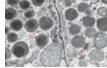

ENDOCRINE PANCREAS: Islets of Langerhans

Diabetes Mellitus Type 1 & 2, Pancreatic Neuroendocrine Tumors: Insulinoma, Gastrinoma, Other Rare Tumors



ISLETS OF LANGERHANS + CELL TYPES

- Endocrine cells are clustered in the *islets of Langerhans*
- 4 MAIN CELL TYPES: SECRETION
 - o Alpha (α) Cells: Glucagon (20%)
 - Beta (β) Cells (center of islet): Insulin (68%)
 - Delta (δ) Cells: Somatostatin (10%)
 - o PP cells: Pancreatic polypeptide
- 2 Rare Cell Types: Secretion
 - o D1 Cells: Vasoactive Intenstinal Peptide (VIP)
 - o Enterochromaffin Cells: Serotonin

GLUCOSE HOMEOSTASIS

- Normal glycemia: 70-120 mg/dL
- 3 Processes Crucial to Maintaining Glucose Homeostasis
 - o Glucose production in the Liver
 - O Glucose uptake & utilization in Peripheral Tissues (Skeletal muscle & Adipose tissue)
 - Regulatory influences of Insulin & Glucagon
 - Insulin & Glucagon have opposing actions
 - Fasting: Insulin↓, Glucagon ↑
 - Liver: ↑ gluconeogenesis, ↑ glycogenolysis, ↓ glycogen synthesis
 - After Meal: Insulin ↑, Glucagon ↓
 - Muscle: ↑ glucose uptake & utilization, ↑ glycogen synthesis, ↑ protein synthesis
 - o In addition, other hormones influcening glycemia are glucocorticoids & growth hormone

INSULIN: Anabolic Hormone

- Key Metabolic Action: ↑ glucose uptake & utilization in striated muscle + fat
- Glucose uptake is NOT insulin-dependent in other tissues (i.e. Nervous System)
- INCRETIN EFFECT: Insulin secretion is greater in response to oral glucose vs. IV glucose

INCRETIN

- Hormones synthesized by enteroendocrine cells in the gut
- GIP (Glucose-dependent Insulinotropic Peptide aka Gastic Inhibitory Peptide) & GLP-1 (Glucagon-like Peptide 1)
- Following food ingestion, Incretins:
 - ↑Glucose-dependent insulin from β cells (GLP-1, GIP) → ↑Glucose uptake by muscles → ↓Blood glucose
 - ∘ ↓ Glucose-dependent glucagon from α cells (GLP-1) → ↓ Glucose production by liver → ↓ Blood glucose
 - Delay gastric emptying + promote satiety
- Circulating incretins are degraded by enzymes known as dipeptidyl peptidases (DPPs), i.e. DPP-4

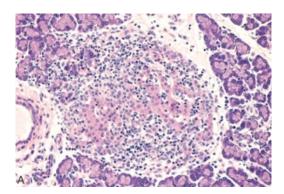
INCRETIN EFFECT IN DM TYPE 2

- Incretin efficient is DEFICIENT in patients with Type 2 DM, which contributes to obesity & hyperglycemia
- New drugs: GLP-1 Receptor Agonists, DPP-4 Inhibitors

DIABETES MELLITUS (DM)

DIAGNOSTIC CRITERIA FOR DIABETES & PRE-DIABETIC STATES		
	DIABETES	PRE-DIABETES
Fasting plasma glucose	≥ 126 mg/dl	100-125 mg/dl
24-hr plasma glucose	<u>></u> 200 mg/dl	140-199 mg/dl
Casual/random plasma glucose	≥ 200 mg/dl	
In pt w/ classic hyperglycemic symptoms		
Glycated hemoglobin	<u>≥</u> 6.5%	5.7-6.4%

- A group of diseases in which blood glucose levels are elevated (hyperglycemia) because of deficiency insulin secretion and/or abnormal insulin action. Results in ↓ insulin secretion by β cells +/- defects in insulin receptors leading to insulin resistance.
- One of the most common diseases in North America, affecting 5% of US population
 - o Most cases are diagnosed
- Diabetes remains the 7th leading cause of death in the US
- **American Indians/Alaskan Natives** (15.9%), Non-Hispanic Blacks (13.2%), Hispanics (12.8%), Asian American (9%), Non-Hispanic Whites (7.6%)


COMPLICATIONS OF DIABETES MELLITUS

- Hypoglycemia
- Hypertension
- Dyslipidemia (Hypercholesterolemia LDL cholesterol > 100mg/dl)
- CV disease death & MI rates 1.7x higher in adults w/ DM
- Stroke rates 1.5x higher in adults w/ DM
- Blindness/Eye problems, especially in DM patients 40 y/o or older
- Kidney disease/failure DM was primary cause of kidney failure in 44% of all new cases in 2011
- Amputations (non-traumatic lower-limb amputations)

	TYPE 1	TYPE 2
	No insulin production	Resistance to insulin action
Onset	Sudden	Gradual
Age of Onset	Juvenile, Kids/Young Adults < 30 y/o	Adult form, > 40 y/o
	(May be at any age though)	(May develop in young patients)
Body Habitus	Thin or normal	Often obese
Ketoacidosis	Common, in severe cases	Rare
Autoantibodies	Usually present (Autoimmune)	Absent (Obesity & Familial Influence)
Endogenous Insulin	Low or absent	Normal, Decreased, or Increased
Concordance in Identical Twins	50%	*90%
		1 st degree relatives 5-10x ↑risk
Prevalence	Less prevalent	More prevalent
	5% of all DM cases	95% of DM cases
Clinical Presentation	3 Ps – Polyuria, Polydipsia, Polyphagia	Asymptomatic pts: Hyperglycemia
	Progressive weight loss & fatigue	Pts present w/ Complications: Repeated
		infections, Renal disease, Retinopathy,
		Peripheral neuropathy
		Fatigue, dizziness, blurred vision
Treatment	Life-long Insulin	Diet & weight loss are 1 st line therapy;
		Oral hypoglycemic
		Insulin in late stages

TYPE 1 DM: PATHOGENESIS

- Autoimmune destruction of **insulin-producing β cells** in the Islets of Langerhans (AutoAb)
 - o Higher titers of AutoAb associated w/ more accelerated islet cell destruction
 - Confirmed targets of AutoAb in Type 1 DM: insulin, glutamic acid decarboxylase, insulinoma associated antigens 2 (α & β), ZnT9 (zinc transporter)
- Occurs in genetically susceptible hosts
 - o Lifelong risk is markedly increased in relatives of a patient w/ type 1 DM
 - Genome-wide association studies have identified more than 30 susceptibility loci for type 1 DM
 - HLA gene cluster on Chromosome 6p21 contains the locus that accounts for up to 50% of susceptibility
 - This region contains genes coding for MHC Class II molecules expressed on the surface of APC
 - MHC II molecules consists of α & β chains that form a groove containing the peptide presented to APCs
 - Ability of MHC II molecules to present Ags depends on their primary structure
 - Changes in AA composition can ↑/↓ability to bind AutoAg & change susceptibility to type 1 DM
 - More than 90% of patients have either HLA-DR3-DQ2 or HLA-DR3-DQ8 (general population, only 40%)
 - HLA allele DQB1*0602 confers Protection: Present in 1% of patients w/ DM vs. 20% general population
 - Non-MHC genes are less important contributors to genetic susceptibility
 - Polymorphisms in promoter region of insulin gene
 - Both CTLA-4 & PTPN22 are implicated in susceptibility to type 1 DM, as well as thyroid autoimmune disorders
 - Polymorphisms in CTLA-4 gene coding for TCR, which switches off T cell attack
 - **PTPN22** gene coding for a tyrosine phosphatase that plays role in T cell function
 - AIRE gene, coding for autoimmune regulator, a TF expressed in thymic medulla controls mechanism that prevents immune system from attacking the body itself
- Triggered by 1+ environmental factors
 - PERINATAL: Maternal age >25, pre-eclampsia, neonatal respiratory disease, jaundice due to ABO blood group incompatibility
 - Protective Factors: Low birth weight, short birth length
 - VIRUSES: Viral-induced autoimmunity or molecular mimicry
 - Child immunization of genetically predisposed infants w/ viral or bacterial vaccines is NOT associated w/ f risk of developing type 1 DM
 - o **DIET**: Exposure to cereal products before 3 months or after 7 months associated w/ ↑risk
 - Vitamin D, Omega-3 fatty acids may be protective
- Progresses over months or years (latent period) before onset of symptomatic hyperglycemia
 - \circ Clinically evident Type 1 DM does not occur until there has been a great loss of functioning β cells

TYPE 1 DM: PATHOLOGY OF ISLETS

Early stage "Insulitis" – Inflammatory cells mostly T-lymphocytes Late stage – Islets are smaller & fewer than normal

TYPE 2 DM: PATHOGENESIS

- Caused by a combination of insulin resistance in target organs & relative insulin deficiency
- No Autoimmune mechanism!
- Interplay of genetic + environmental factors
- OBESITY* is the most important Risk Factor Obesity decreases insulin sensitivity in susceptible subjects
 - Central Obesity (visceral, abdominal) >>> peripheral obesity
 - o >80% of type 2 DM patients are obese
- SEDENTARY LIFESTYLE is an independent Risk Factor
- METABOLIC DERANGEMENTS
 - o ↓ Response to insulin action in skeletal muscle, liver, & adipose tissue due to ↓# insulin receptors
 - o Inadequate insulin secretion in response to increasing insulin resistance & hyperglycemia

Type 2 DM: INSULIN RESISTANCE

- LIVER: Failure to inhibit gluconeogenesis → fasting hyperglycemia
- MUSCLE: Failure to stimulate glucose uptake & glycogen synthesis → postprandial hyperglycemia
- FAT: Failure to inhibit lipolysis → 1 free fattys acids

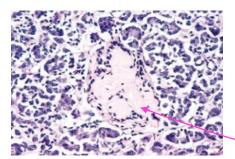
Type 2 DM: OBESITY & INSULIN RESISTANCE - FFAs

- Fasting FFAs are correlated with ↑ insulin resistance
- "Central" adipose tissue undergoes lipolysis more easily than peripheral adipose tissue
- Excess FFAs overwhelm FA oxidation → accumulation of toxic metabolites (i.e. DAG)
- DAG + other toxic metabolites interfere w/ insulin receptor signaling → reduced response to insulin

Type 2 DM: OBESITY & INSULIN RESISTANCE - ADIPOKINES

- Variety of hormones produced by adipocytes
- LEPTIN: "Informs" the hypothalamus about the amount of fat
 - o Leptin Deficiency or Resistance is associated w/ obesity & insulin resistance
- ADIPONECTIN: Reduces circulating FFAs & inflammation
 - Adiponectin levels are reduced in obesity
- Others: TNF- α , chemokines, plasminogen activator inhibitor, resistin, retinol binding protein 4, IL-1 β , uncoupling protein, obestatin...

Type 2 DM: OBESITY & INSULIN RESISTANCE - INFLAMMATION


- Inflammatory response (NOT autoimmune) triggered by excess nutrients, FFAs & glucose
- Activation of *inflammasome* in macrophages → release of IL-1β → synthesis/release of other cytokines that contribute to insulin resistance

Type 2 DM: OBESITY & INSULIN RESISTANCE - β CELL DYSFUNCTION

- − Adipokines + FFAs + Inflammation \rightarrow Insulin Resistance \rightarrow β cells hypersecrete insulin \rightarrow β cell failure \rightarrow DM
- Pancreatic β cells compensate for insulin resistance by hypersecretion of insulin
- However, at some point, β cell compensation is followed by β cell failure & diabetes ensues

Type 2 DM: β CELL DYSFUNCTION MECHANISMS

- Excess FFAs cause *lipotoxicity* on β cells
- Chronic hyperglycemia causes glucotoxicity
- Incretin effect
- AMYLOID deposition
- Genetic factors: polymorphisms in genes regulating insulin secretion

TYPE 2 DM: PATHOLOGY OF ISLETS

Late Stage: AMYLOID Deposition in the islets of Langerhans

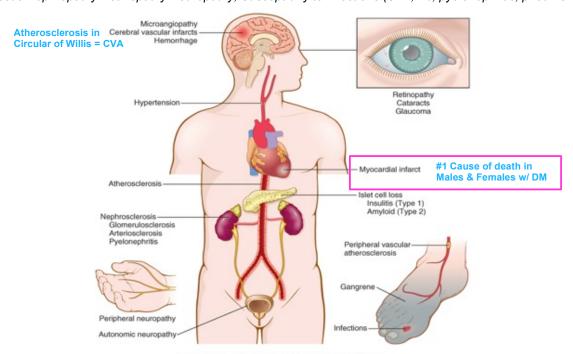
ACUTE COMPLICATIONS OF DM

Diabetic Ketoacidosis, Hyperosmolar Hyperosmotic Coma, Hypoglycemic Coma

1. DIABETIC KETOACIDOSIS (DKA)

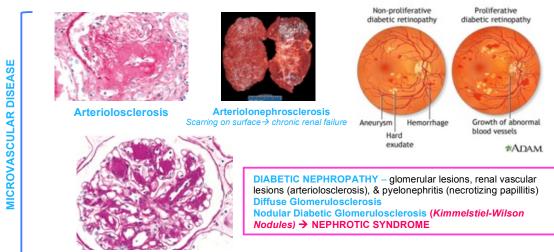
- Acute complication of DM that can lead to diabetic coma
- More frequent & severe in Type 1 DM
- Due to insulin deficiency resulting from:
 - o Failure to take insulin
 - ↑ Demand for insulin: stress, infections, illness, pregnancy, cocaine use, trauma All conditions leading to release of epinephrine → ↑ glucagon
- Blood glucose: 250-600 mg/dl
- PATHOPHYSIOLOGY
 - o Insulin Deficiency + Increased Glucagon → ↑Gluconeogenesis + ↑ Lipolysis
 - Worsening hyperglycemia & massive release of FFAs in the blood
 - o FFAs are metabolized by the liver to **Ketone Bodies**: Acetoacetic Acid & β-hydroxybutiric acid
 - o Ketonemia & Ketonuria ensue
 - If urinary excretion is compromised, anion-gap metabolic acidosis develops
- PRESENTATION
 - GRADUAL ONSET W/ PROGRESSION
 - o Early Phase: thirst + dry mouth, frequent urination, high levels of ketones in urine
 - Advanced Phase: profound fatigue, dry/flushed skin, NV + abdominal pain, Fruity Odor on Breath
 (acetate), inability to focus, confusion, Kussmaul Breathing (deep, labored breathing respiratory
 compensation)
 - o Late Phase: Coma
- TREATMENT: Fluids, Insulin, Electrolytes (especially K⁺)
 - o Patients will be excreting almost all of their excess K^+ so there is an overall net loss of K^+ in the body

2. HYPEROSMOLAR HYPEROSMOTIC SYNDROME


- Acute complication of Type 2 DM
- Caused by extreme dehydration due to persistent polyuria
- Typically affects Elderly People w/ neurological deficits (stroke) or infectious illness & unable to drink adequate amounts of ater
- Hyperglycemia in the range of 600-1200 mg/dl → leading to life-threatening diuresis
- Hypotension & coma ensue w/out ketoacidosis

3. HYPOGLYCEMIC COMA

- Most Common Acute Complication of DM
- Causes: missing meals, excess insulin administration, physical exercise, dose finding during initial phase of tx
- PRESENTATION: dizziness, confusion, palpitations, tachy, weakness, tremor, progressing to LOC + coma


LONG-TERM COMPLICATIONS OF DM

Myocardial Infarctions, Cerebral Infarctions, Amputations, Renal Insufficiency, Diabetic Nephropathy/Retinopathy/Neuropathy, Susceptibiliy to Infections (Skin, Tb, pyelonephritis, pneumonia)

Copyright © 2015 by Saunders, an imprint of Elsevier Inc. All rights reserved.

- Underlying Pathogenic Factor: PERSISTENT HYPERGLYCEMIA (glucotoxicity)
- GLYCATED HEMOGLOBIN (Hb_{A1C}) is a marker of glycemic control over the lifespan of an erythrocyte
 - o Recommended **Hb**_{A1C} should be maintained below 7%
- Mechanisms of Glucotoxicity:
 - Formation of Advanced Glycation End Products (AGE); Activation of PKC; Oxidative stress due to NADPH depletion caused by excess aldose reductase activity; Generation of excess fructose-6phosphate → glycosylation of proteins (proteoglycans)
- Mediated by damage to:
 - Large/Medium Arteries MACROVASCULAR Disease
 - *Hallmark is **Atherosclerosis** → Cerebral Infarct, Myocardial Infarction, Limb Ischemia (Gangrene → Limb amputation)
 - Small Vessels MICROVASCULAR Disease
 - *Hallmark is Hyaline Arteriolosclerosis
 - Diabetic Nephropathy (40%) Renal Failure requiring Dialysis; Earliest Sign Microalbuminemia
 - Diabetic Retinopathy (60-80%), Most Common Cause of Blindness in Developed Countries
 - Diabetic Neuropathy (50-80%) Distal symmetric polyneuropathy of LE (motor + sensory)

MONOGENIC FORMS OF DM

- Genetic Defects in β cell Function
 - o Heterogenous conditions caused by genetic mutations leading to primary defect in β-cell function
 - MODY (Maturity-Onset Diabetes of the Young): Most cases due to germ line mutations of glucokinase
- Genetic Defects that impair tissue response to insulin: Insulin receptor mutations that affect receptor synthesis, insulin binding, or RTK activity

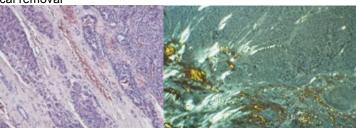
PREGNANCY & DIABETES

- Pre-Gestational Diabetes: Women w/ pre-existing diabetes become pregnant
 - Leads to increased risk of still birth & congenital malformations in the fetus
- Pregnancy is a "diabetogenic" state favoring the emergence of insulin resistance
- Gestational Diabetes: Women previously euglycemic develop impaired glucose tolerance & diabetes for the 1st time during pregnancy; resolves following delivery
 - o Due to increased placental size, anti-insulin effect of human placental lactogen
 - o Majority of women w/ gestational diabetes develop overt diabetes over next 10-20 years
- Risk of Poorly Controlled DM in Pregnancy: fetal macrosomia (excessive birth weight), obesity & diabetes later in life

SECONDARY DIABETES

- Broad category of diseases that lead to diabetes by different mechanisms
- Destruction of the pancreas: Chronic pancreatitis, hemochromatosis, cystic fibrosis, cancer
- Insulin resistance: Polycystic ovarian syndrome
- Production of Hyperglycemic Hormones: Cushing syndrome, Acromegaly, Pheochromocytoma
- Drugs: Vacor, Pentamidine, Glucocorticoids, Calcineurininhibitors, Atypical antipsychotics, Protease inhibitors, Thiazides, Beta blockers, Niacin, Phenytoin

PANCREATIC NEUROENDOCRINE TUMORS


Insulinoma, Gastrinoma, Other: Somatostatinoma, VIPoma, Carcinoid tumors

1. INSULINOMA: Insulin-producing Neuroendocrine Tumor

- Most Common Pancreatic Neuroendocrine Tumor
- Asymptomatic, mild hypoglycemia
- CLASSIC WHIPPLE TRIAD in 20%:
 - o Signs & symptoms of hypoglycemia: confusion, stupor, LOC (mental status changes)
 - o Glycemia < 50mg/100mL
 - Symptoms relieved by glucose & precipitated by fasting & exercise
- 10-15% associated w/ MEN1
- DIAGNOSIS: High insulin levels, High insulin:glucagon ratio, imaging localization of tumor

TREATMENT: surgical removal

Insulinoma (Upper R corner) compressing adjacent pancreatic parenchyma

Congo red staining demonstrating AMYLOID DEPOSITION, a frequent phenomenon in insulinoma

2. GASTRINOMA: Gastrin-producing Neuroendocrine Tumor

- Locally invasive or metastatic to liver: 50%
- Zollinger-Ellison Syndrome in 90%
 - Hypersecretion of gastrin
 - o Multiple duodenal, jejunal, & gastric ulcers
 - Treatment resistant peptic ulcers
- Diarrhea: 50%
- Associated w/ MEN1: 25%

3. OTHER PANCREATIC NEUROENDOCRINE TUMORS

- Somatostatinoma: Diabetes, cholelithiasis, steatorrhea, hypochlorhydria
- VIPoma: Secretory diarrhea
- Carcinoid tumors: exceedingly rare