CNS PATH: Intracranial Mass Lesions, Vascular Lesions, & Hemmorahages & Ischemia

Cerebral Edema: accumulation of excess fluid within brain parenchyma

types

- Vasogenic edema: disruption in BBB \rightarrow fluid shifts from vascular compartment to extracellular spaces (vessels damaged)
 - o Causes: high altitude (hypoxia causes endothelial injury), severely high BP, tumors that release vasoactive molecules (gliomas)
- Cytotoxic edema: intracellular edema of cells due to cell injury by ischemia (neurons damaged)
- Osmotic edema: due to \downarrow serum osmotic pressure

Clinical features: headache, vomiting, blurry vision, papilledema, Cushing's triad (HTN, \downarrow HR, irregular breathing), herniation & death

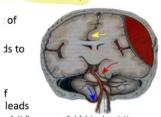
Hydrocephalus

Noncommunicating

- CSF circulation = blocked
- MCC= masses (tumors, hemorrhage, infection) block foramen Monroe
- Arnold chairi

Communicating

- CSF not blocked, flows freely b/t ventricles
- MCC = overproduction of CSF ex) choroid plexus papilloma
- Deficient reabsorption of CSF (meningitis, SA) hemorrhage)


Normal Pressure

Compensatory increase of CASF due to loss of neural tissue

Herniations

Subfalcine

- Displacement of cingulate gyrus under falxcerebri
- Compression of anterior cerebral artery

- 2. Blue arrow Foramen magnum herniation
- 3. Red arrow Transtentorial (uncal) herniatio

Tonsillar

- Displacement of cerebellar tonsils into foramen magnum
- Compression of brainstem→ resulting in cardiopulmonary arrest

Posterior block

Transtentorial

- Downward displacement
 - > rupture basilar artery branches → fatal

Uncal

- Subtype of transtentorial herniation
- Displacement of temporal lobe uncus
- Compression of CNIII (eye = down & out & dilated) & posterior cerebral artery (occipital lobe infarction)

Duret Hemorrhages

- Associated w/ transtentorial herniation
- Rupture of paramedian artery

Result: tearing of pontine penetrating veins & arteries suppling upper brain

Developmental Malformations

Neural tube defect

- Failure of neural tube closure abnormalities involving neural tissue, meninges, and overlying bone or soft tissue
- Associated w/ low folate. methotrexate & valproic acid
- ↑ alpha-fetoprotein

Can result in

1. Anencephaly: no brain/skull

Dandy walker malformation

- cystic malformations on the cerebellum that blocks CSF-> dilated 4th ventricle
- motor affected (gait, eye movements, paralysis/spasticity)

Arnold Chiari malformation

 cerebellum displaced through foramen magnum

Syringomyelia

- abnormal fluid filled cavity that develops within central canal of spinal cord
- results from disrupted CSF drainage

causes

- Arnold chiari malformation
- post trauma

Tuberous sclerosis

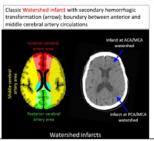
- mutation in TSC1 (hamartin) & TSC2 (tuberin)
- pts develop hamartomas & benign tumors of brain, skin, kidneys, heart, eyes, lungs
- adenoma sebaceum (angiofibroma): facial skin lesions

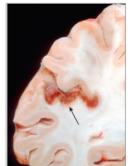
Brad Trent: UMHS Spring 2024

	Effects of Mass Lesions			
↑ICP	An initial increase in volume results in a small increase in pressure because of intracranial compensation. Once intracranial compensation is exhausted, additional increases in intracranial volume result in a dramatic rise in intracranial pressure. Pathologic intracranial hypertension: ≥ 20 mmHg. SYMPTOMS: headache (mediated by pain fibers of trigeminal nerve in the dura & blood vessels), depressed global consciousness (due to local mass effect or pressure on midbrain reticular formation), vomiting CLINICAL: CN6 palsy, papilledema (blurring of optic disc margins, loss of cupping), CUSHING'S TRIAD* (bradycardia, respiratory depression, & HTN) TREATMENT: underlying disease, STEROIDS + MANNITOL to ↓edema & ↑osmotic pressure so fluid moves out of brain cells, HYPERVENTILATION to ↓ICP			
SUBFALCINE	Occurs when mass lesion occurs supratentorially in one hemisphere; often herniation of Cingulate Gyrus			
HERNIATION	GROSS: MIDLINE SHIFT TO OPPOSITE SIDE beneath the falx			
	COMPLICATIONS: compression of ipsi anterior horn of lateral ventricles & compression of branches of ACA → weakness & sensory loss of LE			
UNCAL	1. KERNOHAN'S NOTCH PHENOMENON: contralateral pupillary dilation, ipsilateral weakness due to compression of cerebral peduncles			
HERNIATION	2. DURET HEMORRHAGES: due to herniation downward with compression of brainstem			
	3. POSTERIOR CEREBRAL ARTERY (PCA) COMPRESSION → OCCIPITAL LOBE INFARCTION: Duret hemorrhages 4. CN 3 PALSY: ptosis, mydriasis, down & out			
	Uncus DURET HEMORRHAGES Occipital Lobe Hemorrhagic Infarction			
TONSILLAR	<u>CAUSES</u> : mass lesion of the cerebellum or brainstem ; downward herniation of hemispheres			
HERNIATION	COMPLICATIONS: major route of escape of cerebellum is into the <i>foramen magnum</i> causing compression of cerebellum + compression of medullary			
	respiratory centers & consciousness centers → DEATH Tonsils Foramen magnum was here			

2 major types of CVA: ischemic & hemorrhagic

Global cerebral ischemia→ results in liquefactive necrosis


- Generalized cerebral ischemia due to reduced perfusion or oxygenation
- Result from: severe systemic hypotension, hypovolemic shock, profound hypoglycemia, carbon monoxide poisoning


Mild: complete recovery

Severe: widespread neuronal death, brain dead

Watershed infarct

- Occur @ distal portions
- Seen after hypotensive episodes
- Border zone b/t ACA & MCA = greatest risk
- Sickle shaped band of necrosis over the cerebral convexity produced
- Paresis/paralysis of limbs, sparing hands & feet, face
- PCA-MCA watershed → bilateral vision loss

Watershed infarct

Ischemic (insufficient blood flow) Focal cerebral ischemia

- Localized ischemia to brain due to arterial occlusion or low perfusion
- Can cause a pale infarct infarct can evolve into hemorrhagic (petechial) infarct due to reperfusion
- MC results from: embolus, thrombus & hyaline arteriolosclerosis
- 1. Emboli (originate from)
 - Cardiac thrombi: MI, Afib, valvular disease
 - arterial thrombi: carotid arteries → atheromatous thrombus
 - paradoxical emboli: mostly children w/ cardiac problems
 - emboli MC lodge in MCA
- 2. Thrombotic occlusion
 - Atherosclerotic plaque rupture
 - Infectious vasculitis: seen w/ syphilis, TB, immunosuppression
- 3. Hyaline arteriolosclerosis: complication of HTN→ cause lacunar infarcts (deep portions of brain)

Cerebral infarct...

Morphology

Gross

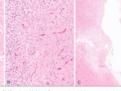
- pale, soft, swollen by 48hrs
- Liquefies @ day 10-20→ fluid filled cavity (liquefactive necrosis)

Microscopic

- Swollen, red neurons
 - 1st several days: neutrophils infiltrate > 2-3 weeks: replaced w/ macrophages > several months: astrocytes form glial fibers

Treatment

- Recombinant tissue plasminogen activator within 3-5hrs
 Clinical
 - Middle cerebral artery: MC embolic occlusion site


Clinical Features of Stroke, affected by the VESSEL involved.

- 1. Middle cerebral artery is the most frequent site of embolic occlusion
- * Sensory loss of the contralateral face, arm and leg
- * Hemiparesis or hemiplegia of the contralateral face (lower half)
- Hemiparesis or hemiplegia of the contralateral upper and lower extremities
- Aphasia
- Gaze preference towards the side of the lesion

Non-hemorrhagic infarct

Hemorrhagic infarct

4 . --

diffuse eosinophilia of neurons,

After about 10 days, infarcts contains (C) Remote small infarct is se imy macrophages (best seen on the rh and adjacent reactive officie with he recided directs

3) Posterior Cerebral Artery

- Vertigo, nausea
- Contralateral homonymous hemianopia
- Contralateral sensory loss due to lateral thalamic involvement memory
- deficits
- If dominant hemisphere (usually left)- alexia (inability to read or understar the reading).

2) Anterior Cerebral Artery:

- Contralateral hemiparesis and sensory loss in the lower limbs more marked than in the upper limbs.
- Transcortical motor aphasia (lack of fluency with intact comprehension and repetition)
- Urinary incontinence
- Dysarthria
- Frontal release signs (re-emergence of <u>primitive reflexes in adults</u> as a result of frontal lobe damage)

- 2. Anterior cerebral artery
- 3. Posterior cerebral artery

Hemorrhagic (due to hemorrhage)

Intracerebral hemorrhage (bleeding within brain parenchyma)

- Spontaneous (nontraumatic), rupture of small penetrating branches of MCA (lenticulostriate branches) → Charcot-Bouchard microaneurysms
- MCC = hypertension
- Occur in basal ganglia, thalamus, pons, etc.

Subarachnoid hemorrhage (bleeding into subarachnoid space)

- Rupture of berry aneurysm (located in anterior circle of Willis)
- Other causes: malformations, tumors, anticoagulants
- Sudden headache (worst headache of my life), vomiting, rapid loss of consciousness, neck rigidity
- Develop over time due to defects in vessel structure

<u> risk of aneurysm development</u>

- connective tissue genetic disorder (Ehlers-Danlos syndrome, Marfan syndrome)
- cerebral arteriovenous malformation
- HTN, drugs, smoking

Lacunar infarcts

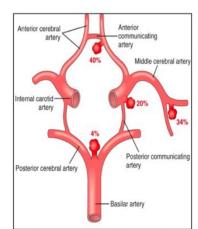
- small cystic infarcts
 - Occurs 2ndary to hyaline arteriosclerosis
 - Involves deep grey matter (BG & thalamus), internal capsule, pons
 - Caused by occlusion of single penetrating branch of large cerebral artery (lenticulostriae vessels)
 - Internal capsule → pure motor stroke
 - Thalamus→ pure sensory stroke

Slit hemorrhages

 Small cerebral infarcts associated w/ rupture of small-caliber penetrating vessels due to chronic hypertension

Hypertensive cerebrovascular disease

Leaves behind slit like cavity w/ gliosis


Hypertensive encephalopathy

- Brain dysfunction due to malignant hypertension
- TICP & global cerebral dysfunction: Confusion headaches, vomiting, convulsions, coma
- Petechiae
- Fibrinoid necrosis of arterioles → infarcts w/ neuro defects (dementia, paresis/paraplegia)

	Ischemic stroke	Intracerebral hemorrhage	Subarachnoid hemorrhage
Incidence	- About 85%	- About 10%	- About 5%
Causes	- Embolism - Thrombosis - Small vessel occlusion (lipohyalinosis) - Systemic hypoperfusison	Ruptured cerebral artery or micro-aneurysm Trauma Reperfusion injury after ischemic stroke	Ruptured berry aneurysm AV malformation
Risk Factors	Age above 65 years Hypertension Diabetes mellitus Atrial fibrillation Carotid artery stenosis	 Age above 65 years Hypertension Vasculitis Malignancy Ischemic stroke 	- Hypertension - Smoking - Family history
Pathology	- Pale infarct liquefactive necrosis glial scarring	Hematoma surrounded by pale infarct and edema Hemosiderin lined cavity with glial scarring	Hematoma surrounded by pale infarct and edema Hemosiderin lined cavity with glial scarring

BERRY ANEURYSMS:

- Thin-walled saccular outpouchings that lack a media layer
- Frequently located in the anterior circle of Willis at branch points of the anterior communicating artery.
- Aneurysms develop over time because of underlying defects in the vessel media.
- Increased risk for aneurysm development in patients with:
 - connective tissue genetic disorders (<u>Ehler-Danlos</u> syndrome, Marfan syndrome),
 - autosomal dominant polycystic kidney disease
 - cerebral arteriovenous malformation
 - Hypertension, Drugs (e.g., amphetamine), Smoking

