
THYROID GLAND

NORMAL THYROID GLAND – Consists of follicles lined by an epithelium that produces colloid on stimulation from TSH & are filled w/ colloid. Colloid contains *thyroglobulin*, a protein that plays a central role in the synthesis & storage of Thyroid Hormone.

IODINE

- lodine is necessary for the synthesis of thyroid hormone
- Recommended minimum intake: 150 micrograms/day
- Intake of less than 50 micrograms/day is associated with goiter
- High iodine levels inhibit iodine oxidation & organification
- lodine excess inhibits thyroglobulin proteolysis: Wolff-Chaikoff Effect reduction of TH levels due to ingestion of large amounts of iodine

THYROID HORMONE: Synthesis

- An *iodide pump* transports I from blood into thyrocytes
- lodide is oxidized into iodine (I₂) by a peroxidase enzyme in the follicular cell membrane
- Organification of iodine: Tyrosine residues of TG react w/ Iodine to form monoiodotyrosine (MIT) & diiodotyrosine (DIT) Coupling of MIT & DIT forms thyroid hormones T₃ & T₄
- lodinated TG is stored in the follicular lumen until secretion
- When stimulated, thyrocytes take back iodinated TG by endocytosis
- TG is hydrolyzed in lysosomes, releasing MIT, DIT, T₃ & T₄
 - o T₃ & T₄ are secreted into circulation
 - Residual MIT & DIT are deiodinated by thyroid deiodinase, releasing iodine which is reused
- Most T₃ & T₄ is bound to thyroxin-binding globulin (TBG)
- In peripheral tissues, T₄ is converted to T₃ (more active form)

THYROID HORMONE: Hypothalamus-Pituitary-Thyroid Axis

- — ↓ T₃ & T₄ stimulate the release of TRH from the hypothalamus & TSH from the anterior pituitary causing T₃ & T₄ levels to rise
- ↑ T₃ & T₄ levels then feedback to suppress the secretion of both TRH & TSH
- TSH binds to the TSH-R on the thyroid follicular epithelium, which causes activation of G proteins, & cAMP-mediated synthesis & release of T₃ & T₄
- In the periphery, T₃ & T₄ interact w/ the thyroid hormone receptor (TR) to form a hormone-receptor complex that translocates to the nucleus & binds to thyroid response elements (TREs) on target genes to initiate transcription

THYROID HORMONE FUNCTION

- † 4 B's: Brain maturation, Bone growth, β₁-adrenergic effects, Basal metabolic rate
- Maturation of CNS in perinatal period & Regulation of CNS activity
- Bone growth & maturation
 - Acts in synergy w/ GH & somatomedin (IGF)
 - Actions are on the growth plate
- Up-regulation of β₁-adrenergic receptors in the heart
- †Cardiac output & Ventilation
- ↑Oxygen consumption, ↑Basal Metabolic Rate (except in brain, spleen, gonads) & ↑Heat production
- Stimulation of all Metabolic Activities
 - † Glucose absorption in GI, glycogenolysis, gluconeogenesis, glucose oxidation, lipolysis, protein synthesis/degradation
 - Overall effect on protein metabolism: Catabolic

↑ SNS via ↑expression of β-adrenergic-R ↑ BMR via ↑synthesis of Na⁺K⁺ATPase

HYPERTHYROIDISM	HYPOTHYROIDISM
↑ Metabolic rate	↓ Metabolic rate
Weight loss	Weight gain
Negative Nitrogen balance	Positive Nitrogen balance
↑ Heat production	↓ Heat production
Heat intolerance, sweating	↓ Cardiac Output
↑ Cardiac Output <i>(↓ Diastolic BP)</i>	Hypoventilation (↓Ventilation)
Hyperventilation	Constipation
Diarrhea + malabsorption	Lethargy, mental slowness
Tremor, anxiety, hyperactivity	Drooping eyelids
Wide, staring gaze + lid lag	Growth & mental retardation (perinatal)
Hyperglycemia	Hypercholesterolemia
Hypocholesteremia	

THYROTOXICOSIS & HYPERTHYROIDISM

- Thyrotoxicosis: hyper-metabolic state caused by elevated levels of CIRCULATING/FREE T₃ & T₄
- <u>Thyrotoxicosis + HYPERTHYROIDISM</u> due to *hyper-functioning/overactive* thyroid gland (majority of cases)
 - o Radioactive iodine uptake (RAIU) is increased
 - Tx: THIONAMIDE (methimazole) interferes w/ hormone synthesis by inhibiting oxidation of l⁻ to l₂
- Thyrotoxicosis NOT associated w/ Hyperthyroidism due to the release of preformed hormone from damaged thyroid gland, exogenous source, etc.
- HEPATIC FAILURE → ↓TBG levels → ↓ total TH (but normal levels of free T₃ & T₄)
- PREGNANCY: ↑TBG → ↑ total TH (but normal levels of free T₃ & T₄)

RADIOACTIVE IODINE UPTAKE (RAIU) TEST

- A: Normal diffuse, even uptake
- B: Graves Disease diffuse, increased uptake
- **C: Toxic Multinodular Goiter** multifocal areas, some increased & some decreased
- **D: Toxic Adenoma** single focal area with increased uptake; "hot" nodule
- E: Thyroiditis (Hashimoto) diffuse, decreased uptake

HYPERTHYROIDISM: Thyrotoxicosis Due to Increased Thyroid Function

- PRIMARY HYPERTHYROIDISM (↓TSH)
 - Graves Disease (60-85% of cases)
 - o Toxic Adenoma (benign tumor)
 - Toxic Multinodular Goiter
 - lodine-Induced Hyperthyroidism
 - Neonatal Thyrotoxicosis due to Maternal Graves Disease
- SECONDARY HYPERTHYROIDISM (†TSH)
 - o Rare
 - Most caused by TSH-producing Pituitary Adenoma
 - Secondary Hyperthyroidism is associated with ↑ TSH levels, while all other causes of hyperthyroidism are associated with ↓ TSH levels

THYROTOXICOSIS NOT ASSOCIATED W/ HYPERTHYROIDISM

- Thyroid gland activity is depressed
 - ↑ T_3/T_4 will cause negative feedback $\rightarrow \downarrow TSH$
- Usually caused by injury to thyroid w/ release of preformed hormone or extra-thyroidal source of TH:
 - o Hashimoto's Thyroiditis destruction of thyroid
 - Radiation
 - o Exogenous TH intake
 - \circ <u>Struma ovarii</u>: Teratoma of the ovaries predominantly composed of mature thyroid tissue; ectopic thyroid function producing large amounts of T_3/T_4 (can lead to hyperthyroidism)

The 3 Most Common

Causes of Hyperthyroidism

- o Metastatic follicular carcinoma
- Radioactive Iodine Uptake: Near absent

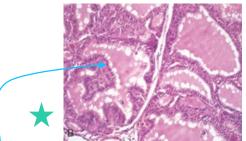
THYROTOXICOSIS: Clinical Manifestations

- SKIN: Red, warm, sweaty (heat intolerance), thinning of hair, hyperpigmentation
 - DERMOPATHY (PRETIBIAL MYXEDEMA) localized lesions of the skin resulting from deposition of hyaluronic acid, usually confined to the pretibial area; almost exclusively in GRAVES DISEASE
- EYES: Staring eyes & lid lag
 - OPTHALMOPATHY (EXOPHTHALMOS) occurs almost exclusively in GRAVES DISEASE
- CARDIOVASCULAR: ↑ Cardiac output w/ ↑HR, widened pulse pressure, **a-fib**, High Output Cardiac Failure
 - o FYI 3 Most Common Causes of A-Fib: Thyrotoxicosis, Ischemic Heart Disease, Mitral Valve Disease
- METABOLIC: Weight loss due to hyper-metabolism, hypocholesterolemia, hyperglycemia
- RESPIRATORY: ↑O₂ consumption & CO₂ production → hyperventilation; respiratory muscle weakness → dyspnea, tracheal compression from large goiter, exacerbation of asthma, ↑ pulmonary pressure
- GASTROINTESTINAL: gut hyper-motility → frequent BM, malabsorption, hyperphagia
- HEMATOLOGIC: normocytic normochromic anemia
- GENITOURINARY: Female menstrual irregularities & anovulatory cycles; Male gynecomastia, ↓libido & abnormal spermatogenesis
- BONE: ↑resorption & fracture risk
 - THYROID ACROPACHY unusual clubbing of the fingers; associated with GRAVES DISEASE
- NEUROPSYCHIATRIC: tremor, behavioral & personality changes, psychosis, agitation, depression, anxiety, restlessness, irritability, emotional lability, insomnia, cognitive impairment

HYPERTHYROIDISM IN OLD PATIENTS

- Older patients may have fewer & blunted manifestations: Apathetic Hyperthyroidism
- *3 Most Common Signs in Elderly: weight loss, SOB, a-fib
 - Depression is often a common symptom in elderly patients
- Toxic Multinodular Goiter & Solitary Toxic Adenomas (Plummer Disease) are less frequently seen than Graves, but they represent a higher proportion of hyperthyroidism in the elderly

THYROID STORM: Hyperthyroidism


- MEDICAL EMERGENCY
- Most common in patients w/ GRAVES DISEASE
- ABRUPT onset of severe hyperthyroidism, associated with fever/hyperthermia & extreme tachycardia
- Patients may die of cardiac arrhythmias
- Precipitated by any form of stress surgery, infection, cessation of anti-thyroid medication

GRAVES DISEASE: Autoimmune (IgG)-Mediated Hyperthyroidism (↑TH, ↓TSH)

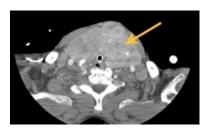
- Most Common cause of HYPERTHYROIDISM
- More common in FEMALES of childbearing age (10:1 female to male ratio) Affecting 2% of women in the US
- CLINICAL MANIFESTATIONS: Those of hyperthyroidism + diffuse goiter, ophthalmopathy (exophthalmos), dermopathy (pretibial myxedema), thyroid acropachy (clubbing of the fingers)
- PATHOGENESIS
 - Type II Hypersensitivity Reaction Non-Cytotoxic
 - Cell-mediated Autoimmunity directed at 4 thyroid antigens: Thyroglobulin, Thyroid Peroxidase, Na⁺-I⁻ symporter, TSH receptor
 - o THYROID-STIMULATING IMMUNOGLOBULIN (TSI) is the most important AutoAb
 - Binds to & activates TSH receptors → ↑T₃ & T₄ → ↓ TSH
 - TSI is specific of Graves Disease, whereas other AutoAb are found in other autoimmune thyroid conditions, such as Hashimoto Thyroiditis
- Graves has a genetic predisposition 40% concordance rate in monozygotic twins
 - Susceptibility to disease linked to polymorphisms in immune-related genes, CTLA4 & PTPN22
 - Susceptibility also linked to HLA-DR3 allele
- ASSOCIATED AUTOIMMUNE DISORDERS
 - Close to 10% of patients w/ Graves & 14% of those w/ Hashimoto thyroiditis have co-existing autoimmune conditions
 - RHEUMATOID ARTHRITIS is the most common associated autoimmune disorder
 - Others: Pernicious anemia, SLE, Addison Disease, Celiac Disease, Vitiligo
- DIAGNOSIS: Diffuse increased uptake w/ Radioactive Iodine Uptake (RAIU)

Diffuse, symmetrically enlarged, beefy-red Thyroid Gland

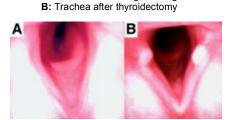
HYPERPLASTIC FOLLICLES w/ tall epithelial cells & scalloped edges – scalloping is result of active reabsorption of thyroid hormone (hyperactivity of the gland) Flat Follicular Cells = Inactive; Tall Follicular Cells = Overactive

GRAVES' OPTHALMOPATHY (EXOPTHALMOS – Bug eyed)

- Volume of both extra-ocular muscles & retro-orbital connective & adipose tissue is increased due to inflammation & accumulation of hydrophilic GAGs, mainly hyaluronic acid
- Pathogenesis is not due to hyperthyroidism, but is AUTOIMMUNE. Thus, reducing TH secretion DOES NOT lead to improvement of Graves' ophthalmopathy/exophthalmos.
 - o Soft tissues in the orbit express TSH-R; Anti-TSH-R AutoAb trigger inflammatory reaction
 - o T lymphocytes secrete cytokines IGF-γ & TNF-α that stimulate fibroblasts to produce GAG
 - Accumulation of GAG results in swelling of orbital soft tissues & extra-ocular muscles, producing exophthalmos & other ocular complications
- **SMOKING** increases the risk
- GRAVES' DERMOPATHY/PRETIBIAL MYXEDEMA has the same pathogenesis


GRAVES' DERMOPATHY (PRETIBIAL MYXEDEMA)

- Waxy, discolored induration of the skin on the anterior aspects of the legs, extending to dorsal surface of feet
- Accompanied by burning sensation & itching
- Due to accumulation of mucin in the dermis & subcutis



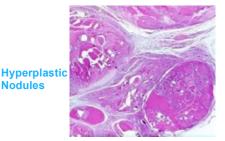
GOITER: Non-Toxic (Euthyroid), Toxic (Hyperthyroid), Nodular (Hot or Cold)

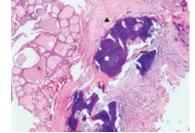
- Enlargement of the thyroid gland due to hypertrophy & hyperplasia of follicular cells
- Most Common Manifestation of Thyroid Disease
- Compensatory phenomenon caused by impaired synthesis of thyroid hormone Compensatory response is usually sufficient to establish a euthyroid state, but most severe cases lead to hypothyroidism
 - Most Frequent Cause: IODINE DEFICIENCY Without iodine, the thyroid cannot make TH. TSH will increase due to lack of negative FB leading to hyperplasia of the thyroid.
- SIGNS & SYMPTOMS due to mass effect & compression on neck/mediastinal organs: dysphagia (esophagus), breathing difficulty (trachea), SVC syndrome (collateral circulation leads to distention of veins in neck/chest wall)
- 2 Types: Diffuse Non-Toxic (simple) & Multinodular

A: Tracheal narrowing due to goiter

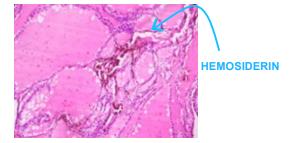
1. DIFFUSE NON-TOXIC (SIMPLE) GOITER

- **Diffusely** enlarged without nodules
- Most patients are EUTHYROID
- ENDEMIC GOITER is the most frequent Caused by iodine deficiency in regions of the world w/ low levels of iodine in water, soil, & food
- SPORADIC GOITER is often idiopathic, but few cases are caused by ingestion of goitrogens or hereditary defects in thyroid synthesis
 - o Known Goitrogens: vegetables of the Cruciferae family cabbage, brussel sprouts, cauliflower, turnips, cassava root


2. MULTINODULAR GOITER


- Multilobulated, asymmetrically enlarged thyroid gland (up to 2kg)
- Develop from long-standing simple goiters through episodes of hyperplasia & involution
- Nodules can be polyclonal or monoclonal (autonomous growth)
- Follicles & vessels rupture leading to scarring, calcification, hemosiderin deposition, & cysts
- 10% develop a hyper-functioning, autonomous nodule: Toxic multinodular goiter or Plummer Syndrome (Solitary Toxic Adenoma)
 - "Thyrotoxicosis due to autonomous nodule development in long-standing goiter is Plummer Syndrome, not Graves Disease"

Nodular appearance of multinodular goiter w/ patchy scarring & cystic changes


Nodules

Scarring & Calcification

HYPOTHYROIDISM

- Insufficient production of thyroid hormone
- PRIMARY: due to injury/dysfunction of the thyroid gland; †TSH
- SECONDARY: due to hypothalamic/pituitary injury; JTSH
- CAUSES in Industrialized Countries:
 - HASHIMOTO THYROIDITIS is the most common cause of HYPOTHYROIDISM in the US (95% of cases)
 - o 2nd most common cause Therapeutic Ablation of the Thyroid
- More common in FEMALES (F:M ratio is 10:1)
- CLINICAL MANIFESTATIONS: Fatigue, weight gain, cold intolerance, constipation, SOB, hair thinning (both hyper & hypo), cramping, menstrual irregularities, Carpal tunnel syndrome, slow deep-tendon reflexes, enlargement of thyroid gland (goiter) if due to Hashimoto Thyroiditis
- LABORATORY FINDINGS
 - ↑ TSH in most cases
 - o TSH level is the most sensitive screening test for Hypothyroidism
 - ↓ Circulating free T₄ & T₃
 - ↑ Total & LDL cholesterol

HYPOTHYROIDISM IN OLD PATIENTS

- Older patients may be misdiagnosed w/ dementia or depression
- DEMENTIA: progressive & irreversible cognitive decline caused by loss of neurons in regions playing key role in cognition
 - 3 Most Common Causes of Dementia: Alzheimer disease, Dementia w/ Lewy bodies, Vascular dementia (multi-infarct dementia)

MYXEDEMA CRISIS: Hypothyroidism

- Severe, prolonged hypothyroidism which may lead to coma
- CLINICAL PRESENTATION: dull face, swollen eyes, doughy skin texture from accumulation of mucopolysaccharides, thinned hair, thickened tongue, enlarged heart, ileus (paralysis of the bowel)
- MEDICAL EMERGENCY: Without prompt treatment, patients become hypothermic & comatose

CRETINISM: Hypothyroidism of Neonates/Infants

- Due to congenital hypothyroidism (CH)
- CAUSE: iodine deficiency in areas w/ low levels of iodine in soil, water, food supply
- CLINICAL PRESENTATION: impaired skeletal & CNS development
 - Severe MR, short stature, coarse facial features, macroglossia, umbilical hernia
- PATHOGENESIS
 - o Maternal Hypothyroidism: Maternal T₃/T₄ are essential for fetal brain development
 - Impairment in fetal brain development is more severe if maternal thyroid insufficiency occurs early during pregnancy before the fetal thyroid gland develops
- PREVENTION: Screening for <u>maternal</u> hypothyroidism by measuring Blood TSH

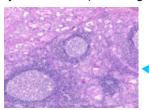
OTHER FORMS OF CONGENITAL HYPOTHYROIDISM

- Most Common form of CH: Agenesis or hypoplasia of thyroid gland (85%)
- Hereditary forms (15%) caused by genetic defects involving: iodine transport, organification of iodine, iodotyrosine coupling to form T₃/T₄, germ line mutations of TSH-R gene All lead to impaired synthesis of TH & present w/ goiter & hypothyroidism (dishormonogetic goiter)
- PREVENTION: Screening <u>newborns</u>

NEWBORN SCREENING FOR CONGENITAL HYPOTHYROIDISM

- Most neonates born w/ CH have no detectable physical signs
- Delayed diagnosis leads to severe MR
- Neonatal screening is preformed by measuring blood T₄ following by TSH if T₄ is below 10th percentile
 - o T₄ is more sensitive, TSH is more specific
- In most clinical settings, blood is obtained by a heel prick 24 hours after birth

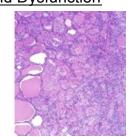
THYROIDITIS

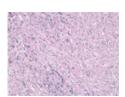

Hashimoto, Subacute Granulomatous (DeQuervain), Subacute Lymphocytic (Painless), Riedel

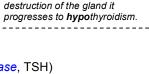
1. HASHIMOTO THYROIDITIS: Hypothyroidism

- "CHRONIC LYMPHOCYTIC THYROIDITIS"
- Autoimmune disease against the thyroid gland (associated w/ HLA-DR5)
- Most Common cause of PRIMARY HYPOTHYROIDISM in industrialized countries
- Most common in 40-60 y/o WOMEN
- CLINICAL PRESENTATION: hypothyroidism & a symmetrically enlarged thyroid
- PATHOGENESIS: Circulating AutoAb against thyroid Ag (Thyroglobulin, thyroid peroxidase, TSH)
 - o Type IV Hypersensitivity Reaction DTH
 - Breakdown of peripheral tolerance to thyroid AutoAg results in progressive autoimmune destruction of thyrocytes by infiltrating cytotoxic T cells, locally releasing cytokines, or by Ab-mediated cytotoxicity
- Strong genetic component, similar to Graves disease
- GROSS: Diffusely enlarged thyroid gland
- HISTOPATHOLOGY
 - Lymphoid follicles dense lymphocyte infiltrate w/ prominent germinal centers
 - HURTHLE CELLS a metaplastic response of follicular cells to chronic inflammation
 - Atrophy of follicles w/ sparse residual follicles & diffuse lymphocytic infiltration (Late Stage)
- DIAGNOSIS: Serum antibodies to THYROID PEROXIDASE (TPO)

2. SUBACUTE GRANULOMATOUS/DeQEURVAIN THYROIDITIS: Transient Dysfunction


- Autoimmune process triggered by VIRAL INFECTIONS (Mumps, measles, adenovirus, Coxsackie (follows URI)
- Often in Females 40-50 y/o
- Most frequent in the SUMMER
- Most Common cause of Painful Thyroid Gland
- CLINICAL PRESENTATION: TENDER THYROID, PAINFUL dysphagia, flu-like S/S
- HISTOPATHOLOGY: GRANULOMAS w/ multinucleated giant cells & some destruction of thyroid follicles
- Self-limiting within 2 months, without sequelae Does not progress to chronic thyroiditis & hypothyroidism
- TREATMENT: β-blockers & NSAIDs


3. SUBACUTE LYMPHOCYTIC (PAINLESS) THYROIDITIS: Transient Thyroid Dysfunction


- Uncommon
- Probably of autoimmune pathogenesis
- Considered a less aggressive variant of Hashimoto thyroiditis
- Most common in POST-PARTUM WOMEN
- PRESENTATION: enlarged thyroid and/or hyperthyroidism (due to destruction of the gland)
- HISTOPATHOLOGY: Dense lymphocytic infiltration <u>WITHOUT germinal centers</u> or Hurthle cells; there is limited destruction of thyroid follicles w/ release of TH into circulation
- Self-limiting within a couple of months w/out sequalae

4. RIEDEL THYROIDITIS: Scarring of Thyroid & Surrounding Neck Structures

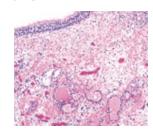
- Rare; chronic inflammation with extensive fibrosis extending to surrounding structures
- One of the manifestations of IgG4-related disease
- Most often in Young Females
- **PRESENTATION:** "hard as wood, non-tender thyroid"; airway obstruction, dysphonia, hoarseness, hypothyroidism, hypoparathyroidism, dysphagia, stridor from tracheal compression
- HISTOPATHOLOGY: extensive scarring extending into surrounding structures fibrous tissue w/ deposition of abundant collagen (eosinophilic acellular bands)
- Tx: Tamoxifen & corticosteroids

Note: Initial hyperthyroidism due

to breakdown of follicle cells

releasing TH, but with further

NEOPLASMS OF THE THYROID

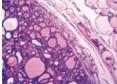

THYROGLOSSAL DUCT

- The thyroid gland develops from the floor of the pharynx at the base of the tongue at a point later indicated by the foramen cecum - @ 3-4 weeks gestastion
- The thyroid descends in front of the primitive pharynx gut as a bilobed diverticulum along the thyroglossal duct
- It migrates to the base of the neck, passing anterior to the hyoid bone
- During migration, the thyroid remains connected to the tongue by a narrow canal, the thyroglossal duct

THYROGLOSSAL CYST

- Any part of the thyroglossal duct may persist & give rise to a fistula or a cyst
- Presents as anterior neck mass
- MIDLINE location
- Most Common clinically significant Congenital Anomaly of the Thyroid

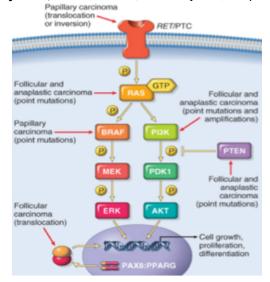
"C" for Cold - Concerning for Cancer


THYROID NODULES

- Incidence: 5% in the general population
- BENIGN 95%, Malignant 5%
- *MALIGNANT TUMORS: solitary, in younger male patients, history of prior radiation, COLD on RAIU test

FOLLICULAR ADENOMA

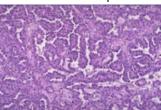
- COMMON, BENIGN tumor of thyroid originating from follicular epithelium
- Usually detected on palpation during routine physical examination painless
- Vast majority are non-functional (aka they do not synthesize or release increased quantities of TH)
 - o A small subset of follicular adenomas are functioning: Toxic Adenomas
- NOT A PRECURSOR OF THYROID CARCINOMA!!
- TYPICAL GROSS APPEARANCE: Well-circumscribed follicles, ENCAPSULATED (fibrous tissue), cut surface similar to normal thyroid parenchyma
- HISTOPATHOLOGY: similar to follicular carcinoma differential based on evaluation of capsular invasion in thyroidectomy specimen, indicative of follicular carcinoma;
- TREATMENT: Surgical resection is curative
- Clinical Vignette: 35 y/o female is prepped for a hemithyroidectomy because of a <u>painless</u>, <u>palpable neck mass</u>. Histological findings demonstrate a single large nodule on the superior pole of the left lobe, which on frozen sections shows <u>benign colloid follicles</u>. The nodule is <u>surrounded by bands of fibrous tissue</u>. What is the most likely diagnosis?

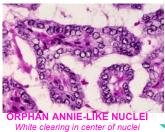

**Differentiating Follicular Carcinoma from Follicular Adenoma requires histologic evidence of capsular or blood vessel invasion, or documented metastasis. Follicular Adenomas have a fibrous capsule that circumferentially surrounds the neoplastic follicles & no capsular invasion is seen. Follicular Carcinomas demonstrate capsular invasion that may be minimal or widespread. The presence of vascular invasion is also a feature of carcinomas.

TOXIC (Functioning) FOLLICULAR ADENOMA

- Harbor somatic GOF mutations of the TSH-R signaling pathway, usually TSHR & GNAS, that cause follicular cells to secrete thyroid hormone independent of TSH stimulation
 - o Same mutations in Toxic Multinodular Goiter
 - TSHR & GNAS are rare in follicular carcinoma, consistent w/ the fact that toxic adenomas & toxic multinodular goiter are NOT pre-malignant
- Manifest w/ hyperthyroidism
- In contrast to non-functional follicular adenomas, toxic adenomas will show up as a <u>HOT</u> nodule RAIU because these adenomas are highly active & secreting TH

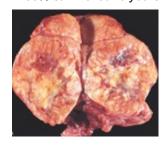
THYROID CARCINOMA

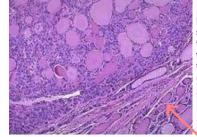

Papillary: 80%, Follicular: 15%, Medullary: 4%, Anaplastic: 1%



PAPILLARY CARCINOMAS

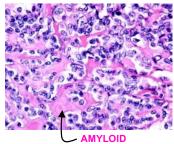
- Most Common type of **Thyroid Carcinoma** (75-85%), accounting for the majority of all thyroid cancers
- Malignant neoplasm characterized by the formation of numerous, irregular, finger-like projections (papillary!) of fibrous stroma that are covered w/ a surface layer of neoplastic epithelial cells
- Most common between ages of 25-50 & associated w/ exposure ionizing radiation in childhood
 High incidence w/ Gardner Syndrome
- PRESENTATION: Asymptomatic palpable nodule, COLD nodule on RAIU
- PATHOGENESIS
 - GOF mutations involves genes encoding the RET or NTRK1 RTKs; or genes in the serine/threonine kinase BRAF within the MAPK pathway
- LYMPHATIC spread to cervical Lymph Nodes
- MICROSCOPIC: ORPHAN ANNIE-LIKE NUCLEI, PSAMMOMA BODIES
- EXCELLENT PROGNOSIS even in the presence of nodal involvement 95% survival at 10 years

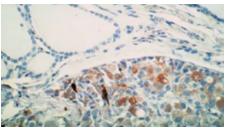



"P" for Papillary –for Psammoma

FOLLICULAR CARCINOMAS

- 2nd most common type of Thyroid Carcinoma
- PRESENTATION: Slow growing palpable nodule, COLD on RAIU
- PATHOGENESIS
 - o Mutations that activate RAS or Pl₃K/AKT arm of the RTK signaling pathway
- HEMATOGENOUS (VASCULAR) SPREAD different from most carcinomas; metastases to bone, lungs, etc.
- Follicular carcinomas lack the nuclear features (Orphan Annie-like) of Papillary Carcinoma & psammoma bodies are not present
- 50% survival at 10 years


Cut surface of a Follicular Carcinoma w/ substantial replacement of the lobe of the thyroid. The tumor has a light-tan appearance & contains small foci of hemorrhage.

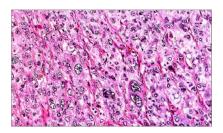


Follicular architecture is similar to normal thyroid gland & follicular adenomas, but there is evidence of CAPSULAR INVASION

MEDULLARY CARCINOMA

- Originates from C cells (aka parafollicular cells of the thyroid)
 - o C cells secrete Calcitonin
- Deposition of AMYLOID in the tumor
 - o Amyloid is derived from Calcitonin secreted by the tumor cells
 - DIAGNOSIS & SCREENING: ELEVATED SERUM CALCITONIN → Hypocalcemia
 - Immunohistochemistry for calcitonin is used
- Most cases are Sporadic (80%), remaining cases are associated with MEN2A (parathyroid involvement, thyroid involvement, pheochromocytoma) & MEN2B (pheochromocytoma, thyroid involvement, neuroglioma, marfanoid)
- 65% survival at 10 years
- Clinical Vignette: 40 y/o M c/o "lump in his neck." Physical exam yields a solitary, firm thyroid nodule on the left side. The nodule does not enhance during imaging. Lab studies demonstrated normal TSH, T₃, & T₄ levels but elevated calcitonin. Examination of biopsy showed neoplastic cells that most closely relate to... Parafollicular cells

Immuno stain for Calcitonin


Remember: Calcitonin

"tones down" serum Ca21

ANAPLASTIC CARCINOMA

- < 5% of cases</p>
- Undifferentiated, highly aggression tumor
- Mean age is 65 years (elderly)
- Rapidly enlarging, bulging neck mass invading surround structures
- Originates from de-differentiation of less malignant neoplasms
- POOR PROGNOSIS Almost always fatal

Hard, non-tender thyroid + involvement of local structures
DDx: Riedel Thyroiditis or Anaplastic Carcinoma
Riedel Thyroiditis – Young & Anaplastic Carcinoma – Elderly

