

Appunti universitari
Tesi di laurea
Cartoleria e cancelleria
Stampa file e fotocopie
Print on demand
Rilegature

NUMERO: **2513A** ANNO: 2021

APPUNTI

STUDENTE: Forestieri Andrea

MATERIA: Endoreattori esercitazioni - Prof. Pastrone

Il presente lavoro nasce dall'impegno dell'autore ed è distribuito in accordo con il Centro Appunti. Tutti i diritti sono riservati. È vietata qualsiasi riproduzione, copia totale o parziale, dei contenuti inseriti nel presente volume, ivi inclusa la memorizzazione, rielaborazione, diffusione o distribuzione dei contenuti stessi mediante qualunque supporto magnetico o cartaceo, piattaforma tecnologica o rete telematica, senza previa autorizzazione scritta dell'autore.

ESERCITAZIONI

Corso Di Endoreattori

Esercitazione 1

la massa di propellente diminuisce a favore, ad esempio, della massa utile. Questo si può vedere più chiaramente da

$$\frac{m_p}{m_0} = \frac{m_0 - m_d}{m_0} = 1 - \frac{m_d}{m_0} = 1 - e^{-\frac{\Delta v}{c}}$$

che evidenzia come un aumento di c, comportando un aumento di $e^{-\frac{\Delta \nu}{c}}$, provoca una diminuzione di m_p/m_0 .

La massa dei serbatoi è legata al volume del propellente per mezzo di una certa k_t

$$m_s = k_t V_p = k_t \frac{m_p}{\rho_p}$$

$$\frac{m_s}{m_0} = \frac{k_t}{\rho_p} \frac{m_p}{m_0}$$

La densità del propellente è esprimibile come

$$\rho_{p} = \frac{m_{fuel} + m_{ox}}{V_{fuel} + V_{ox}} = \frac{m_{fuel} + m_{ox}}{\frac{m_{fuel}}{\rho_{fuel}} + \frac{m_{ox}}{\rho_{ox}}} = \frac{1 + \frac{m_{ox}}{m_{fuel}}}{\frac{1}{\rho_{fuel}} + \frac{1}{\rho_{ox}} \frac{m_{ox}}{m_{fuel}}} = \frac{1 + r_{m}}{\frac{1}{\rho_{fuel}} + \frac{r_{m}}{\rho_{ox}}}$$

definendo il rapporto di miscela

$$r_m = \frac{m_{ox}}{m_{fuel}}$$

Per quanto riguarda la massa del motore, usualmente si esprimono le prestazioni attraverso dei coefficienti spinta/peso

$$\frac{F_{vac}}{m_e g_0} = \frac{\text{spinta nel vuoto}}{\text{peso motore a sea level}}$$

$$\frac{F_{SL}}{m_0 g_0} = \frac{\text{spinta a sea level}}{\text{peso iniziale a sea level}}$$

Un altro parametro caratteristico è il rapporto F_{vac}/F_{SL} . Si può esprimere m_e usando i coefficienti spinta/peso:

$$m_e = \frac{F_{vac}}{(F_{vac}/m_e g_0)} \frac{1}{g_0} = \frac{(F_{vac}/F_{SL})}{(F_{vac}/m_e g_0)} \frac{F_{SL}}{g_0} = \frac{(F_{vac}/F_{SL})}{(F_{vac}/m_e g_0)} \left(\frac{F_{SL}}{g_0 m_0}\right) m_0$$

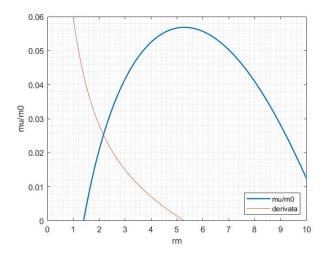
da cui

$$\frac{m_e}{m_0} = \frac{(F_{SL}/m_0 g_0)}{(F_{vac}/m_e g_0)} \left(\frac{F_{vac}}{F_{SL}}\right)$$

Mettendo tutto insieme

$$\frac{m_u}{m_0} = 1 - \frac{m_p}{m_0} - \frac{m_s}{m_0} - \frac{m_e}{m_0}$$

$$\frac{m_u}{m_0} = 1 - \frac{m_p}{m_0} - \frac{k_t}{\rho_p} \frac{m_p}{m_0} - \frac{m_e}{m_0} = 1 - \left(\frac{k_t}{\rho_p} + 1\right) \frac{m_p}{m_0} - \frac{m_e}{m_0}$$

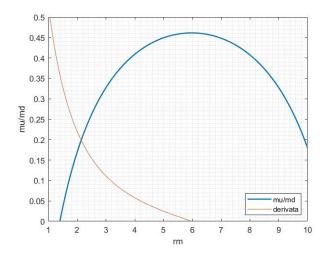


Si può quindi individuare il massimo per $r_m \simeq 5$. Per un'analisi più accurata si è risolta l'equazione trascendente

$$\frac{d\left(m_{u}/m_{0}\right)}{dr_{m}}=\frac{\partial\left(m_{u}/m_{0}\right)}{\partial c}\frac{\partial c}{\partial r_{m}}=0$$

risolvendola numericamente con Matlab. Il risultato è che la funzione ha un massimo per $r_m=5.29$. Si può anche diagrammare la relazione che lega m_u/m_d al rapporto di miscela, essendo

$$\frac{m_u}{m_d} = \frac{m_u}{m_0} \frac{m_0}{m_d} = \frac{m_u}{m_0} e^{\frac{\Delta v}{c(r_m)}}$$



Si può quindi individuare il massimo per $r_m \simeq 6$. Anche l'equazione

$$\frac{d\left(m_{u}/m_{d}\right)}{dr_{m}}=0$$

2 Suddivisione in stadi per Two Stage To Orbit (TSTO)

Assegnato il volume totale dell'endoreattore, si vuole studiare la ripartizione dei volumi dei due stadi per massimizzare $\Delta \nu$ (cioè mettere in orbita alla quota più alta possibile). Il primo stadio è costituito da:

- volume del propellente V_1 e densità ρ_1
- velocità di scarico c_1
- massa scaricata Δm

Il secondo stadio è costituito da:

- volume del propellente V_2 e densità ρ_2
- velocità di scarico c₂
- massa serbatoio m_{s2}
- massa motore m_{e2}
- massa utile m_u

Si suppone di avere $V_{tot} = V_1 + V_2$, quindi si ragiona a costo fissato, rappresentato dalla *dry mass*, perché il propellente è relativamente economico. Il salto di velocità è ripartito tra stadio

1 e 2

$$\Delta v = \Delta v_1 + \Delta v_2 = c_1 \ln \left(\frac{m_{01}}{m_{f1}} \right) + c_2 \ln \left(\frac{m_{02}}{m_{f2}} \right)$$

I fattori costanti durante il lancio si possono raggruppare in un'unica variabile

$$H = m_u + m_{s2} + m_{e2} + \Delta m + \rho_2 V_{tot}$$

La masse iniziali e finali dell'endoreattore a ogni stadio si possono quindi scrivere come segue:

$$m_{01} = H + \rho_1 V_1 - \rho_2 V_1 \implies m_{01} = H + V_1 (\rho_1 - \rho_2)$$
 $m_{f1} = m_{01} - \rho_1 V_1 \implies m_{f1} = H - \rho_2 V_1$
 $m_{02} = m_{f1} - \Delta m \implies m_{02} = H - \rho_2 V_1 - \Delta m$
 $m_{f2} = m_u + m_s + m_e$

diventa

$$c_{1} \frac{\rho_{1}H}{\left[H + V_{1}^{*}\left(\rho_{1} - \rho_{2}\right)\right]\left(H - \rho_{2}V_{1}^{*}\right)} + c_{2} \frac{-\rho_{2}}{H - \rho_{2}V_{1}^{*}} = 0$$

$$\frac{\rho_{1}c_{1}H}{H + V_{1}^{*}\left(\rho_{1} - \rho_{2}\right)} - \rho_{2}c_{2} = 0$$

da cui

$$V_1^* = \left(\frac{\rho_1 c_1}{\rho_2 c_2} - 1\right) \left(\frac{H}{\rho_1 - \rho_2}\right)$$

Quindi se $\rho_1 c_1 > \rho_2 c_2$ la radice è positiva. Altrimenti è negativa.

Si studia quando questa soluzione è un massimo per $\Delta \nu$ al variare dei parametri caratteristici. La derivata seconda è

$$\frac{d^{2}(\Delta v)}{dV_{1}^{2}} = \frac{-\left(\rho_{1} - \rho_{2}\right)\rho_{1}c_{1}H}{\left[H + V_{1}^{*}\left(\rho_{1} - \rho_{2}\right)\right]^{2}}$$

Quindi la radice è un massimo se la derivata seconda è negativa, cioè se $\rho_1 > \rho_2$. Riassumendo

	$\rho_1 > \rho_2$	$ \rho_1 < \rho_2 $
$\rho_1 c_1 > \rho_2 c_2$	1 - Radice positiva, è un massimo	2 - Radice positiva, è un minimo
$\rho_1 c_1 < \rho_2 c_2$	3 - Radice negativa, è un massimo	4 - Radice negativa, è un minimo

- 1. Per $\rho_1 > \rho_2$ e $\rho_1 c_1 > \rho_2 c_2$, la funzione Δv ha massimo per un certo volume del primo stadio. Con due stadi conviene quindi scegliere propellenti con densità maggiori al primo stadio.
- 2. Per $\rho_1 < \rho_2$ e $\rho_1 c_1 > \rho_2 c_2$, la funzione Δv ha minimo per un certo volume del primo stadio, e per volumi maggiori o minori aumenta in valore.
- 3. Per $\rho_1 > \rho_2$ e $\rho_1 c_1 < \rho_2 c_2$, la funzione Δv ha massimo per un volume di primo stadio negativo. Quindi, partendo da volumi di primo stadio nulli, la funzione Δv è decrescente all'aumentare di V_1 . Questo significa che il salto di velocità è massimo se il volume di primo stadio è nullo. Quindi converrebbe avere solo il secondo stadio.
- 4. Per $\rho_1 < \rho_2$ e $\rho_1 c_1 < \rho_2 c_2$, la funzione Δv ha minimo per un volume di primo stadio negativo. Quindi, partendo da volumi di primo stadio nulli, la funzione Δv è crescente all'aumentare di V_1 . Questo significa che il salto di velocità è massimo se il volume di primo stadio è massimo. Quindi converrebbe avere solo il primo stadio.

$$\dot{m}_{tot} = 3 \frac{F_{SSME,SL}}{g_0(I_s)_{SSME,SL}} + 2 \frac{F_{SRB,SL}}{g_0(I_s)_{SRB,SL}} = 11020 \frac{\text{kg}}{\text{s}}$$

La densità del propellente è

$$\rho_1 = \frac{(m_p)_{stadio1}}{(V_p)_{stadio1}} = 1183 \text{kg/m}^3$$

dove

$$(m_p)_{stadio1} = 2m_{p,SRB} + 3(m_{p,ET})_{stadio1} = 2m_{p,SRB} + 3\frac{F_{SSME,SL}}{g_0(I_s)_{SSME,SL}}t_{b,SRB} = 1177 \text{Mg}$$

$$(V_p)_{stadio1} = 2\frac{m_{p,SRB}}{\rho_{SRB}} + 3\frac{(m_{p,ET})_{stadio1}}{\rho_{ET}} = 2\frac{m_{p,SRB}}{\rho_{SRB}} + 3\frac{\frac{F_{SSME,SL}}{g_0(I_s)_{SSME,SL}}t_{b,SRB}}{\rho_{ET}} = 995 \,\mathrm{m}^3$$

Per calcolare la massa del propellente utilizzato dai 3 SSME durante il primo stadio si è moltiplicata la portata dei 3 SSME a *sea level* per il tempo $t_{b,SRB}$ del primo stadio. La massa sarà quindi un'approssimazione di quella reale dato che la portata cambia durante la salita. La massa usata dai SRB è semplicemente la massa totale di propellente dei SRB. L'espressione di H è:

$$H = m_u + m_{s2} + m_{e2} + \Delta m + \rho_2 V_{tot}$$

In questo caso, il fattore $(m_u + m_{s2} + m_{e2})$ è costituito dalla massa dello Space Shuttle (che comprende massa utile e motori) e dalla massa dell'*external tank*

$$m_u + m_{s2} + m_{e2} = m_{SS} + m_{ET}$$

Questa è anche uguale alla massa totale al decollo a meno del peso totale dei SRB e del peso del propellente totale nell'*external tank*

$$m_{SS} + m_{et} = m_{tot,SS} - 2m_{tot,SRB} - m_{p,ET} = 139 \,\mathrm{Mg}$$

La massa scaricata è la massa a secco dei SRB

$$\Delta m = 2m_{SRB,empty} = 2(m_{tot,SRB} - m_{p,SRB}) = 176 \,\mathrm{Mg}$$

Il volume totale è

$$V_{tot} = 2V_{p,SRB} + V_{p,ET} = 2\frac{m_{p,SRB}}{\rho_{SRB}} + \frac{m_{p,ET}}{\rho_{ET}} = 2526 \,\mathrm{m}^3$$

Il valore di H pertanto è

$$H = 1219 \,\mathrm{Mg}$$

I coefficienti dell'equazione sono

$$a = 2.95191 \cdot 10^5$$
$$b = -1.40664 \cdot 10^9$$

Esercitazione 2

	Simbolo	Unità di misura	Motore A-1	Motore A-2	Motore A-3
Motore		IIIISUI a	(SEA LEVEL)	(VACUUM)	(VACUUM)
spinta	Fo	kN	3340	670	(VACCOM)
tempo di funzionamento	t _b	S	165	250	_
impulso specifico	I _{s0}	S	262	426	_
ossidante	-30		LOX	LOX	NTO
portata	m _{o0}	kg/s	892	131	-
densità	ρο	kg/m ³	1143	1143	1447
combustibile			RP-1	LH2	MMH
portata	m _{f0}	kg/s	405	26	-
densità	$\rho_{\rm f}$	kg/m ³	808	71	879
rapporto di miscela	r _{m0}	Ü	2.2	5	_
Camera di spinta	- 1110		tubolare	tubolare	
raffreddamento			rigenerativo	rigenerativo	ablat./irrag.
spinta	F	kN	3327	665	11
impulso specifico	I_s	S			
pressione uscita iniettori	pi	bar	75.5	60.3	15
pressione totale ugello	p _c	bar	68.9	55.2	10
portata ossidante	m _o	kg/s			
portata combustibile	$m_{\rm f}$	kg/s			
rapporto di miscela	r _m		2.35	5.2	1.647
densità media	ρ	kg/m ³	1017	333	1163
Impulso spec. per densità	I_{ρ}	kg s/m ³			
velocità caratteristica reale	c*	m/s			
fattore di correzione c*	η*	%	97.5	97.5	98.1
coefficiente di spinta	$C_{\rm F}$				
fattore di correzione C _F	η_{F}	%	98	101	100
rapporto di contrazione	ε _c		1.6	1.6	3.4
rapporto di espansione	3			40	35
pressione uscita ugello	pe	bar	0.522		
area di gola	At	cm ²			
Lunghezza caratteristica	L*	m	1.14	0.66	0.81
forma ugello			campana	campana	campana
			80%	75%	70%

$$\frac{p_c A_t}{\sqrt{\frac{R}{M} T_c}} \Gamma = \frac{p_c A_e}{\sqrt{\frac{R}{M} T_c}} \sqrt{\frac{2\gamma}{\gamma - 1} \left[\left(\frac{p_e}{p_c} \right)^{\frac{\gamma}{\gamma}} - \left(\frac{p_e}{p_c} \right)^{\frac{\gamma + 1}{\gamma}} \right]}$$

$$\varepsilon = \frac{A_e}{A_t} = \frac{\Gamma}{\sqrt{\frac{2\gamma}{\gamma - 1} \left[\left(\frac{p_e}{p_c} \right)^{\frac{\gamma}{\gamma}} - \left(\frac{p_e}{p_c} \right)^{\frac{\gamma + 1}{\gamma}} \right]}} = 14$$

Per i motori A-2 e A-3 è invece incognito p_e/p_c . Rappresentando questo rapporto con x

$$\varepsilon = \frac{\Gamma}{\sqrt{\frac{2\gamma}{\gamma - 1} \left(x^{\frac{2}{\gamma}} - x^{\frac{\gamma + 1}{\gamma}}\right)}} = 14$$

$$x^{\frac{2}{\gamma}} - x^{\frac{\gamma+1}{\gamma}} = \frac{\gamma - 1}{2\gamma} \left(\frac{\Gamma}{\varepsilon}\right)^2$$

L'equazione può essere risolta iterativamente

$$x^{\frac{2}{\gamma}} \left(1 - x^{\frac{\gamma - 1}{\gamma}} \right) = \frac{\gamma - 1}{2\gamma} \left(\frac{\Gamma}{\varepsilon} \right)^2$$

$$x = \left[\frac{\frac{\gamma - 1}{2\gamma} \left(\frac{\Gamma}{\varepsilon}\right)^2}{1 - x^{\frac{\gamma - 1}{\gamma}}} \right]^{\frac{\gamma}{2}}$$

Partendo da x = 0, l'incremento assoluto della soluzione dopo 3 iterazioni è minore di 10^{-4} . I valori di x sono:

$$x_2 = \frac{p_{e,2}}{p_{e,2}} = 0.0020$$

$$x_3 = \frac{p_{e,3}}{p_{c,3}} = 0.0021$$

da cui

$$p_{e,2} = 0.0020 p_{c,2} = 0.111 \,\mathrm{bar}$$

$$p_{e,3} = 0.0021 p_{c,3} = 0.021 \,\mathrm{bar}$$

Si può ora calcolare il coefficiente di spinta per i tre motori

$$C_{F,1} = \eta_{F,1} C_{F_{id},1} = 1.5313$$

$$C_{F,2} = \eta_{F,2} C_{F_{id},2} = 1.8925$$

$$C_{F,3} = \eta_{F,3} C_{F_{id},3} = 1.8343$$

Poiché

$$c = C_F c^*$$

si possono calcolare le velocità di scarico:

$$c_1 = C_{F,1} c_1^* = 2636 \, \frac{\mathrm{m}}{\mathrm{s}}$$

Si può calcolare la densità dei propellenti

$$\rho_{p} = \frac{m_{fuel} + m_{ox}}{V_{fuel} + V_{ox}} = \frac{m_{fuel} + m_{ox}}{\frac{m_{fuel}}{\rho_{fuel}} + \frac{m_{ox}}{\rho_{ox}}} = \frac{1 + \frac{m_{ox}}{m_{fuel}}}{\frac{1}{\rho_{fuel}} + \frac{1}{\rho_{ox}} \frac{m_{ox}}{m_{fuel}}} = \frac{1 + r_{m}}{\frac{1}{\rho_{fuel}} + \frac{r_{m}}{\rho_{ox}}}$$

Sostituendo i valori:

$$\rho_1 = 1017 \frac{\text{kg}}{\text{m}^3}$$
$$\rho_2 = 333 \frac{\text{kg}}{\text{m}^3}$$
$$\rho_3 = 1163 \frac{\text{kg}}{\text{m}^3}$$

Gli impulsi specifici per densità sono:

$$I_{\rho,1} = 273255 \frac{\text{kg} \cdot \text{s}}{\text{m}^3}$$

 $I_{\rho,1} = 146918 \frac{\text{kg} \cdot \text{s}}{\text{m}^3}$
 $I_{\rho,1} = 368767 \frac{\text{kg} \cdot \text{s}}{\text{m}^3}$

Le aree di gola si possono ottenere attraverso la relazione del coefficiente di spinta:

$$A_t = \frac{F}{p_c C_F}$$

sostituendo i valori si ottiene

$$A_{t,1} = 3153 \,\mathrm{cm}^3$$

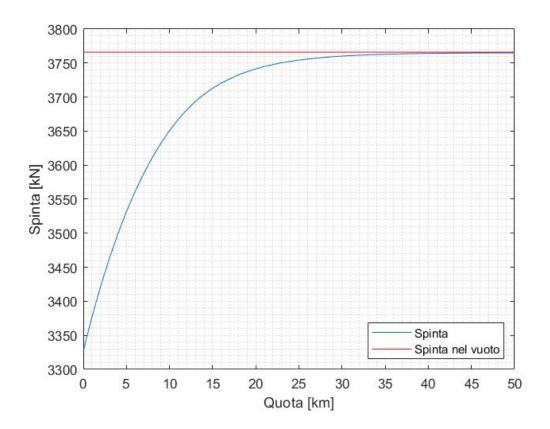
 $A_{t,2} = 637 \,\mathrm{cm}^3$
 $A_{t,3} = 60 \,\mathrm{cm}^3$

Si può ora completare la tabella.

1976 US Standard Atmosphere

				Temp.		
Alt. (km)	T/To	P/Po	D/Do	(K)	Pressure	Density
0	1.00000	1	1	288.15	101.33	1.225
1	0.97745	0.88701	0.907477		89.88069	1.11166
2	0.95490	0.784618	0.821677	275.15	79.50535	1.006554
3	0.93236	0.692042	0.742248	268.66	70.1246	0.909254
4	0.90983	0.608541	0.668854	262.17	61.66346	0.819347
5		0.533415				0.736428
6		0.466001			47.21991	
7		0.405677			41.10722	
8		0.351853				0.525785
9	0.79727	0.303978	0.381275			0.467062
10		0.261532				0.413509
11	0.75229		0.297796			
12		0.191456				0.311936
13		0.163627			16.58031	
14		0.139849			14.17095	
15		0.119533				
16		0.102173				0.166469
17		0.087339				0.1423
18		0.074662			7.565491	
19		0.063828			6.467703	
20		0.054569			5.529479	
21	0.75510		0.061807		4.729078	
22		0.039945	0.05266		4.047606	
23		0.034214			3.466954	
24		0.029328			2.971816	
25		0.025158			2.549275	
26		0.021597				0.034256
27		0.018553		223.54		0.029297
28	0.77920	0.01595	0.02047	224.53		0.025075
29	0.78264	0.013722			1.390436	
30	0.78608	0.011813	0.015028			0.018409
31		0.010177		227.50		0.015791
32	0.79296	0.008774	0.011065	228.49	0.889067	0.013555
33	0.80157	0.007572	0.009447	230.97	0.767311	0.011572
34	0.81119	0.006547	0.008071	233.74	0.663412	0.009887
35	0.82080	0.005671	0.006908	236.51	0.574593	0.008463
36	0.83041	0.00492	0.005924	239.28	0.49852	0.007257
37	0.84002	0.004276	0.00509	242.05	0.433245	0.006235
38	0.84962	0.003722	0.004381	244.82	0.377135	0.005366
39	0.85922	0.003245	0.003777	247.59	0.328817	0.004626
40	0.86882	0.002834	0.003262	250.35	0.287139	0.003995
41	0.87842	0.002478	0.002821	253.12	0.251128	0.003456
42	0.88801	0.002171	0.002445	255.88	0.219963	0.002995
43	0.89760	0.001904	0.002121	258.64	0.192947	0.002599
44	0.90718	0.001673	0.001844	261.40	0.169492	0.002259
45	0.91677	0.001471	0.001605	264.17	0.149097	0.001966
46	0.92635	0.001296	0.001399	266.93	0.131337	0.001714
47	0.93592	0.001143	0.001222	269.69	0.115847	0.001496
48	0.93927	0.001009	0.001075	270.65	0.102292	0.001317
49		0.000891		270.65	0.090333	0.001163
50	0.93927	0.000787	0.000838	270.65	0.079776	0.001027

Sostituendo i valori dalla tabella dell'atmosfera standard e calcolando la spinta per ciascuno di essi, si può tracciare l'andamento con la quota:



In particolare la spinta a livello del mare è

$$F_{SL} = 3327$$
kN

mentre la spinta nel vuoto ($p_0 = 0$) è

$$F_{vac} = 3765$$
kN

Esercitazione 3

 R_2 R_1 R_2 R_3 R_4 R_4

Si richiede di valutare le grandezze indicate in figura, ponendo $R_1=1.5R_t$ e $R_2=0.382R_t$.

Convergente

Il diametro di gola è:

$$D_t = \sqrt{\frac{4A_t}{\pi}}$$

Di conseguenza, il raggio di raccordo è:

$$R_1 = 1.5 \frac{D_t}{2}$$

L'area della camera di combustione è data da:

$$A_c = \varepsilon_c A_t$$

Da cui si ricava il diametro di camera:

$$D_c = \sqrt{\frac{4A_c}{\pi}}$$

Il volume della camera è dato dalla relazione della lunghezza caratteristica:

$$V_c = A_t L^*$$

La lunghezza totale della camera è data da:

$$L_c = L_a + L_b$$

Sostituendo i valori dei tre motori si ottiene:

Motore	A-1	A-2	A-3	
$D_t[m]$	0.634	0.285	0.087	
$R_1[m]$	0.475	0.213	0.066	
$A_c \left[\text{cm}^2 \right]$	5044.80	1017.60	204.00	
$D_c[m]$	0.801	0.360	0.161	
V_c [m ³]	0.359	0.042	0.005	
$D_x[m]$	0.691	0.310	0.126	
$L_x[m]$	0.152	0.068	0.018	
$L_b[m]$	0.314	0.141	0.064	
L_a [m]	0.459	0.299	0.199	
L_c [m]	0.774	0.440	0.263	

Divergente

Il raggio di raccordo è dato in funzione di quello di gola:

$$R_2 = 0.382R_t$$

L'area di uscita è data da:

$$A_e = \varepsilon A_t$$

da cui si ricava il diametro di uscita:

$$D_e = \sqrt{\frac{4A_e}{\pi}}$$

Il parametro L_f è definito come

 $L_f = \frac{1}{\text{lunghezza del divergente di un ugello conico di 15° di semiapertura con stesso } \varepsilon}$

Si procede quindi a calcolare la lunghezza di un ugello conico avente stesso rapporto di espansione e angolo di semi-apertura di 15°.

La lunghezza di raccordo è:

$$N_t = R_2 \sin{(\theta_n)}$$

Il raggio dell'area nel punto in cui l'arco di cerchio si raccorda alla parte a campana è dato da:

$$N_a = R_t + R_2 \left(1 - \cos\left(\theta_n\right)\right)$$

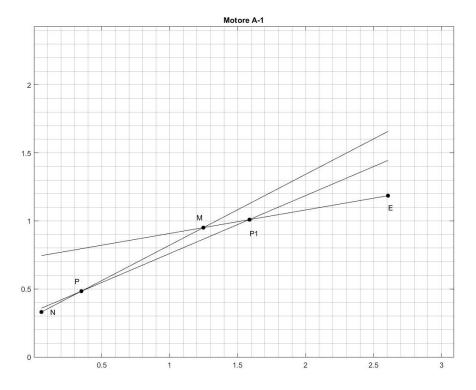
Il punto M è individuato da:

$$y_M = y_N + (x_M - x_N)\tan(\theta_n) = y_E + (x_M - x_E)\tan(\theta_e)$$

Da cui si ricava:

$$x_{M} = \frac{y_{E} - \tan(\theta_{e}) - y_{N} + \tan(\theta_{n})}{\tan(\theta_{n}) - \tan(\theta_{e})}$$
$$y_{M} = y_{N} + \left(\frac{y_{E} - \tan(\theta_{e}) - y_{N} + \tan(\theta_{n})}{\tan(\theta_{n}) - \tan(\theta_{e})} - x_{N}\right) \tan(\theta_{n})$$

Si può costruire quindi un fascio di rette che intersecano dei punti P, sulla retta NM, e punti P', sulla retta ME. Il punto P' è distante da M rispetto al segmento ME proporzionalmente a quanto il punto P è distante da N rispetto al segmento NM.



Le coordinate di P e P' sono date da:

$$x_P = x_N + \alpha (x_M - x_N)$$

$$y_P = y_N + \alpha (y_M - y_N)$$

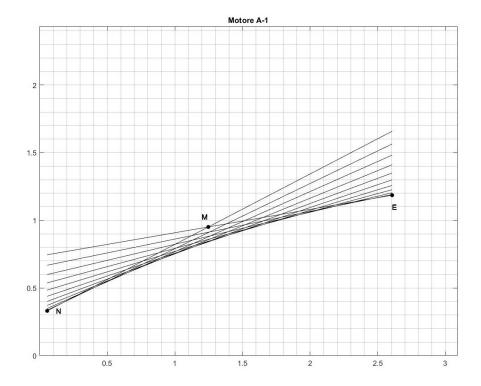
$$x_{P'} = x_M + \alpha (x_E - x_M)$$

$$y_{P'} = y_M + \alpha (y_E - y_M)$$

dove α è un parametro variabile tra 0 e 1. La retta che passa da P e da P' ha equazione

$$y - y_P = (x - x_P) \tan(\theta)$$

Si può pertanto rappresentare il fascio al variare di θ . Si prende come esempio i valori del motore A-1:



Per rappresentare l'equazione della parabola occorre ora esprimere, in funzione di θ , la coordinata x del punto in cui la retta con in inclinazione $\tan(\theta)$ è tangente alla parabola. In altre parole, prendendo la generica retta del fascio, ci si chiede a che ascissa essa è tangente alla parabola. Questa ascissa è funzione di θ , quindi di che retta sto considerando. Una volta trovata questa relazione si prendono θ decrescenti da θ_n a θ_e ad ognuno dei quali corrisponde una x e una y. Unendo questi punti si rappresenta la parabola nel piano cartesiano. L'equazione della retta generica

$$y - y_N = (x - x_N) \tan(\theta) + \alpha D_N$$

si può scrivere come

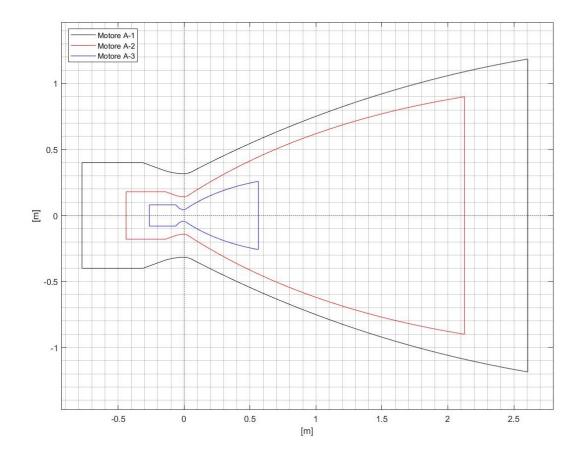
$$F(\theta) = 0$$

con

$$F(\theta) = y - y_N - (x - x_N)\tan(\theta) - \alpha D_N$$

 $F(\theta)$ si deve annullare per ogni θ , in particolare quindi anche la sua derivata totale rispetto θ deve essere identicamente nulla:

$$\frac{dF}{d\theta} = \frac{\partial F}{\partial x}\frac{dx}{d\theta} + \frac{\partial F}{\partial y}\frac{dy}{d\theta} + \frac{\partial F}{\partial \theta} = 0$$



Esercitazione 4

Sono noti i seguenti dati:

	Simbolo	Unità di misura	A-1	A-2	A-3
Camera di spinta			tubolare	tubolare	
Raffreddamento			rigenerativo	rigenerativo	ablat./irrag.
Temperatura totale ugello	T_c	K	3590	3360	3250
Massa molare	\mathcal{M}	kg/kmol	22.5	12	21
Rapporto calori specifici	γ		1.22	1.21	1.24
Pressione totale ugello	p_c	bar	68.9	55.2	10
Diametro gola	D_t	cm	63.4	28.5	8.7
Raggio medio raccordo gola	R_{medio}	cm	29.8	13.4	4.2
Rapporto di espansione	ε		14	40	35
Rapporto di contrazione	ε_c		1.6	1.6	3.4
Fattore di correzione di c^*	η^*		97.5	97.5	98.1
Velocità caratteristica	c^*	<u>m</u> s	1721	2287	1696
reale			0.0	0.05	0.5
T_{wg}/T_c	τ		0.8	0.25	0.5

dove \overline{h} è il coefficiente di scambio termico convettivo, D è il diametro e k è il coefficiente di scambio termico conduttivo. Il Nusselt può essere correlato al numero di Reynolds e al numero di Prandtl da una relazione sperimentale:

$$Nu = 0.026 (Re_D)^{0.8} (P_r)^{0.4}$$

Si può quindi calcolare il coefficiente di scambio termico in funzione di Re, Pr, k e D. Il numero di Prandtl è:

 $Pr = \frac{\mu c_p}{k}$

Il numero di Reynolds è:

$$Re_D = \frac{\rho wD}{\mu}$$

Facendo riferimento alla sezione di gola,

$$Re_D = \frac{\rho w_t D_t}{\mu} = \frac{\dot{m}}{A_t} \frac{D_t}{\mu} = \frac{p_c}{c^*} \frac{D_t}{\mu}$$

Invertendo la relazione

$$\frac{\overline{h}D_t}{k} = 0.026 (Re_D)^{0.8} (P_r)^{0.4}$$

si trova:

$$\overline{h} = \frac{k}{D_t} 0.026 (Re_D)^{0.8} (P_r)^{0.4}$$

$$\overline{h} = \frac{k}{D_t} 0.026 \left(\frac{p_c}{c^*} \frac{D_t}{\mu} \right)^{0.8} (P_r)^{0.4}$$

Si esprime il coefficiente di scambio termico conduttivo in funzione del numero di Prandt. Quest'ultimo lo si potrà approssimare con la *formula di Eucken*.

$$\overline{h} = \frac{\frac{\mu c_p}{Pr}}{D_t} 0.026 \left(\frac{p_c}{c^*} \frac{D_t}{\mu} \right)^{0.8} (P_r)^{0.4}$$

Si ottiene infine:

$$\overline{h} = \frac{0.026}{D_r^{0.2}} \frac{\mu^{0.2} c_p}{P r^{0.6}} \left(\frac{p_c}{c^*}\right)^{0.8}$$

dove la viscosità deve essere valutata alla temperatura di camera T_c . Questa formula andrebbe bene con un tratto cilindrico. In realtà che si valuti la gola o un'altra sezione il tratto non è cilindrico ma segue una certa curvatura, per cui occorre correggere questa espressione con un termine che ne tenga conto.

$$\overline{h} = \frac{0.026}{D_t^{0.2}} \left[\frac{\mu^{0.2} c_p}{P r^{0.6}} \right]_{T_c} \left(\frac{p_c}{c^*} \right)^{0.8} \left(\frac{D_t}{R_{medio}} \right)^{0.1}$$

Il calore specifico a pressione costante è:

$$c_p = \frac{\gamma}{\gamma - 1} \frac{R}{\mathcal{M}}$$