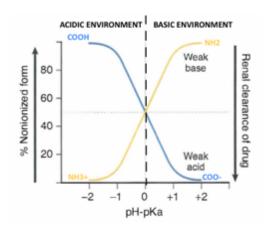

Pharmacokinetics


ACID-BASE, IONIZATION

WEAK ACIDS: aspirin, phenobarbital, penicillin, cephalosporins, loop & thiazide diuretics

WEAK BASES: morphine, local anaesthetics - 'caines', amphetamines, PCP

Absorption/elimination	pK _a = pH -log	concentration of ionized acid (A-)	
of a weak acid drug		concentration of nonionized acid (HA)	
Abas mation (alimination	pK _a = pH - loq	concentration of nonionized base (B)	
Absorption/elimination of a weak <u>base</u> drug	pr _a – pπ - log	concentration of ionized base (BH ⁺)	

	PERCENTAGE IONIZATION		
pH - pKa	ACIDS	BASES	
-3	0.1	99.9	
-2	1	99	
-1	10	90	
0	50	50	
1	90	10	
2	99	1	
3	99.9	0.1	

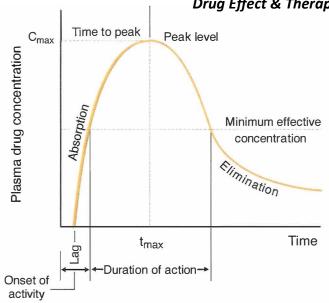
A drug has a pKa of 8 and is administered to a patient with stomach pH of 2. $pH - pKa = 2-8 = -6 \rightarrow This means that 99.9\% of the drug is ionized & will not be absorbed in the stomach.$

ELIMINATE the IONIZED form of the drug – water-soluble: Opposite environment of the drug

- Weak acid in BASIC ENVIRONMENT
- Weak base in ACIDIC ENVIRONMENT

ABSORB the **NON-IONIZED** form of the drug – lipid-soluble, can cross membranes: Same environment of the drug

- Weak acid in ACIDIC ENVIRONMENT
- Weak base in BASIC ENVIRONMENT


To increase ionization (Elimination) of a Weak Base, ACIDIFY the urine – NH_4Cl , vitamin C, & cranberry juice *i.e. OD on amphetamines

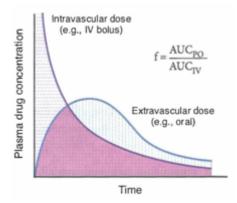
To increase ionization (Elimination) of a Weak Acid, ALKALINIZE the urine – Na**HCO**₃, acetazolamide *i.e. OD on aspirin

ABSORPTION: *Process of entry* of a drug into the systemic circulation from the site of its administration

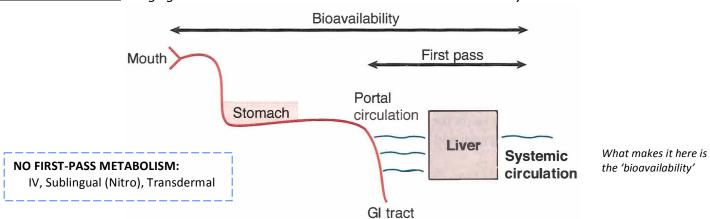
*IV administration does NOT involve absorption & there is no loss of drug (bioavailability = 100%) THUS, IV is NOT the fastest route of absorption.... INHALATION is the fastest route of absorption!

Plasma Concentration vs. Time – EXTRAVASCULAR ROUTE Drug Effect & Therapeutic Window

C_{max} = maximal drug level obtained with the dose.


 t_{max} = time at which C_{max} occurs.

Lag time = time from administration to appearance in blood. Onset of activity = time from administration to blood level reaching minimal effective concentration (MEC). Duration of action = time plasma concentration remains greater than MEC.


Time to peak = time from administration to C_{max} .

BIOAVAILABILITY: Measure of the fraction of a dose that reaches the systemic circulation

*BIOEQUIVALENT = same bioavailability + same plasma profile superimposed curves)

FIRST-PASS EFFECT: Drugs given PO are absorbed into Portal Circulation & initially distributed to LIVER

<u>BIOTRANSFORMATION (Metabolism):</u> Metabolic conversion of drugs to more water-soluble metabolites that are more readily excreted

Drug Inactive metabolite(s) (MOST DRUGS)

Drug Active metabolite(s) *BENZOS

Prodrug Drug Levodopa -> dopamine Enalapril -> enalaprilat

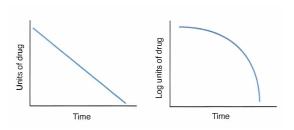
PHASE 1 REACTIONS: Modification of the drug moleculecule via oxidation, reducation, or hydrolysis

- Cytochrome P450 isoenzymes are major enzymes involved in phase I reactions
- INDUCERS: ↓ substrate level of drug
- INHIBITORS: ↑ substrate level of drug
 - o GRAPEFRUIT JUICE: inhibits 3A4, which inhibits statin metabolism & thus, increases statin concentration in plasma

Table I-1-2. Cytochrome P450 Isozymes

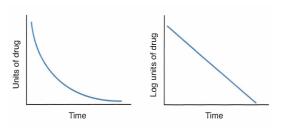
CYP450	Substrate Example	Inducers	Inhibitors	Genetic Polymorphisms
1A2	Theophylline Acetaminophen	Aromatic hydrocarbons (smoke) Cruciferous vegetables	Quinolones Macrolides	No
2C9	Phenytoin Warfarin	General inducers*		Yes
2D6	Many cardiovascular and CNS drugs	None known	Haloperidol Quinidine	Yes
3A4	60% of drugs in PDR	General inducers*	General inhibitors [†] Grapefruit juice	No

^{*} General inducers: anticonvulsants (barbiturates, phenytoin, carbamazepine), antibiotics (rifampin), chronic alcohol, St. John's Wort.


PHASE II REACTIONS: Conjugation with endogenous compounds via the activity of transferases

- 1. Glucuronidation: Diazepam, Digoxin, Morphine, Chloramphenicol
 - CHLORAMPHENICOL TOXICITY: Grey Baby Syndrome due to low levels of glucuronosyl transferase
- 2. Acetylation: Sulfonamides, INH
 - Genotypic variations
 - Drug-Induced SLE by slow acetylators with hydralazine: Stop drug & SLE goes away
- 3. Glutathione: GSH
 - Depletion of GSH in the liver associated with acetaminophen hepatotoxicity

[†] General inhibitors: antiulcer medications (cimetidine, omeprazole), antimicrobials (chloramphenicol, macrolides, ritonavir, ketoconazole), acute alcohol.


ZERO ORDER KINETICS: Think 'saturation kinetics'

- Fixed amount of drug eliminated per unit time
 - RATE OF ELIMINATION = CONSTANT
- Independent of plasma concentration
- Variable half-life
- Phenytoin, Ethanol, Aspirin, Salicyclates PEAS*

FIRST ORDER KINETICS

- Constant fraction of drug eliminated per unit time
- Concentration dependent: rate falls as plasma levels fall
- Clearance is CONSTANT & HALF-LIFE is CONSTANT
- Most drugs

Rate of administration

$$R_A = \frac{\text{dose } \times (\text{bioavailability F} \times \text{salt form S})}{\text{dosing interval } \tau}$$

 V_D is LOW when high % of drug is bound to plasma protein ($\uparrow C_D$)

 V_d is HIGH when high % of the drug is sequestered in tissues $(\downarrow C_p)$

Volume of distribution

$$V_d = \frac{\text{total amount of drug in body}}{\text{plasma concentration}}$$

*If V_d is given in L/kg, you have to multiple by the patient's weight – if no weight given, assume 70kg

$$\frac{\text{dose x (bioavailability F x salt form S)}}{\text{plasma concentration } C_p}$$

*Rule of Thumb: Loading dose = 2 x Maintenance Dose This is how it will be on the exam!

Loading dose

Loading Dose =
$$(Cp \times Vd)/(F \times S)$$

Loading dose (maintenance form)

LD=1.44 X
$$t_{1/2}/\tau$$
 X MD

# of half-lives	1	2	3	4
% remaining	50%	25%	12.5%	6.25%

$$_{1/2} = \frac{0.693 \times V_d}{Cl}$$

or
$$t_{1/2} = 0.693$$

% drug remaining after t time $(0.5)^{t/t1/2}$

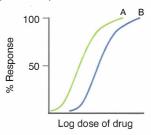
Clearance

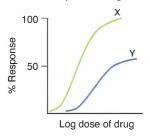
$$CI = \frac{0.693 \times V_d}{t_{1/2}}$$

or
$$Cl = \mathbf{k_e} \times \mathbf{V}_d$$

Concentration of a drug at steady state

$$C_{ss} = \frac{\text{rate of administration } R_A}{\text{clearance CI}}$$

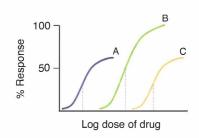

Pharmacodynamics

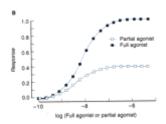

AFFINITY: the nearer the curve to the y-axis, the greater the affinity; parallel curves

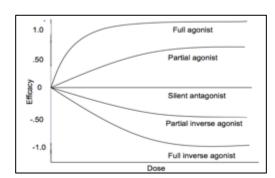
POTENCY: shows relative doses of 2+ agonists to produce the same magnitude of effect can compare if 2 curves do not cross

EFFICACY: effectiveness; the dose required to produce a certain effect; shown by max height reached by the curve;

Parallel = same receptor **Affinity A > Affinity B** Efficacy A = Efficacy B

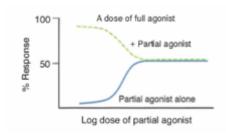


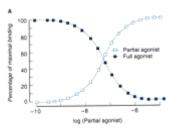


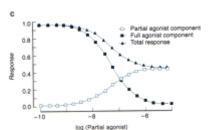

Not parallel = Diff. receptors **Potency X > Potency Y** Efficacy X = Efficacy Y

AGONIST: when binding to the receptor gives a response (full, partial inverse)

- FULL AGONIST: produce a maximal response; maximal efficacy
- PARTIAL AGONIST: incapable of eliciting maximal response; less effective
 - Can act as an antagonist competition for receptor
- INVERSE AGONIST: produces an opposite effect of the agonists; stabilizes the inactive state reducing signal transduction below basal levels

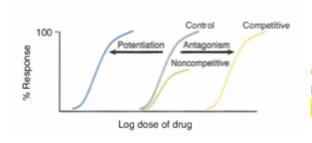


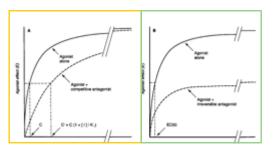



A, C = PARTIAL B = FULL

Highest efficacy: B Highest potency: A (A>C; B>C)

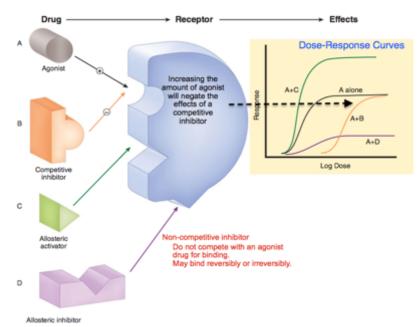
Can't compare potency of A & B because their curves cross, but you can compare at a specific dose. At low doses, A>B & at high doses, B>A.



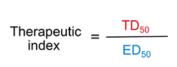

As the partial agonist replaces the full agonist from the receptors, the receptor is reduced – *Partial agonist is acting as ANTAGONIST*

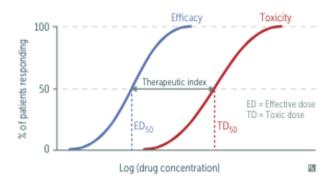
Example: Epinephrine, Pindolol (β-blocker, partial agonist), & heart beat

ANTAGONIST: binding to the receptor is NOT associated with a response; the drug only has an effect by **preventing** an agonist from binding the receptor; *stabilizes the equilibrium condition*



COMPETITIVE: ↓ POTENCY (shift right, ΔΕD50)
POTENTIATION: ↑ POTENCY (shift left)
NON-COMPETITIVE: ↓ EFFICACY (shift down)


TYPES OF ANTAGONISM:


- PHARMACOLOGIC: SAME RECEPTORS
 - o **COMPETITIVE**: Atropine, propranolol
 - Occupies receptor of agonist without activating it
 - Parallel shift in dose-response curve for agonist
 - Overcome with increasing dose of agonist
 - NON-COMPETITIVE: Aspirin, phenoxybenzamine
 - Non-parallel shift to right
 - Can only be partially overcome with increasing dose of agonist
- PHYSIOLOGIC: DIFFERENT RECEPTORS
 - Two agonists with OPPOSING actions antagonize each other
 - Phenylephrine (vasoconstrictor) + Nitroglycerin (vasodilator)
- CHEMICAL: NO RECEPTORS (Acts directly with the agonist)
 - Formation of a complex between effector drug & another compound
 - Protamine binds to heparin to reverse its actions

THERAPEUTIC INDEX: how effective a drug is in producing the desired effect relative to toxicity

- Both ED50 and TD50 are calculated from quantal-dose response curves, which represent the frequency with which each
 dose of drug elicits the desired response or toxic effect in the population
- **ED50:** dose required to produce a therapeutic effect in 50% of the population
- TD50: dose required to produce a toxic effect in 50% of the population
- SAFER DRUGS HAVE HIGHER TI VALUES
- DRUGS WITH NARROW/LOW THERAPEUTIC INDEX: Warfarin, Lithium, Digoxin, Theophylline, Gentamycin, Amphotericin B

Drug Development

Pre-clinical	Phase 1	Phase 2	Phase 3	Phase 4
Animals	~20 Healthy volunteers	100s Selected PATIENTS	Large # Selected PATIENTS	Post-marketing
Safety & biologic activity	*THIS IS NOT PATIENTS	Therapeutic <u>efficacy</u>	Safety & efficacy	surveillance – Patients
	<u>Safety</u> , minimum effective		Overall benefit-risk ratio	given drug for therapy
	dose (pharmokinetics)		*SIDE EFFECTS	Adverse reactions

