented to limit the unaccounted shortening of a post-tensioned member to the admissible target

Design for Crack Control

Summary

- ➤ Delay (closure) strips is one option to allow unrestrained shortening
- ➤ Using a numerical example it was demonstrated how many days a delay strip needs to remain open for the computed shortening to take place.
- ➤ A subterranean slab supported on perimeter walls was used as an example to demonstrate the engineering design procedure for crack mitigation

P778

P779

Session 5

Thursday 31 May

Advanced Design of Post-Tensioned Floor Systems using 3D FEM Software (ADAPT-Builder)

Florian Aalami

3D Finite Element Modeling and Design of Multistory Post-Tensioned Floor Systems for Gravity and Lateral Loads

- Featuring -

ADAPT-Builder® Design Suite

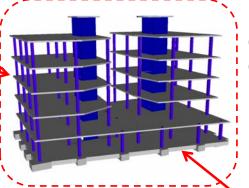
ADAPT Corporation | Redwood City, CA, USA ADAPT Latin America | Miami, FL, USA ADAPT International Pvt. Ltd. | Kolkata, India

> Dr. Florian Aalami www.adaptsoft.com May 2018

C concretenz

© Copyright 2018 ADAPT Corporation all rights reserved

.


ADAPT-Builder®3D FEM

Integrated Structural Concrete Design Suite

- Reinforced Concrete
- Post-Tensioned
- Fiber Reinforced

Hybrid

Complete Concrete Buildings

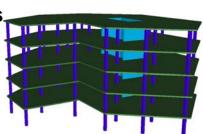
Industrial Slabs on Grade

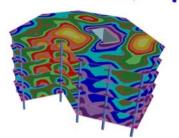
Foundation Systems

When To Use 3D FEM Solution?

Advanced 3D FEM Solutions are Best Used To:

- Design complex floor and foundation systems
- Optimize performance of complete slab system
 - Quantities (economics)
 - Vibration
 - Deflections (cracking)
 - Temperature fluctuations
- Efficiently produce high-volume projects (Model to CAD)
- Implement BIM design workflow
- Investigate existing structures




3

Multi-story Analysis is Needed to:

- Evaluate effects of PT on complete Structure
- Determine displacement btwn. levels.
- Design transfer slabs or beams
- Efficiently take down loads
- Integrate lateral and gravity loads
 - Wind
 - Earthquake
- Integrated column and wall design

ADAPT-Builder Suite

ADAPT-Builder is a 3D Finite Element Based Modeling, Analysis and Design Software Platform Specifically Created for Concrete Structures

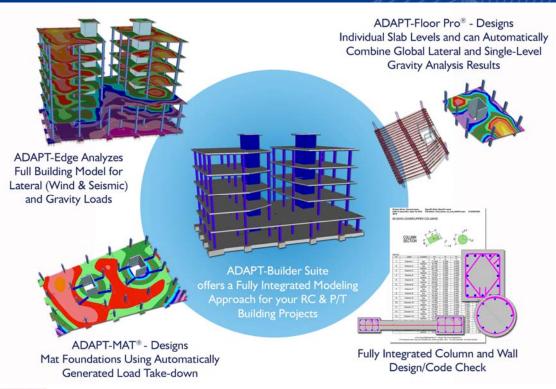
Specialized Modules of ADAPT-Builder Suite:

Edge: Multistory analysis of concrete buildings

Floor Pro: Design of concrete floor systems

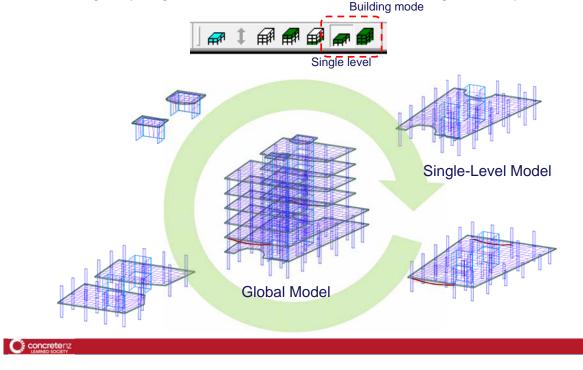
MAT: Design of foundations systems

SOG: Design of post-tensioned slabs on expansive soils


S-Concrete: Design of columns and walls

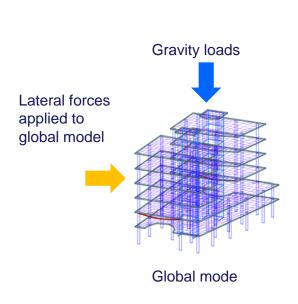
Tekla Structural Designer: Design of general buildings

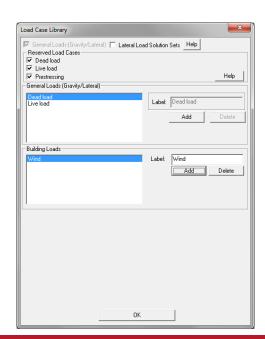
concretenz


-

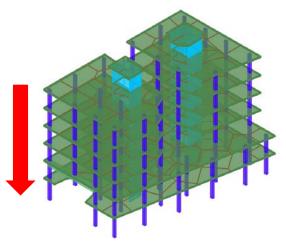
ADAPT Integrated Concrete Building Design

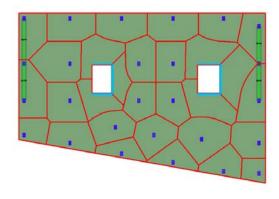
FADAPT One-Click Switch: Global & Slab/Mat


Switch between global and single-level modes with one click. Modify, analyze and design any single level with its own solution or that from global analysis.



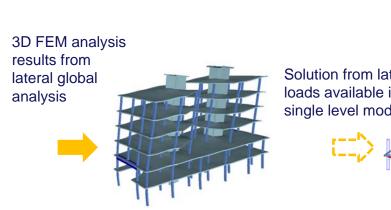
Global 3D FEM Analysis


Edge analyzes models using 3D FEM in their complete global configuration. Loads are either classified as general gravity loads or building lateral loads.

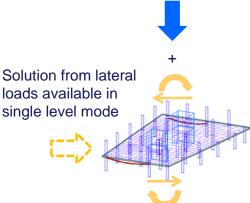


For quick load takedowns or alternative load path calculation, Edge uses geometry-based tributary regions to calculate gravity loads in vertical elements.

Tributary area breakdown of one level of model



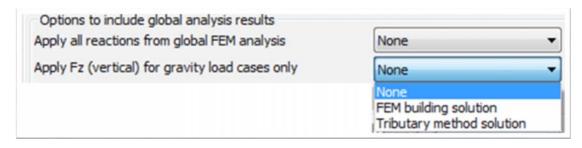
a

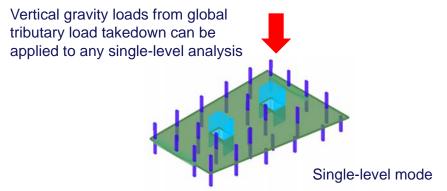

3 ADAPT

Integrated Lateral / Gravity Design

Efficiently design slabs for combined gravity and lateral forces by combining the internal reactions from global lateral analysis with the gravity analysis of individual floors.

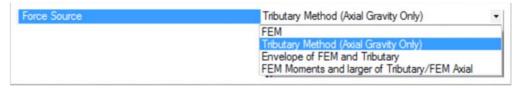
Global analysis results




Single-level mode can combine global lateral results + single-level gravity analysis

Gravity loads

Design transfer slabs or beams using the tributary-based loads.



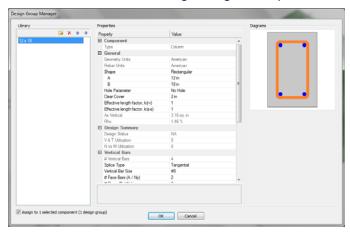
44

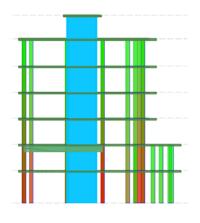
ZADAPT Integrated Column Design

Columns can be designed using an integrated approach with multiple loading options and automatic incorporation of post-tensioning effects.

Different sources for the design forces:

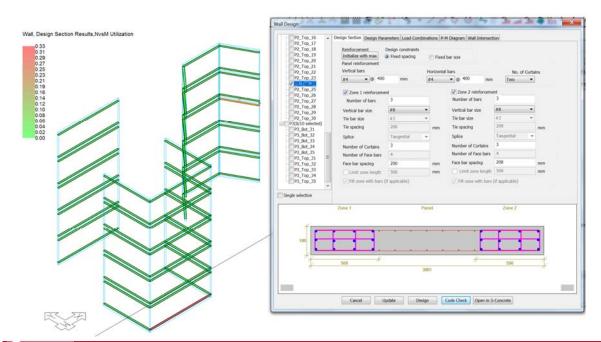
Global or local FEM analysis results:


Hyperstatic forces based on global or single-level analysis:



ADAPT-Builder runs S-CONCRETE in the background to carry out column design or detailed code check based on the user options selected.

Columns are defined using Design Groups

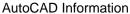

Utilization of columns color coded in model

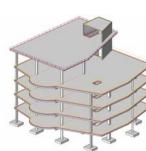
C concretenz

40

ADAPT Integrated Wall Design

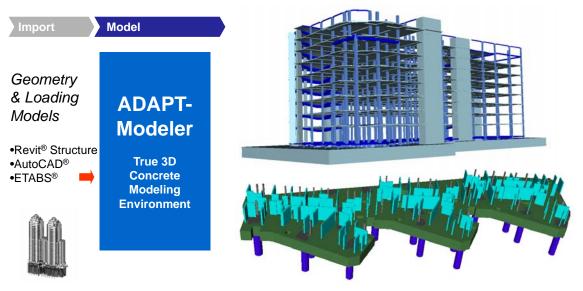
ADAPT-Builder checks and design concrete shear walls


Leverage existing project information


Import

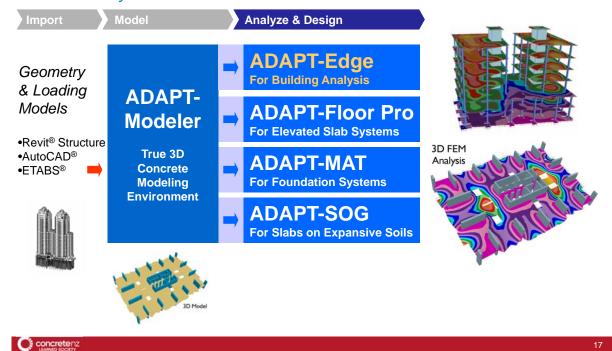
Import Geometry & Loading from Existing Models

- Revit® Structure
- AutoCAD®
- ETABS
- Tekla Structural Designer


Intelligent Revit Structure Models

15

ZADAPT Efficient Design of Slab Systems


Create true 3D slab model

True 3D Model of Slab System or Entire Structure in ADAPT

Carry out detailed analysis and design using one of 4 integrated 3D FEM analysis modules

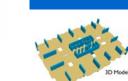
Analysis and Design Process

Similar to EFM method, design of floor / foundation systems is based on design strips, however, design values are extracted from detailed 3D

Efficient Design of Slab Systems

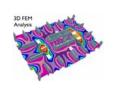
Use Advanced DRD™ module to optimize rebar design and prepare rebar layout ready for generation of structural drawings

Create Structural Drawings Analyze & Design ADAPT-Edge Geometry For Building Analysis Advanced DRDTM & Loading **ADAPT-**Rebar Module Models ADAPT-Floor Pro Modeler For Elevated Slab Systems •Revit® Structure True 3D •AutoCAD® ADAPT-MAT Concrete •ETABS® **For Foundation Systems Modeling Environment ADAPT-SOG** For Slabs on Expansive Soils concretenz


ADAPT Efficient Design of Slab Systems

Use the PT Shop Drawing module to automate the generation of post-tensioning shop drawings

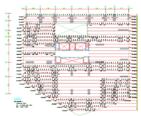
Analyze & Design **Create Structural Drawings** ADAPT-Edge Geometry For Building Analysis **Shop Drawing** & Loading **ADAPT-**Models ADAPT-Floor Pro Modeler Module For Elevated Slab Systems •Revit® Structure True 3D •AutoCAD® **ADAPT-MAT**


•ETABS®

Concrete

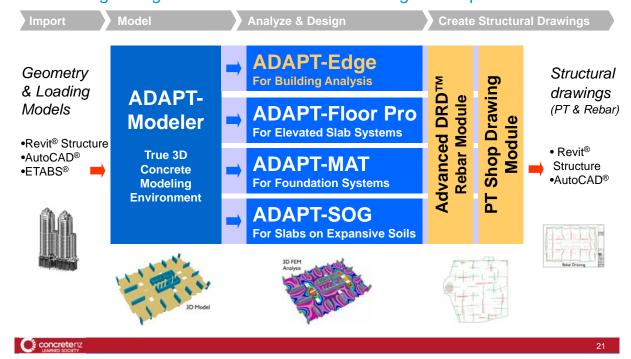
Modeling

Environment


For Slabs on Expansive Soils

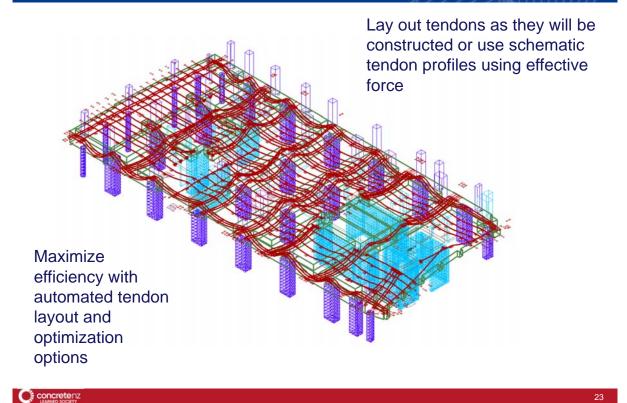
For Foundation Systems

ADAPT-SOG

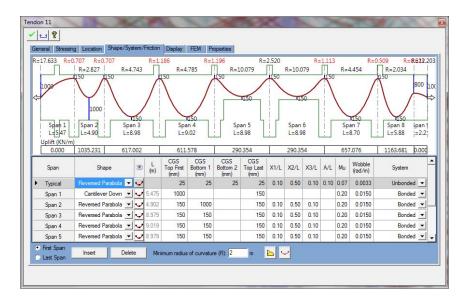

Ы

Efficient Design of Slab Systems

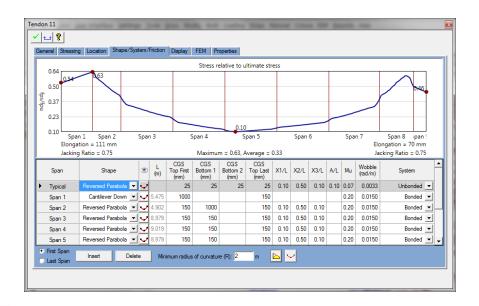
ADAPT-Builder supports an intuitive design process from basic structural modeling through to creation of structural drawings and reports


ADAPT-Builder Launch Screen

The launch screen gives user configuration options

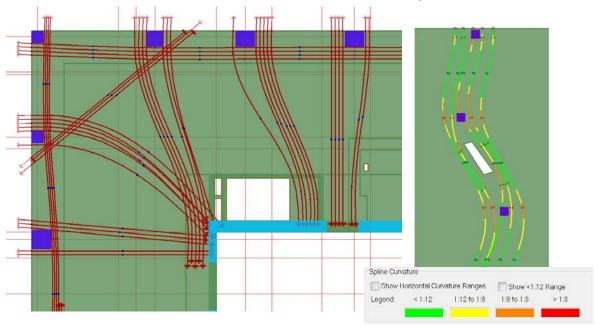

Advanced Tendon Modeling

Advanced Tendon Modeling


All tendon properties and profiles are viewable and editable, with clear relation to slab geometry

ADAPT Advanced Tendon Modeling

Force along tendon is clearly shown during modeling



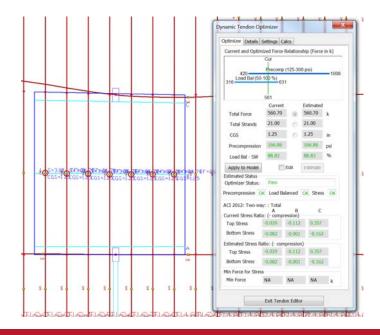
ADAPT

Advanced Tendon Modeling

Swerve tendons horizontally

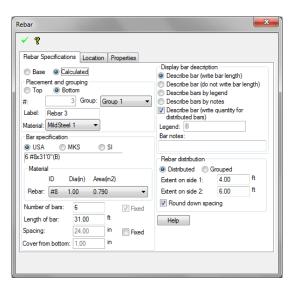
ADAPT Advanced Tendon Modeling

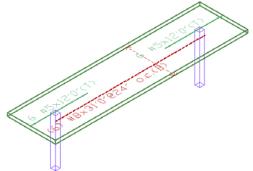
Swerve tendons horizontally


Plan View Elevation

ADAPT

Advanced Tendon Modeling

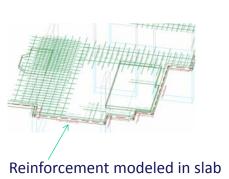

Tendon optimizer assists user in design of post-tensioning

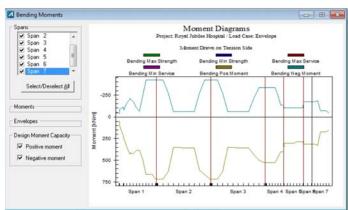


BIM-Based Rebar Modeling

All reinforcement bars in Floor Pro are intelligent, BIM-based objects that are fully editable by user

Designate reinforcement as automated (program calculated) or base (user defined) to save your design

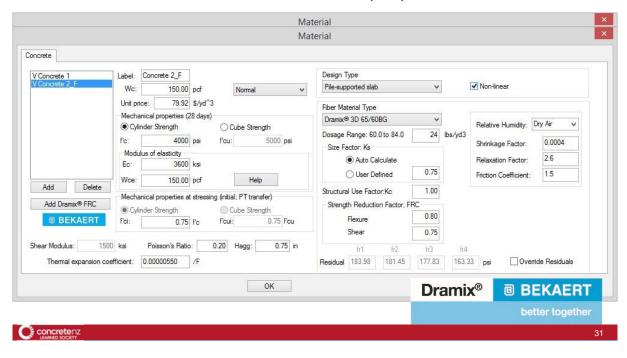



20

S ADAPT

Investigate Existing Structures

Model all as-built reinforcement and/or post-tensioning to determine capacity of floor system and use this information to develop strengthening or re-use designs



Moment capacity for a design strip

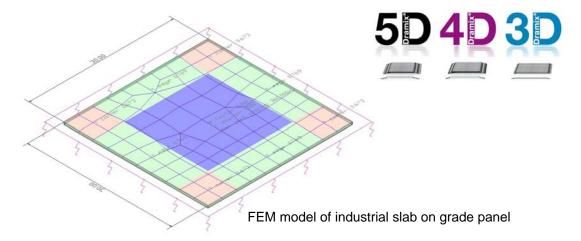
Design for Dramix® Steel Fibers

Enhance the performance of elevated and ground supported slabs with the addition of Dramix 3D/4D/5D steel fibers

a (

Combined with post-tensioning, steel fiber offers advantages

- Increased flexural strength
- Increased one-way and two-way shear strength
- Increased post-cracked member stiffness
- Increased serviceability performance, including reduced crack widt
- Increased simplicity and speed of construction

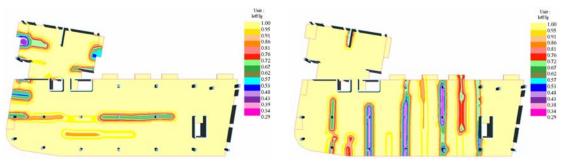

Post-tensioned project in Norway using steel fiber and no other regular reinforcement

Design for Dramix® Steel Fibers

Design process for industrial slabs on grade:

- 1) Select Dramix material and dosage
- 2) Review region input and create load regions
- 3) Perform non-lineal analysis and determine joint load transfers

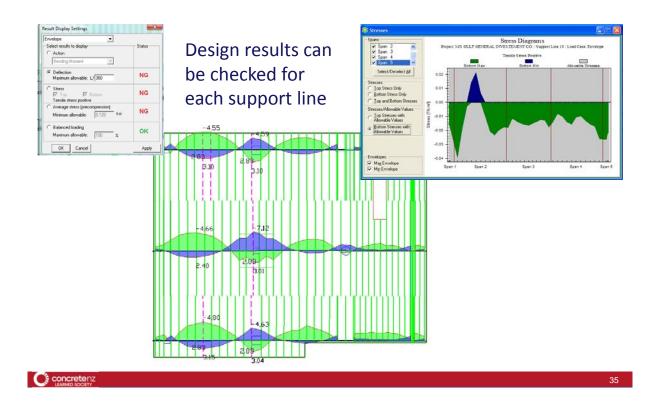
C concretenz

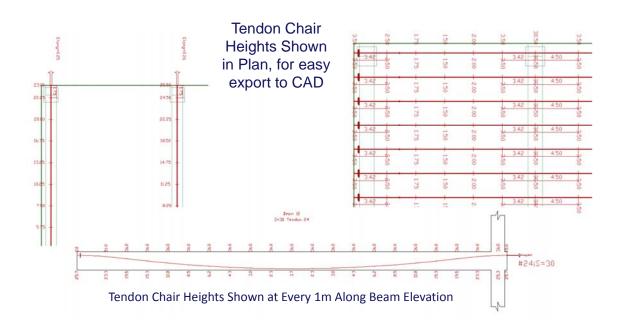

22

S ADAPT

Accurate Deflection Calculation

Cracked deflection calculation based on actual disposition of reinforcement and iterative redistribution of moment capacities


- Option to design for specific crack width
- Reporting of crack width
- Long-term deflections considering load history


Graphical display of location and extent of cracking

Easy To Follow Code Checks

E ADAPTAutomated P/T Shop Drawing Generation

Tendon Quantities and Elongations

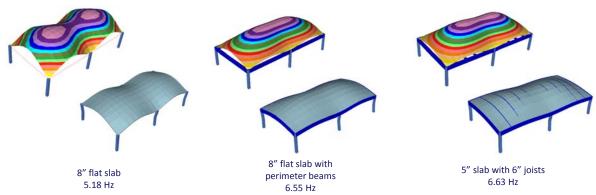
Project Name: General name Date of execution: July 16, 2009 FLOOR-PRO 2009 Specific Data: Specific name File Name: Camp_Springs_Model_raw_071509.adm

110.60 TENDON ELONGATION, INDIVIDUAL TENDONS

endon(ID,Label)	Jack(1st,2nd)	Seating(1st,2nd)	Elongation(1st,2nd,Total)
	k	in	in
1,Tendon 1	N/A,66.096	N/A,0.25	N/A,9.29,9.29
2,Tendon 2	991.440,N/A	0.25,N/A	5.28,N/A,5.28
3,Tendon 3	694.008,694.008	0.25,0.25	10.59, 0.05, 10.64
4,Tendon 4	396.576,396.576	0.25,0.25	10.59,0.04,10.64
5,Tendon 5	N/A,991.440	N/A,0.25	N/A,5.24,5.24
6.Tendon 6	66.096,N/A	0.25,N/A	7.09,N/A,7.09
7,Tendon 7	N/A,66.096	N/A,0.25	N/A,9.29,9.29
8,Tendon 8	66.096,N/A	0.25,N/A	7.09,N/A,7.09
9,Tendon 9	66.096,N/A	0.25,N/A	7.09,N/A,7.09
10,Tendon 10	66.096,N/A	0.25,N/A	7.09,N/A,7.09
11,Tendon 11	66.096,N/A	0.25,N/A	6.18,N/A,6.18
12,Tendon 12	66.096,N/A	0.25,N/A	7.09,N/A,7.09
13,Tendon 13	66.096,N/A	0.25,N/A	6.18,N/A,6.18
14,Tendon 14	N/A,66.096	N/A,0.25	N/A,3.35,3.35
15,Tendon 15	N/A,66.096	N/A,0.25	N/A,3.36,3.36
16,Tendon 16	N/A,66.096	N/A,0.25	N/A,9.29,9.29
17,Tendon 17	N/A,66.096	N/A,0.25	N/A,9.29,9.29
18,Tendon 18	66.096,N/A	0.25,N/A	7.09,N/A,7.09
19,Tendon 19	991.440,N/A	0.25,N/A	5.28,N/A,5.28
20,Tendon 20	N/A,991.440	N/A,0.25	N/A,5.24,5.24
21.Tendon 21	991.440,N/A	0.25,N/A	5.28,N/A,5.28
22.Tendon 22	N/A,991,440	N/A,0.25	N/A,5.24,5.24
23,Tendon 23	991,440,N/A	0.25,N/A	5.28 N/A, 5.28
24.Tendon 24	N/A,991.440	N/A.0.25	N/A,5.24,5.24
25.Tendon 25	991,440,N/A	0.25.N/A	5.28.N/A.5.28
26,Tendon 26	N/A,991.440	N/A,0.25	N/A,5.24,5.24
27.Tendon 27	N/A,66.096	N/A,0.25	N/A,9.29,9.29
28,Tendon 28	N/A,66.096	N/A,0.25	N/A,9.29,9.29
29,Tendon 29	N/A,66.096	N/A,0.25	N/A,9.29,9.29
30,Tendon 30	N/A,66.096	N/A,0.25	N/A,9.29,9.29
31,Tendon 31	N/A,66.096	N/A,0.25	N/A,9.29,9.29
32,Tendon 32	N/A,66.096	N/A,0.25	N/A,9.29,9.29
33,Tendon 33	N/A,66.096	N/A,0.25	N/A,9.29,9.29
34,Tendon 34	N/A,66.096	N/A,0.25	N/A,9.29,9.29
35,Tendon 35	N/A,66.096	N/A,0.25	N/A,9.29,9.29
36,Tendon 36	N/A,66.096	N/A,0.25	N/A,9.29,9.29
37,Tendon 37	N/A,66.096	N/A,0.25	N/A,9.29,9.29
38.Tendon 38	N/A.66.096	N/A 0.25	N/A 9 29 9 29

Easily extract tendon, rebar and concrete quantities from your design model

Tendon elongation reports provide information needed for installation


37

ADAPT Integrated Modal Vibration Analysis

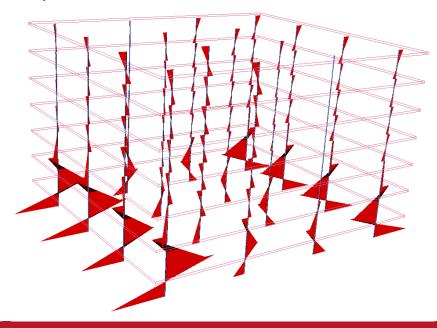
Floor Pro automatically calculates and reports the vibration response of any concrete floor system

Factors considered include:

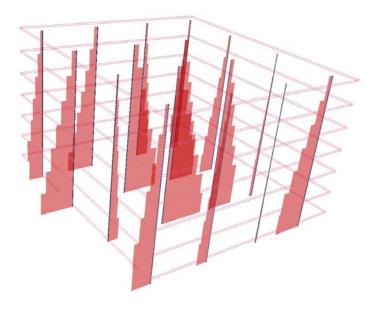
- Post- or pre-stressing
- Cracking
- Contribution of any load case in x,y,z direction

Automated Load Takedown

Diagram showing axial loads in columns. The mat foundation or any intermediate transfer element is automatically designed for these building loads.



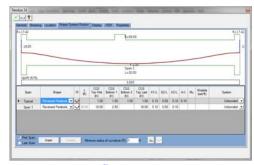
20

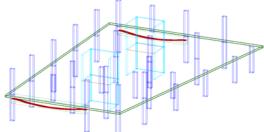

ADAPT Effects of PT in Multi-Level Applications

This diagram shows increasing effect of Hyperstatic (secondary) moments at lower supports of a multi-level post-tensioned structure. A multi-level analysis automatically takes these into consideration.

ADAPT Effects of PT in Multi-Level Applications

This diagram shows increasing effect of Hyperstatic (secondary) axial moment at lower supports of a multi-level post-tensioned structure. A multi-level analysis automatically takes these into consideration.





41

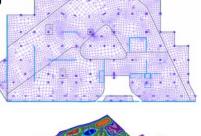
= ADAPT Integrated Design of PT Transfer Beams

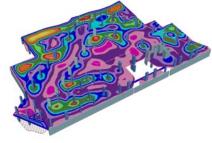
ADAPT-Builder supports the accurate modeling, analysis and design of posttensioned transfer structures in building applications.

Single level view of model showing post-tensioned transfer beams

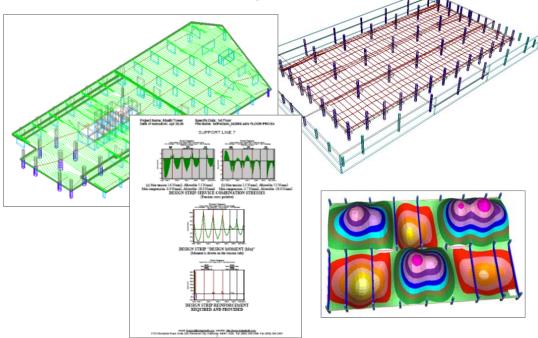
Building model showing global deflected shape from integrated analysis results

Efficient Design of ETABS Slabs


ADAPT offers efficient and more accurate process for detailed design of slabs modeled in ETABS


Easily extract model info from ETABS to ADAPT:

- Geometry
- Gravity Loads
- Lateral Loads



3 ADAPT Software Demonstration

ADAPT-Floor Pro® & Edge™

www.adaptsoft.com

45

Session 6

Thursday 31 May

NZ Post-Tensioned Buildings: Market Activity and Case Studies

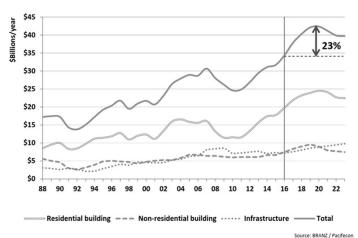
Marc Stewart

NZ post-tensioned buildings: Market activity and case studies

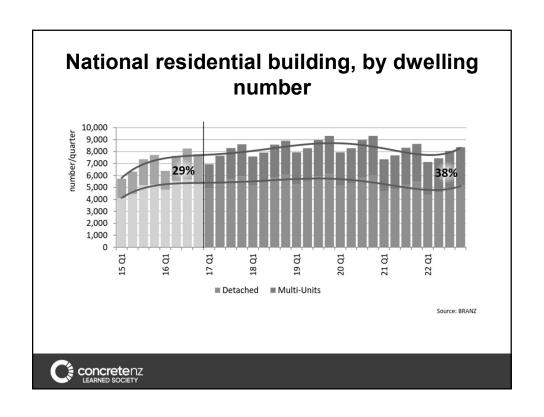
DESIGN & CONSTRUCTION OF POST-TENSIONED CONCRETE BUILDINGS

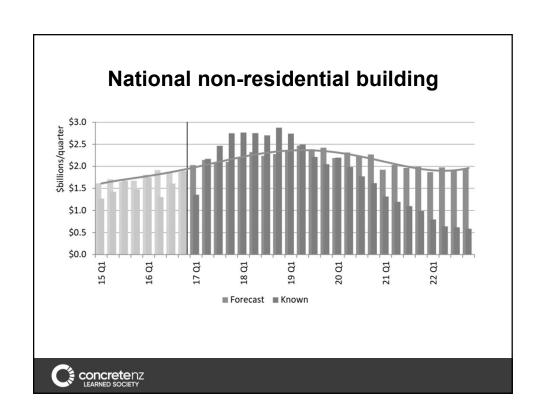
Content

- Building and Construction Forecast
- Elevated PT Adoption
 - Market Opportunity
 - Current Perspective
- · Case studies:
 - Grant Thomas, South Island Construction
 Manager, Dominion Constructors


Building and Construction Forecast

Activity Types:

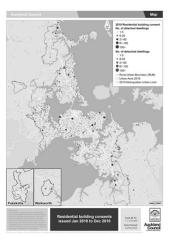

- · Residential building detached and multi-unit dwellings
- Non-residential building structures of a building type (vertical), other than residential
- Infrastructure structures of a non-building type (horizontal) eg roads, subdivisions, infrastructure and civil works. Infrastructure projects do not typically require a building consent.

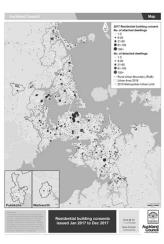


National construction, by value

Elevated PT Adoption

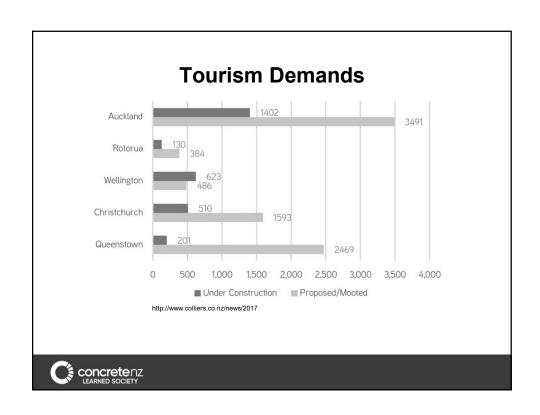
- Industry Opportunity
- -Current Perspective


Market Opportunity


- Unitary Plan
- Tourism Demands
- Wider Seismic Awareness
- Material leadtime constraints

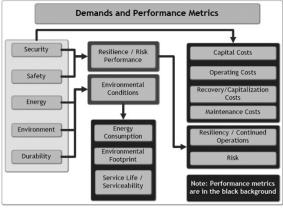
Unitary Plan

Brown is my favourite colour...



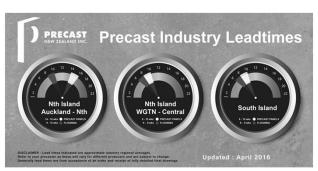
Tourism Demands

"Auckland in the lead with nine hotel projects and 30 more in the pipeline..."



Wider Seismic Awareness

Life cycle and cost/benefit considerations in Resilience-based designs


Wider Seismic Awareness

https://www.wbdg.org/resources/building-resiliency

Material leadtime constraints

http://www.precastnz.org.nz/precast-nz-publications/

Current Perspective

Engineers –

"We would love to, but...."

Current Perspective

- Design responsibility demarcation
- Code compatibility
- Mass Constraint
- Who will build it?

Who will build it?

- Guest Speaker
 - Grant Thomas, South Island
 Construction Manager, Dominion
 Constructors

Session 6

Thursday 31 May

Stress Losses in Post-Tensioning

Bijan Aalami

(refer to chapter 7 of the book Post-Tensioned Buildings; Design and Construction)

Session 7

Thursday 31 May

Workflow for Integrated Design of Concrete Buildings with Post-Tensioned Slabs

Florian Aalami

Workflow for Integrated Design of Concrete Buildings with Post-Tensioned Slabs

- Featuring -

ADAPT-Builder® Design Suite

ADAPT Corporation | Redwood City, CA, USA ADAPT Latin America | Miami, FL, USA ADAPT International Pvt. Ltd. | Kolkata, India

> Dr. Florian Aalami www.adaptsoft.com May 2018

© Copyright 2018 ADAPT Corporation all rights reserved

ADAPT Integrated Design Workflow

Live software demonstration

www.adaptsoft.com

3

Session 7

Thursday 31 May

Design of Post-Tensioned Floor Systems in High-Seismic Zones

Bijan Aalami

Seismic Design Post-Tensioned Buildings

Dr Bijan O. Aalami

Professor Emeritus, San Francisco State University Principal; ADAPT Corporation

www.adaptsoft.com

bijan@PT-Structures.com Copyright ADAPT Corporation 2016

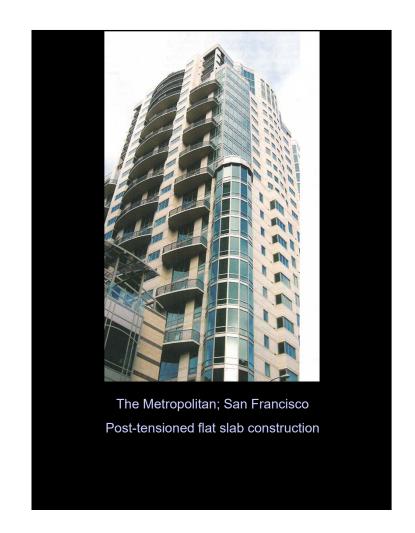
Seismic Design of Post-Tensioned Buildings

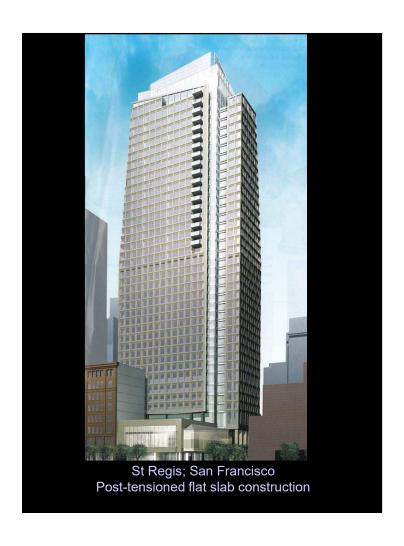
Presentation

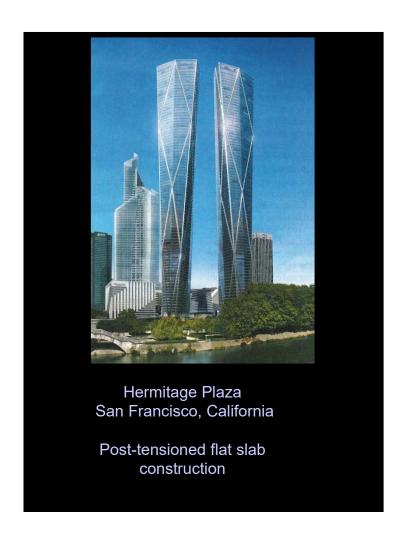
- Objectives; scope; examples
- Why post-tensioning is the preferred construction system
- Past performance of post-tensioned buildings
- Codes and Specifications
- Seismic Design Categories (SDC)
- Seismic design steps
- Drift calculation
- Design of floors in
 - High seismic for risk (SDC D, E, F)
 - ➤ Moderate seismic risk (SDC C)
 - ➤ Low seismic risk (SDC A,B)
- Diaphragm design of floors
- Detailing
- Summary

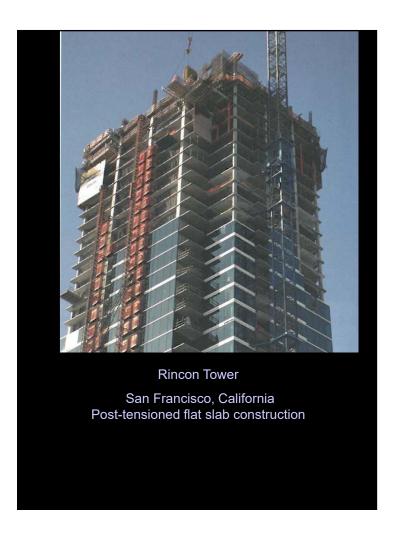
Seismic Design of Post-Tensioned Buildings

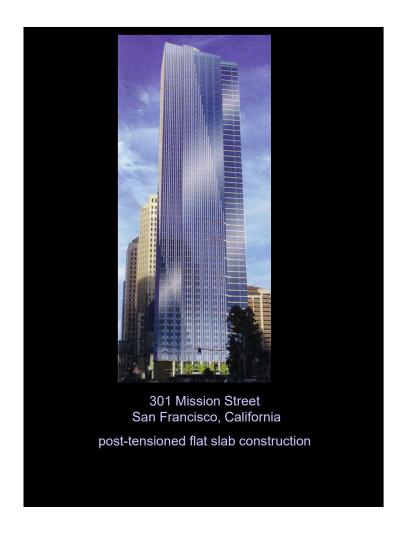
OBJECTIVE

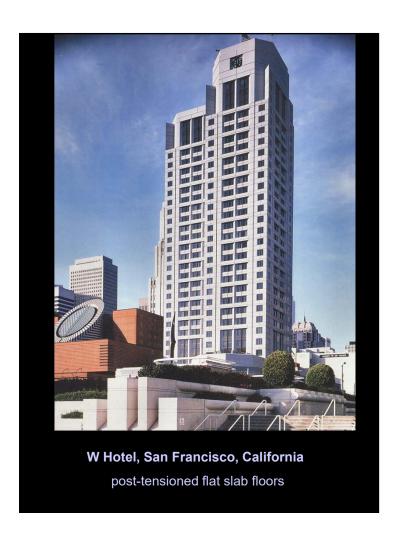

The objective of the presentation is to describe the participation and design of floor systems in building structures under lateral loads

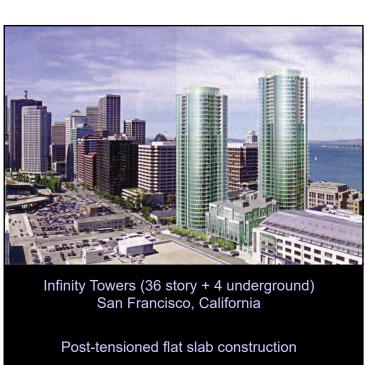

The presentation assumes:

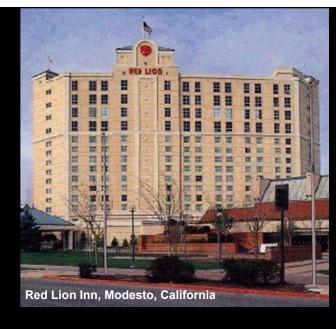

- ☐ Knowledge to determine the seismic risk of the building and the magnitude of lateral force (base shear);
- ☐ Distribution of lateral forces over the height of the building; and
- ☐ Frame/stability analysis of the structure to determine the force demand on each member


Hence, little or no reference is made to the above. Focus remains on the role of floor systems in resisting effects of seismic forces









Medium rise hotel in region of high seismic risk (near San Francisco) constructed with unbonded

Post-tensioned flat slab construction

Seismic Design of Post-Tensioned Buildings

Why

flat slab construction and post-tensioning?

- seismic force depends on:
 - Building weight PT floors are typically 1/3 lighter than RC
 - Weight of building can be reduced to 1/2 if lightweight concrete is used

P994

Seismic force (V) is proportional to the weight of building (W)

$$V = CS * W$$

Seismic Design of Post-Tensioned Buildings

Why

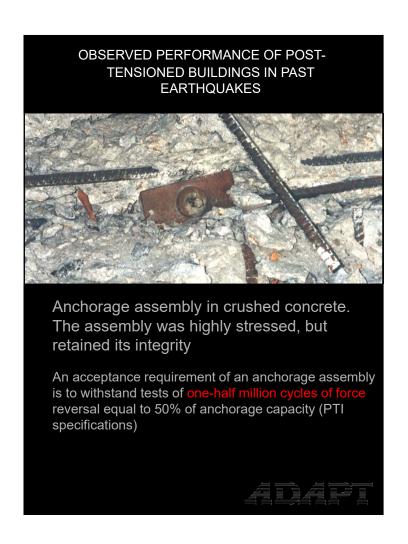
flat slab construction and post-tensioning?

- Reduced slab thickness leads to lighter columns, walls and foundation
- ☐ Thinner slabs and elimination of beams leads to shorter buildings, hence smaller overturning moment
- Precompression in slabs from posttensioning improves the diaphragm action of the floors

OBSERVED PERFORMANCE IN PAST EARTHQUAKES

Post-tensioned floor systems have performed well in both the highest seismic risk regions and regions of high wind forces

Currently, the high-rise buildings in San Francisco, one of the highest seismic regions of the USA are mostly designed and being built using flat slab concrete floor systems, in particular post-tensioning.


STATE OF ENGINEERING KNOWLEDGE

After the damage assessment of the last major earthquake in California (Northridge, 1994) the consensus among the engineering community was that, with some notable exceptions, the majority of engineered structures performed well. Adding confidence and credibility to the current engineering knowledge and design procedures for earthquake resisting buildings.

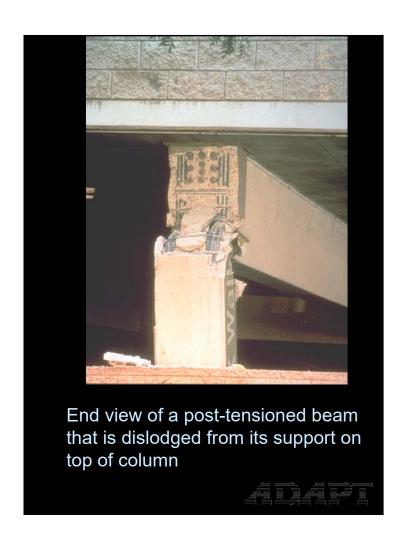
OBSERVED PERFORMANCE IN PAST EARTHQUAKES

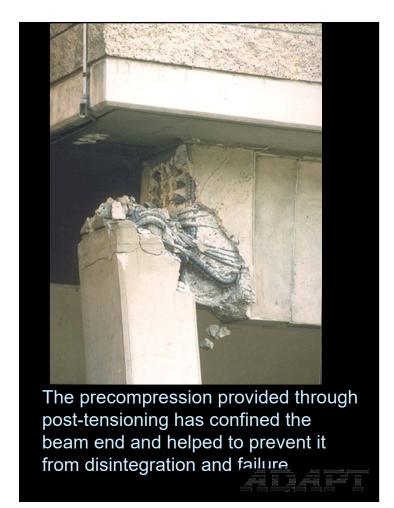
- ✓ Structures reinforced with post-tensioning bonded systems perform similarly to conventionally reinforced floors, with improved diaphragm action resulting from precompression
- ✓ Focus of observation has been on performance of buildings reinforced with unbonded tendons.

OBSERVED PERFORMANCE OF POST-TENSIONED BUILDINGS IN PAST EARTHQUAKES

Anchorage assembly in crushed concrete. The assembly was highly stressed, but retained its integrity

The above observation was repeated in all the damaged buildings inspected. There was no instance of anchorage failure in traditionally constructed buildings


OBSERVED PERFORMANCE OF POST-TENSIONED BUILDINGS IN PAST EARTHQUAKES



The group of tendon anchorages, tightly placed against one another, have retained their integrity after the complete destruction of the concrete around them. Each tendon has a force of approximately 11 tons. Slabs are typically 7 to 8 in (180-200 mm)

CURRENT BUILDING CODES FOR EARTHQUAKE AND WIND DESIGN

- ASCE 7-10
 - Describes how to determine seismic risk (SDC) or exposure;
 - what method of analysis is applicable; and
 - how to calculate lateral force (base shear).
- ACI 318 14
 - Describes how to define a lateral force resisting system (load path) in a building;
 - how to determine and validate the lateral stiffness of a building (drift);
 - how to determine the required reinforcement of each member: and
 - how to detail each member.
- ☐ IBC-15 (International Building Code)
 - Integrates the requirements of ASCE 7-10 and ACI 318-14 and other agencies; adds or deletes as required to conclude with a single and coherent set of requirements

UBC 97 is phased out

CURRENT BUILDING CODES FOR EARTHQUAKE AND WIND DESIGN

- Eurocde 8 EN 1988-1:2004 (E)
 - Describes how to determine seismic risk (SDC) or exposure;
 - what method of analysis is applicable; and
 - how to calculate lateral force (base shear)
 - includes detailing options for regions of high seismic risk and members designated to resist seismic forces

ADAPT

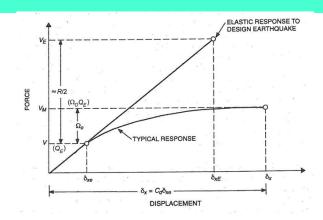
CURRENT BUILDING CODES FOR EARTHQUAKE AND WIND DESIGN

CORRELATION BETWEEN VARIOUS SEISMIC DESIGN CODES RISK EXPOSURE CATEGORIZATION

Code Standard Resource	 Level of Seismic Risk Assigned Seismic Performance Code Defined Category 			
IBC 2015 ASCE 7-10 ACI 318-14	SDC A,B,	SDC C	SDC D, E, F	
UBC 1997	Zone 0,1	Zone 2	Zone 3,4	
Eurocode 8	Very Low Seismicity	Low Seismicity	Seismically Active	
Other	Low	Moderate	High	

Based on current codes

- ❖ A building in San Francisco is in Seismic Design Category F (SDC F)
- Buildings in UAE is in Seismic Design Category C (SDC C)


CURRENT BUILDING CODES FOR EARTHQUAKE AND WIND DESIGN

Permissible Seismic Force Resisting Systems

Code	➤ Level of Seismic Risk				
Standard	Assigned Seismic Performance				
Resource	Code Defined Category				
IBC 2015	SDC	SDC	SDC		
ASCE 7-10	A,B,	C	D, E, F		
ACI 318-14	Α,Β,				
Eurocode 8	Very Low	Low	Seismically		
	Seismicity	Seismicity	Active		
Seismic	Ordinary	Intermediate	Special		
Frame	J				

CURRENT BUILDING CODES FOR EARTHQUAKE AND WIND DESIGN

Building frame response to seismic force

- ➤ Low risk : Linear elastic response
- ➤ Moderate risk; moderate yielding
- ➤ High risk: post-elastic; energy dissipation
- > Depending on the risk level
- Force reduction: R between 4 and 5
- Deformation magnification Cd between 4 and 5
- \triangleright Over strength factor = 2.5

 Ω_0

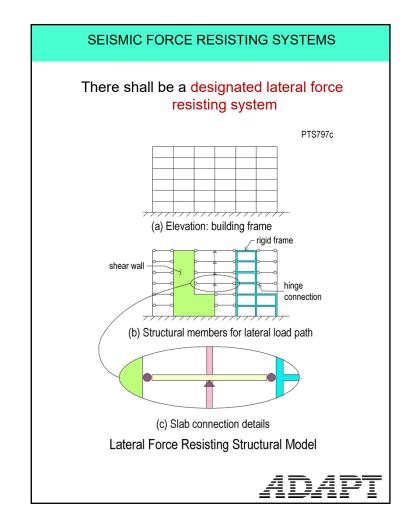
SEISMIC DESIGN STEPS

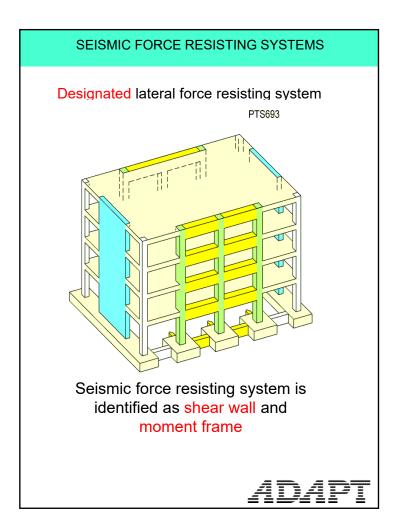
- Determine seismic design risk Low; moderate; high (SDC)
- Select a designated seismic force resisting system
- Calculate design base shear V
 V = CS * W
- 4. Distribute base shear among levels of the building
- 5. Select applicable reduced member stiffness for frame analysis (allowance for cracking)
- 6. Calculate inter-story drift and validate it
- Determine seismic force demand on each designated seismic force resisting member
- Design force resisting members for strength and ductility
- Design the remainder of structural members for deformation compatibility; over strength, where needed
- 10. Detail for reinforcement

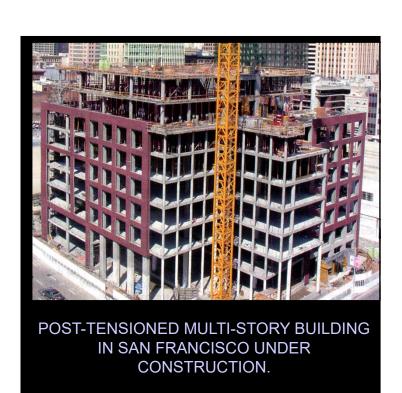
SELECTION OF DESIGNATED LATERAL FORCE RESISTING SYSTEM

- There shall be a well defined and uninterrupted designated load path from the point of generation of lateral forces to the foundation
- The load path need not, and generally does not include all the structural members of a building
- Seismic force resisting load path categories defined in current codes are:
 - ✓ Ordinary moment frames; low risk (SDC A, B)
 - ✓ Intermediate moment frames; moderate risk (SDC C)
 - ✓ Special moment resisting frames; high risk (SDC DEF)

Examples:

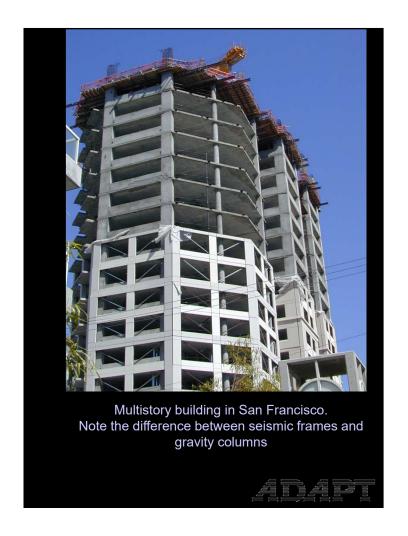

- Buildings in San Francisco and Tehran require "special moment resisting frames."
- Buildings in Hawaii require "intermediate moment frames," or better.


SELECTION OF DESIGNATED LATERAL FORCE RESISTING SYSTEM


Special Moment Frames High seismic risk (SDC D,E,F)

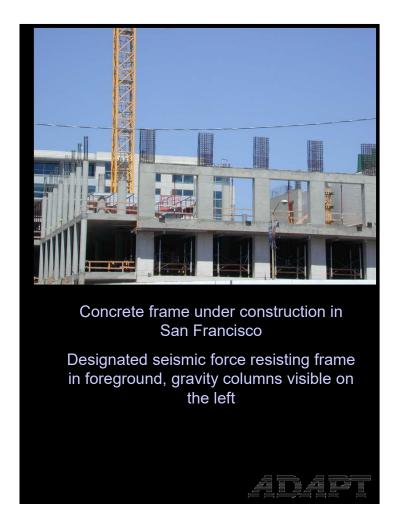
- Can resist the design earthquake in postelastic regime;
- Will undergo extensive damage in event of the design earthquake, but will not collapse;
- Is required to comply with special design provisions for ductility and detailing (ACI 318);
- Floor slabs are not permitted to be part of the designated force resisting system;
- Post-tensioning is permitted to be considered as part of the primary lateral force resisting system of the building in beams and walls, with some restrictions (IBC)

ADAPT


Members designated to resist seismic forces are clearly identifiable from those intended to resist only the gravity forces

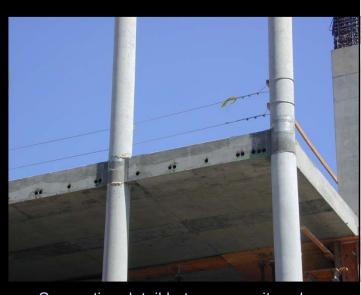
VIEW OF CONCRETE FRAME

Observe the two lateral force resisting frames on the two sides of the building (thicker members), and an interior lateral force resisting frame (visible on the top of the structure). The gravity columns are noticeably thinner than those of the seismic frames



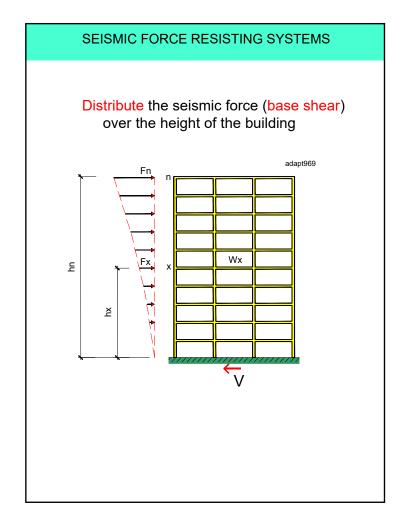
Close up of a flat slab post-tensioned concrete frame in San Francisco

Observe that no beams connect the gravity columns to the seismic frames


Note the distinct difference between the gravity columns (round) and those that are part of the lateral force resisting system (rectangular).

Floor slab is flat. No beams connect the nonseismic columns to the seismic frames, nor are there beams connecting gravity columns.

Designated seismic force resisting frame is used as an architectural feature in the building (San Francisco)

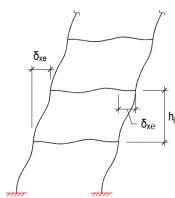

Connection detail between gravity columns and slab edge/corner

The figure shows the stressing pockets of unbonded post-tensioning tendons at the slab edge

SEISMIC FORCE ANALYSIS MODELS

Create 3 Structural Models for Analysis

- 1 Structural model for drift calculation for validation of the concrete frame stiffness
 All members participate with reduced stiffness
- 2 Structural model for strength design of lateral force resisting system
 - > Entire seismic force resisted by designated lateral force resisting system
 - > Non-seismic members receiving load to be designed with over-strength (omega factor)
- 3 Structural model for floor slab design
 - For low and moderate seismic risk (SDC A,B and C) act with columns and walls
 - For high seismic risk (D, E. F) design for gravity only



DRIFT CALCULATION/VALIDATION

- From a frame analysis
 - > Includes all structural members
 - > Use reduced stiffness
 - ➤ Use load combination

$$U = 1.0DL + 0.3LL + 1.0E$$

PTS782

$$C_d \delta_{xe}/h_i \le 2\%$$

If drift not satisfied, increase frame stiffness

DRIFT CALCULATION/VALIDATION

Use one of the following options for reduction of stiffness to calculate drift (ACI 318)

Option 1

■ Use 50% of stiffness values based on gross area

Option 2

Use the following values for moment of inertia (Ig = gross moment of inertia)

Columns	0.70 lg
Walls (uncracked)	0.70 lg
Walls (cracked) *	0.35 lg
Beams	0.35 lg
Slabs (RC)	0.25 lg
■ Slabs (PT)	0.50 lg

Option 3

Use more rigorous relationship as suggested in ACI-318

* If first run indicates cracking of walls

FLOOR SLAB DESIGN

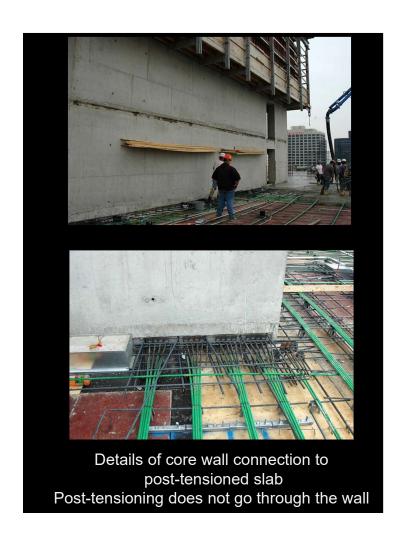
Floor slab design depends on the one of the following two options:

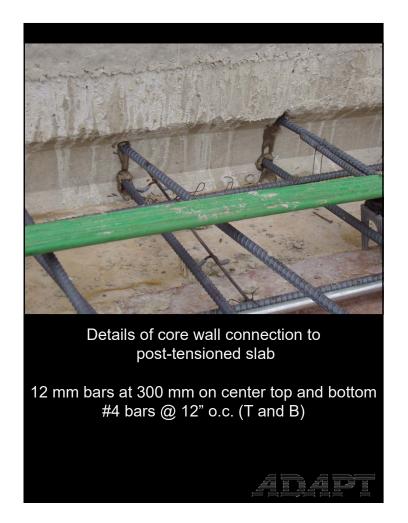
- Floors that do NOT participate in frame action (Seismic Design Categories D,E,F high seismic risk regions)
- Floors that DO participate in frame action (low and medium seismic risk A, B and C)
- Design for diaphragm action of all floors (All seismic categories)

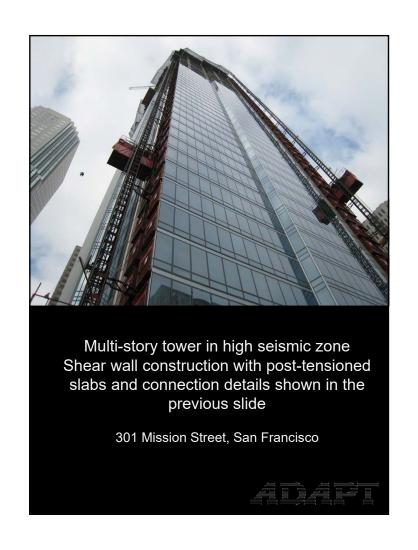
FLOOR SLAB DESIGN

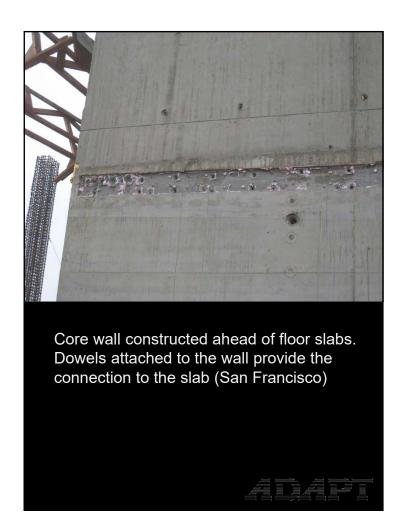
For floor that are not designated to participate in resisting seismic forces (Seismic categories D,E and F; high seismic regions) consider the following

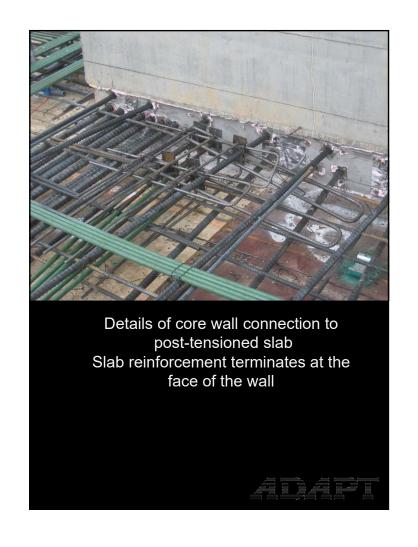
- Wall to slab connection
 - Do not calculate and design for force transfer. Slab is not intended to resist seismic forces
 - Detail the connection for adequate ductility for design drift
- Column to slab connection:
 Use one of the following options
 - Release connection
 - Detail for adequate ductility
 - Calculate actions for design drift and reinforce accordingly

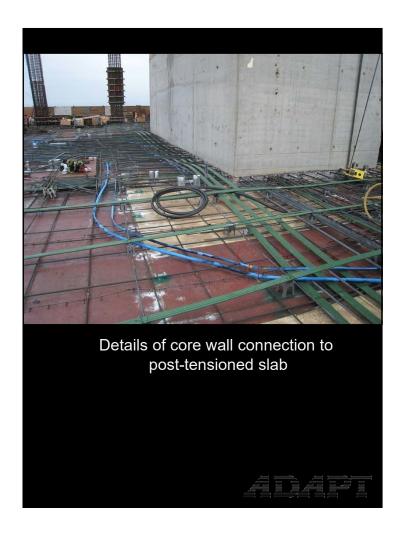

ADAPT


FLOOR SLAB DESIGN


First: wall to slab connection


- Wall to slab connection
 - Do not calculate the force at connection. Slab is not intended to resist seismic forces
 - Detail the connection for adequate ductility for design drift
- Column to slab connection:
 Use one of the following 3 options
 - > Release connection
 - Detail for adequate ductility
 - Calculate actions for design drift and reinforce accordingly


ADAPT



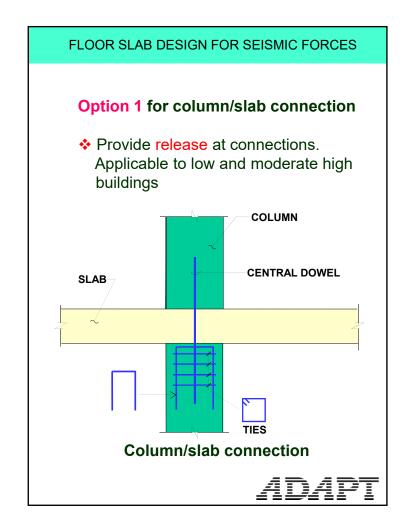
View of full-size test of post-tensioned slab with core wall and column connection

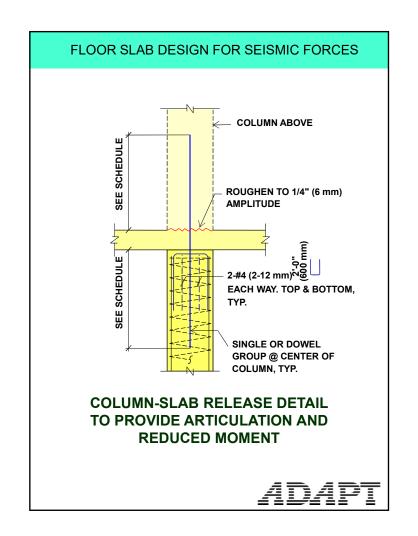
- ❖Full scale tests for similar connections have withstood up to 10% drift without failure.
- ❖ Maximum permissible drift is 2%
- ❖ Actual design drifts for concrete multistory buildings is generally around 0.5 to 1%

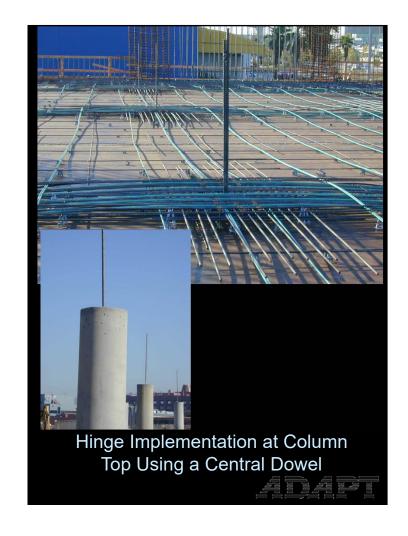
University of California (Berkeley)

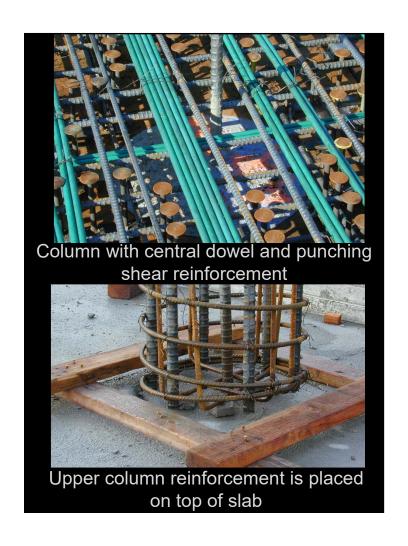
View of full-size post-tensioned slab with core wall and column connection under test

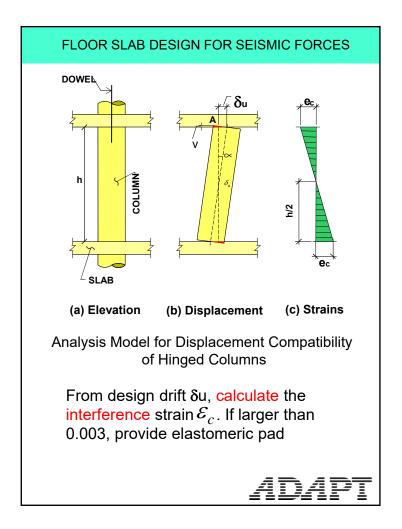
- Crack formation at slab core wall connection for 2.5% drift
- Maximum permissible design drift is about 2%

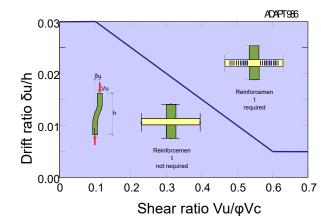



FLOOR SLAB DESIGN


For floor that are not designated to participate in resisting seismic forces (High seismic risk; SDC D,E, F) consider the following

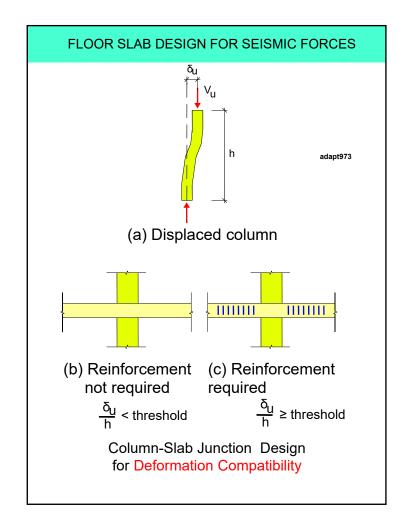

- Wall to slab connection
 - Do not calculate and design for force transfer
 - Detail the connection for adequate ductility for design drift
- Column to slab connection:Use one of the following 3 options
 - Release connection
 - Detail for adequate ductility
 - Calculate actions for design drift and reinforce accordingly

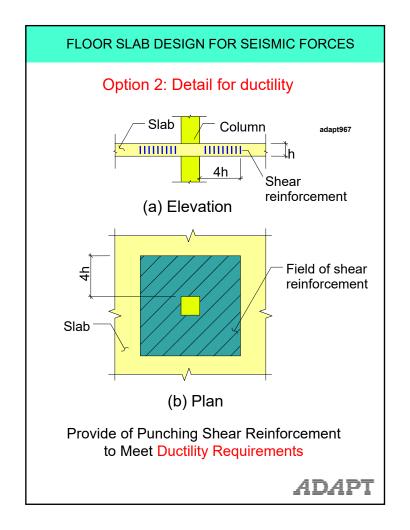

ADAPT



FLOOR SLAB DESIGN FOR SEISMIC FORCES

Option 2: Detail for Ductility


Detail for ductility, if values fall above the line in the following diagram. Otherwise, no specific measures required (ACI 318 – 11; Ch. 21)

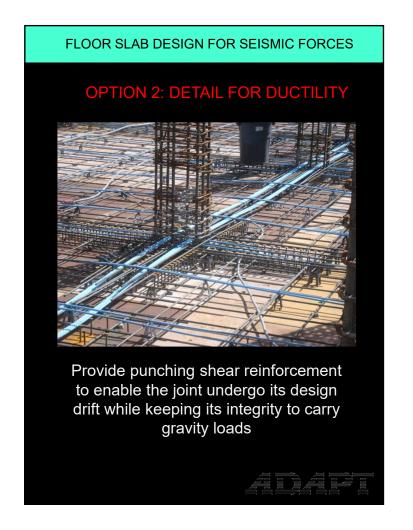


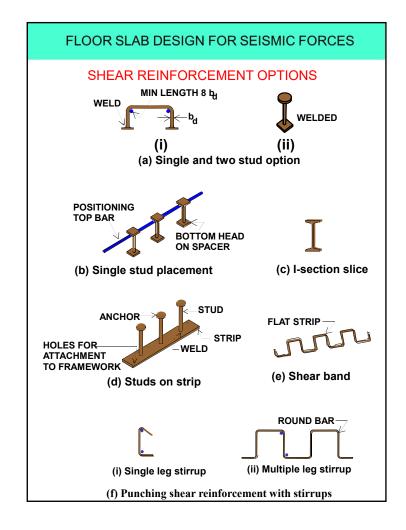
$$\frac{\Delta}{h} \leq \text{ larger of } \begin{cases} 0.005 \\ 0.035 - 0.05 \left(\frac{V_u}{\phi V_c} \right) \end{cases}$$

No limit on punching shear ratio if drift ratio is less than 0.005

ADAPT

FLOOR SLAB DESIGN FOR SEISMIC FORCES


Option 2: Detail for ductility


Minimum punching shear reinforcement to satisfy deformation compatibility

$$\frac{A_v}{s} \geq \frac{0.29 \sqrt{f' \, c} \, b_0}{f_{yt}} \quad \begin{array}{c} \text{US units} \\ \text{lb; inch} \end{array}$$

$$\frac{A_v}{s} \geq \frac{3.5\sqrt{f' cb_0}}{f_{yt}} \quad \text{SI units}_{\text{N; mm}}$$

FLOOR SLAB DESIGN FOR SEISMIC FORCES Option 3: Calculate the Moment and Shear and Design for them Using design displacement δu , calculate the associated moment Mu and design for it Slab - $M_{U} = \left(\frac{6EI}{L^{2}}\right)\delta_{U}$ (a) Elevation (b) Deformation

FLOOR SLAB DESIGN FOR SEISMIC FORCES

- Floors that DO participate in frame action Low and moderate seismic risk (SDC A,B,C)
- Floors are assumed to remain elastic in resisting the lateral forces.
- Cracking is moderate and is accounted for in drift calculation.
- Static Equivalent lateral force analysis applies in calculating the floor's design forces

FLOOR SLAB DESIGN FOR SEISMIC FORCES

Summary

- ❖ Examples in San Francisco
- Why post-tensioning
- ❖ Performance in past earthquakes
- ❖ Applicable codes
- Determination of seismic risk to design for SDC
- ❖ Seismic design steps
- Drift calculation
- ❖ Function of floor slabs
- Design of floors slabs
 - ❖ High seismic risk regions
 - Low and moderate risk regions
- Floor action as diaphragm
- Detailing
- Specific code provisions for application of post-tensioning

Session 8

Thursday 31 May

Seismic Design Considerations for PostTensioned Floor Systems in NZ

Jeff Matthews

Seismic Design Considerations for Post-Tensioned Floor Systems in NZ

Presented by
Dr Jeff Matthews
Holmes Consulting

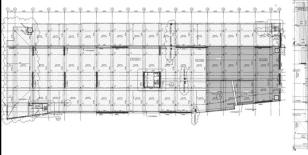
DESIGN & CONSTRUCTION OF POST-TENSIONED CONCRETE

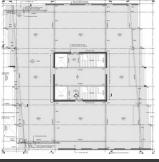
Potential Design Efficiencies

- Residual PT available to contribute to diaphragm reinforcement:
 - Gravity ULS 1.2G&1.5Q
- Different load cases for seismic vs gravity: Gravity for seismic
 G & xQ (x depends on building usage)

Building Configurations

- What is the lateral system?
 - Walls
 - Braces
 - Frames





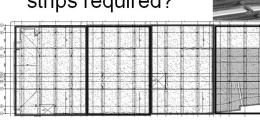
DESIGN & CONSTRUCTION OF POST-TENSIONED CONCRETE
BUILDINGS

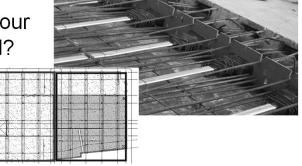
Building Configurations

 Where are the bracing elements located

Building Configurations

 What impact does this have on the construction and/or stressing process





DESIGN & CONSTRUCTION OF POST-TENSIONED CONCRETE

Building Configurations

- How large is the floor plate?
- Are delayed pour strips required?

NZS 1170.5 Cl. 2.1.4 Avoidance of Collapse @ ULS

- Avoidance of collapse of structure or parts of structure
- Commentary NZS 1170.5:
 - account for *drifts* or forces from the 2500-year return event (MCE?),
 - for determining if is there is an acceptably low probability of collapse.

DESIGN & CONSTRUCTION OF POST-TENSIONED CONCRETE
BUILDINGS

Avoidance of Collapse

NZS 1170.5

CI.2.2.4 Brittle structures

 Brittle structure or brittle parts of structures having limited capacity to sustain inelastic deformation

Commentary to NZS 1170.5 points to *components* and *connections* that could be *brittle*.

Connection Failure

Floor to walls & frames

Northridge -1994

DESIGN & CONSTRUCTION OF POST-TENSIONED CONCRETE BUILDINGS

Connection Failure

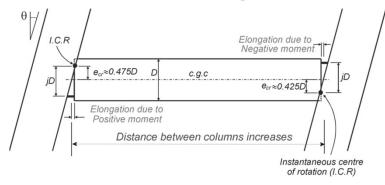
Column punching shear failure - floors to columns

Christchurch-2011

Beam Elongation

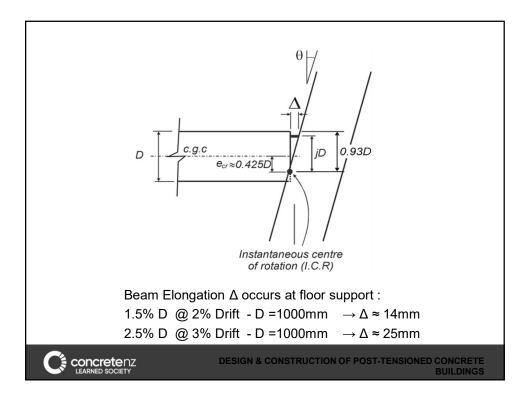
Consider the effect this has on the PT strands.

- What are consequences of failure?
- Will floor drop?


Grouted versus un-grouted

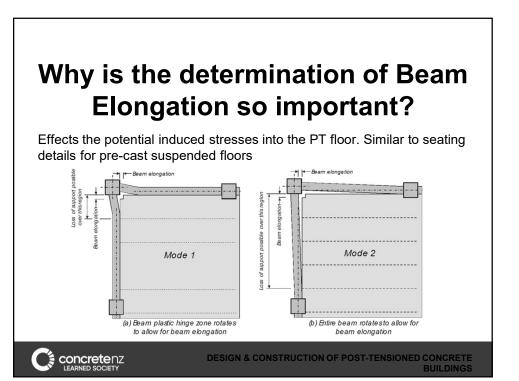
Un-grouted can allow movement, lower strains

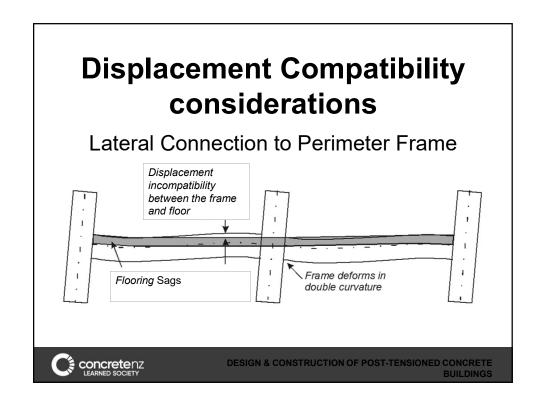
DESIGN & CONSTRUCTION OF POST-TENSIONED CONCRETE
BUILDINGS

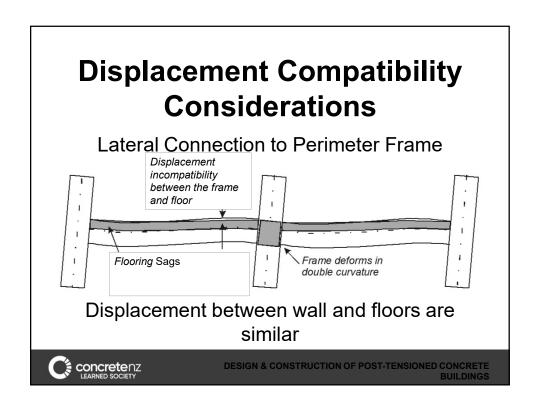

Beam Elongation

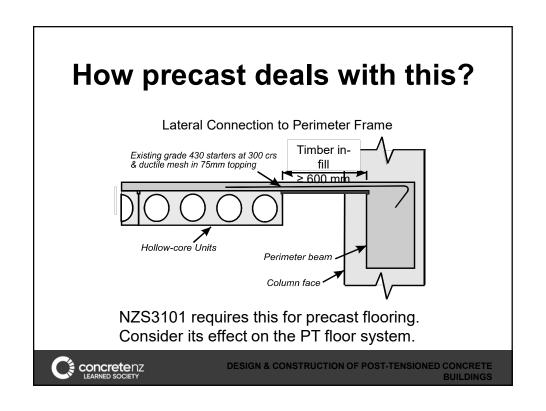
Beam Elongation occurs (independent of convention or P/T):

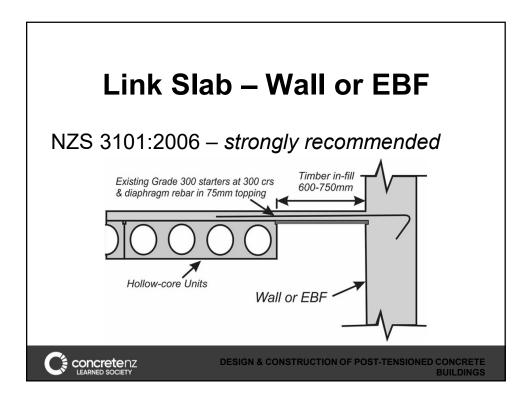
- · Elastically up to Yield
- · In-elastically post-yield

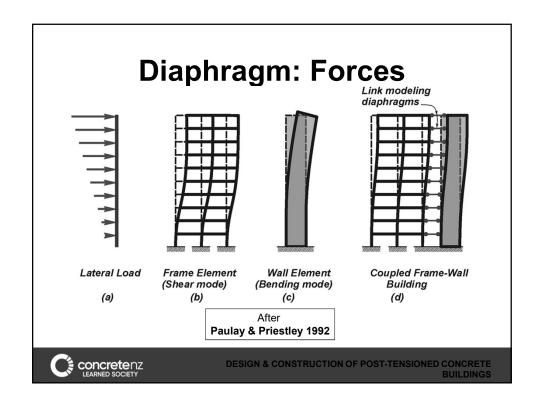





Beam Elongation


- · How is this accommodated in the design?
- De-bonding can help. Does have flow on effects (deconstruction, SiD).





Diaphragms: Forces

'Inertia' & 'Transfer' forces are COUPLED These can not be treated in isolation.

- Inertia causes the building to deform.
- Transfer forces across the diaphragms arise from the incompatibility of deformed shapes of each vertical structural system.

Diaphragms: Forces NZS 1170.5

CI.6.1.4.2 Actions for design of diaphragms

- Actions to be used in the design of diaphragms shall be the sum of actions from the 2-D and 3-D analysis, plus the actions derived from considering how the inertia of the diaphragm elements are distributed to the lateral force resisting structural elements.
- Actions within the diaphragms shall account for higher modes effects and influence of overstrength actions (in accordance with Clause 5.6.3.3), generated from within the structure as a whole.

Diaphragms: Forces NZS 1170.5

Cl. 6.1.4.2 Actions for design of diaphragms

- Actions to be used in the design of diaphragms shall be the sum of actions from the 2-D and 3-D analysis, plus the actions derived from considering how the inertia of the diaphragm elements are distributed to the lateral force resisting structural elements.
 - MODAL Analysis does NOT help
 - MODAL Analysis provide maxima:
 - these have no sign & local maxima occur at different points in time - USELESS

DESIGN & CONSTRUCTION OF POST-TENSIONED CONCRETE
BUILDINGS

Floor Plates/Diaphragms

- Relatively thin but stiff horizontal structural systems which transmit in-plane lateral forces to, or between, vertical lateral force resisting elements.
- The diaphragms tie the whole structure together

Floor Plates/Diaphragms

- Strut and Tie is generally the test method to design these diaphragms.
- Enables detailing penetrations
- Recommended by NZS1170.5
- · Potential efficiencies if PT can be used
 - Consider consequences of over load

Session 8

Thursday 31 May

Assessment and Evaluation of Vibration Response of Concrete Floor Systems

Florian Aalami

Vibration Analysis/Design of RC and PT Floors

Florian Aalami

www.adaptsoft.com

Copyright © 2018 ADAPT Corporation

VIBRATION DESIGN OF CONCRETE FLOORS

SCOPE

Part 1 – Basic information and practical approach

- ❖ Why are we concerned about vibration;
- What are the causes of vibration:
- ❖ What are the allowable limits of vibration:
- How to evaluate the vibration acceptability of a floor
 - ➤ Numerical Example

Part 2 - Past practice; alternative methods

- Semi empirical and simple methods of vibration evaluation
 - ➤ Numerical Example

Part 3 – Impact of secondary factors

- Post-tensioning
- Cracking of concrete

cont...

SCOPE

Part 4 – Other causes of vibrations

- * rhythmic motions; dance; aerobics
- Impact of vibrations on sensitive equipment
- References

Question and Answer

VIBRATION DESIGN OF CONCRETE FLOORS

Part 1 – Basic information and practical approach

- ❖ Why are we concerned about vibration;
- What are the causes of vibration;
- ❖ What are the allowable limits of vibration;
- How to evaluate the vibration acceptability of a floor
 - ➤ Numerical Example

Why are we concerned about vibration?

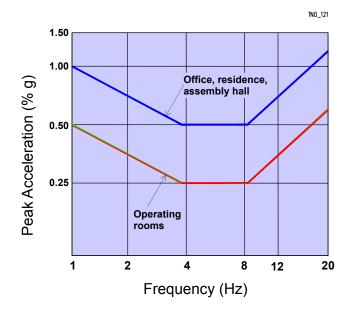
- Vibrations may be considered as "annoying" by occupants
 - ➤ Threshold of "perception"
 - >Threshold of "annoyance"
- Vibrations may interfere with the proper function of equipment and instruments

What are the causes of vibration?

- Most common cause is "foot fall" (heel drop) occupants;
- Dynamic impact from rolling object.

What are the allowable limits of vibration for human's comfort?

- Perception of vibration depends on:
 - Frequency (cycles per second, Hz); and
 - Peak acceleration (expressed as percentage of gravitational acceleration %g)
 - Consensus is that humans are most sensitive to vibration for frequencies between 4 to 8 Hz.
 - Higher accelerations can be tolerated at higher or lower frequencies.



PERCEPTION OF VIBRATION

What are the allowable limits of vibration?

- □ Frequency (Hz); and
- Peak acceleration

Threshold of Human Sensitivity to Vertical Vibration (ATC)

ATC = Applied Technology Council

How to evaluate the vibration acceptability of a floor?

6 steps for complete evaluation

Step 1 - Determine natural frequencies (Hz)

Step 2 – Select exciting force of vibration

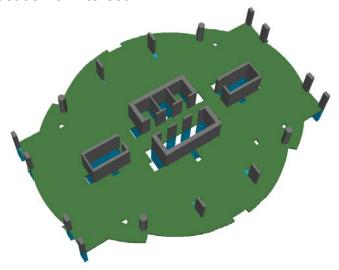
Step 3 - Select floor type

Step 4 – Calculate the weight of vibrating panel

Step 5 – Calculate peak acceleration

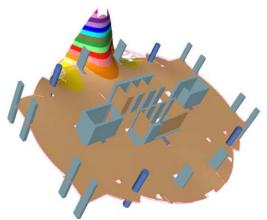
Step 6 - Evaluate the floor

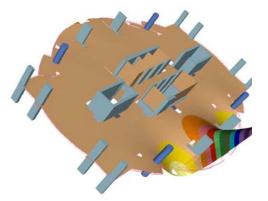
Numerical example



NATURAL FREQUENCIES

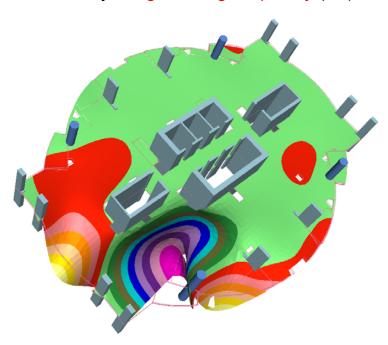
Step 1 - Determine natural frequencies (Hz)


- Use Finite Element Method with plate elements, or empirical formulas
- For specific areas, such as a lab or operating room, determine the "dominant" frequencies of the location of interest.


Observe vibration modes of the above floor system, assuming that the location of interest is at bottom left of the floor

NATURAL FREQUENCIES

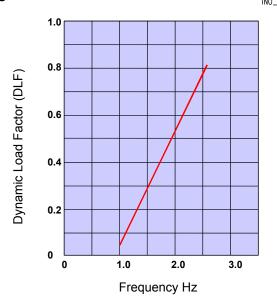
Identify applicable frequency (Hz)


Mode 1 – Not he panel of interest

Mode 2 – Not he panel of interest

NATURAL FREQUENCIES

Identify the governing frequency (Hz)



Mode 5 is the first mode that excites the region of interest (bottom left). The frequency associated with this mode will be used as basis for evaluation

EXITING FORCE OF VIBRATION

Step 2 - Select exciting force of vibration

Use the following graph to determine the exciting force
TNO_125

Dynamic Load Factor for First Harmonic of Walking Force

Exciting force = DLF * (Weight of Person)

TRANSMISSION PATH OF VIBRATION

Step 3 - Select floor type

- Refer to the table to select damping factor (β); in most cases 0.03 applies
- The recommended values vary from 2-3% for bare concrete floors to 5-8% for furnished rooms with partitions extending full height.

RECOMMENDED DAMPING FACTORS FOR VARIOUS OCCUPANCIES

Occupancy	Damping factor β	
Bare concrete floor	0.02	
Furnished, low partition	0.03	
Furnished, full height partition	0.05	
Shopping malls	0.02	

PEAK ACCELERATION

Step 4 – Calculate weight of target panel (W)

Include superimposed load that follows the vibration (stones; tiles)

Step 5 – Calculate Peak Acceleration (a_n/g)

❖Use an empirical relationship, such as the one below for footfall

$$\frac{a_{p}}{g} = \frac{P_{0}e^{-0.35f}}{\beta W}$$
 (1)

 a_p = peak acceleration;

g = gravitational acceleration [32.2 ft/sec²; 9.81 m/sec²];

P_o = constant force representing the walking force (from Step 2 and weight of walking person);

 β = modal damping ratio, from previous table

W = effective weight of the panel and the superimposed load; and

f = governing natural frequency (Hz).

PERCEPTIBILITY OF MOTION

Step 6 - Evaluate the floor

- Use natural frequency from Step 1; and
- ❖ Peak ground acceleration (a₀/g) from Step 5; and
- Chart below from ATC to determine acceptability

1.50
1.00
1.00
Office, residence, assembly hall
Operating rooms

1 2 4 8 12 20
Frequency (Hz)

Threshold of Human Sensitivity to Vertical Vibration (ATC)

TNO_121

NUMERICAL EXAMPLE

Numerical Example

Given

Concrete floor system

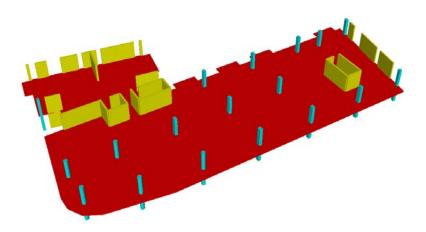
Slab thickness

Superimposed DL

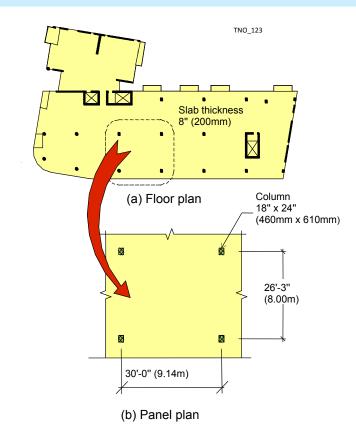
Concrete f'c

Modulus of Elasticity

8" (203 mm)


20 psf (1 kN/m2)

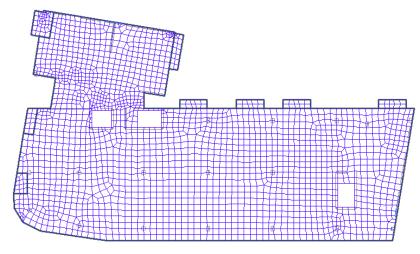
5000 psi (33.8 MPa)


1.2 Ec

Required

Evaluate vibration compliance of the floor panel identified under foot drop

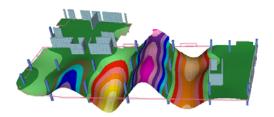
NUMERICAL EXAMPLE



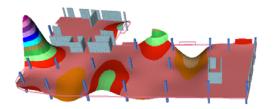
Identification of Panel for Vibration Evaluation

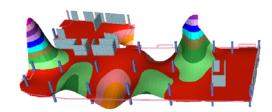
Step 1 – Determine natural frequencies (Hz)

- Generate model of the entire floor
- Use modulus of elasticity 1.2Ec
- Include weight of objects attached to floor
- Obtain first few natural frequencies



Discretization of the Floor for a Reliable Frequency Values

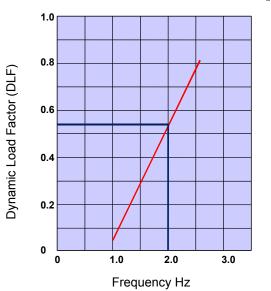



VIBRATION DESIGN OF CONCRETE FLOORS

(a) First mode – frequency 5.79 Hz

(b) Second mode – frequency 6.33 Hz

(c) Third mode – frequency 6.44 Hz


Step 2 - Select exciting force of vibration

- ❖ Weight of person 150 lb (667 N)
- ❖ Walking speed: 2 steps per second
- From the chart:

$$DLF = 0.53$$

$$Po = 0.53 * 150 = 79.5 lb (354 N)$$

TNO_125

Dynamic Load Factor for First Harmonic of Walking Force

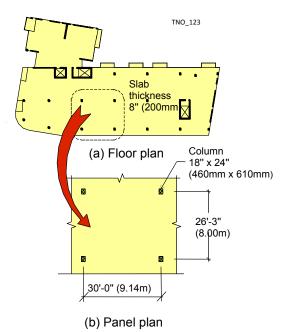
VIBRATION DESIGN OF CONCRETE FLOORS

Step 3 - Select floor type

Office furnished; low partitions

From below select $(\beta) = 0.03$ From table

Occupancy	Damping factor β		
Bare concrete floor	0.02		
Furnished, low partition	0.03		
Furnished, full height partition	0.05		
Shopping malls	0.02		



Step 4 –Calculate weight of target panel (W)

- Dimensions of panel as shown below
- ❖ Mortar, stone, firmly attached to floor 20 psf (1 kN/m²)
- Concrete weight: 150 pcf; (25 kN/m3)

The total weight of the panel W is

VIBRATION DESIGN OF CONCRETE FLOORS

Step 5 – Calculate Peak Acceleration (a_n/g)

Use an empirical relationship, such as the one below for footfall

$$\frac{a_{p}}{g} = \frac{P_{0}e^{-0.35f}}{\beta W}$$

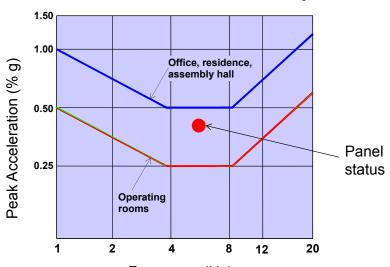
 a_p = peak acceleration;

g = gravitational acceleration [32.2 ft/sec²; 9.81 m/sec²];

 $P_0 = 0.53 * 150 = 79.5 \text{ lb } (0.354 \text{ kN}) \text{ (step 2)}$

 β = damping ratio 0.03 (step 3)

W = 94.5 k (421 kN) (step 4)


f = first natural frequency (Hz) = 5.79 Hz (step 1).

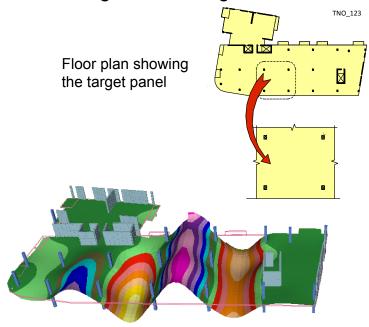
$$\frac{a_p}{g} = \frac{79.5 \times e^{-0.35 \times 5.79}}{0.03 \times 94.50 \times 1000} = 000367 = 0.37\%_p$$

Peak ground acceleration (a_p) is calculated to be 0.37% of gravitational acceleration (g)

Step 6 - Evaluate the floor

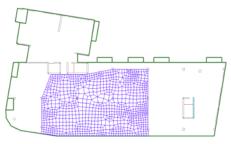
- ❖ Use natural frequency from Step 1; 5.79 Hz; and
- ❖ Peak ground acceleration from Step 5; 0.37% g; and
- Chart below from ATC to determine acceptability

Frequency (Hz)
Threshold of Human Sensitivity to Vertical
Vibration (ATC)

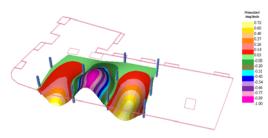

The target panel is acceptable for office and residential occupancies, but not for hospital operating room

VIBRATION DESIGN OF CONCRETE FLOORS

Eliminate the noise (disturbance) from nontargeted floor regions


First mode – frequency 5.79 Hz

Note that the first mode is primarily due to excitation of a non-targeted region of floor



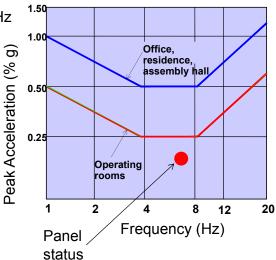
- ➤ Isolate the target area for vibration analysis
- ➤ The response of the isolated region is greatly influenced by the boundary conditions specified around the cut
- Extend the sub-region at least one panel on each side beyond the panel of interest

(a) Selection of an extended region

(b) First mode of vibration – Frequency 6.07 Hz

VIBRATION DESIGN OF CONCRETE FLOORS

How can we bring the vibration of a given floor to compliance?


- Increase in stiffness increases the frequencies
- Increase in weight reduces the frequencies
- Increase in frequency, reduces the peak acceleration
- Increase in weight reduces the peak acceleration
- Increase in restraint of boundary conditions, reduction in span increases frequency

For the given example, increase slab thickness from 8" (203 mm) to 10" (250 mm)

• Frequency f = 7.72 Hz

W = 115.3 k (514 kN)

Peak acceleration $(a_p/g) = 0.154 \%$

SCOPE

Part 1 – Basic information and practical approach

- ❖ Why are we concerned about vibration;
- ❖ What are the causes of vibration;
- ❖ What are the allowable limits of vibration;
- How to evaluate the vibration acceptability of a floor
 - ➤ Numerical Example

Part 2 - Past practice; alternative methods

- Semi empirical and simple methods of vibration evaluation
 - ➤ Numerical Example

Part 3 – Impact of secondary factors

- Post-tensioning
- Cracking of concrete
- Floor covers/tiles/stones
- Installed equipment/machinery

cont...

VIBRATION DESIGN OF CONCRETE FLOORS

Part 2 – Past practice; alternative methods

- Semi empirical and simple methods of vibration evaluation
 - ➤ Numerical Example
- Estimate the natural frequencies using empirical relationships
- Make a good engineering judgment on the probable shape of the first natural frequency

FORMULAS FOR NATURAL FREQUENCIES

FIRST NATURAL FREQUENCY CONSTANT ϕ

Case	Boundary Conditions	Constant φ
1	a	$\phi = 1.57 \Big(1 + \gamma^2\Big)$
2		$\phi = 1.57\sqrt{1 + 2.5\gamma^2 + 5.14\gamma^4}$
3		$\phi = 1.57\sqrt{5.14 + 2.92\gamma^2 + 2.44\gamma^4}$
4		$\phi = 1.57\sqrt{1 + 2.33\gamma^2 + 2.44\gamma^4}$
5		$\phi = 1.57\sqrt{2.44 + 2.72\gamma^2 + 2.44\gamma^4}$
6		$\phi = 1.57\sqrt{5.14 + 3.13\gamma^2 + 5.14\gamma^4}$

rigidly supported, rotationally free rigidly supported, rotationally fixed

- a span length in x-direction
- b span I length in y-direction
- γ a/b

DETERMINATION OF NATURAL FREQUENCIES

The parameters for the Table are:

$$f = \frac{c}{a^2} \phi$$

Where

$$c = \sqrt{\frac{Eh^3}{12(1-v^2)} \times \frac{g}{q}}$$

f = first natural frequency [Hz];

a = span length in X-direction;

E = dynamic modulus of elasticity [1.2 static E
 in psi; MPa];

h = slab thickness [in; mm];

v = Poisson's ratio [0.2];

g = gravitational acceleration [32.2 ft/sec²; 9810 mm/sec²]; and

q = weight per unit surface area of the slab.

DETERMINATION OF NATURAL FREQUENCIES

Shape of first Natural Frequency Mode

The first mode of vibration is affine to that of a single panel simply supported plate. The shape is not analogous to the deflected profile under selfweight

(a) Simple support (b) Fixed

(c) Continuous spans

(d) Deflection self weight

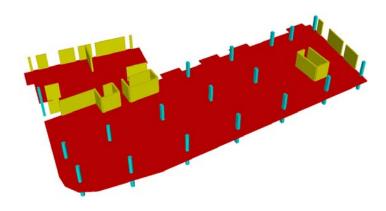
First Mode Shapes and Deflection of Simple and Continuous Spans

DETERMINATION OF NATURAL FREQUENCY

Shape of first Natural Frequency

- Use a simply supported boundary conditions along the four sides of an interior panel
- Where columns are on a regular orthogonal grid, the first mode is likely to be in form of a one-way slab deflecting in a cylindrical form.
- Panels bounded by smaller spans, may vibrate analogous to a rotationally fixed plate

(a) Simple support (b) Fixed


(c) Continuous spans

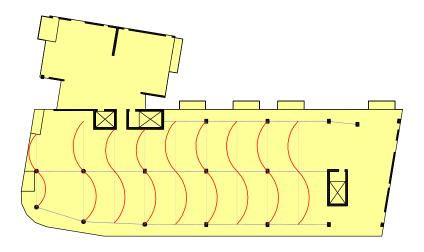
(d) Deflection self weight

First Mode Shapes and Deflection of Simple and Continuous Spans

Numerical Example

Evaluate the vibration compliance of the floor slab below, for foot drop having the same details in former example, using empirical formulas

View of the Floor System



VIBRATION DESIGN OF CONCRETE FLOORS

Step 1

Envisage the probable shape of the first mode of vibration.

A column supported slab, such as the floor system under consideration is likely to vibrate in form of a cylinder (one-way system)

Probable Shape of First Mode

Step 2

Select from the Table of frequency formulas, the case that can best simulate the envisaged shape of first mode of vibration

Find the First Natural Frequency

Using the parameters of frequency table:

$$g = 9.81 \text{ m/sec}^2;32.2 \text{ ft/sec}^2$$

First natural frequency, f:

$$f = \frac{c}{a^2} \phi$$

$$c = \sqrt{\frac{Eh^3}{12(1-v^2)} \times \frac{g}{q}}$$

$$E_{st}$$
 = 29,000 MPa
= 4287 ksi , using ACI-318

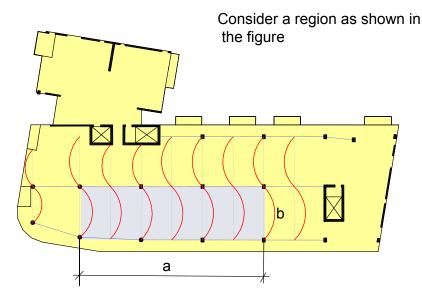
Assume $E_{dyn} = 1.2 E_{st} = 1.2 E_{st}$

CALCULATE NATURAL FREQUENCY

FIRST NATURAL FREQUENCY CONSTANT ϕ

Case	Boundary Conditions	Constant φ
1	b	$\phi = 1.57 \Big(1 + \gamma^2\Big)$

rigidly supported, rotationally free


- a span length in x-direction
- b span I length in y-direction

$$c = \sqrt{\frac{Eh^3}{12(1-v^2)} \times \frac{g}{q}}$$

$$\phi = 1.57 \Big(1 + \gamma^2 \Big)$$

$$f = \frac{c}{a^2} \phi$$
 (frequency of first mode)

CALCULATE NATURAL FREQUENCY

$$a = 3*90*12 = 1080 \text{ in } (42.5 \text{ m})$$

$$\Phi = 1.57(1+\gamma^2) = 1.57 \left[1 + \left(\frac{90}{26.25} \right)^2 \right] = 20.03$$

$$c = \sqrt{\frac{Eh^3}{12(1-v^2)}} \times \frac{g}{q}$$

$$E_{dyn}$$
 = 1.2 E_{st} = 1.2x4287 = 5144 ksi (35,477 MPa)

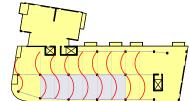
CALCULATE NATURAL FREQUENCY

h = 8 inch (203 mm)

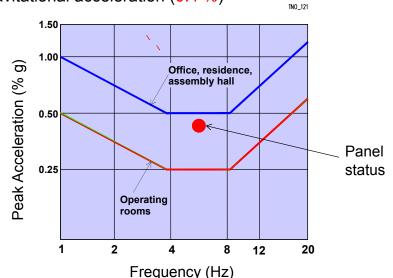
q = weight/unit area

$$q = \frac{150 \times 8}{12 \times 144} + \frac{20}{144} = 0.833$$
 lb/ in2 (5.54 x10⁻³ MPa)

$$c = \sqrt{\frac{5144 \times 1000 \times 8^3}{12(1 - 0.2^2)}} \times \frac{32.2 \times 12}{0.833} = 325653 \text{ in}^2/\text{sec}$$
(2.1x10⁸ mm2/sec)


$$f = \frac{325653}{1080^2} \times 20.03 = 5.59 \text{ Hz}$$

$$\frac{a_p}{g} = \frac{P_0 e^{-0.35f}}{\beta W}$$


$$\frac{a_p}{g} = \frac{79.5 \times e^{-0.35 \times 5.59}}{0.03 \times 94.5 \times 1000} = 0.004 ; 0.4 \%$$

Note that the weight of one panel is used for W

Check the Results for Acceptability

- First natural frequency (5. 59 Hz)
- ❖ Peak response acceleration relative to gravitational acceleration (0.4 %)

Acceptable for office and residential, but not for operating rooms

VIBRATION DESIGN OF CONCRETE FLOORS

SCOPE

Part 1 – Basic information and practical approach

- ❖ Why are we concerned about vibration;
- What are the causes of vibration:
- What are the allowable limits of vibration:
- How to evaluate the vibration acceptability of a floor
 - ➤ Numerical Example

Part 2 - Past practice; alternative methods

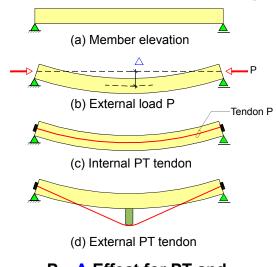
- Semi empirical and simple methods of vibration evaluation
 - ➤ Numerical Example

Part 3 - Impact of secondary factors

- Post-tensioning
- Cracking of concrete

cont...

Part 3 – Impact of secondary factors

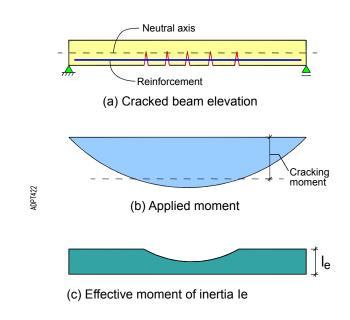

- Post-tensioning
 - Post-tensioned slabs are generally thinner than their conventionally reinforced counterparts; hence, they have lower frequencies
 - Precompression from post-tensioning inhibits, or reduces crack formation. Post-tensioned slabs are stiffer than RC slabs of the same thickness

TRANSMISSION PATH OF VIBRATION

Post-Tensioning

- Post-tensioning imparts axial compression.
- Axial force from external source causes (P∆) moment; reduces flexural stiffness.
- Internal post-tensioning does not cause (P∆) moment, and does not reduce flexural stiffness.

P − △ Effect for PT and Externally Loaded Members


Part 3 – Impact of secondary factors

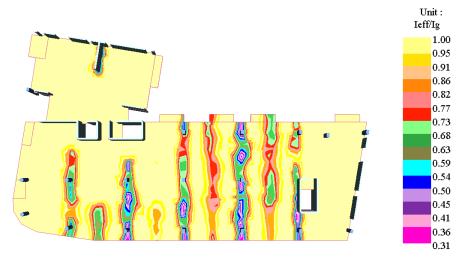
- Cracking of concrete
 - Cracking of concrete, in particular in conventionally reinforced concrete, where hair cracks under service condition are common and numerous in number result in reduction of local stiffness.
 - Concentration of local cracks over the supports and at midspan can result in a change in the natural mode shape of vibration

VIBRATION DESIGN OF CONCRETE FLOORS

Part 3 - Impact of secondary factors

Cracking of concrete

Loss of stiffness due to cracking results in shorter frequencies



Part 3 – Impact of secondary factors

Cracking of concrete

Extent of cracking under dead load. Max local reduction in stiffness 69%

EXTENT OF CRACKING SHOWN THROUGH REDUCTION IN STIFFNESS FOR MOMENTS ABOUT Y-Y AXIS

VIBRATION DESIGN OF CONCRETE FLOORS

Part 3 – Impact of secondary factors

Cracking of concrete Extent of cracking under dead load. Max local reduction in stiffness 67%

EXTENT OF CRACKING SHOWN THROUGH REDUCTION IN STIFFNESS FOR MOMENTS ABOUT X-X AXIS

Part 4 - Other causes of vibrations

- * rhythmic motions; dance; aerobics
- Impact of vibrations on sensitive equipment
- References

Rhythmic motions; dance; aerobics

The same 6-steps apply with the following two differences

- Exciting force P_o is larger
- > Tolerance of vibration is more

Exciting Force Po for Rhythmic Activities

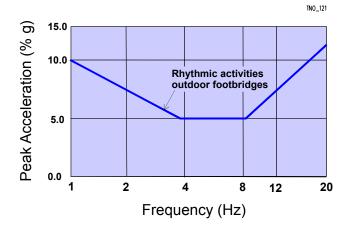
	•	•		
Activity	Forcing frequency Hz	Weight of participants w_p (psf) (kN/m2)	factor	Dynamic load intensity $P_o = DLF w_p$ psf (kN/m2)
Dancing	1.5 - 3.0	11.1* (0.531)	0.5	5.55 (0.266)
Lively concert or sports event	1.5 – 3.0	30.0** (1.44)	0.25	7.50 (0.359)
Aerobics	2.0 - 4.0	3.6*** (0.172)	1.5	5.40 (0.258)

Average weight of a person assumed 150 lb (79.5 kg)

* assuming each dancing couple taking 27 ft²; (2.51 m²);

** assuming 5 $\mathrm{ft^2}$; (0.464 m2) per person

*** assuming 42 ft²; (3.90 m2) per person

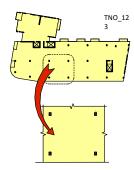


PERCEPTION OF VIBRATION

Rhythmic motions; dance; aerobics

- > Exciting force *P*_o is larger
- Tolerance of vibration is more

Threshold of Human Sensitivity to Vertical Vibration from Rhythmic Activities (ATC)

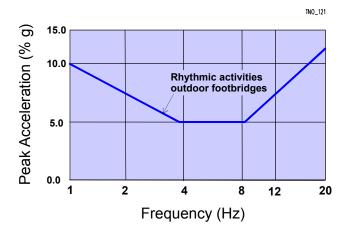

Note that the threshold of acceptable peak acceleration is about 10 times more than regular foot fall on residential and commercial buildings

Rhythmic motions; dance; aerobics Numerical Example

Determine the adequacy of the floor panel identified for aerobic activities

- 1 Frequency f = 5.97 Hz
- 2 Exciting force from the table is 5.36 psf (kN/m2) Panel size 26.25x30 ft P_o = 5.36x26.25x30 = 4221 lb (18.78 kN)
- $3 \text{Floor type } \beta = 0.03$
- 4 Weight W = 94500 lb (420.36 kN)
- 5 Calculate peak acceleration a_p/g

$$\frac{a_p}{g} = \frac{P_0 e^{-0.35f}}{\beta W}$$


 $\frac{a_p}{g} = \frac{4221e^{-0.35 \times 5.97}}{0.03 \times 94500} = 0.184 = 18.4\%$

6 – Evaluate (see next slide)

PERCEPTION OF VIBRATION

Rhythmic motions; dance; aerobics

- Computed values:
 - \rightarrow frequency f = 5.97 Hz
 - Peak acceleration ratio 18.4%

Threshold of Human Sensitivity to Vertical Vibration from Rhythmic Activities (ATC)

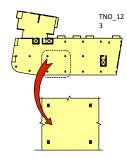
- ☐ With 10% being the maximum, the sensitivity diagram clearly indicates that the calculated 18.4% is not acceptable.
- ☐ One option is to increase the slab thickness.

PERCEPTION OF VIBRATION

Rhythmic motions; dance; aerobics

- Increase slab thickness to 11" (280 mm)
- \triangleright Computed frequency f = 9 Hz
- Weight W = 124.04 k (551.71 kN)
- \triangleright Peak acceleration $a_{p}/g = 4.9\%$

The chart indicates that increase in thickness makes the floor panel suitable for rhythmic activities



VIBRATION DESIGN OF CONCRETE FLOORS

Impact of Vibration on Sensitive Equipment Numerical Example

Determine the adequacy of the floor panel identified under foot fall for general laboratory

- 1 Frequency f = 5.97 Hz
- 2 Exciting force for foot fall P_o = 45 lb (0.20 kN)
- 3 Floor type β = 0.035 (for densely equipped laboratory)
- 4 Weight W = 94500 lb (420.36 kN)
- 5 Calculate max velocity

$$v = \frac{P_0 g}{2\pi\beta W f e^{0.35 f}}$$

$$v = \frac{45 \times 384}{2 \times 3.14 \times 0.035 \times 94500 \times 5.97 e^{0.35 \times 5.97}} = 0.017 \text{ In/sec}$$
 (0.43 mm/sec

- = 17000 mips (0.43 mm/sec)
- 6 Evaluate the response of the floor

VIBRATION DESIGN OF CONCRETE FLOORS

Impact of Vibration on Sensitive Equipment Numerical Example

6 – Evaluate the response of the floor

National Institutes of Health's Recommended Velocities

Function	Maximum velocity micro meter/sec	Maximum velocity Micro in/sec
General laboratory	50	2000
Ordinary surgery	25	1000
Bench scope up to 100X mag	50	2000
Bench scope up to 400X mag	25	1000
Electron microscope greater than 30,000X; mass spectrometer	6	240
Electron microscope up to 30,000 mag	12	480

Calculated velocity = 0.017 in/sec = 17,000 mips = 432 micro meter/sec >> 2000 mips, or 50 micro m/sec NG

➤ Increase of slab thickness to 12 in (300 mm) brings the velocity to the acceptable range

FREQUENCIES

Factors affecting the natural frequencies:

- Floor's mass
- Modulus of elasticity
- Damping
- Extent of cracking; post-tensioning

Mass

- Expresses as (W/g),
 - "W" is the weight of the objects that are attached to the floor and faithfully follow its displacement; the greater the weight the larger is the period; the smaller is the frequency (Hz)
 - □ "g" is the gravitational acceleration taken as 32.2 ft/sec² (9.81 m/sec²).

Modulus of Elasticity

- The elastic modulus for vibration analysis is larger than the static values, in particular when high strength concrete is used.
- Recommended values are 25% higher than the static modulus.

VIBRATION DESIGN OF CONCRETE FLOORS

References

Aalami, B., (2014), "Vibration Design of Concrete Floors," PT-Structures Technical Note TN290, www.PT-Structurescom, 29 pp., 2014

ADAPT Technical Note TN388, 2010," Vibration Evaluation of a Floor System for Foot Fall," www.adaptsoft.com, 9 pp., 2010

AISC/CISC, (1997), "Steel Design Guide Series 11, Floor Vibrations Due to Human Activity," American Institute of Steel Construction, Chicago, IL, 1997.

ATC, (1999) "ATC Design Guide 1," *Minimizing Floor Vibration*," Applied Technology Council, Redwood City, CA, 1999, 49 pp.

Bares, R., (1971), "Tables for the Analysis of Plates, Slabs and Diaphragms Based on the Elastic Theory," Bauverlag GmbH, Wiesbaden und Berlin, 1971, pp. 626

Farzad, N., (1991), "Design Practice to Prevent Floor Vibrations," Steel Tips, Structural Steel Educational Council, Walnut Creek, CA,25 pp.

VIBRATION DESIGN OF CONCRETE FLOORS

References

Mast, F. R., (2001)," Vibration of Precast Prestressed Concrete Floors," PCI Journal, November-December 2001, 2001, pp. 76-86.

NIH, (2012), "Design Requirement Manual," The National Institute of Health, Division of Technical Resources, www.nih.gov

Source: Allen, D. E., and Murray, T. M., (1993) "Design Criterion for Vibrations Due to Walking," Engineering Journal, Fourth Quarter, American Institute of Steel Construction, 1993, pp. 117-129.

TR43, (2005)," Post-tensioned concrete floors: Design Handbook," Second edition, The Concrete Society, Surrey GU17 9AB, UK.

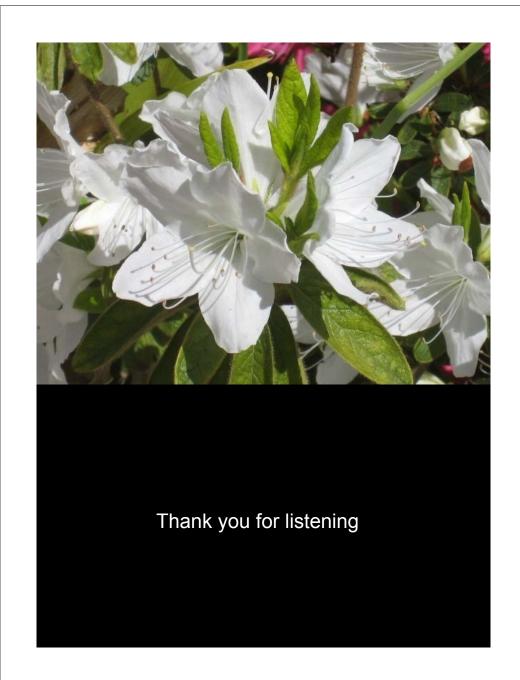
Szilard, R., (1974), "Theory and Analysis of Plates-Classical and Numerical Methods," Prentice-Hall, Inc., New Jersey, 1974, 724 pp.

VIBRATION DESIGN OF CONCRETE FLOORS

Other work by the author on vibrations

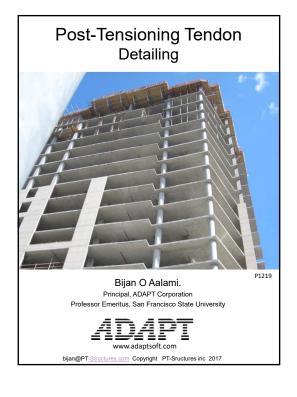
Aalami, B. O., (1984) "Large Amplitude Vibrations of Rectangular Plates," Journal of Applied Mechanics, ASME, 1984, pp 935-937.

Aalami, B. and Atzori, B. "Flexural Vibrations and Timoshenko's Beam Theory", Journal of the American Institute of Aeronautics and Astronautics, May 1974, pp 679-685


Aalami, B. "Waves in Prismatic Bars of Arbitrary Cross-Section", Journal of Applied Mechanics, ASME, December 1973, pp 1067-1072.

.Aalami, B. O., and Javaherian, H., "Free Vibrations of Rectangular Plates," Fourth Australasian Conference on the Mechanics of Structures and Materials, University of Queensland, Brisbane, 20-22nd, Aug, 1973, pp.1-8.

Aalami, B. "Analysis and Behavior of Acoustic Surface Wave Guides", Institute of Electronics and Electrical Engineers, Transactions on Sonics and Ultrasonics, July 1973, pp 252-260.

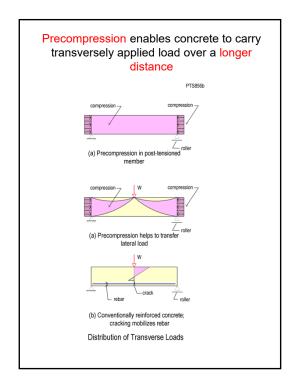


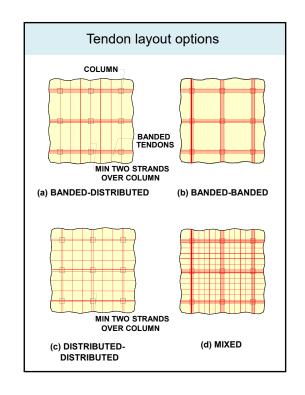
Session 8

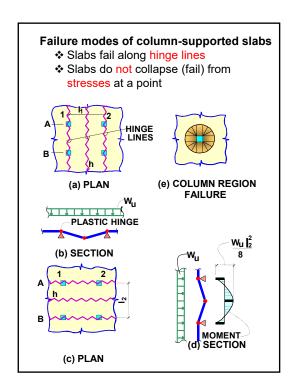
Thursday 31 May

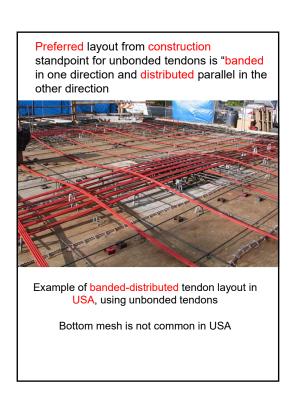
Construction Detailing:
Layout of Post-Tensioning
Tendons and Detailing of
Non-Prestressed
Reinforcement

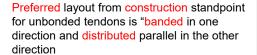
Bijan Aalami

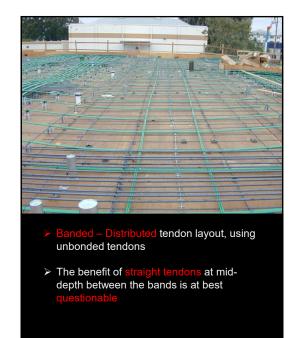

1 – Distinguishing features between RC and PT detailing

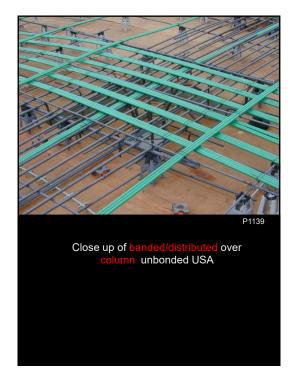

- i. Crack formation not sensitive to distance from tendon
- ii. Biaxial stress from post-tensioning helps to resist lateral loads
- iii. At ultimate strength, failure occurs through formation of hinge lines
- iv. Column strip/middle strip does not apply for reinforcement layout

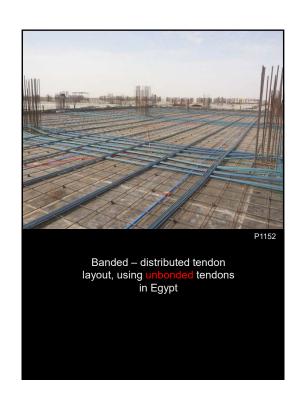

Contents of presentation

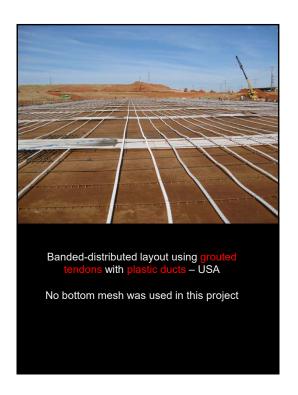

- 1. Distinguishing features in detailing PT and RC slabs
- 2. Tendon layout
- 3. Tendon profiles
- 4. Tendons in beams
- 5. Stressing/dead end details
- Setting tendon profile in construction
- 7. Recording/marking tendon locations

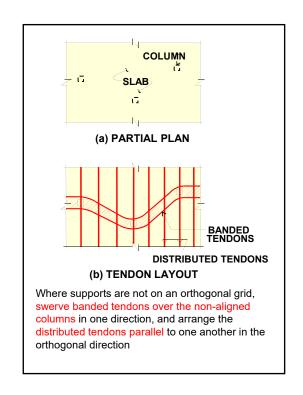


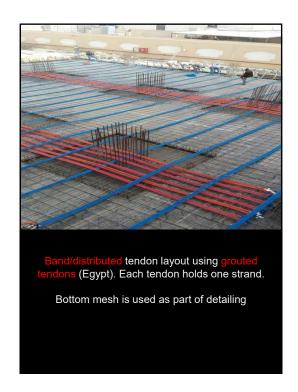


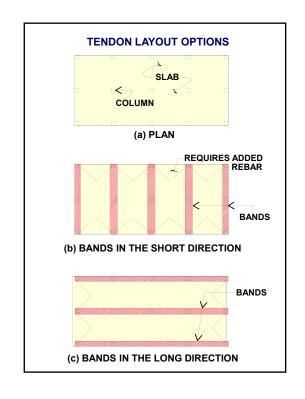


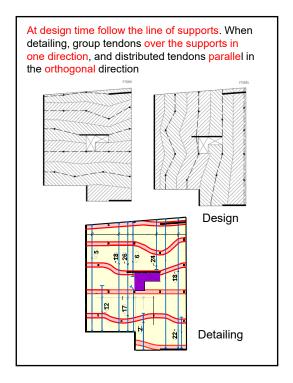

Example of banded/distributed layout using unbonded tendon in Brazil

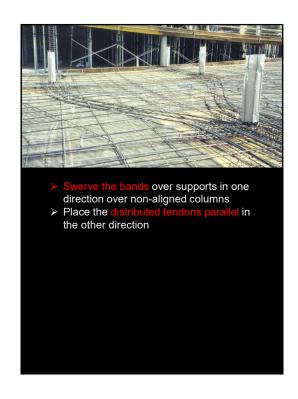

Bottom mesh is generally added for detailing


P1145

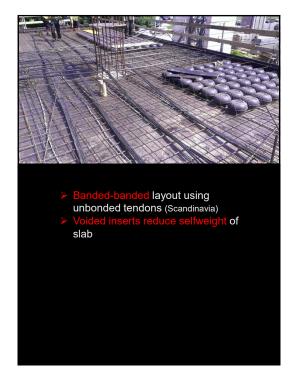


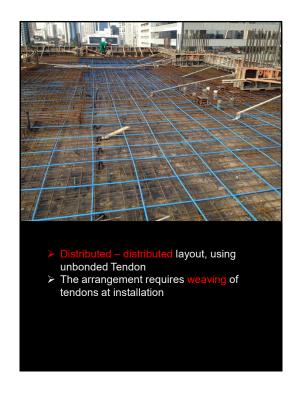


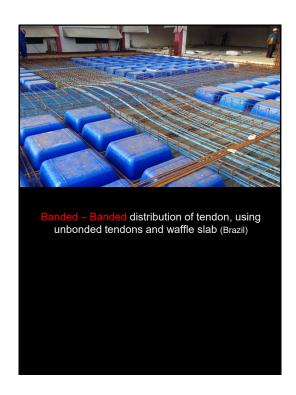


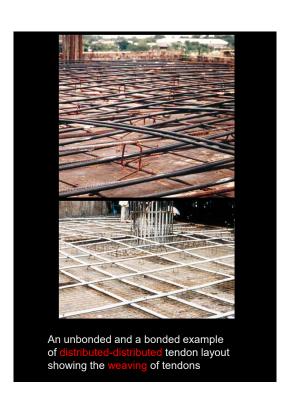


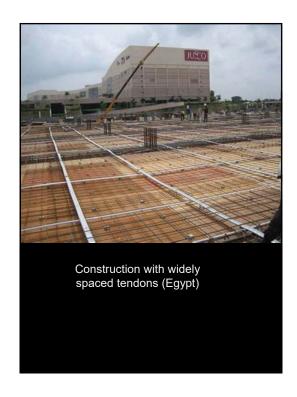


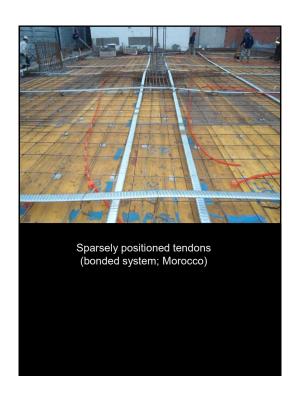


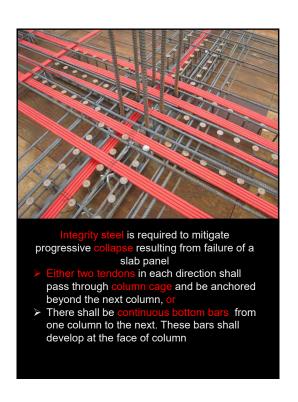


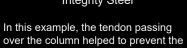


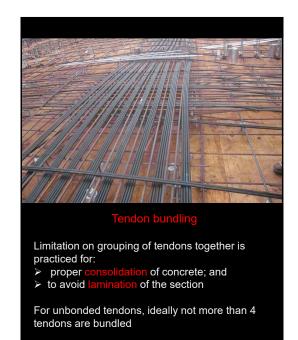


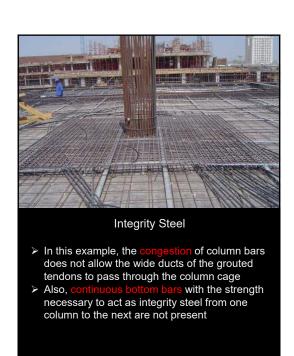


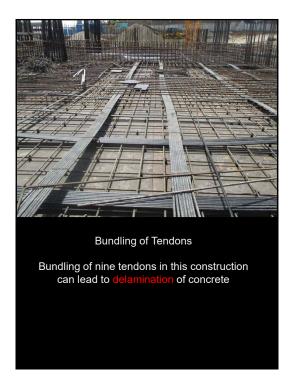


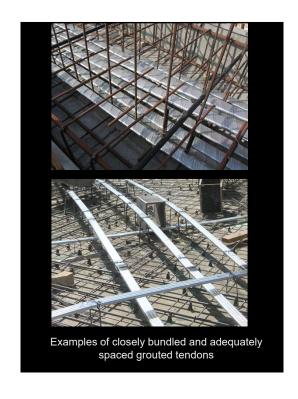


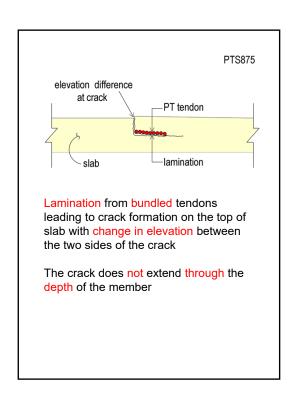


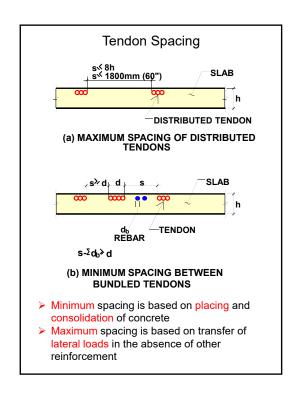


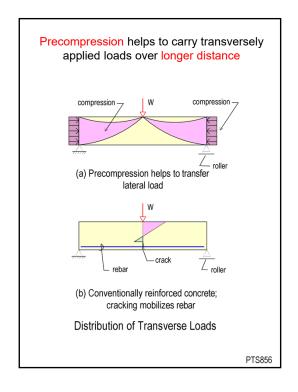


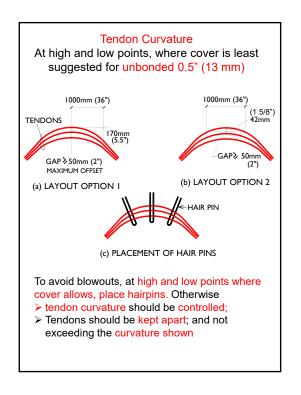

slab fall through the column (Northridge

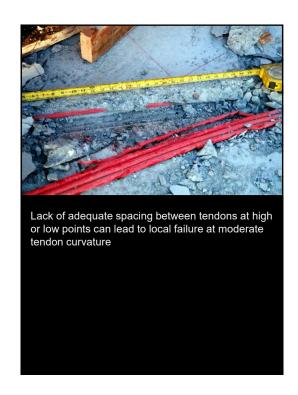

earthquake)

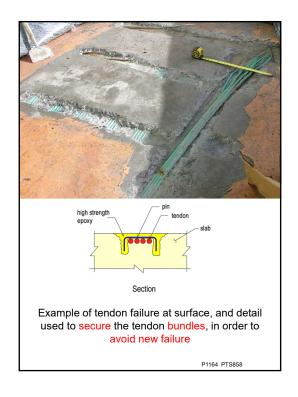


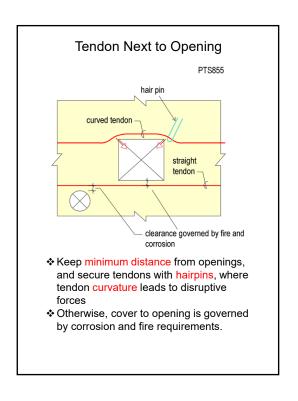


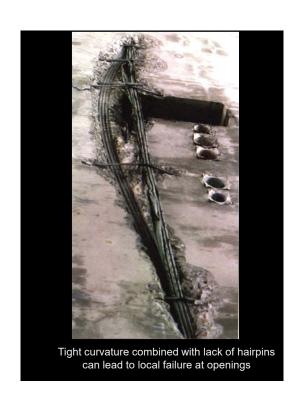


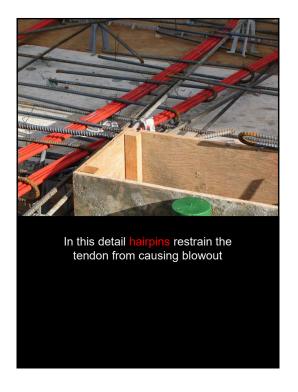


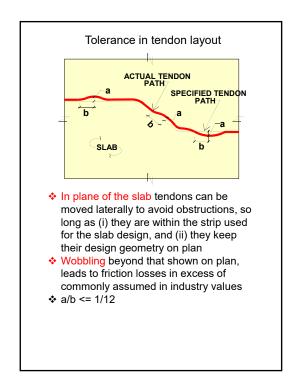


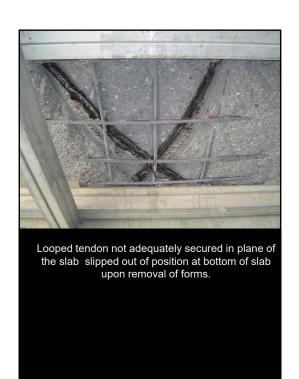












3 Tendon profile

Primary contributions of post-tensioning tendons are:

- > Precompression
- Uplift (lateral forces)

This results in

- ➤ Added strength
- > Reduced deflection

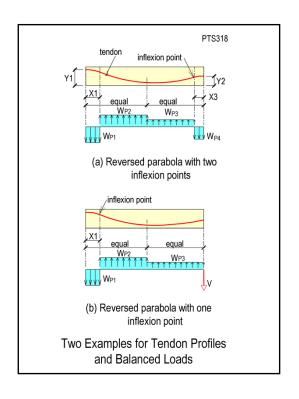
The optimum profile provides an uplift that best counteracts the effects of lateral forces (commonly gravity).

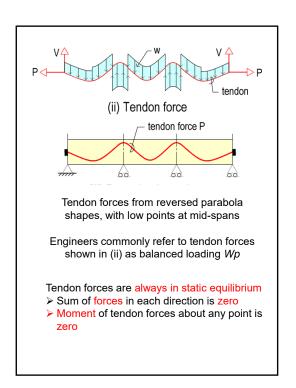
The optimum profile from performance standpoint follows the shape of the bending moment diagram that the tendon is intended to counteract.

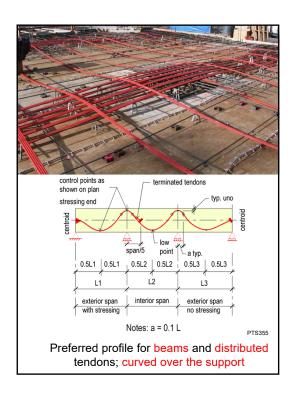
Since in most instances dead load moment is largest, the tendon profile is ideally selected to counteract the dead load of the member.

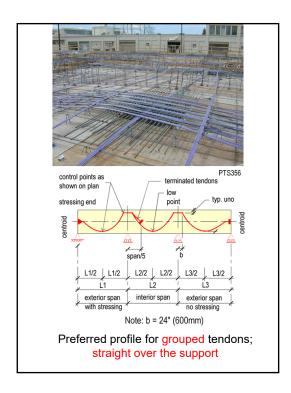
Due to computational complexities before the advent of computers, engineers selected tendon shapes that are segments of straight lines, or parabolas. These provide point or uniformly distributed loads that can be readily analyzed.

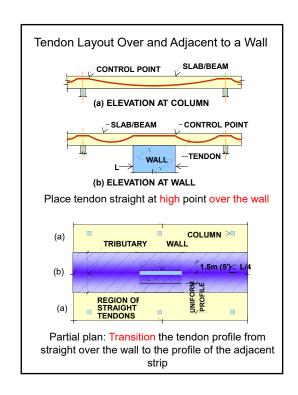
PTS315

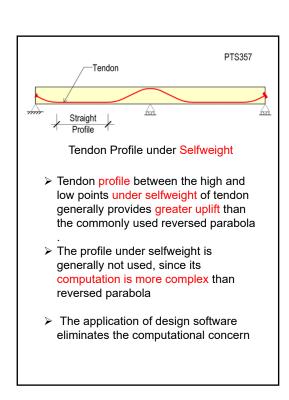

WP1

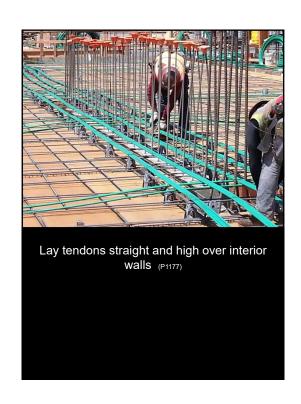

WP2

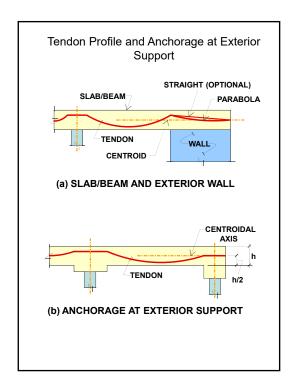

tendon inflexion point

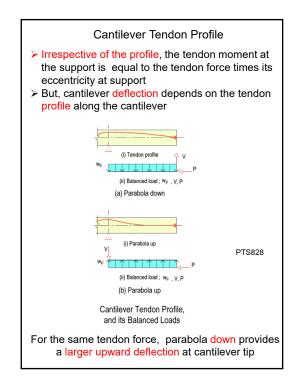

WP2

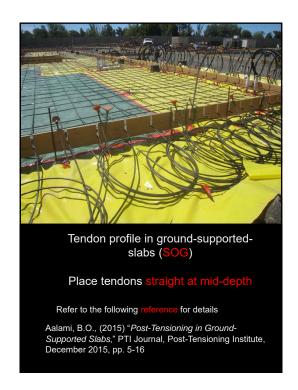

Geometry and force distribution of a half reversed parabola

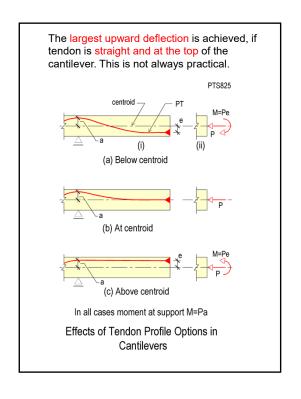


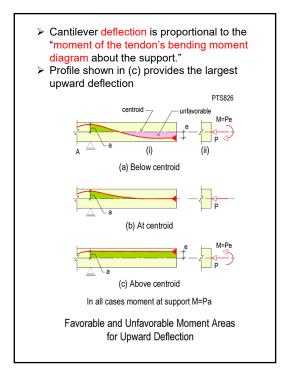


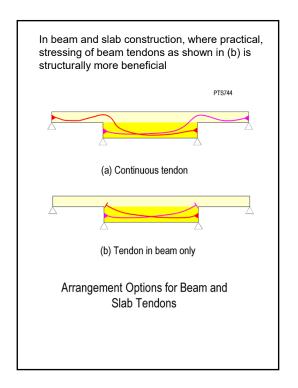


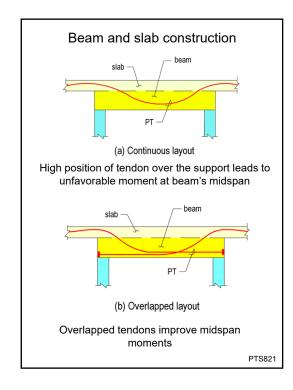


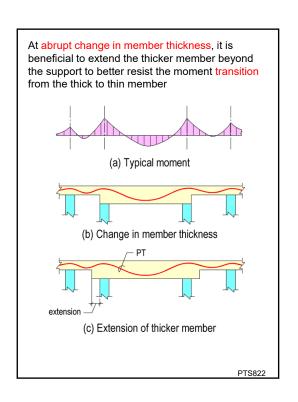


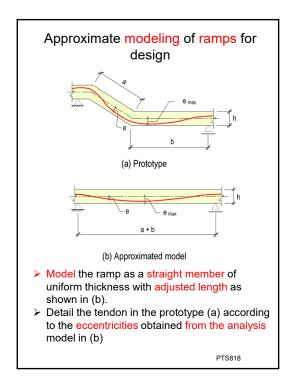


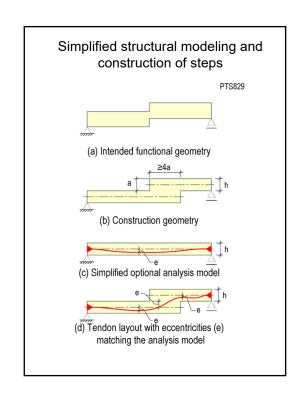


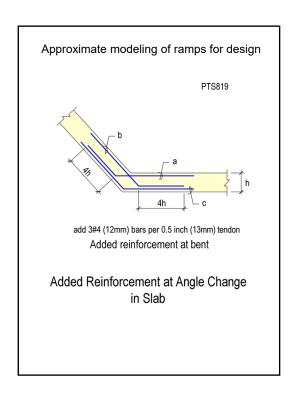


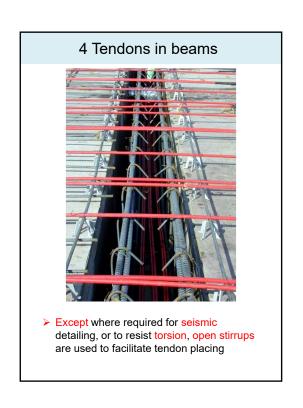


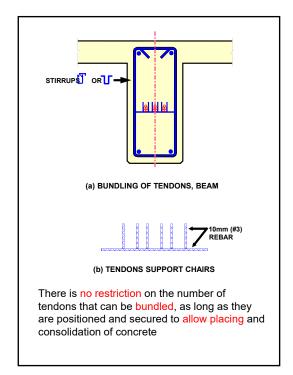


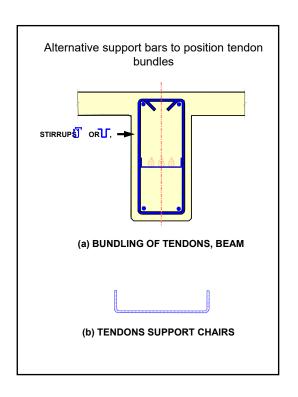


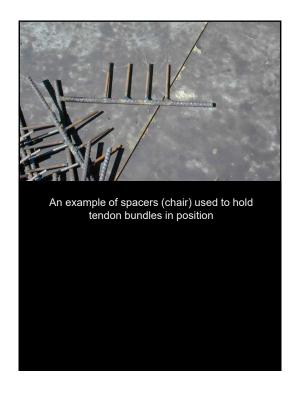


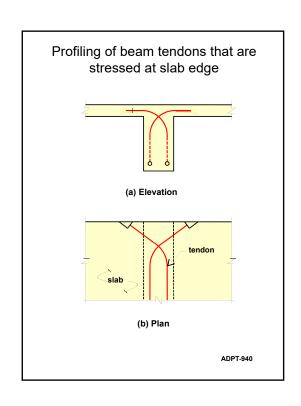


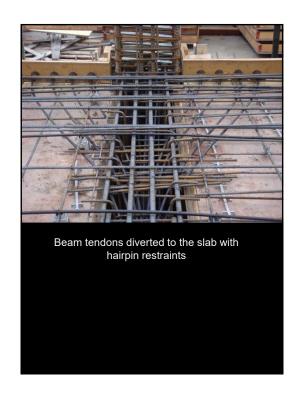




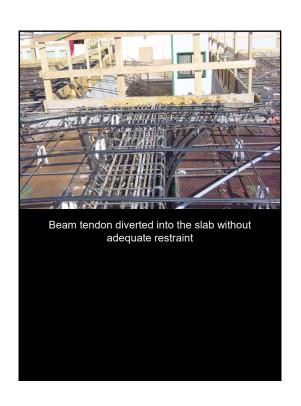


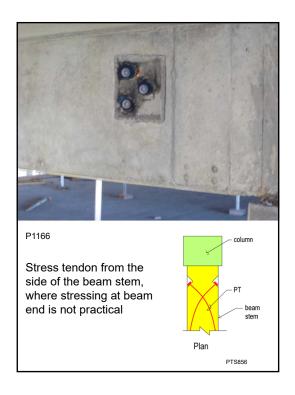


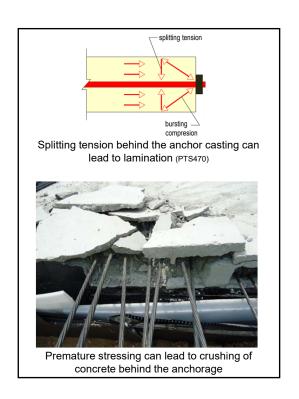


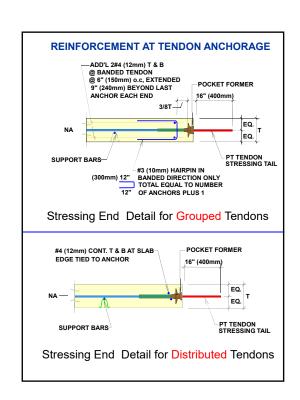


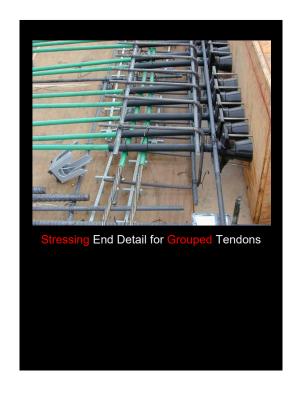
In flanged beam construction, often a number of tendons have to be raised and anchored in the slab, in order to maintain the resultant of the tendon force at, or near the centroid of the flanged beam geometry
 In exiting the beam stem, tendons should flip to the opposing side to avoid local rupture



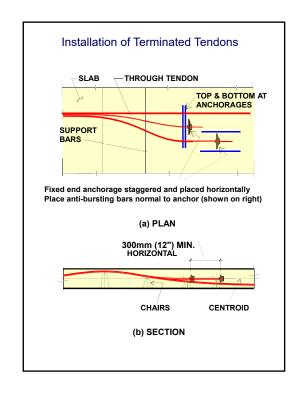


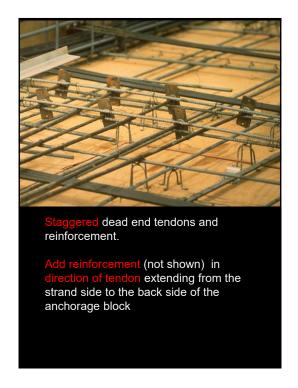


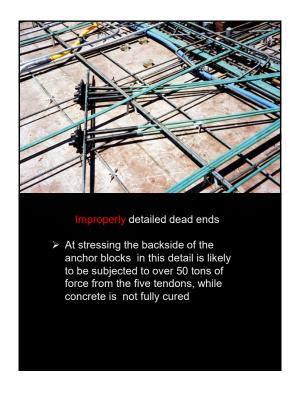


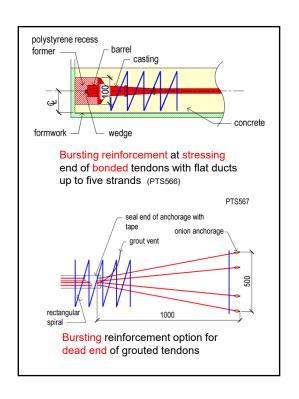

6 Stressing and dead end details

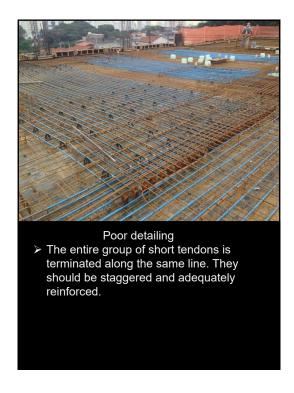
The stressing and dead end are detailed with the following objectives


- Avoid crushing of concrete behind the anchorage casting; and
- ➤ Distribute the tendon pressure behind the anchorage casting, such as to avoid excessive splitting tension, leading to cracking and lamination of concrete
- Detailing for unbonded and bonded construction are somewhat different, as illustrated in the following.

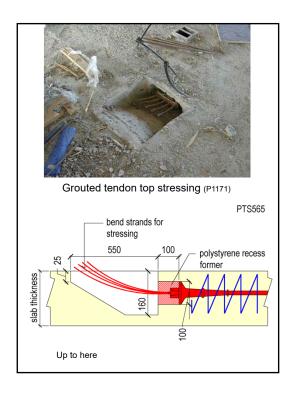


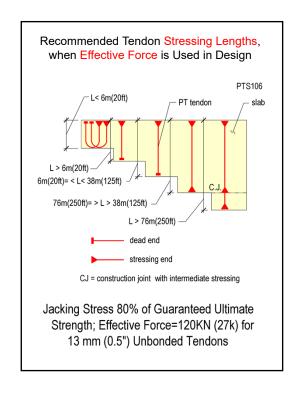


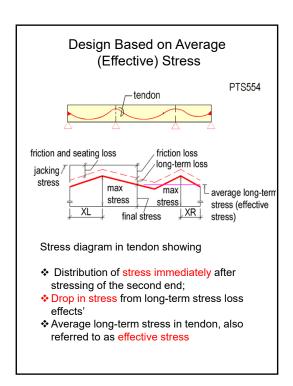


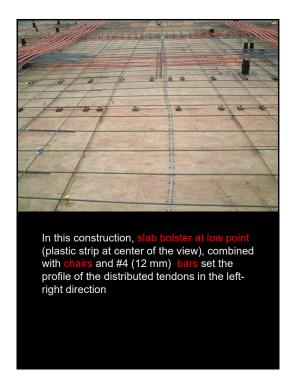


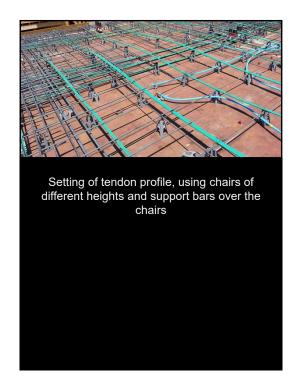
Crushing and failure of concrete at interior dead ends during stressing, due to inadequate anti-bursting reinforcement.


Rebar along the tendon straddling the anchor casting is missing





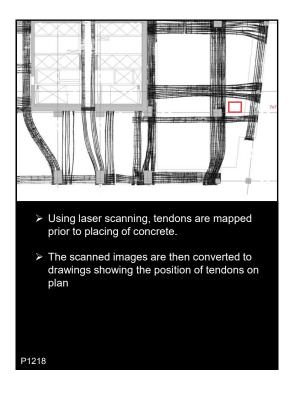


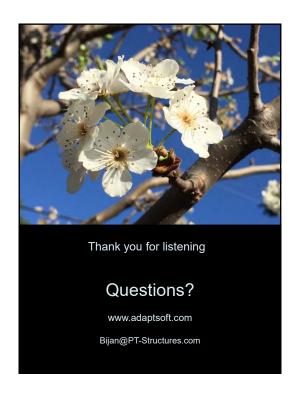

6 Setting Tendon Profile on Site

The central considerations are:

- > Correct elevation at the high point
- ➤ Correct elevation at the low point
- Smooth transition from the high to the low
- Secure tendon position to make sure that during installation of other reinforcement and placing of concrete tendons remain in their installed position.

Tendon profile is set and maintained using individual chairs; rebar or plastic bars (slab bolster)





Detailing of Post-Tensioning and Rebar

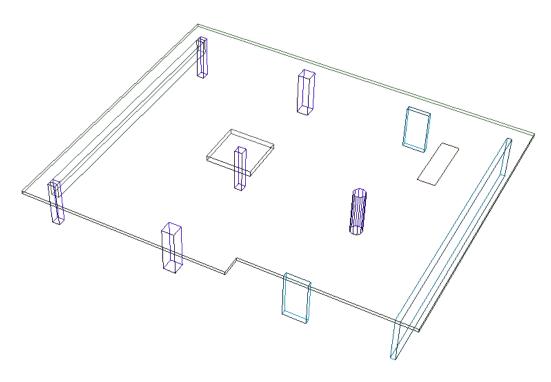
Summary

- 1 Distinguishing features of PT and RC slabs
- 2 Tendon layout options and practice
- 3 Tendon profiles
- 4 Tendons in beams
- 5 Stressing and dead end detailing
- 6 Maintaining tendon profile in construction

Hands-On Workshop

Friday 1 June

Florian Aalami



workshop_tutorial_builder_v11 041518

Hands-on Slab Design Workshop Manual

Reinforced Concrete and Post-Tensioned design of a Floor System using

Update: March 2018

Copyright © ADAPT Corporation all rights reserved

DESIGN OF CONCRETE FLOOR SYSTEMS using ADAPT-Builder Design Suite

OVERVIEW	3
INTRODUCTION	4
SUMMARY OF TUTORIAL SESSIONS	5
DESIGN SCOPE AND CRITERIA DESIGN CONSIDERATIONS MATERIAL PROPERTIES DESIGN LOADS LOAD CASES; LOAD COMBINATIONS AND STRESSES DEFLECTION AND CAMBER COVER	8 10 10 11
TENDON PROFILE AND LAYOUT	
SESSION (1) – Generation of 3D Structural Model	13
SESSION (2) - First Finite Element Method (FEM) Solution	22
SESSION (3) – Entering of Design Criteria	29
SESSION (4) - Design Slab with Mild Reinforcement Only	33
SESSION (5) – Design Slab with Post-Tensioning	39
SESSION (6) – Generation of Structural Drawings	56
SESSION (7) - Preparation of Package of Structural Calculations	62
SESSION (8) - Fabrication (Installation, Shop) Drawings	68
APPENDIX A: PREPARATION OF DWG DRAWING FOR IMPROVED IMPORTING	73
APPENDIX B: USEFUL HINTS	78
APPENDIX C: TREATMEMENT OF COMPOUND (INTERCONNECTED) WALL ASSEMBLIES	79

OVERVIEW

This workshop/tutorial package is tailored to the needs of design engineers who are seeking to become familiar with the latest developments in design of concrete floor systems. In particular, the workshop covers in detail the process of designing reinforced concrete and post-tensioned floor systems using ADAPT-Builder Floor Pro software. Long regarded as a difficult engineering challenge, designing concrete floor systems is greatly simplified with ADAPT-Builder, which provides significant efficiencies throughout the design process.

This self-contained package includes all the programs, cad files, data and the documentation needed to get started with ADAPT-Builder. You can download a PDF version of this document and all supporting files at www.adaptsoft.com/workshop/slab-desing.zip. To supplement the information provided in this workshop manual, you can access technical notes on various design topics on our website.

The workshop is broken into several convenient sessions. When supervised, the entire workshop is likely to take five to six hours. If you plan to go over it on your own, the sessions are likely to take one hour on average.

This tutorial/workshop uses the following programs of the ADAPT-Builder Design Suite:

- ❖ ADAPT-Modeler® 2017.2
- ❖ ADAPT-Floor Pro® 2017.2
- ❖ ADAPT-Post-Tensioning (Shop) Fabrication Drawing Extension Module
- ❖ ADAPT-Edge 2017.2
- S-CONCRETE 12.x (requires separate license and will only be demonstrated by instructor)

The scope of the example is chosen such that you can use the 15-day evaluation version of ADAPT-Builder programs to run through the sessions of this workshop.

Contact ADAPT at info@adaptsoft.com if you need additional information.

INTRODUCTION

This tutorial walks you through the complete modeling, analysis, design and detailing of a reinforced concrete and post-tensioned floor system. It starts from the architect's drawings and concludes with the construction drawing, showing the tendons and the nonprestressed reinforcement. It also includes the automatic generation of a set of structural calculations, compiled and ready for submittal to building officials. A session on fabrication drawings (shop drawing; installation drawing) concludes with the generation of a detailed tendon layout on site, showing tendon grouping, chair heights and tendon elongation. For those of you interested in the economics of your design, the tutorial shows you how to obtain a report on the quantity of reinforcement and post-tensioning obtained in your design.

If you are not well versed in the design of post-tensioned structures, and hence not able to initiate the design with an economical selection of tendons for a finite element analysis, we recommend you use ADAPT-PT to carry out a preliminary design for this project. The ADAPT-PT software ships with several easy-to-follow tutorials that cover the design of beams, one-way and two-way slab systems. This tutorial provides some basic guidelines for the initial selection of a post-tensioned system.

The tutorial is broken down into a number of sessions, each intended to guide you through a specific aspect of design. The Tutorial CD has all the information you will need to complete each of the sessions, including the necessary program modules of the Builder software platform, the tutorial instructions, program manuals and technical notes of interest, and program utilities. The Builder platform programs included in the Tutorial CD are 15-day evaluation versions of ADAPT-Floor Pro and ADAPT-MAT. They are time limited versions of the fully functional commercial programs.

The floor system selected is small enough for you to complete all steps of this tutorial, and at the same time complex enough to contain enough of the essential features of a real floor system, such as walls, columns, beam, drop cap, and opening. Its overall dimensions are approximately 24.4x20m (80 x 65.75 ft). The project data comes in two systems of units, American and SI.

Both the SI and the American systems of units versions of the tutorials are based on the current ACI-318 and the International Building Code (IBC). The stress check in this tutorial is based on the allowable values of ACI-318, and IBC. However, the programs provided in your CD, allow you to change the design code. It is recommended that you follow the tutorials to the end, as provided in your CD, and then experiment with other design codes, if you so wish.

IMPORTANT NOTE:

In some Windows versions, the folders copied from a memory stick or downloaded will have "Read Only" attribute. To open and run the data you have copied, you must remove the "Read Only" attribute from the files you copied. Go to the appendix of this document if you need assistance to do so. If you do not remove the "Read Only" attribute, the tutorial programs will not function properly.

SUMMARY OF TUTORIAL SESSIONS

Session One

Generation of 3D Structural Model: Using the simplified DWG from your session folder and the Modeler module of the Builder platform, you will learn how to import the DWG drawing into the Builder program, and rapidly convert it into a complete 3D structural model.

Session Two

First Finite Element Method (FEM) Solution: The rational start for a FEM design is to validate the structural model you have created, before going into the details of design. In this session, you will validate the 3D model of Session One by:

- (i) meshing the structure;
- (ii) obtaining an FEM solution for the self weight of the structure; and
- (iii) viewing the solution to visually examine and verify its validity.

Session Three

Enter Design Criteria: In this session, you will enter all relevant design criteria into the model you created and re-validate the analysis results:

- (iv) material properties;
- (v) design codes;
- (vi) design preferences and
- (vii) loads / combinations.

Session Four

Design Slab with Mild Reinforcement Only: In this session, you will design the slab system using mild reinforcement only. First you will calculate all of the required reinforcement for the slab and then you will rationalize your design by specifying base reinforcement and re-designing. You will run a quantity takeoff report to establish the baseline reinforcement requirement for your project. Design steps include:

- (i) define support lines;
- (ii) generate design strips;
- (iii) design slab;
- (iv) generate rebar layout;
- (v) add base reinforcement and
- (vi) redesign considering base reinforcement.

Session Five

Design Slab with Post-Tensioning: This is the core session for the design of a post-tensioned floor system. You will be guided to layout tendons; review the design criteria; perform a code check; view stress results; and finally obtain the rebar necessary to supplement the post-tensioning you assumed. This session may require several design iterations.

Session Six

Generation of Structural Drawings – Rebar and PT: In this session, the rebar module of the program will be used to automatically generate the structural drawings for both the tendon layout and the nonprestressed reinforcement. You will learn how to adjust and optimize the calculated reinforcement in order to produce practical and constructible structural drawings.

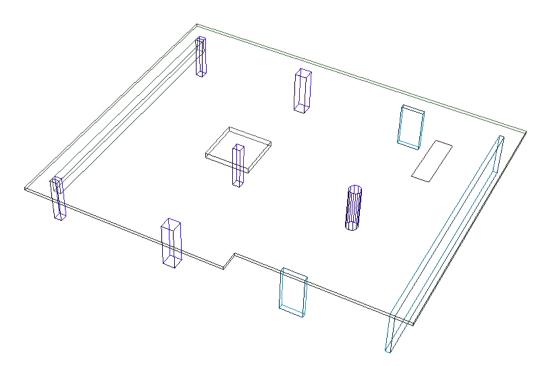
Session Seven

Preparation of the Package of Structural Calculations: You will learn to automatically compile a professionally packaged report that contains the complete information on the details of the floor system, loading, criteria for design, analysis and design values, and the outcome of the code check.

ADAPT

Session Eight

Fabrication (Installation, Shop) Drawings: Finally, for those of us involved in the generation of fabrication drawings, this session provides you with the skill to automatically create drawings that show chair heights for tendons and elongations, along with other information generally included in fabrication drawings.



DESIGN SCOPE AND CRITERIA

This outlines the criteria to be used for the structural engineering design of a typical floor system (Fig. 1) of the subject matter project.

The calculations performed for the post-tensioning design of the project are governed by the following considerations.

- The structural calculations are limited to gravity load design of the post-tensioned floor(s), and the transfer of the lateral forces through the floor system, provided the loads due to lateral forces are specified.
- The structural model for the design of the floor system includes the beams, balconies, slab depressions, and openings, if any. The floor will be modeled and analyzed with a story of columns and walls immediately below and above it, where applicable.

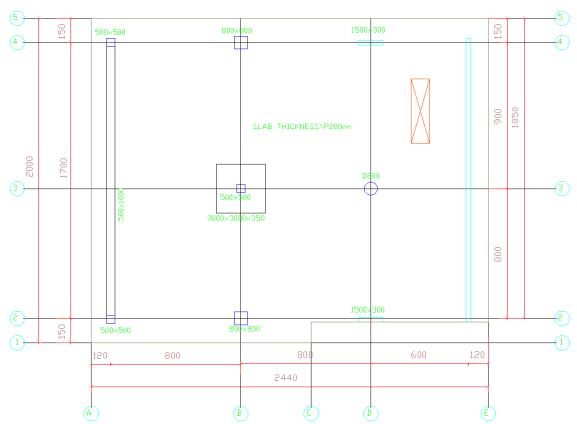


FIGURE 1 GENERAL STRUCTURAL PLAN OF TYPICAL FLOOR

DESIGN CONSIDERATIONS

Structural System

The structural system consists of both one-way and two-way, flat slab concrete floors, supported by beams, columns, and shear walls. The floor system will be post-tensioned in two orthogonal directions, unless noted otherwise. A drop panel provided over one of the central columns is used to mitigate excessive punching shear stresses. Post-tensioning tendons used are banded in one direction and distributed in the orthogonal direction.

The analysis can be based on the Equivalent Frame Method (EFM) or Finite Element Method (FEM) developed specifically for design of post-tensioned floor systems¹. The structural model of each floor includes the entire concrete outline and its supports. The non-prestressed concrete regions of each floor, if any, are included in the model and analysis. The connections of the slab to the columns and shear walls are considered fixed (capable of transferring moments), unless noted otherwise for released connections.

Applicable Codes

The design is based on ACI-318-2014. Where this code is mute, the recommendations of the International Building Code (IBC-2015) will be used.

Structural Documents

The calculations and structural drawings conclude with:

¹ ADAPT-PT (Equivalent Frame Method) software; ADAPT-FLOOR Pro (Finite Element Method); www.adaptsoft.com

Aalami, B. O. (2001) "Software for the Design of Concrete Buildings," American Concrete Institute, Concrete International Journal, December 29, 2001, pp. 28-35

- The total number of tendons, or the total of effective force required at each location;
- The profile of the tendons, including the low and high points, inflection points and overall shape;
- The overall layout of the tendons in the slab; and
- The mild reinforcing required over and above the post-tensioning tendons, at all locations on the slab.

MATERIAL PROPERTIES

Concrete:

Weiaht $= 2400 \text{kg/m}^3$ = 32² MPa Cylinder Strength (f'c) at 28 days Modulus of Elasticity $= 25.4 \text{ kN/mm}^2$

Creep Coefficient = 2

Post-Tensioning:

MATERIAL

Low Relaxation, seven wire strand

Strand Diameter = 12.7 mm nominal

 $= 98 \text{ mm}^2$ = 200000 MPaGuaranteed ultimate strength (f_{pu}) = 1860 Mpa = 1200 MpaStrand Area $= 98 \text{ mm}^2$

SYSTEM

System grouted

Maximum number of strands per tendon = 5 (per anchorage device)

Duct width and depth = 80x20 mmDistance of duct centroid to centroid of strand z = 3 mm

STRESSING

Angular friction = 0.20

Wobble friction = 0.007 rad/m

= 0.80fpu = 1488 MPa Jacking stress

Seating loss (draw-in) = 6 mm

Minimum concrete strength at stressing = 14 MPa (cylinder)

Non-prestressed Reinforcement:

Yield Strength = 460 MPa Modulus of Elasticity = 200000MPa

² Where cylinder strength is required, it is assume to be 0.8* f_{cu}

DESIGN LOADS

DEAD LOAD3

Typical Residential Levels:

Self weight = based on volume

Superimposed dead load = 2.0 kN/m^2

Total = $2.0 \text{ kN/m}^2 + \text{self weight}$

LIVE LOAD

Typical Residential Levels:

Uniformly Distributed⁴ = 2.50 kN/m^2

LOAD CASES; LOAD COMBINATIONS AND STRESSES

Strength Load Combinations

The strength requirement for each member is established using the following factored load combinations:

To resist dead load (DL) and live load (LL): U = 1.20DL + 1.60LL + 1.00Secondary

Where "secondary" consists of the hyperstatic moments, shears and reactions due to post-tensioning.

Serviceability Load combinations

- (i) <u>Average Precompression</u>: The post-tensioning design targets an average precompression in the post-tensioned members that is not less than 0.90 MPa and does not exceed 2.0 MPa. Higher values are permissible, but in general do not lead to economical designs.
- (ii) Final Stresses:

Maximum tensile stress

- Due to prestress plus sustained loads = $0.5 \sqrt{f_{ci}}$
- Due to prestress plus total loads = $0.5 \sqrt{f_{ci}}$

Maximum compressive stress

- Due to prestress plus sustained loads = 0.45 * f'c
- Due to prestress plus total loads = 0.60 * f'c

Load Combinations For Serviceability Check

"Total" in-service load combination (stress check): U = 1.00DL + 1.00LL + 1.00Prestressing

"Sustained" in-service load combination (stress check)

³ Perimeter walls and claddings will be supported by beams designed by the prime structural engineer

⁴ Live load is conservatively not reduced

U = 1.00DL + 0.30LL + 1.00Prestressing

Load combination for long-term deflection due to creep and shrinkage assuming total gross cross sectional properties of members without cracking: UL = 3.00SW + 1.96DL + (1.44*0.30)LL + 3.00Prestressing

Assumptions used to modify baseline creep and shrinkage factor of 2:

- DL is applied after 45 days
- LL is applied after 180 days (Refer to Appendix B-TN 380)

Load combination for total long-term deflection due to long-term effects and the instantaneous action of live load:

UTL = UL + 0.70LL

Load combination for checking deflection under live load:

U = 1.00LL

(iv) Initial Stresses (Transfer):

Maximum Tension = $0.25 \sqrt{f_{ci}}$ Maximum Compression = 0.60 * f'c

Load combination for stress check at transfer of prestressing: U = 1.00Selfweight + 1.15Prestressing

DEFLECTION AND CAMBER

Deflections

Having maintained the hypothetical tensile stresses within the limits stated in the preceding, the deflections will be calculated assuming gross cross-sectional properties. Long-term deflections are estimated using a baseline creep coefficient of 2 for loads immediately applied to a member after casting and reduced appropriately for loads applied later in time.

For the floor slabs and beams the maximum deflections are maintained below the following values with the understanding that the floor structure is not attached to nonstructural elements likely to be damaged by large deflections of the floor:

MEMBER	TOTAL LONG-TERM*	LIVE LOAD
SLABS	L/250	L/360
BEAMS	L/250	L/360

^{*}Due to self-weight and superimposed dead load, and prestressing. L = length of clear span.

Camber

Camber will be specified for spans equal to less than 10 m, where maximum long-term deflection due to total dead load exceeds span/500, or 20 mm, whichever is less.

COVER

Nonprestressed Reinforcement - Slab

Cover to top bars (enclosed areas) = 25 mm Cover to bottom bars (enclosed areas) = 25 mm

Cover to top bars (exposed area) = 45 mm Cover to bottom bars(exposed areas) = 45 mm

Prestressed Ducts – in Slab

Top cover = 25 mm

Bottom cover

Interior spans = 25 mm Exterior spans = 25 mm

TENDON PROFILE AND LAYOUT

Tendon Profiles

Interior spans = reversed parabola with inflection point ratio of 0.1

Exterior spans

With no cantilever = low point at center; exterior half simple parabola; interior half

reversed parabola with inflection point at 0.1 ratio

With cantilever = same as interior span

Cantilevers = single simple parabola with center of curvature at bottom

Tendon Layout

Banded (grouped) in one direction and distributed in the other direction.

Horizontal deviation of rigid ducts limited to 1 in 5 (10 degrees)

SESSION (1) – Generation of 3D Structural Model

The steps to follow for the generation of a 3D structural model of the floor system are compiled in this session.

Launch ADAPT-Builder in Floor Pro and PT Design Mode

To begin this session, launch the ADAPT-Builder software by double clicking on its desktop icon Once clicked, and if either an evaluation or valid commercial license is available on your computer, you will see the initial configuration screen as shown in **Figure 1-1**. Make sure to select all software options as shown in the figure and your desired system of units.

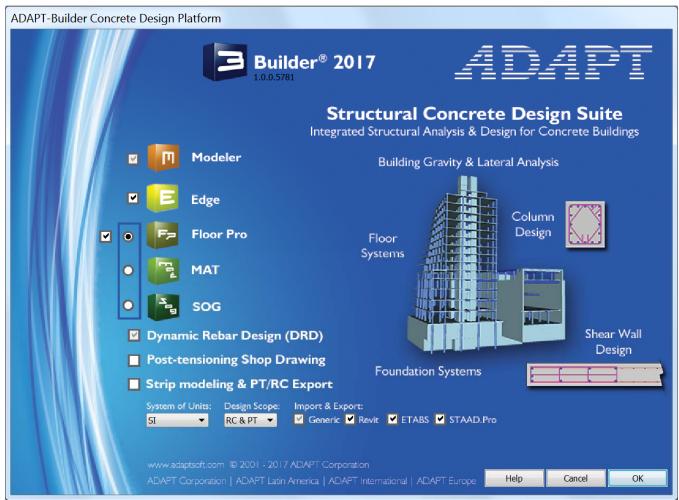


FIGURE 1-1 ADAPT-BUILDER CONFIGURATION SCREEN

Review of ADAPT-Builder User Interface

Figure 1-2 shows the full-screen display of the ADAPT-Modeler program.

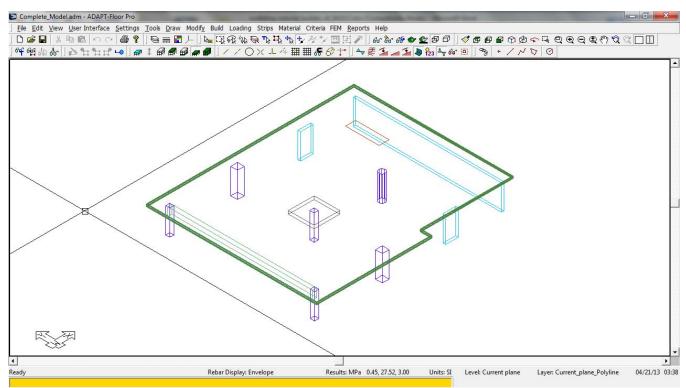


FIGURE 1-2: ADAPT-BUILDER USER INTERFACE

ADAPT-Builder operates the same way as other Windows programs. All program tools are accessed from one of the toolbars provided by the program or through the menus provided in the menu bar at the top of the screen. Toolbars may be opened, closed, "docked" to the edge of the screen or dragged to any position on the screen as View menu item. Tools can also be accessed by clicking the right mouse button while the cursor is in the Menu Bar or Toolbar areas of the screen.

The *User Information Bar* that is found at the bottom of the screen displays tool-specific information and any coordinate values that may be typed by the user for specific program procedures.

The *Status Bar* that is found right above the User Information Bar displays such information as the mouse cursor coordinates, current unit system, snapping status, and gridline spacing and status. A short description of each specific tool also appears in this area when the mouse cursor is placed over the corresponding tool button.

Mouse Function and Operation

The primary function of the mouse is through its left-click. Depending on the mode of the program, as outlined in the next section, the left-click will result in selecting the entity below the cursor, inserting an entity or performing an operation at the location of the cursor.

How to Abandon an Operation

To abandon an operation you have already started, such as drawing a polygon, press the *Esc* key or right-click and select Exit.

Main Menu

The items appearing on the Main Menu depend on the configuration of the program. The common menu items to all programs are as follows: File; Edit; View; etc.

Selection Toolbar

ADAPT

This toolbar contains all tools related to selecting specific elements, objects and structural components in the model. Each tool is described below.

- Hint Mode. When activated, the arrow displays the identification of the entities to which it points. In this mode you cannot select an entity by clicking on it.
- Window Selection. When this tool is highlighted, the *Pick/Select* mode is active. You can select an entity by clicking on it, or a group of entities by opening a window around the items while the left mouse key is held down.

Double-clicking on an entity opens its properties dialog box.

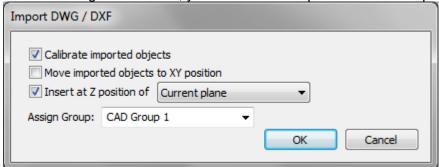
Lasso Selection. This tool allows you to draw an arbitrary polygon around a series of entities. When the lasso is closed, all entities located within or along the lasso perimeter are selected. To use this tool, do the following:

Click on the Lasso Selection & tool.

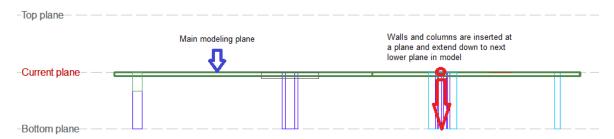
Draw segments of the polygon around the entities to be selected.

Press *C* to close the lasso. The entities inside the lasso are selected automatically.

- Path Selection. With this tool you can select entities by drawing a polyline through them. To use this tool, do the following:
 - 1. Click on the Path Selection has tool.
 - 2. Draw polyline through the entities to be selected.
 - 3. Press *C* to end the line. The entities through which the line passes will be selected automatically.
- Select All. This tool selects all the entities visible on the screen.
- Move Selection. This tool enables you to move the entire group of entities that are currently selected. Pick a vertex of one of the entities in the selection and drag the entire group to the new location
- Move Selected Point. With this tool you can move only the vertex of an entity to a new location, while the positions of the remainder of the entity's vertices remain unchanged.


Generate 3D Structural Model

At this step, the simplified architect's drawing will be imported to the Builder program and converted to structural model. Follow the steps below:



Import and Calibrate Drawing

- ADAPT-Builder should be open in the configuration as described in the previous section.
- From File pull down menu select File/Import/ DXF/DWG
- Open the "Structural_dimensions.dwg" from the Session_1 folder.
- After selecting the CAD file, you will see the Import DWG/DWF options window.

Select the option to calibrate imported objects. This option will allow you to calibrate the imported CAD objects without affecting the scale of any other objects already created in your model file. Also select to insert the imported CAD objects at the Z position of Current plane; this is where you will model your slab. All models are defaulted to include 3 planes: Bottom, Current and Top.

 Calibrate the drawing using the 24.40m (80 ft) distance shown on the bottom. Before calibration, select snap to intersection.

Click on the dimension line and then enter 24.4 when prompted in the User Information Bar.

Enter the correct distance in meters between the two Points you Selected.

- The imported CAD files may shift off of your screen when you complete the calibration step. Use the View/Zoom/Extents function to re-center the model on your screen.
- If you make a mistake, you can re-calibrate the model or change the project origin using the functions found under the Tools menu.

Configure CAD Transformation Rules for Columns

- Newly introduced in Builder 2015, columns can now be managed more efficiently using Design Groups. In its default mode, the program creates new Design Groups for columns when they are converted from imported CAD objects. It is good practice to review the conversion settings and adjust them to your preferences.
- To access the transformation rules (Type Assignment properties), open the Design Group Manager by selecting the Build/Design Group menu option. This will open the window shown in Figure 1-3.

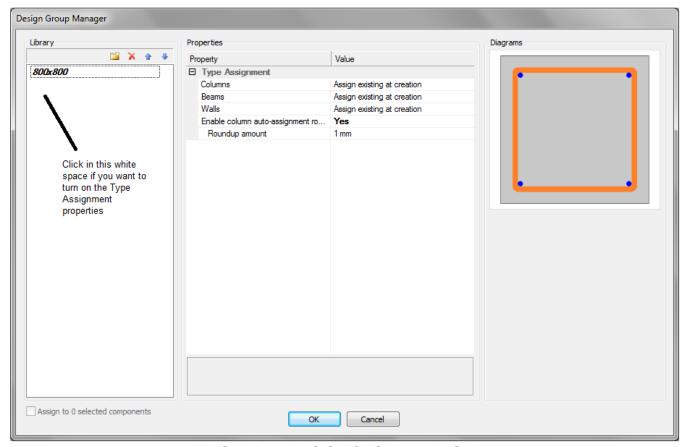
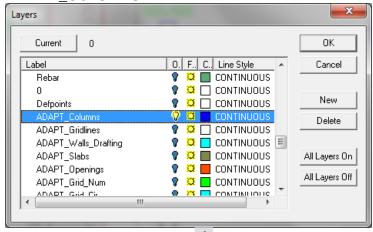


FIGURE 1-3 DESIGN GROUP MANAGER

- Your options for type assignment of columns include:
 - o Assign existing at creation
 - o Assign new at creation
 - Do not assign types
- Select Assign existing at creation. Note that grouping of columns into the same group is done
 by geometry only.
- Set Enable columns auto assignment round off to Yes and select a roundup amount. For example, this setting will round up imported CAD polygons that may be 399mm x 599mm to 400mm x 600mm.

Isolate Selected Layers and Transform Columns

- All software functions are accessible from the pulldown menu options. However, if you prefer to have frequently used functions available on floating toolbars, you can select and activate them from the User Interface drop down menu (or right-click on the top menu). The primary modeling functions are available on these toolbars:
 - Transform To Structural Component Toolbar for converting graphical entities into Structural Components.



Build Toolbar for creating Structural Components.

 Open the layers dialog window and turn all the layers off, except the layer "ADAPT COLUMNS."

- Select Top-Front-Right-View for better viewing.
- Select all.
- Under the Build/Transform Drawing Entities menu, click on "Transform Column "." This will convert all the architect's columns to Structural Columns.

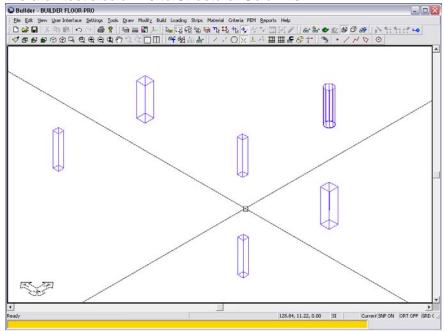
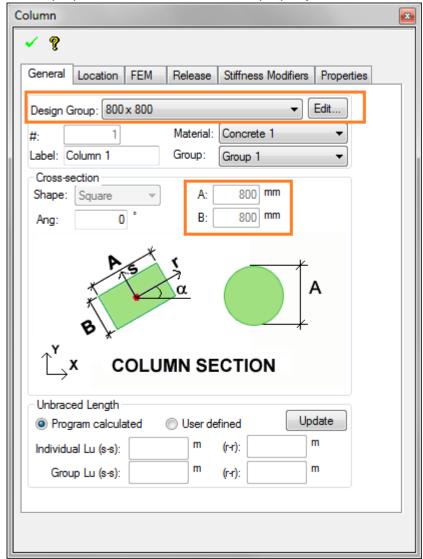



FIGURE 1-6 VIEW OF TRANSFORMED COLUMNS

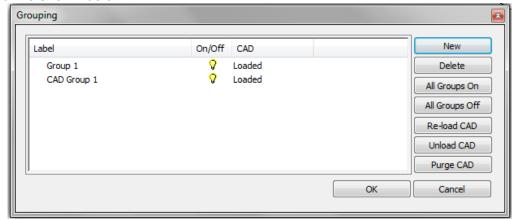
Double click on one of the columns to open up its property box. Observe the dimensions of the column for verification. Figure 1-6 shows what your columns should look like. You can also access any selected component's properties by clicking the icon. The image shows a sample column property window where the cross-sectional dimensions are being managed by a

Design Group. You must edit the Design Group to change the column's dimensions. Removing the association between a column and a specific design group will revert the management of the cross-sectional properties back to the column's property window.

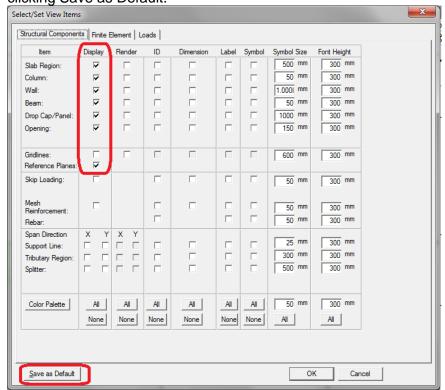
NOTE

You may have wrongly calibrated your model if you cannot see extruded columns after completing the "Transform Column" function and viewing the model in Top-Right-Front-View perspective.

Transform Remaining CAD Objects into Structural Components


Repeat the same steps for other components: Slab, Walls, Beams, Drop Caps and Openings.

Controlling Visibility of Components in your Model

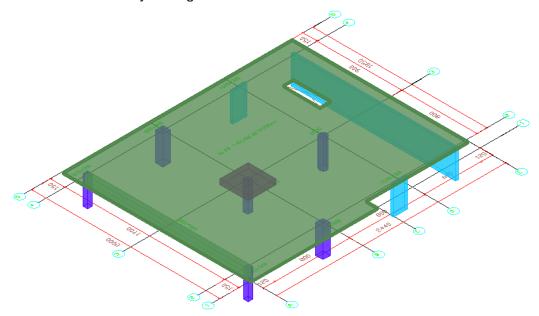

- It is recommended to turn off all imported CAD elements in your model after you have transformed them into structural components. This avoids any accidental snapping to CAD elements instead of structural components when working in your model.
- One option of managing the visibility of the imported CAD objects is through the Grouping window. When importing CAD objects, you are given the chance to associate imported CAD objects to their own group. The default group for imported CAD objects is CAD Group 1. To easily turn on/off the visibility of the imported CAD objects associated with a group, use the

ADAPT

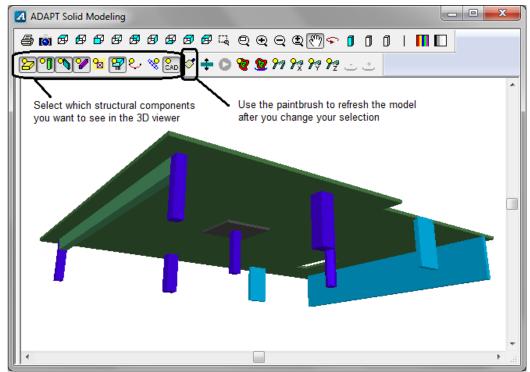
Grouping function that is accessible under the Settings menu. An image of the Grouping window is shown below.

- As an alternative, you can turn off CAD elements layer by layer using the Layers Setting window. Using layers, you must turn all layers off. Turning all layers off will also turn off any structural components you created.
- Visibility of structural components is managed through the Select/Set View Items window 60°.
- Open the View Items window and set a Default Item View as shown below. Our default item view for this workshop will only display primary structural components and reference planes. Go to the Finite Element and Load tabs and deselect any items that may be selected there before clicking Save as Default.

• Once the Default View has been set, you can activate the default view at any time by clicking the default view at any


Manual Modeling of Structural Components

- Sometimes, you may be working with a CAD file that is not properly prepared and where the structural components, like slab, are not represented as continuous closed polygons. In such cases, you have to model structural components manually.
- For example, to model a slab manually, select the "Create Slab Region" function and start tracing the slab boundary by clicking at the vertices of the slab.
- Do not worry, if you miss a vertex, or you click at the wrong location continue to the end. You will edit/correct the mistakes at the next stage. When done, exit the creation mode.
- Tip: all continuous modeling operations like the entering of multiple slab vertices continue until you right click and select the Close/End/Accept option.
- Using the zoom and pan tools, go over the slab region you have created. Use the ¾ "Delete Point," and ¾ "Add Point," tools, or ♣ select and drag to edit the slab region you have created to match that of the architect's slab outline.
- Tip: The Tab key will toggle between different objects that are at the same mouse click location and difficult to select individually.
- Continue, until the entire floor system is created, including openings.


Viewing and Verification of 3D Model

• For better visualization of your model, turn on the shaded view using . To revert back to wireframe mode, click the wireframe icon. Sometime, the front-to-back order of components in the shaded mode can be affected if you select components. To resent the front-to-back order of components, cycle one between the wireframe and shaded modes of the model. This should reset the correct visibility settings.

• Use the View Model tool for viewing the model generated in three dimensions. Examine the model in detail, by rotating it, to make sure that it is a faithful generation of the architect's drawing in three dimensions.

NOTE:

The View Model tool opens a new window called ADAPT Solid Modeling. You can view 3D solid model in this mode of the software. To return to the regular ADAPT-Floor Pro modeling environment, close the ADAPT Solid Modeling window by clicking at the top right corner of the window.

SESSION (2) – First Finite Element Method (FEM) Solution

In this step we mesh the structure, obtain a finite element (FEM) solution, and view the results. The objective is to make sure that the model we have generated is valid and works well. You will find, the validation of the structural model is a critical and time-saving step, before moving to other steps, such as applying loads, changing boundary conditions, if necessary.

Meshing

- From the FEM pull-down menu select "Automatic Mesh Generation," to open the mesh generation dialog box (Fig. 2-1).
- Select 1.60m (5ft) for suggested cell size.
- Select the "Maximum distance" for node shift 0.5m (1.5 ft).
- Click OK.

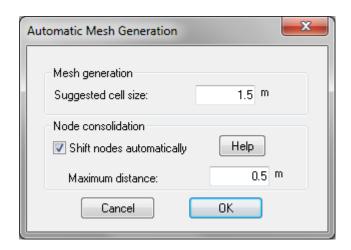


FIGURE 2-1 AUTOMATIC MESH GENERATION DIALOG WINDOW

The mesh displayed in Fig. 2-2 will be generated. Save the data and move to the next step.

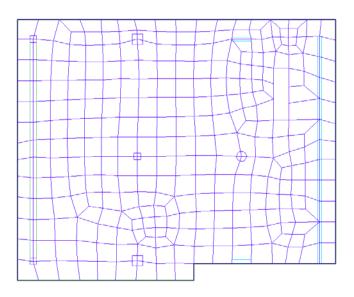


FIGURE 2-2 ADAPTIVE FEM MESH GENERATED AUTOMATICALLY

Generate FEM Solution

• From the FEM pull down menu (FIG. 2-3) select "Analyze Structure."

ADAPT

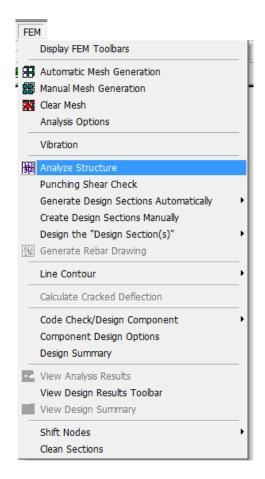


FIGURE 2-3 FEM PULL-DOWN MENU

- The Analysis Options window (**FIG. 2-4**) gives the user several analysis options:
 - Selection of load combinations to include in analysis.
 - Options to include global analysis results. These options only apply when solving a multistory structure in single level mode.
 - Include lateral reactions: This option is available if you have analyzed your model in global mode with lateral loads.
 - Include load takedown: This option is available if you have analyzed your model in global mode with gravity loads or have run the tributary load takedown module.
 It limits the application of loads to the Fz component.
 - Include gravity reactions: This option is available if you are in MAT mode and analyzing a foundation model. With this option selected, all internal reactions from walls and columns are applied to the foundation.
 - If any of these options are selected, the user is asked to choose which saved solution should be used in the analysis.
 - Apply live load reduction. This option should be used when applying vertical takedown loads to foundations or transfer elements that allow live load reduction.
 - Apply stiffness modifiers. This option allows you to apply the stiffness profile defined for individual Usage types defined in your model.
 - Compression spring/soil support options
 - Substitute soil compression springs with fixed supports. This option is a useful feature when analyzing a structure that has soil support modeled at its foundation level but the user does not want to include the deformation of the foundation in the building's analysis.

- Analyze structure with compression springs. This option retains the compression springs in the model during analysis.
- Vibration analysis option applies to both multistory and single level analysis.
- Stabilize against lateral in-plane translation and rotation this option is used to stabilize the default boundary condition of Fixed Rollers for the single level mode.
- Show this dialog whenever I analyze structure. Use this option to automatically launch the analysis options window.
- Warning if load case for selected load combination does not contain any loads. Use this as an added quality control check in your model.

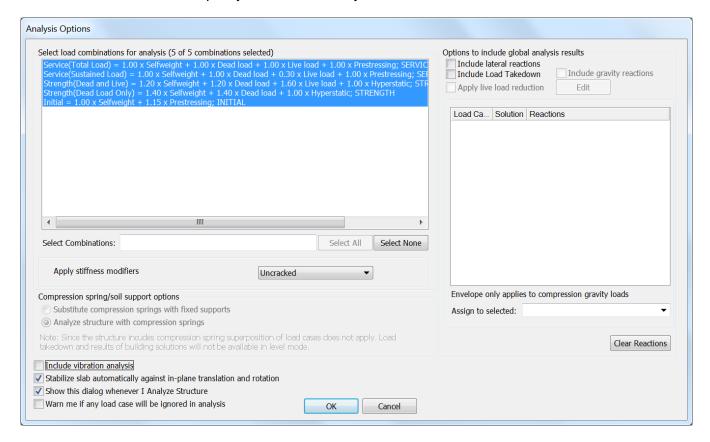
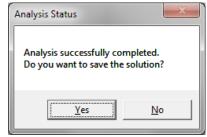
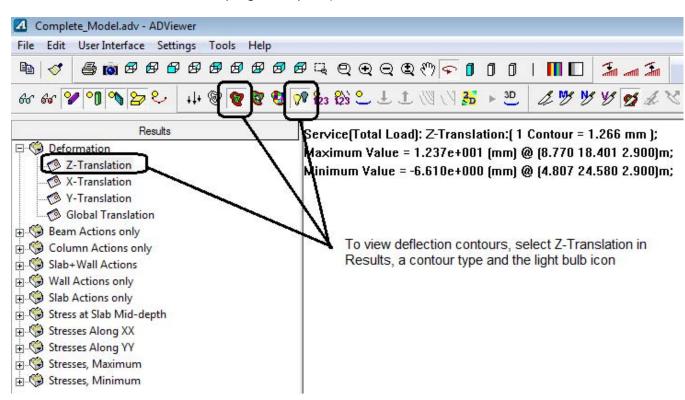



FIGURE 2-4 ANALYSIS OPTIONS WINDOW

The software calculates the FEM solution unless it encounters a discrepancy.

View Analysis Results


While it is not necessary to view and examine the results for the purposes of code check and determination of rebar, it is always a good idea to do so, in order to validate the structural modeling. In particular, view the deflected shape of the structure. Many of the errors in modeling can be readily detected from a close examination of the deflection of the floor system.

Using Traditional FEM Viewer

Follow the steps below to view analysis results using the traditional FEM Viewer. Skip to the next section if you want to view results within the model.

- From the FEM pull-down menu (**Fig. 2-3**), select "View Analysis Results." When the 3D view screen (**Fig. 2-5**) opens, do the following to display deflection contours:
 - On the tabs of the left margin select "Load Case Combinations."
 - Select "Service (Total Load)" from the list of the load cases.
 - o On the top of the same margin, click on "Results."
 - o From the list of results, select "Z-translation." This is the vertical deflection of the structure.
 - O Click on the "Contour" and "Display Results" buttons. This will display the model as shown in Fig. 2-6. Your solution might look slightly different, depending on the system of units selected, value of the loads and the load combinations. But, make sure that the deflection at supports is essentially zero (there will be shortening of columns and walls that the program reports).

FGURE 2-5 SETTINGS TO DISPLAY DEFLECTED CONTOUR

FGURE 2-6 DISPLAY SCREEN OF FEM SOLUTIONS SHOWING DEFLECTION CONTOUR

- Use the warping (and rotate () tools on the screen to examine the deflected shape of the model.
- Use the 3D deformed shape option with Global Translation selected under Results to display the realistic 3D deformed shape and structural response of the model.

NOTE:

The View Analysis Results function opens a new window called ADViewer. You can view your FEM analysis results in this mode of the software. To return to the regular ADAPT-Floor Pro modeling environment, close the ADViewer window by clicking at the top right corner of the window.

Viewing of Analysis Results in Model Space

To display analysis results in the model space, open the Results Display Settings window

66 66 (Fig. 2-7). Depending on your settings, this window may automatically display itself after you complete analysis. Follow these guidelines when using the Results Display Settings window:

- The Analysis tab contains a list of all analysis results you can display on the model.
- Select a category to display its values on the model.
- You can only show one result type per category at a time, but it is possible for you to display
 multiple results from different categories at the same time.
- Use the Combo pull-down list to switch between different sets of analysis results.
- The floating scale in the model space displays the range of values shown in the model for the last results category selected.
- If displaying multiple result sets, use the Scale pull-down list to select which scale to display in the model space.
- The Result Display Settings tab contains setting for the display of design strip and column values.
- The Settings tab contains general display configuration options.

- Use Clear All to deselect all selections in the Analysis tab.
- Use the Apply button to update the display of analysis results after making a selection and the display does not automatically update.

To display the deflected shape of your slab, select the option of *Z-Translation Deformation* under the Slab category.

Selected the *Teapot* icon to turn on the 3D Solid Modeling view. Selected analysis results being displayed in the model space as contours can also be shown in the 3D solid modeling view. Figure 2-8 shows the solid modeling window and explains its main features.



FIGURE 2-7 SHOWS RESULTS DISPLAY SETTINGS WINDOW

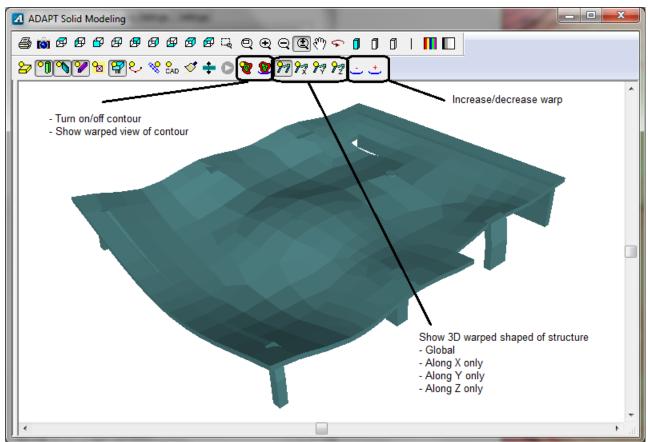


FIGURE 2-8 SOLID MODELING WINDOW USED TO SHOW SELECTED ANALYSIS RESULTS

SESSION (3) - Entering of Design Criteria

In this session, you will review and enter all relevant design criteria, loads and load combinations in your model.

Design Criteria

- From the "Criteria" pull-down menu select "General." This will open the input tabs shown in **Fig. 3-1**, which list the code and design criteria used by the program.
- Browse through the tabs in the Criteria window and edit the default values of the program as required – refer to the Design Criteria section at the beginning of this workshop handout for details.

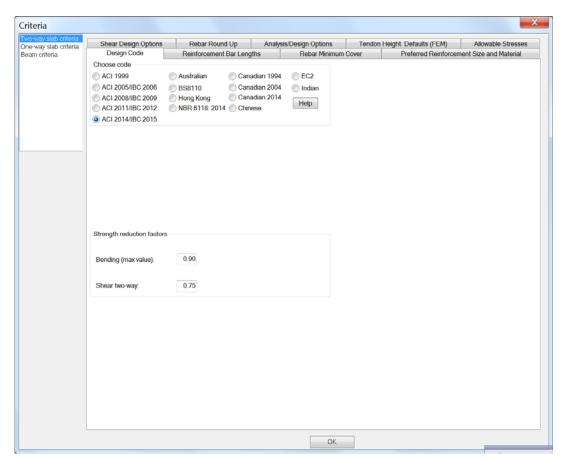


FIGURE 3-1 DESIGN CRITERIA INPUT TABS

NOTE:

For each tab, make sure you review and update design values for each of the 3 primary structural system types: Two-way slab criteria, One-way slab criteria, and Beam criteria. To review and set the value for each structural system, first select the structural system at the left side of the window and then review, edit its associated values.

Apply Loads

Open the loading toolbar.

FIGURE 3-2 LOADING TOOLBAR

- Select the "Create Patch Load" tool.
- Draw a polygon that contains the entire floor system or using the intersection snap , trace the boundary of the slab. To close the area for the applied load, either right-click and select "Close/End/Accept", or press the C key on your keyboard. This operation will create an area load. The software will only apply loads to areas below a patch load where it finds actual structural components; it will ignore any area of the patch load that fall outside of slab and beam boundaries.

- To define the magnitude and load case of the just created load, open its property box **FIG 3-3** by either double-clicking on the load or by highlighting it and then selecting the Property Box icon .
- Enter the Load Case as "Dead load" and specify its magnitude Fz1 (2 kN/m²; 0,04⁵ k/ft²). Then, click the green check box to accept it.
- Repeat the same for "Live Load" (2.5 kN/m²; 0.05⁶ k/ft²).

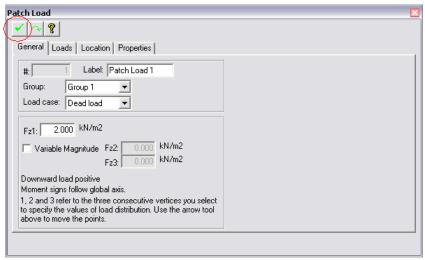


FIGURE 3-3 PROPERTY BOX FOR PATCH LOAD

NOTE:

Changes made in any Property Box are not saves unless the user clicks the green check box at the top left hand corner of the window.

- Verify the applied loads by viewing their distribution and values.
- Loads are best viewed when the model is in the Top-Front-Right-View ^(*)
- If loads are not visible, click on the Display Loads icon found on the Loading Toolbar or open the Select/Set View Items window using the eyeglass icon for . The visibility of loads can be defined on the Loads tab.
- Once visible, double-click on each of the loads to verify their magnitude and load case.

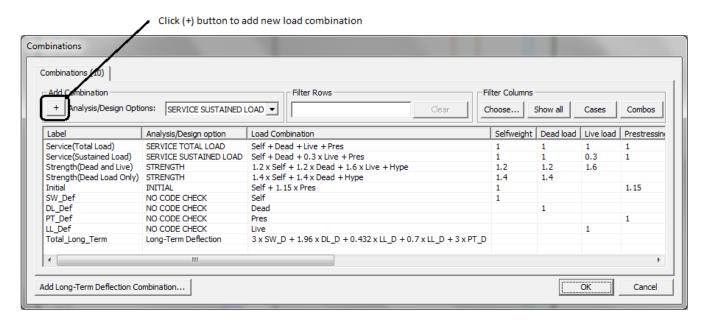
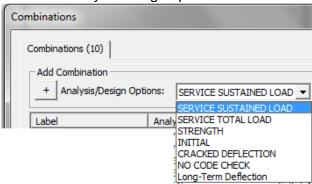
Load Combinations

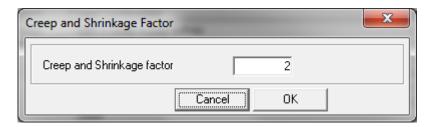
The program automatically generates the basic load combinations of serviceability and strength check for the building code you have selected. You can view, modify and create new load combinations in the load combination window.

To open the Load Combination window, go to Loading menu and select "FEM Tabular". This
opens the load combination dialog window shown in Fig. 3-4.

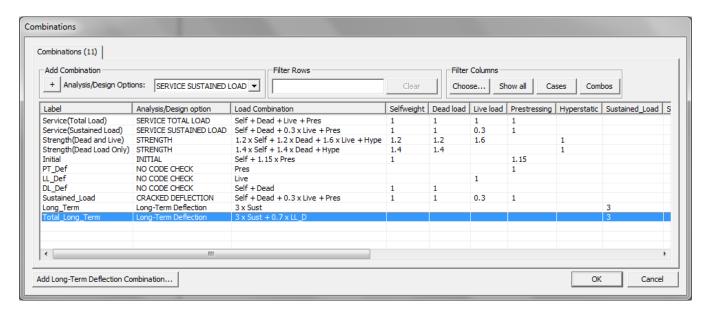
⁵ Most US codes require only 0.02 k/ft² of superimposed dead load (partitions), in addition to selfweight.

⁶ For residential buildings, most US codes specify 0.04 k/ft². The higher values selected are intended to maintain a close correlation between the designs in the two systems of units (SI, American) presented in this work.


FIGURE 3-4 LOAD COMBINATION DIALOG WINDOW

- Select any cell in the Label or Load Combination rows to select an entire load combination. With a load combination activated, use the Delete key on your keyboard to delete it or right click to clone it.
- Select any other cell in the matrix to modify its value.
- To create a new load combination, click the (+) button. This will create a new, blank load combination with the selected analysis/design option.



- Each load combination should be classified with the appropriate Analysis/Design Option:
 - Load combinations used for the calculation of deflections only should have their Analysis/Design Option set to either NO CODE CHECK or CRACKED DEFLECTION. The No Code Check options uses gross cross sectional properties of the members to calculate deflections, while the Cracked Deflection option accurately calculates the deflection of the floor system based on the reduced effective moment of inertia after cracking. This analysis option considers the contribution and location of mild and prestress reinforcement when calculating a member's l_{eff}. The calculation of cracked deflections is a post-process and needs to be invoked separately.
- Use the button to create a special type of load combination that is a combination of combinations. When selected, enter the creep and shrinkage factor you want to use. This will create a new "Sustained_Load" combination that is set for cracked deflection calculation as well as a "Long_Term" combination that is based on your creep factor and a multiple of the newly created Sustained_Load combination.

Use the load combination window to create the load combinations listed below:

- Hint: use the right click / clone option to create your 2nd Long-Term Deflection combination.
 Once created, rename and add 0.7 LL Def.
- Press OK to close the window after you have entered all of your load combinations.

SESSION (4) – Design Slab with Mild Reinforcement Only

Support Lines Defined

Support lines connect the "supports" of the structure in a given direction and represent the engineer's intended load path. Support lines are used by the software to generate design strips that in turn are used to design your slab. To have a complete design, you must define support lines in two primary directions – X & Y. The designations X & Y do not have to correspond to the global X and Y axis.

Several rules apply to the proper definition of support lines. They include:

- Support lines of the same direction (X or Y) cannot cross each other.
- Ideally, support lines should start and end at the slab edge.
- If needed, support lines can end at a Splitter. Splitters are an advanced modeling feature that can be accessed under the Strips menu item.
- To consider a structural component, such as a wall, beam, or column as a "support", you must snap a vertex of a support line to it.
- Use the following snapping rules:
 - For columns and end of walls and beams use snap to end
 - o for slab edge, use snap to nearest 4; and
 - o for beam and wall centerlines use snap to nearest 4.

NOTE:

"Support Line" and "Design Strip" concepts and procedures are central to the design of floor systems. If you are not familiar with the procedures, refer to the document "Design of Concrete Floors, with Particular Reference to Post-Tensioning." This publication can be downloaded from the ADAPT website.

Generate Support Lines in X Direction

Follow these steps to create support lines in the X direction.

- To create a support line, click Create Support Line under the Strip menu
- Make sure you are defining support lines in the X direction. To check, click the property box icon and make sure the Direction is set to X-Direction. If it is not X, like in **Fig 4-1**, change it to X-Direction and click the green check box to save the new direction.

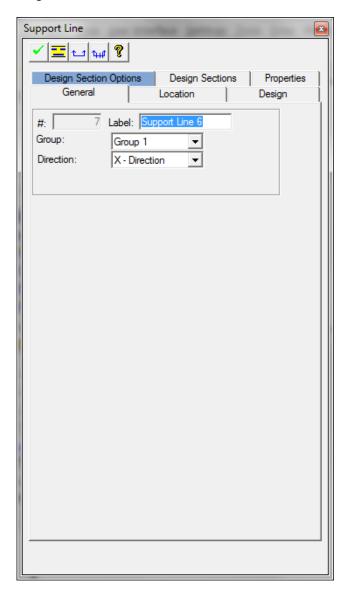


FIGURE 4-1 SUPPORT LINE PROPERTY BOX

 Draw your X-direction support lines, paying particular attention to snap the support lines as shown in Fig 4-2.

ADAPT

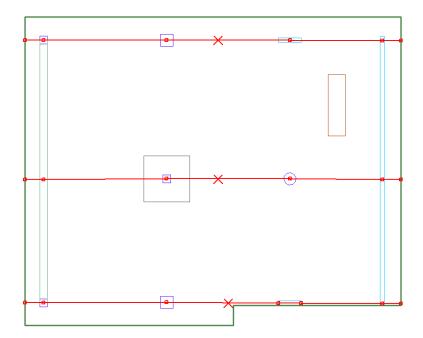


FIGURE 4-2 SUPPORT LINES IN X-DIRECTION (NOTE SNAP LOCATIONS AT SUPPORT BOUNDARIES)

Generate Support Lines in Y Direction

Follow these steps to create support lines in the Y direction.

- To create a support line, click Create Support Line under the Strip menu
- Make sure you are defining support lines in the Y direction. To check, click the property box icon and and make sure the Direction is set to Y-Direction. If it is not X, change it to Y-Direction and click the green check box ✓ to save the new direction.
- Follow the snap locations as shown in Fig 4-3.

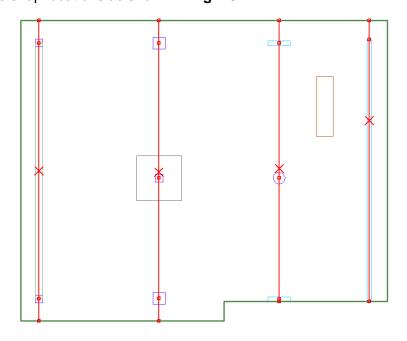
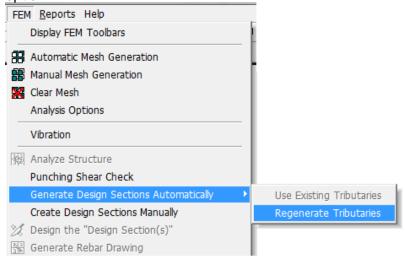
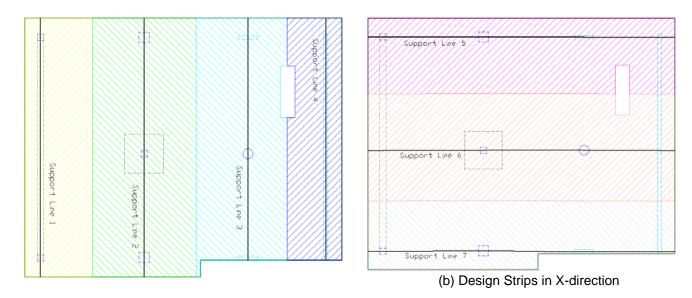


FIGURE 4-3 SUPPORT LINES IN X-DIRECTION



(NOTE SNAP LOCATIONS AT SUPPORT BOUNDARIES)


Generate Design Strips

Follow these steps to create design strips and sections from the support lines you just created in your model.

Click on the "Generate Design Sections Automatically / Regenerate Tributaries" tool in the FEM menu.
 With this function the program breaks the slab boundary down into tributaries based on the support line and splitters defined. Previously generated tributary regions are deleted and regenerated using this option.

- Starting with Builder version 2012 build 1, users can manually create tributaries or manipulate the boundary of automatically generated ones.
- To generate Design Sections using existing tributaries, invoke the Use Existing Tributaries function.
- To view the design strips generated by the software, select the following reports under the Reports menu: Reports | Single Default Reports | Graphical | Design Plans | Design Strips X-direction.
- Figure 3-9 shows the design strips generated by the program in X- and Y-directions.
- Adjust your support lines and repeat the steps in this section if you are not satisfied with the design strips generated in your model. Use the Set / Select View icon to turn on and off support lines and other components.

(a) Design Strips in Y-direction FIGURE 4-4 DESIGN STRIPS IN X- AND Y-DIRECTIONS

Design the Slab

To design the slab, follow these steps:

- Select "Design the Design Sections" in the FEM menu.
- From the User Interface pull down menu, turn on the "Support Line Result Scale Toolbar" (**Fig. 4-5**)

FIGURE 4-5 SUPPORT LINE RESULTS SCALE TOOLBAR

- To turn on and off support lines and their associated design sections, select the Display Design Sections

 sections

 select the Display Design Sections.
- The floating toolbar shown in **Fig 4-6** appears whenever the Display Design Sections mode is active. You can toggle between the X & Y direction support lines by selecting the respective icons.

FIGURE 4-6 FLOATING TOOLBAR

- To graphically view and superimpose design values for each design strip and load combination on the model, start by selecting the Result Display Setting icon. This opens the Result Display Settings window (Fig 4-7) that allows you to select which design values or checks you want to superimpose on the design strip.
- Select the Bending option under Design Sections Actions to display the moment diagram along design strips.
- To turn off displayed results in the model, deselect the option in the Result Display Settings window. Clicking the icon is an alternative method to turn selected options on/off in the model.

ADAPT

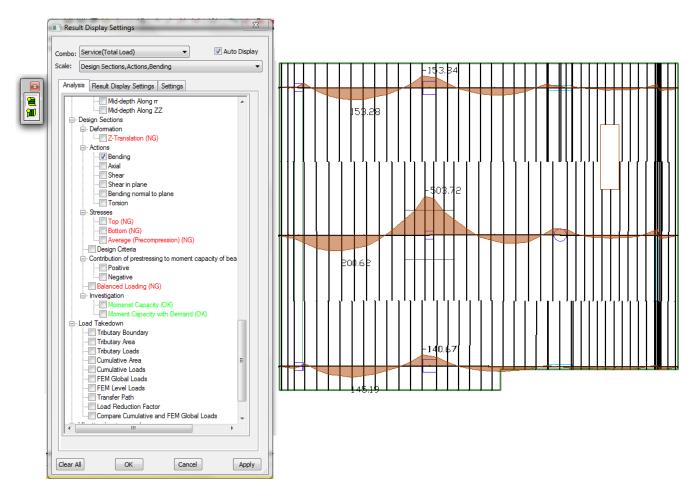
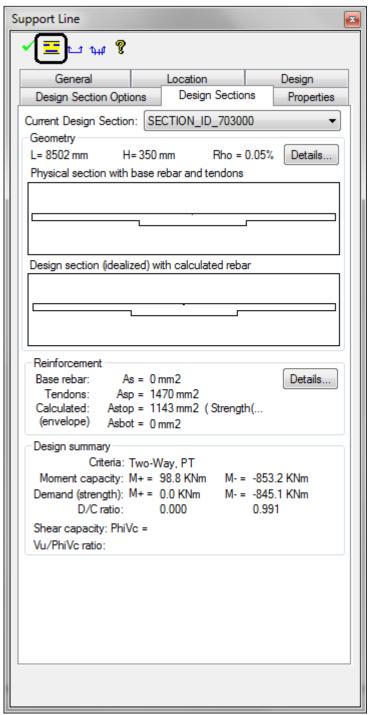



FIGURE 4-7 RESULT DISPLAY SETTINGS WINDOW SHOWING CONFIGURATIN THAT DISPLAYS BENDONG MOMENT ALONG X SUPPORT LINES IN MODEL

View Required Reinforcement for Each Design Strip

Follow these steps to view the reinforcement needed for a particular design strip:

- Select the support line (it should turn red)
- Open its property box

- The Design Sections tab shows the details of geometry, reinforcement and other useful design
 information for each design section along the support line. You can move along the support line
 by using the mouse scroll function. Using this scroll function moved the display from design
 section to design section. Alternatively, one can select a particular design section to move to
 using the Current Design Section pull-down option.
- As an alternative, you can select the Show Builder Sum = icon.
- Once in ADAPT-Builder Sum, select the icon again to open up a graphic report showing the required reinforcement for that design strip.

SESSION (5) – Design Slab with Post-Tensioning

We start by entering the tendons based on our preliminary design. Next, we perform the analysis, design, and code check. If the outcome of the code check is satisfactory, we have the option of closing the design at that stage, and moving on to the generation of the supplemental rebar, and preparation of the associated structural drawings. Otherwise, we can modify the post-tensioning specified, and repeat the process.

Tendon Layout Strategy

Tendons are created using the "Create Tendon Toolbar," (**Fig. 5-1**) or the Build menu option. The optimum layout of tendons is to group the tendons in one direction over the supports (banded tendons), and distribute them as uniformly as practical in the orthogonal direction. The tendons in the banded direction are generally represented by two tendons, one on each side of the support line. The total number of strands of the support line is distributed among the two tendons. The two tendons are generally spaced 1.0 to 1.20m (3 to 4 ft) apart.

The Create Tendon Toolbar (**Fig. 5-1**) can be used to create tendons manually as well as assist the user in generating banded and distributed tendons automatically. Furthermore, you have the choice of laying out tendons exactly as they will be constructed or by idealizing the layout by bundling and representing multiple tendons as one in the model. Engineers that do not have to rely on tendon information in the model to create post-tensioning shop drawings often prefer to simplify the modeling process and model tendons as fewer groups of bundled tendons. On the other hand, you will want to layout tendons accurately if you plan on using the information in ADAPT-Floor Pro to create structural and shop drawings at a later stage.

In this tutorial, it suffices to represent the post-tensioning in the banded direction with one tendon only. The single tendons you will draw for each band will represent the entire number of strands necessary for the associated band. We select the banded direction to be along the X-axis, and the distributed tendon along the Y-axis.

FIGURE 5-1 CREATE TENDON TOOLBAR

Model Banded Tendons

For the banded direction, generate a representative tendon along each of the three support lines in X-direction. In the following we review the information to be specified for the banded tendons along grid line 4. The information for the other tendons will be provided in a similar manner.

- We start by assuming 1.0 MPa (150 psi) precompression to be provided by the tendons for the tributary of tendon along grid line 4.
- With the understanding that the final force after all losses in each tendon is likely to be about 118 kN (26.7 k), for the 200mm (8") thick slab and tributary of grid line 4, we need 8 strands. We enter this information in the "General" tab of the tendon property box (**Fig. 5-2**).

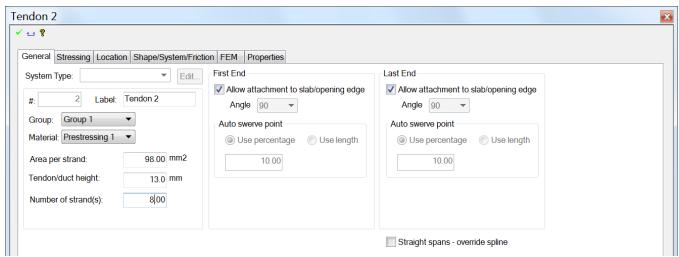
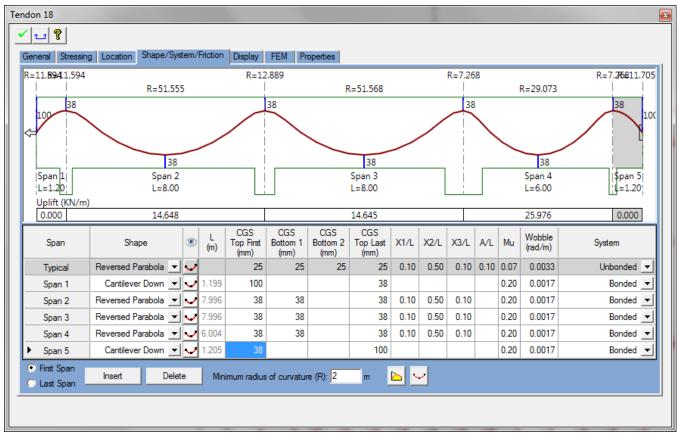



FIGURE 5-2 TENDON PROPERTY BOX – GENERAL TAB

• We finalize the shape of tendon, by specifying the distance of its centroid from the top and bottom of the slab at its extremes. For a 25mm (0.75 ")7 clear distance to a 20mm duct (0.5" tendon diameter), the distance will be 38 mm (1"). Obviously, at the slab edge, the tendon will be anchored at the centroid of the slab. This information is reflected in the "Shape/System/Friction" tab of the tendon property box (Fig. 5-3). In the same property box, we specify the tendon to be "bonded" (unbonded for US units) and enter its friction coefficients. The information on tendon particulars, including the friction parameters, is included in the "Design Criteria" of the workshop tutorial. Leave the other parameters that define the shape of a tendon in each span unchanged (Fig. 5-4).

⁷ The values in the parenthesis are not direct conversions of SI to American system of units. The parentheses refer to typical values for "unbonded" tendons.

(a) SI units

FIGURE 5-3 TENDON PROPERTY BOX – SHAPE/SYSTEM/FRICTION

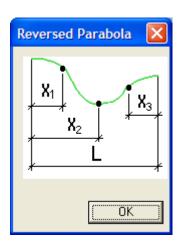
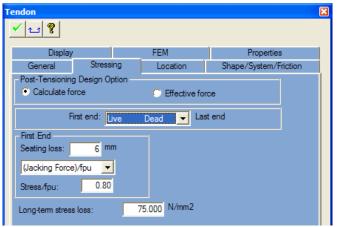
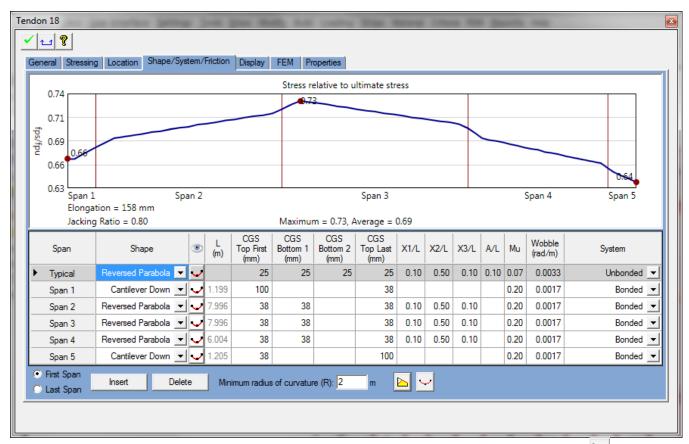



FIGURE 5-4 TENDON SHAPE PARAMETERS


NOTE:

In the above example, we selected "bonded" tendons. If you prefer to use "unbonded" tendons, you will use the same tendon property boxes, but enter the parameters associated with unbonded tendons. The primary differences are: (i) distances of tendon CGS from top and bottom is typically 25mm (1"), instead of 38 used above; (ii) the angular coefficient of friction is 0.07, and (iii) the wobble coefficient of friction is typically 0.001 rad/ft.

- Under the stressing tab (Fig. 5-5) we specify the stressing end, seating loss (draw-in), the
 jacking force, and the anticipated long-term losses. Based on the information provided, the
 program calculates the distribution of stress along each tendon and uses the local tendon
 stress for its code check. For most projects 75 MPa long-term loss specified in Fig. 5-5 is a
 conservative estimate. (For US units, select 'effective force' and specify the force per strand
 after all losses to be 26.5 k)
- Specify jacking stress to be 80% of strand's ultimate strength (fpu).

(a) Stressing parameters are entered under the Stressing tab.

(b) Calculated effective force after friction losses can be shown along tendon by clicking the Shape/System/Friction tab.

FIGURE 5-5_SI TENDON PROPERTY BOX – STRESSING PARAMETERS AND CALCULATED EFFECTIVE FORCE ALONG TENDON

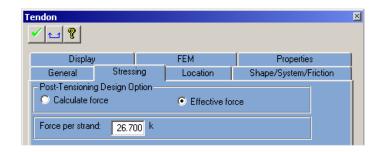


FIGURE 5-5_US TENDON PROPERTY BOX - STRESSING

• In a similar manner, generate banded tendons along grid line 3 with 15 strands and grid line 2 with 8 strands.

Model Distributed Tendons

- For the distributed direction, create a single tendon and use the Modify | Copy/Move command to replicate it. Or use the Map distributed tendon tool . Position the distributed tendons similar to the arrangement shown in **Fig. 5-6**.
- The guideline for arrangement of tendons shown in the figure was: (i) number of strands selected provide approximately 1.0 MPa (150 psi), (ii) they will be bundled to be spaced at not more than eight times slab thickness (1.60 m; 64"), (iii) nor more than 1.50 m (5 ft), and (iv) minimum of two strands pass over each column.
- The tendon layout for the distributed direction is shown in **Fig. 5-6**. Note that the distance between the tendons is less than the maximum stated in the above. For the legend, S=3, means 3 strands in the tendon, the numbers, such as 162, or 100 give the distance from the soffit of the slab to the centroid of tendon. The arrows along the edges indicate the stressing ends of tendons. **Figure 5-6** was obtained by going to the Report pull-down menu, selecting single default reports, graphical and finally tendon plan.

Model Tendon in Beam

• With the objective of obtaining approximately 0.0 MPs of

• With the objective of obtaining approximately 0.9 MPa of precompression in the T-beam's cross section, place 11 strands in the beam with the profile of control points as indicated in **Fig. 5-7**.

• In addition to the graphical tendon profile available in the Tendon Property window, one can view the elevation and profile of any tendon by having it drawn in the modeling are. To achieve this, open the property box of a tendon by double clicking on it. Next, click on the second button on the top left of the property box () and select the left insertion point of where the elevation should be drawn in your model space by clicking somewhere in the background away from your main model. You may have to adjust the vertical scale to improve this display⁸.

⁸ The vertical scale for display can be adjusted by selecting the "distortion scale" menu item from the "Settings" pull-down menu

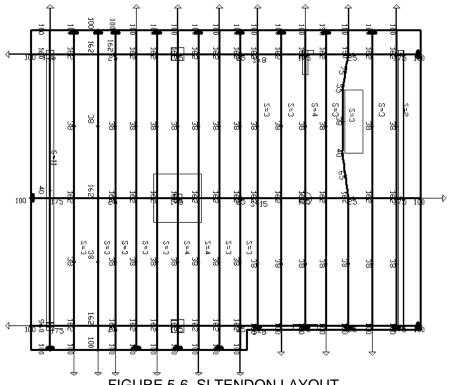


FIGURE 5-6_SI TENDON LAYOUT

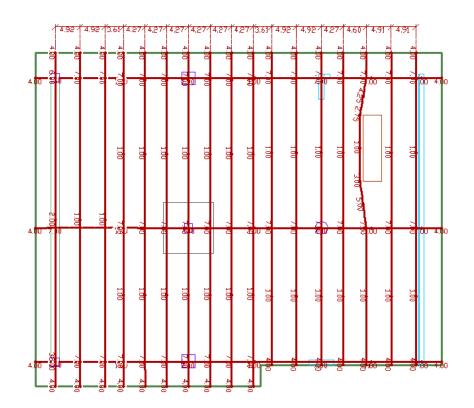


FIGURE 5-6_US TENDON LAYOUT

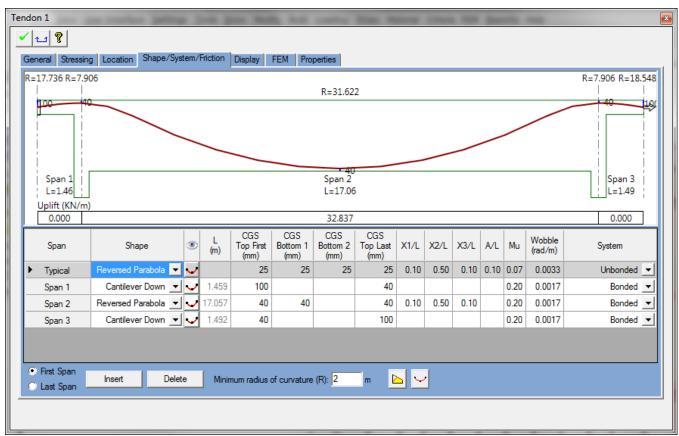


FIGURE 5-7_SI DETAILS OF TENDON IN BEAM

NOTE: At first, some of the text displayed on the screen (such as in **Fig. 6-6**), in this case tendon control heights, may overlap. To eliminate overlap, you can pick each of the text items and move it by click and drag of the mouse.

The tendon that is to the left of the opening was created by selecting a span from the support to each side of the opening, and a span along the opening. To create a profile for this tendon, display it in elevation (as described for the tendon in the beam), increase the vertical scale (distortion factor in Z-direction⁹), and move its control points (hot spots) with the mouse, until you obtain a smooth profile.

Verify Tendon Layout in 3D

We now view the tendon layout in three dimensions to closely examine their arrangement.

- From the main menu, click on the left teapot (View Model). This opens the display of the structure in 3D.
- o Select "Display in Wire Frame ()."
- Turn off the wall and beam display (Change the scale factor in 7 "
- Change the scale factor in Z-direction to 6, in order to magnify the slab thickness for better viewing (*)

⁹ The vertical scale for display can be adjusted by selecting the "distortion scale" menu item from the "Settings" pull-down menu

- o Finally, click on "Redraw ()" button.
- o Rotate and zoom the model to examine the tendon layout (Fig. 5-8).

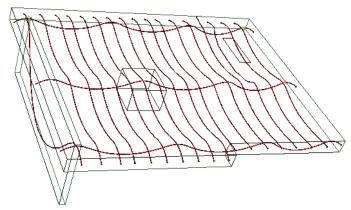


FIGURE 5-8 VIEW OF TENDON ARRANGEMENT

Code Check

The code check part of the design process consists of: (i) determining the actions (moments, shears, etc.) acting on the centroid of each design section, due to each of the load combinations specified by you, (ii) for each load combination, applying the associated forces to the cross-sectional geometry of the design section, (iii) depending on the load combination, calculating the associated stresses, and/or the reinforcement necessary to supplement the prestressing available in that design section, (iv) comparing the stresses with the allowable values of the code selected by you, (v) adding reinforcement or taking other measures as stipulated in the code you have selected, and (vi) preparing a graphical and summary report of the calculations and findings.

- o From FEM pull down menu, click on "Design the Design Sections."
- From "Display Strip X" turn on design strips in the X-direction (Fig. 5-9).
- To display stresses along visible support lines, select one of the Stress options (Top or Bottom) under Design Sections in the Results Display Settings window.

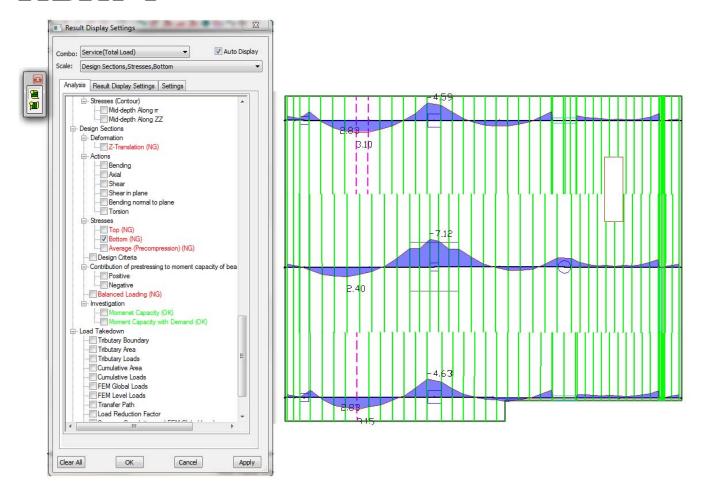
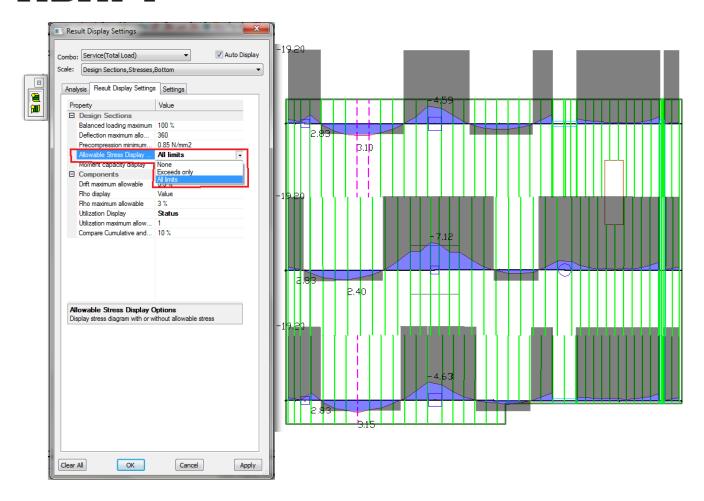



FIGURE 5-9 DISPLAY STRESS CHECK RESULT

In the above diagram, the design sections in which the calculated stresses exceed the allowable values are shown with broken magenta lines. For example in the support line at the top (support line 5), the mid-span sections at the left span are marked with a broken line. This indicates that at the location shown the computed stresses exceed the allowable values specified by you (this is generally the code specified values).

In the Result Display Setting tab, you can change the design strip stress display from not showing any limits that are exceeded, color coding what has exceeded only, or display the allowable limit against the actual calculated stresses. These provide useful variations to how a user can interpret the performance of the slab. The image below shows the same support lines as in **Fig. 5-9** but with all allowable limits.

Follow the steps outlined next to examine the stress distribution in your design strip in more detail.

- Double click on the Support Line to open its property box.
 Click on the "BuilderSum" tool, to display Fig. 5-10.

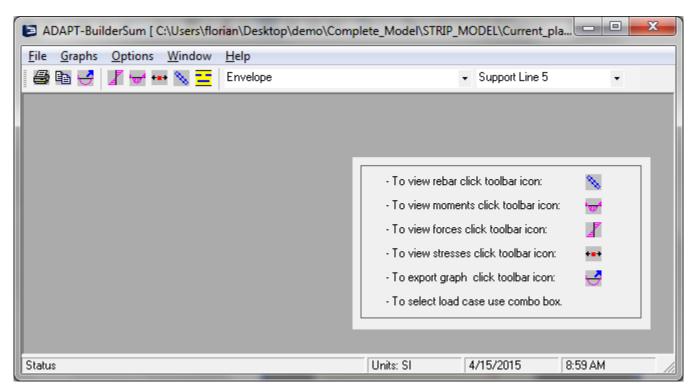


FIGURE 5-10 DESIGN SUMMARY MAIN WINDOW

Click on the "Stresses Diagram" *** tool, to open the stress diagram (Fig. 5-11). Depending on the specific values you have used so far, the stress diagram from your work might look slightly different. The stress diagram in the figure shows the top fiber stresses over the background of allowable stress that is shown with gray background. Tension is shown above the datum line (positive), compression below the datum line. Note that at the left of the second support, the calculated stress exceeds the allowable value, hence the display of broken line at this location in Fig. 5-19.

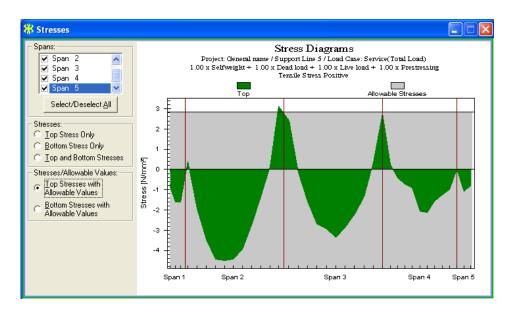


FIGURE 5-11 STRESS DIAGRAM FOR SELECTED STRIP

Experiment with other tools at the top of the screen to see the average precompression, distribution of rebar, moments, shear and other design values. From the combo box at the top of the screen, you can select the display of values for each of the load combinations, or the envelope of all load combinations.

At this stage, you can view and print a summary sheet for the amount, length and layout of the reinforcement of the design strip by clicking on the tool. This will display the rebar summary shown in **Fig. 5-12**. Again, the figure displayed from your work might look slightly different from Fig. 5-12. Note that the reinforcement shown is for the load combination displayed at the top of the screen and reported as item 1.2 in the figure.

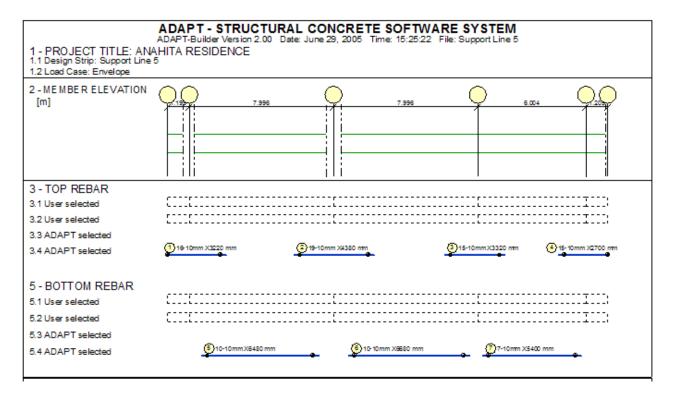


FIGURE 5-12 REBAR SUMMARY SHEET

Rebar Generation

In addition to generating a rebar summary sheet for each of the design strips, Floor-Pro can automatically generate rebar in your model. The rebar generated in your model displays the envelope of all the reinforcement calculated by the program. It displays the location of the reinforcement, the number of bars, the length and the range over which the reinforcement must be distributed.

We will now generate the reinforcement drawing of the floor system we have designed.

- o From the FEM pull down menu click on the "Generate Rebar Drawing."
- o If the calculated reinforcement does not appear automatically on the screen, from the "User Interface" pull down menu, turn on the "Reinforcement Toolbar" (**Fig. 5-13**).

FIGURE 5-13 REINFORCEMENT TOOLBAR

Click on the "Display/Hide Rebar" tool, to display the calculated rebar on plan. The rebar displayed will be similar to (**Fig. 5-14**). In this figure, note that the top rebar is grouped. The bottom rebar (shown with broken line) is distributed over the tributary of the associated design strip.

NOTE: In the general case, the bottom rebar in the banded direction of the tendons is banded below the band. Unlike the diagram in Fig. 6-14, this is recognized by the program automatically and so displayed. In the rebar plan, you can select the size of the displayed text (font), such as to make it legible and clear for the size of drawing you plan to plot.

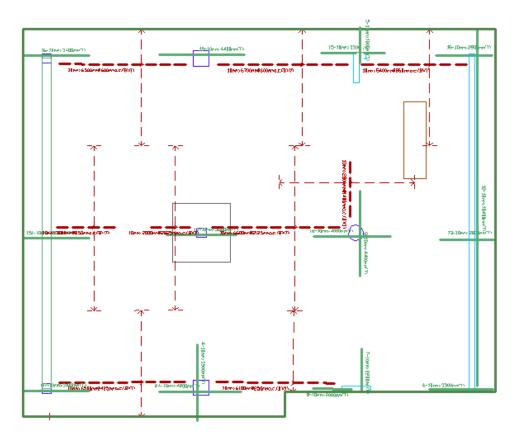


FIGURE 5-14 REBAR PLAN

The rebar shown on plan is fully editable. You can change the bar size, number, position and orientation. There is a dynamic link between the graphic, the text display and your analysis data. The following will help you to handle the rebar displayed.

- o To change the size of the text displayed, use the "Select/Set View Items" of. For "Rebar" entities, change the font size to 200mm (8in) for convenient viewing on computer screen.
- o The following helps you to manipulate the graphical display of rebar.
 - To change the length of a bar graphically, select the bar, pick one of its hot spots (identified near each end) and drag it to the length of your choice. Note that the text will automatically adjust itself to the new length. Later, you will learn how to change the length to an exact value of your choice by entering the new length in a data cell.
 - To change the orientation of a bar, pick one of its hot spots and rotate it to the new orientation.

- To move a bar, select it, pick one of its hot spots (identified near each end) and move it to the location of your choice while "control" key is depressed.
- To move a text to a new location, select the text, pick its hot spot, and move it to the new location.
- To change the extent of a bar, pick the end of the arrow that indicates its limit and drag it to the new location. The bar spacing will adjust itself automatically, such as to maintain the total area of reinforcement associated with the bar distribution you edit.
- Open the rebar property box (**Fig. 5-15**) by clicking on the "Open Rebar Display Options" tool from **Fig. 5-13**.

NOTE:

If you are not going through this tutorial in a supervised workshop, read the User Manual Rebar Module to learn more about the rebar plan.

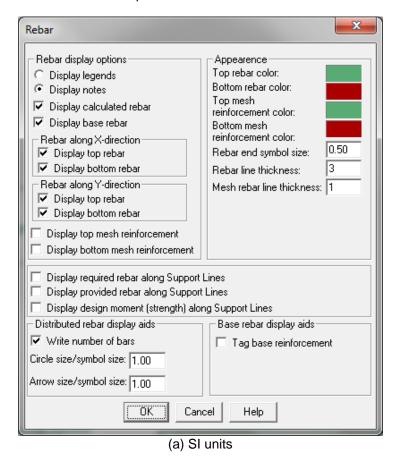


FIGURE 5-15 REBAR DISPLAY OPTOINS

Try the various display options shown in Fig. 5-15.

Figure 5-16 shows the close up of rebar display over one of the columns for user selected SI system of units.

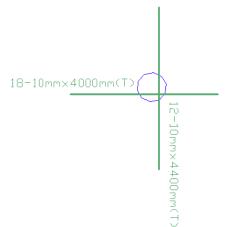


FIGURE 5-16 CLOSE UP OF REBAR DISPLAY OVER A COLUMN

Let us change the bar size and length of one of the top bars shown over the column in Fig. 5-16.

- Double click on the bar that you want to change to open its property box (Fig.5-17). This figure
 is for SI system of units. The figure for the American units is similar.
- Using the combo box, change the bar size and its length. Note that when you change the bar size, the number of bars is automatically adjusted to maintain the total area of rebar reported by the calculation.

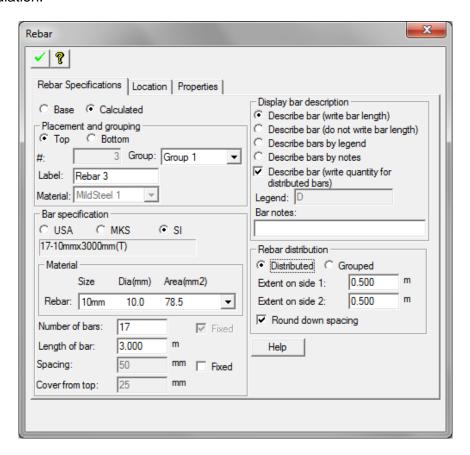


FIGURE 5-17 REBAR PROPERTY BOX

In the forgoing, the program selected reinforcement for the entire amount required by the code you specified. Many engineers provide a base reinforcement in their projects, regardless of the outcome of design. A common practice is to place a mesh of bars at the bottom, at the top, or on both sides of a slab, or at selected locations. The program gives you the full flexibility to pre-specify reinforcement at selected locations. In this case, the program will report the computed reinforcement that is necessary in addition to the base reinforcement you have specified. Next, we will review the steps that are required to specify base reinforcement.

Let us add a mesh reinforcement. For mesh reinforcement to be used as "base reinforcement" by the program do the following:

- Select the slab region over which you intend to add mesh reinforcement.
- Click on "Mesh Rebar Wizard" from the "Reinforcement Toolbar- Fig. 5-13." Specify information on the dialog box as shown below.

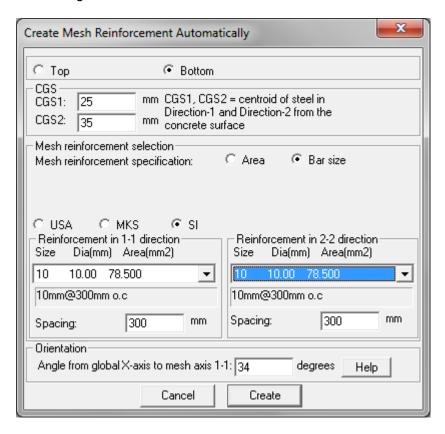



FIGURE 5-18 MESH REBAR WIZARD DIALOG BOX

NOTE:

Mesh rebar you specify at this stage will be shown on your drawing, but will not be accounted for as part of your calculation. If you want to provide a top or bottom mesh, and you intend the area of steel of the mesh to be included in your calculation, you must either specify the mesh before the design stage of the program, or go to FEM pull down menu and re-design the structure. If a mesh reinforcement is specified before the design stage, the program will recognize its presence and report only the reinforcement that is needed in addition to that provided by the mesh.

Likewise, you may specify individual bars or group of bars as "base reinforcement" to be included in your design. Refer to DRD manual for the details.

The rebar plan that was generated, viewed and edited, will be converted into a structural drawing in the next Session.

SESSION (6) – Generation of Structural Drawings

In this session we will generate a set of professional-quality structural drawings for the tendon layout, and the supplemental reinforcement. We will export these drawings to AutoCAD, ready for plotting. A critical criterion in the generation of the structural drawings is that they should detail all the features that are intended for construction. For example, for the purposes of analysis, walls may be modeled as shown in **Fig. 6-1(a)**. But for construction they should appear as illustrated in (b) of the same figure. Likewise, an opening that on the structural model appears like in (c) is generally shown as in (d) on construction drawing.

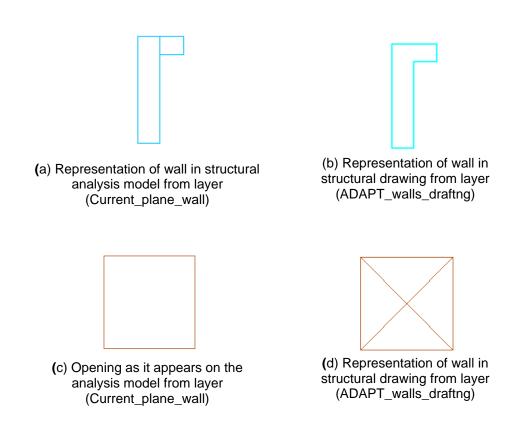


FIGURE 6-1 REPRESETNATION IN ANALYSIS MODEL AND STRUCTURAL DRAWING FOR CONSTRUCTION

Further, the rebar on top of a wall will appear as shown in **Fig. 6-2**, where only the outline of the wall is detailed.



FIGURE 6-2 REPRESENTATION OF RENFORCEMENT OVER WALL ON STRUCTURAL DRAWING

Prior to importing the DWG drawing into the Builder environment, or subsequent to the import of the drawing in the Builder environment, we duplicated several layers of the drawing for the purpose of generating structural drawings. For example, as explained in Session Three, we copied the walls that we wanted to appear on our structural drawing in a layer called "ADAPT_Walls_Drafting." This is the layer that contains the compound walls in the manner shown on **Fig. 6-1(b)**. In this workshop tutorial we do not have compound walls, but in most cases there will compound walls made up of several segments. Compound walls for analysis are idealized as shown in Fig. 7-1(a) when brought to the layer "ADAPT_Walls."

Once we organize the information on the screen, as we want it to appear on the structural drawings, we must turn off the layer we used for analysis and turn on the layers that we want to use for structural drawing. For example **Fig. 6-3**, shows the Select Layers dialog window and how all layers can be turned off and only one selected for display.

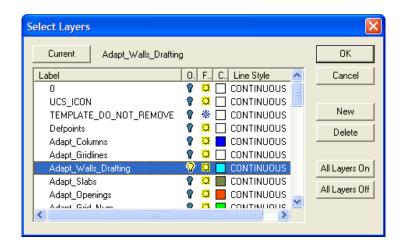


FIGURE 6-3 LAYER DISPLAY DIALOG WINDOW

We can add dimensions, text, copy and paste, and edit the plan on the computer screen in the manner we want it to appear on the structural drawings. Before, exporting it to AutoCAD, however, we must change the font, font size, line color and thickness to the selection we prefer on our DWG drawings. This is explained in greater detail further on and in Appendix A.

Rebar Drawing

For rebar drawing, (i) display on the screen the rebar information you wish to appear on your structural drawing, (ii) if needed, edit the rebar displayed (bar size, length, orientation, color, line type, etc), (iii) add reinforcement to the plan, if needed, (iv) turn off the structural model layers, (v) turn on the drafting layers, (vi) select the line types and color suitable for DWG drawing¹⁰, save and export to DWG.

To change the properties of a group of bars, (i) select them all, (ii) from "Modify" pull down menu, select (iii) Modify Item Properties menu item. The dialog box shown in **Fig. 6-4** appears. . Enter the modification for the bar selected, press OK to close and impalement your selection.

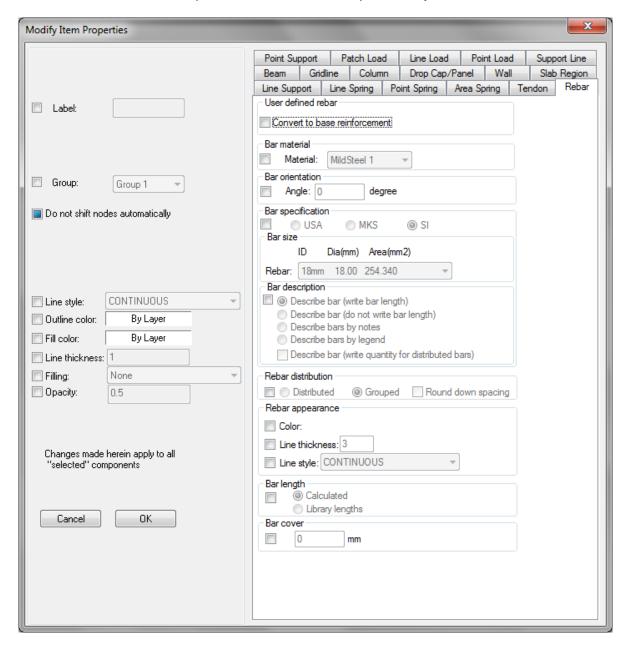


FIGURE 6-4 MODIFY ITEM PROPERTY WINDOW FOR REBAR

¹⁰ You can pre-define the font, line color, and line thickness that are suitable for the size of the hardcopy you plan to use once, and save them. The program will automatically select the hardcopy print properties you have pre-defined, each time you send the information to the printer. To pre-define the print options, click on the "Plot/Print Settings" from the "Settings" pull-down menu.

Once you are satisfied with the arrangement of reinforcement on the computer screen, go to the "File" pull-down menu and choose the 'Export DXF/DWG' option. Then choose the version of the AutoCAD file you wish to use, and click Ok.

FIGURE 6-5 AUTOMATICALLY GENERATED REBAR DRAWING IN BUILDER ENVIRONMENT

Tendon drawing

To select the information you want to be displayed on the post-tensioning drawings, open the 'Tendon Plans' dialog window (**Fig. 6-6**).

- From Reports pull-down menu select "Single Default Reports."
- From the side menu that opens, select "Graphical."
- Finally select "Tendon Plan." The Tendon Report dialog window displayed in Fig. 6-6 will open.

FIGURE 6-6 TENDON REPORT DIALOG WINDOW

You can either display the information on each tendon individually, or you can organize the tendons that are identical into groups, and display the information on each group only once. The latter option of display will result in a less-congested display of values.

• On the Tendon Report dialog window, make the selection shown in **Fig. 6-6**. The tendon drawing shown in **Fig. 6-7** will be generated.

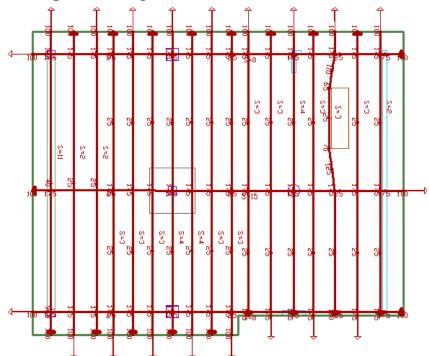


FIGURE 6-7 SI TENDON GRAPHICAL REPORT

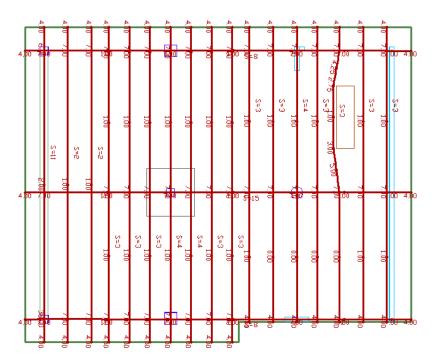


FIGURE 6-7_US TENDON GRAPHICAL REPORT

Once you are satisfied with the tendon information on the screen, and you want to export it to AutoCAD, you must go to the "File" pull-down menu and choose the "Export DXF/DWG" option. Then choose which version of AutoCAD file you wish to create and click OK.

Preparation for Exporting Floor-Pro Files to AutoCAD

The following steps will help to minimize the amount of editing needed, once a Floor-Pro solution is exported to AutoCAD for generation of structural drawings.

- Use the Grouping option of the program to group tendons that have the same profile and length, hence the same chair (support) arrangement and elongation. The following explains how to create groups and assign entities, such as tendons, to it.
 - From the "Settings" pull down menu, select "Grouping." The dialog window shown in **Fig. 6-8** opens.
 - The icon indicates whether items in a group are visible or not.
 - Use the New button to create new groups. Select the group name to rename it.
 - To assign an entity to a group, open the property window of the entity, scroll down the combo box that lists the groups and select the group of your choice.
 - Alternatively, you can assign multiple objects in your model to a group using the Modify
 Item Properties function that is available under the Modify menu.

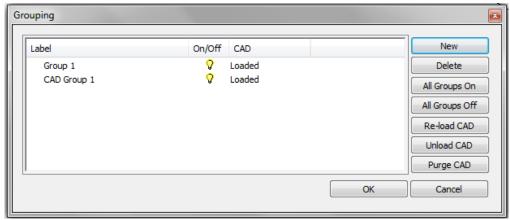
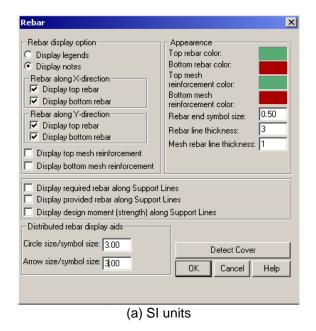



FIGURE 6-8 GROUPING DIALOG WINDOW

- For the entities that you want to be displayed on the paper drawings, such as tendon or rebar, set font height to be 250mm (10in) and symbol size to 50mm (2in). These values are set in the "Select/Set View Items" tool (10in). These font sizes are suitable for drawings that will be printed on large sheets (approximately 1000 mm; 36" dimension). Obviously, the suitable font size for viewing on the computer screen in Floor-Pro will be different
- Using the rebar tools, place any additional rebar that you consider is necessary to be shown on your drawing.
- For the rebar drawing, open up the rebar property dialog window (**Fig. 6-9**) and set the "Circle" and "Arrow" size to 3 (1). These two symbols control the clarity of display of the range of distributed reinforcement.

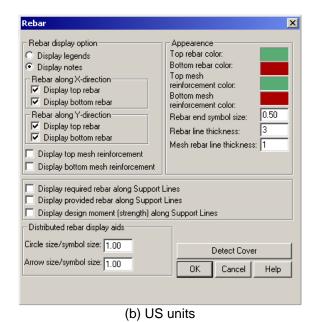


FIGURE 6-9 REBAR PROPERTY DIALOG WINDOW

Turn on the layer ADAPT_Slab_Drafting, and others that you created for drafting.

SESSION (7) – Preparation of Package of Structural Calculations

The structural calculation package generally consists of a lead part that briefly describes the structure and its design criteria. This is followed by a detailed report for each of the levels. In this tutorial, the two packages are provided separately, since it is assumed that at the start of the tutorial only the design criteria are available.

Report Setup

The program generates several types of reports. These include reports intended to check the validity of the solution, and a comprehensive report for submittal to building officials. The reports can be tabular, graphical or combined. Reports can include text and graphics (bitmaps) that you may have generated outside the environment of Builder Platform, as well as graphics and text that in the course of the analysis and design of your current project you may have found of interest. The sample report that is included in your CD for this tutorial includes text and graphics that were imported into the Builder program at time of report generation. For this tutorial, however, we will limit ourselves to a basic report that can be compiled directly from the default pages of the program.

It is recommended that you first review the sample report generated for this project, before attempting to generate your own report. There are two sample reports saved on your tutorial CD. One is more comprehensive and includes graphics captured during the modeling and execution. The other is simple. It is limited to the default pages that you can select directly from the report generation manager of the program. To view the sample reports, open the folder "Compiled Report" on the tutorial CD. The report in this folder is saved in PDF format. You need to have Acrobat Reader installed on your computer to open the report. If the program is not already installed in your computer, you can install the copy included in the "Utilities" folder of your tutorial CD¹¹.

The program generates its tabular and text information in "RTF" format, which can be opened and edited by practically all word processors. But, for ease of viewing, it is converted to the electronic file with PDF format.

NOTE:

A detailed account of how to generate reports automatically; how to import text and graphics in your report; and how to compile a professional report is given in the Floor-Pro User Manual. It is recommended that you review this document if you are not following this tutorial in a supervised workshop.

The compiled report can be organized using the following report generation window that is accessible from the "Reports" pull down menu:

¹¹ Open the Utilities folder and click on AdbeRdr70enu.exe

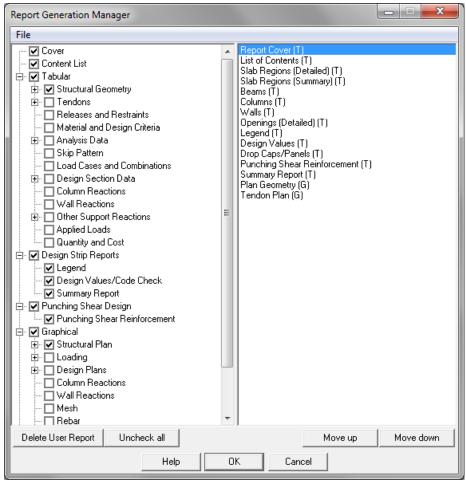
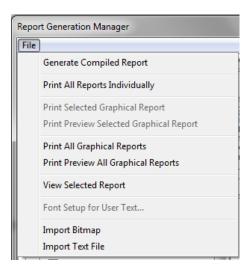



FIGURE 7-1 WINDOW FOR THE GENERATION OF COMPILED REPORTS

- From Report pull-down menu, select "Compiled Reports." The "Reports Generation Manager" shown in **Fig. 7-1** opens. If during a previous run of the program you had already set up the selection and arrangement of your report, this will automatically appear on the right hand side of the Report Generation Manager.
- Click on the boxes next to the report types you wish to have in your complete report. Selected report components are automatically listed in the right pane.
- You can move individual reports up and down to organize them in the order you want the final report to appear.
- Use the options under the File menu to view/print individually selected report components or generate the complete compiled report with all of its sections.

Estimate Quantities

The quantities of concrete, rebar and post-tensioning tendons are calculated automatically. These are available from the list of reports. Details of these reports are being finalized.

The program provides you with a list of all tendons used. The list includes the number, diameter and length of each tendon, as well as total strand length and weight. A partial table for the current project is displayed below.

TABLE 7-1_SI 300.00 PT TOTALS

Tendon ID	Length	Strand Diameter	Number Of Strand	Total Length
	m	mm		m
1	20.007	13	11	220.081
2	20.007	13	2	40.015
3	20.007	13	2	40.015
4	19.997	13	4	79.988
5	18.713	13	4	74.851
6	18.713	13	3	56.138
7	18.713	13	3	56.138
8	19.997	13	4	79.988
9	19.997	13	3	59.991
10	19.997	13	3	59.991
11	19.997	13	3	59.991
12	19.997	13	3	59.991
13	19.997	13	3	59.991
14	18.713	13	3	56.138
15	18.713	13	3	56.138
16	18.713	13	2	37.425
17	18.767	13	3	56.300
18	24.400	13	8	195.200
19	24.400	13	15	366.000
20	24.400	13	8	195.200

SUMMARY

Strand Diameter	Total Length	
mm	m	
13	1909.567	

TABLE 7-1_US

300.00 PT TOTALS


Tendon ID	Length	Strand	Number Of	Total Length
		Diameter	Strand	
	ft	in		ft
1	65.75	0.50	11	723.25
2	65.75	0.50	2	131.50
3	65.75	0.50	3	197.25
4	65.75	0.50	2	131.50
5	65.75	0.50	3	197.25
6	65.75	0.50	3	197.25
7	65.75	0.50	4	263.00
8	65.75	0.50	4	263.00
9	65.75	0.50	3	197.25
10	65.75	0.50	3	197.25
11	61.53	0.50	3	184.59
12	61.53	0.50	3	184.59
13	61.53	0.50	4	246.12
14	61.53	0.50	3	184.59
15	61.72	0.50	3	185.16
16	61.53	0.50	3	184.59
17	61.53	0.50	3	184.59
18	80.19	0.50	8	641.49
19	80.19	0.50	15	1202.79
20	80.19	0.50	8	641.49

SUMMARY

Strand	Total Length		
Diameter			
in	ft		
0.50	6338.49		

To generate the tendon quantities table, do the following:

- From the Reports pull-down menu, select "Single Default Reports," followed by "Tabular," and "Tendon Totals."
- Using the same pull-down menu, you can create Rebar Totals, Quantity and Cost reports (Fig. 7-2).

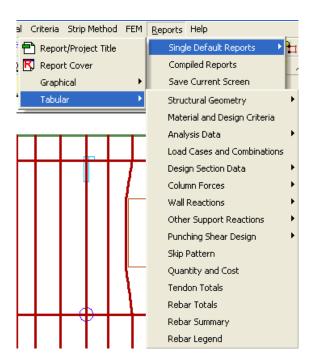
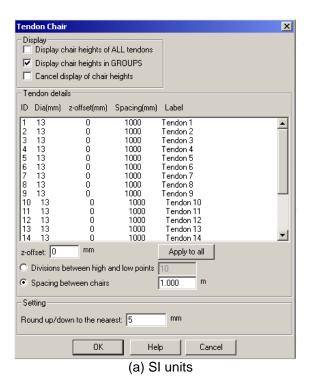


FIGURE 7-2 SINGLE DEFAULT REPORTS OPTIONS

SESSION (8) - Fabrication (Installation, Shop) Drawings


In this session we will generate a set of professional-quality structural drawings for the tendon layout on site.

To access the tools for the generation of shop drawings, turn on the "Fabrication (Installation) Toolbar" from the User Interface pull down menu (Fig. 8-1).

FIGURE 8-1 FABRICATION (INSTALLATION) TOOLBAR

- Click on "Display Tendon's Chair Height "" tool.
- On the dialog window, selected the information displayed in Fig. 8-2.
 - Once you have selected the spacing between chairs to be 1.0m (3ft) make sure you click the "Apply to All" button just above where you entered the spacing value, in order for the change to take effect over all tendons.
- In order to show Chair Heights of tendons within a beam elevation, double click the tendon going through the beam. Then click on the button, and follow the instructions on the screen.
- Make sure again that you turn on all the Layers created for drafting.
- Click on Export DXF/DWG option in the "File" pull-down down menu.

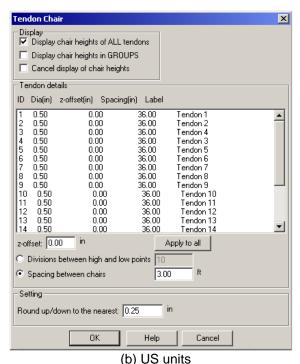


FIGURE 8-2 DIALOG WINDOW FOR GENERATION OF SHOP DRAWINGS

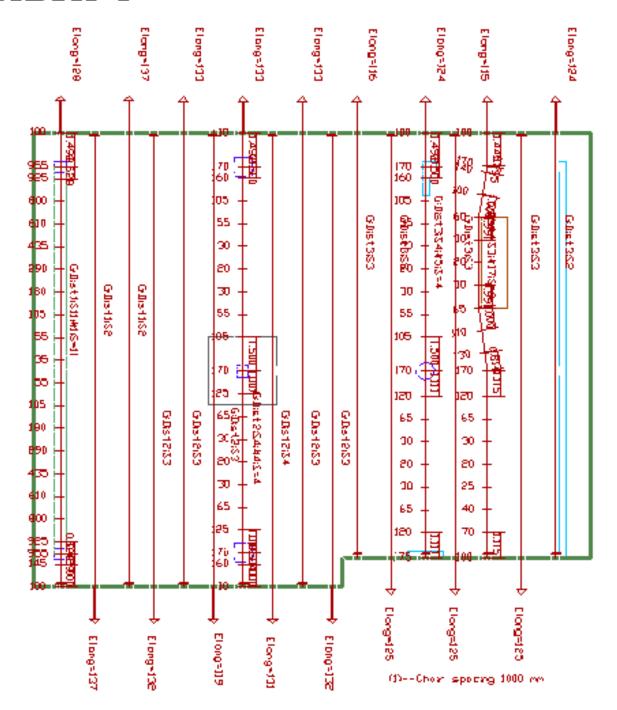


FIGURE 8-3_SI INSTALLATION (SHOP) DRAWING OF DISTRIBUTED TENDONS

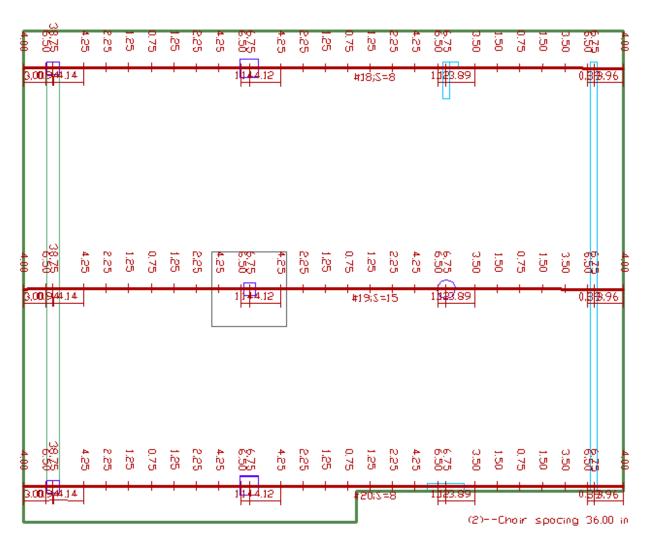
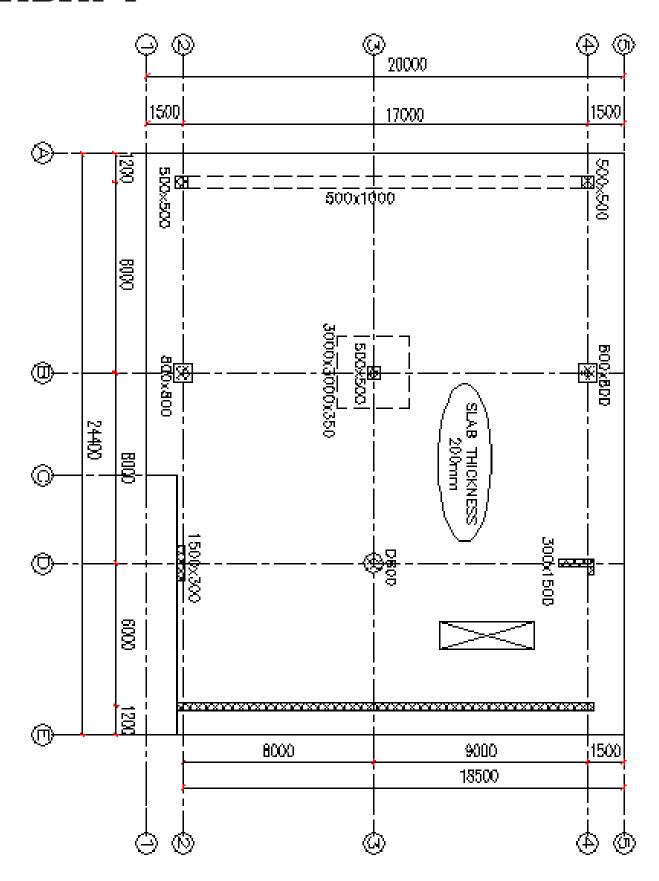
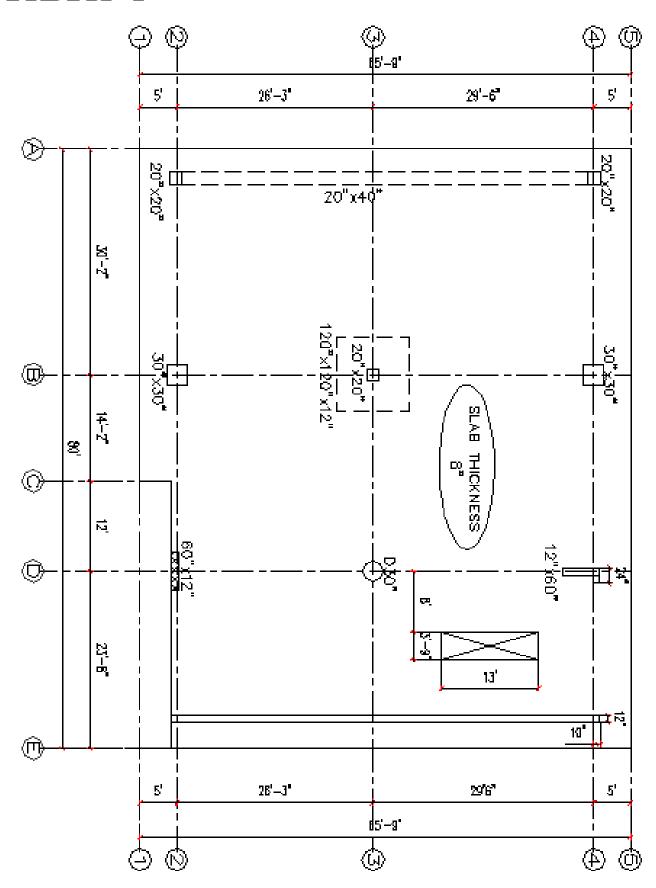




FIGURE 8-3_US INSTALLATION (SHOP) DRAWING OF BANDED TENDONS

STRUCTURAL_DIMENSIONS_SI

STRUCTURAL_DIMENSIONS_US

APPENDIX A: PREPARATION OF DWG DRAWING FOR IMPROVED IMPORTING

The folder of this session includes two drawings in DWG format. One is the architect's drawing, and the other is its simplified version. The objective of this session is to demonstrate how an original and involved drawing can be stripped of the information that is not relevant to the design and construction of its concrete frame. Thus, creating a version that helps to expedite the structural engineering design, and the creation of construction documents.

In idealized conditions, this step of design is performed by experienced draftsmen – not the design engineer. However, for completeness of the design process, it is included in this tutorial as a separate session. If you are not familiar with AutoCAD, and are not likely to perform the simplification explained herein yourself, it suffices that you just open the two versions of the drawings with the tool provided, view them, observe the differences, and move to the next Session. This provides you with the background needed to judge what to expect from a simplified drawing.

Architect's Original Drawing (Original DWG)

The architect's original drawing (**Fig. A-1**) is saved in AutoCAD version 14, in order to make it accessible to a wider audience. It shows the plan of the floor system to be designed, and other information of general interest to architects and construction. You can open the plan with the DWG viewer included in the training CD.

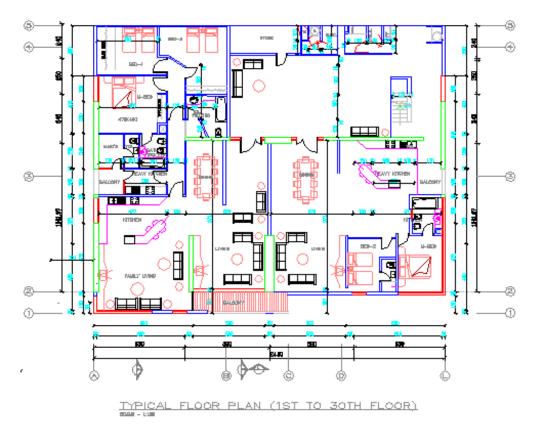


FIGURE A-1-SI VIEW OF ARCHITECT'S PLAN OF THE FLOOR

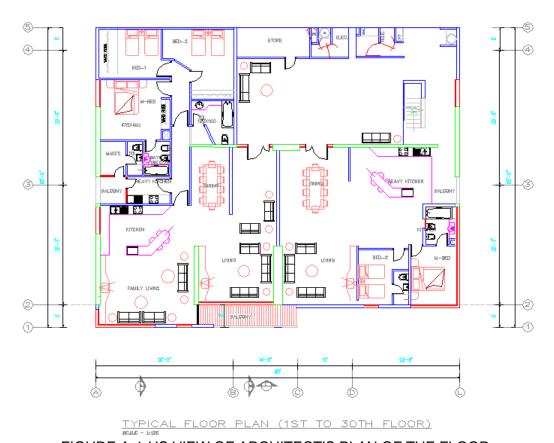


FIGURE A-1-US VIEW OF ARCHITECT'S PLAN OF THE FLOOR

Simplified Drawing (DWG)

For a better understanding of the floor systems and its structural elements, the architect's drawing is simplified. The simplification consists of turning off the layers that are not relevant to the structural design and erasing the entities that are not critical from a structural standpoint, such as position of furniture. Some of the layers can be erased altogether, with no loss of information for structural design.

The simplified drawing is shown in **Fig. A-2**.

The next step is to prepare the simplified drawing for importing it to the Builder program. Strictly speaking, this step is not necessary for the import of your DWG drawing to the Builder program. But the suggested work will lead to a substantial time saving in subsequent stages of your work. Moreover, the additional preparation can be done by your draftsman, who will also benefit from the preparations at this stage, when it comes to creating the structural drawings.

The purpose of the preparation is to create layers that are specific to the structural design of the project. Each layer would contain a pre-defined group of information. At a later stage, by turning the layers on or off, you will rapidly generate structural components, or specific information on your drawings.

NOTE:

If you are not familiar with AutoCAD, or are not likely to be doing the additional preparation described below yourself, it is suggested that you go to the next Session. The next session starts with a summary that helps you to achieve the same objective in the Builder environment.

Identify the entities that impact the load-carrying function of the floor. These are slab regions, openings, beams, walls and columns. Create a layer for each of these entities with the names listed below. Copy or move the entities identified to their respective layers. You will note that some of the entities have two layers, such as ADAPT_Slabs, and ADAPT_Slabs_Drafting. The first layer is intended to be used for the generation of the analysis and design of the structural model, and the second layer for drafting of the structural drawing. Appendix A explains the difference between the two. In many cases, the two layers will be identical. The folder of this session includes an edited version of the architect's files (Simplified_drawing.dwg), prior to its import to the Builder platform.

The suggested layers are:

- ADAPT Slabs
- ADAPT_Openings
- o ADAPT Beams
- o ADAPT Columns
- o ADAPT Walls
- o ADAPT_Drops
- ADAPT Slabs Drafting
- o ADAPT_Columns_Drafting
- o ADAPT_Beams_Drafting

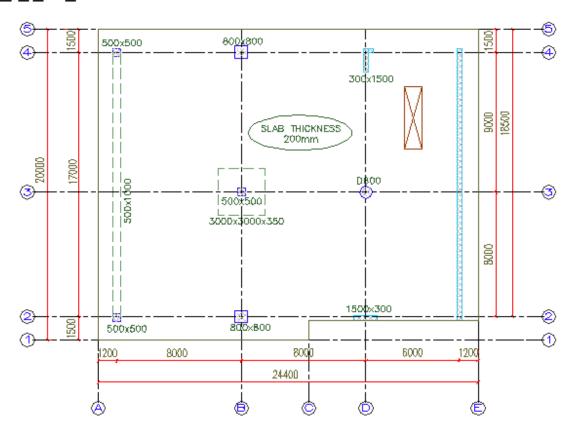


FIGURE A-2-SI SMPLIFIED ARCHITECT'S DRAWING

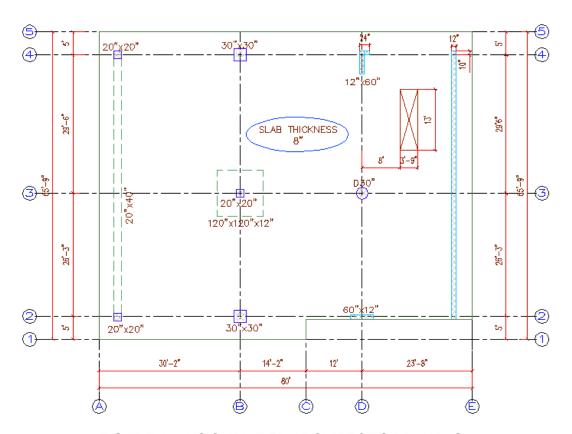


FIGURE A-2-US SMPLIFIED ARCHITECT'S DRAWING

- ADAPT_Walls_Drafting
- ADAPT_Openings_Drafting
- o ADAPT_Drops_Drafting
- o ADAPT Gridlines
- ADAPT_Grid_Num (for numerical grid line annotation)
- o ADAPT Grid Cir
- ADAPT_Dim (for dimensions)

Not all the layers listed might be necessary for a given project. The first group helps in creating the 3D structural model for analysis and design. The second group will be used to generate your structural drawings through the Builder platform. There are two reasons why you would need to have designated layers for drafting. In AutoCAD the line thickness, type and color are best handled through the layers. Placing the beams in a different layer than the slab enables you to show the beams with different line type on your structural drawings. The second reason is for automated transfer of the architectural details that are essential to the concrete frame, but not required for structural design. This is illustrated through an example in Appendix A. The third group is used to enter the grid lines on the structural drawings you prepare.

NOTE:

If you are not going through this tutorial in a supervised workshop, but are interested in knowing more about the generation of the layers in the AutoCAD environment, read Appendix A of this document before proceeding.

If you are not likely to work in the AutoCAD environment, you will not be generating the above-mentioned layers in this Session. Proceed with the next Session.

APPENDIX B: USEFUL HINTS

Use of Consistent Modeling Convention

All entities, such as beams, walls, support lines and tendons are best created from left to right and from bottom to top (direction of the coordinate system). Doing so will facilitate the identification of first and last spans while editing these entities. Also, the text associated with each will appear consistently in the same orientation.

How to Remove the "Read Only" Attribute of a Folder

- Right click on the folder which contains the files and subfolders you wish to undo the read only attribute.
- Click the properties option at the bottom of the list.
- Under the Attributes section of the window that opens uncheck Read-Only and click OK.
- Select the button which states "Apply changes to this folder, subfolders and files;" then click the button.
- Then click OK on the Properties dialog box.

APPENDIX C: TREATMEMENT OF COMPOUND (INTERCONNECTED) WALL ASSEMBLIES

Walls are not always isolated, simple and rectangular in shape. In many cases walls are assemblies of two or more wall segments, such as (a) in **Fig. 1**. Both ADAPT-Modeler and Floor-Pro can faithfully model, and account for the structural features of an entire wall assembly. This Technical Note describes the modeling procedure.

STRUCTURAL MODELING

In your structural model, a wall assembly must be broken down into rectangular wall segments. There are two options as illustrated in **Fig. 1**. In option 1, each wall segment butts against the side of an adjoining wall, with no overlap of wall segments. In option 2, the wall segments are connected to one another at their centerlines. In both modeling options, the program treats the segments working together as one whole. Option 2 places less demand on computer resources for analysis and design. If you follow the modeling procedure outlined in the Modeler User Manual, the structural drawing you will generate from either of the two options will show the wall in its true form (**Fig. 1-a**).

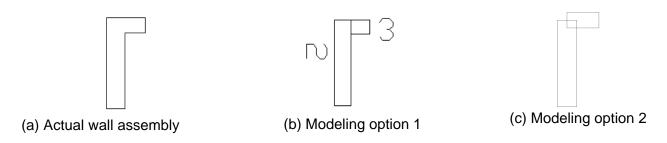


FIGURE 1 MODELING OPTIONS OF WALL ASSEMBLIES

SUPPORT LINES AND DESIGN STRIPS

As much as practical, you will use the support line wizard () to generate support lines. For compound wall assemblies, it would not be practical to consider each wall segment as a separate support. Ideally, you would like to identify a point that is the beginning of wall support, and another one at the end of the wall support. Again, there are two options for you to achieve this, when you use the support line wizard.

Option 1

In this option, you can change the property of a wall segment, such as wall segment marked "3" in **Fig. 2-b** to "disregard." You do so, by opening the property window of the wall marked "3," and under the FEM tab change its property from "consider" to "disregard." This change in property will result in the wall segment not to be accounted for, when the support line wizard automatically creates a support line. The outcome will be similar to **Fig, 2-e**. If the wall segment 3 is not disregarded, the support line created automatically will be as shown in **Fig. 2-d**.

Option 2

In this option you do not "disregard" a wall segment. After the support line is generated, you will eliminate the support line segments that zigzag over the interconnected wall segments. Do the following.

- Turn the support line symbol on. The small circles are the "support" locations of the support line.
- Retain the first and the last support points, and delete the support points (circles) in between.

Do so by using the delete vertex tool (). The outcome will be a view, similar to Fig. 3.

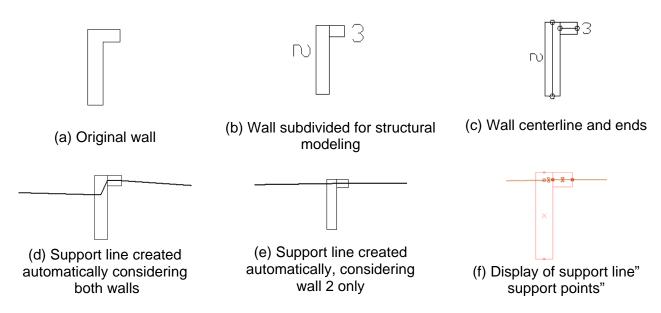
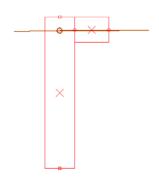



FIGURE 2 TREATMENT OF SUPPORT LINES FOR COMPOUND WALL SEGMENTS

FIGURE 3 SUPPORT LINE WITH TWO SUPPORT POINTS OVER COMPOUND WALL

If you disregard a wall segment prior to the analysis, its stiffness will not be included in the analysis of the floor system. But, at design time, its presence will be recognized. Wall segments that are primarily for architectural reasons and do not provide a significant support to the structure are best disregarded in the analysis. Otherwise, in creating support lines, use option 2, whereby you would edit the automatically generated support lines.