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Introduction 
Computer: it is a sophisticated electronic calculating machine that:

1. accepts input information
2. process the given information (according to a internally stored 

list of instructions)
3. produce an output information

A computer is composed by 4 components:
1. Hardware: provide the basic computing resources
2. Operating system: control and coordinates use 

of  hardware  among  various  applications  and 
users. It must protect the hardware from non 
authorized/malicious  actions,  while 
virtualizing it: an application don't care so 
much  about  the  precise  configuration  of  the 
current (hardware) system.

3. Application programs: define the ways in which 
the  system  resources  are  used  to  solve  the 
computing  problems  of  the  user  (word 
processors, compilers, databases, web browsers)

4. Users: could be people, machines or other computers.

Computer-system organization: the today trend is on proving CPU with 
multiple cores, in order to better parallelize tasks and a shared memory. 
This memory is connected (and accessed) to device controller(s) by means 
of a common bus. 
Every device can require CPU computation or memory access at any time, 
for this reason a concurrent execution must be handled.

Basic anatomy of a CPU: 
1. Program counter (PC): holds memory address of next instruction
2. Instruction register (IR): holds instruction currently being 

executed
3. Registers (from 1 to n): hold variables and temporary results
4. Arithmetic and Logic Unit (ALU): performs arithmetic and logic 

operations.
5. Memory Address Register (MAR): contains address of memory to be 

read/written
6. Memory Data Register (MDR): contains memory data read or to be 

written
7. Stack Pointer (SP): holds memory address of a stack with a frame 

for each procedure's local variables & parameters 
8. Processor Status Word (PSW): contains the mode bit and various 

control bits
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DECODE: the requested data is acquired and stored in the MDR, and the 
instruction is placed in the IR
EXECUTE: handled by ALU and internal registers

To improve processor core's performance, the pipeline architecture was 
introduced. A superscalar architecture follow the same basic principle, 
but is able to issue more than one instruction at every clock cycle by 
means of redundant functional units inside the processor core.

Peripheral Management and Control: the goal of a general purpose computer 
is its ability to interact with the environment by means of external I/O 
devices (keyboard, display, disk-drives, network, etc.). The majority of 
devices require a fast response from the CPU when various events occur, 
even when the CPU is busy running a program. For this reason it's needed 
a mechanism for a device to “gain CPU’s attention”. 

Accessing I/O Devices: Computer system components communicate through an 
interconnection network. How to address the I/O devices? 
1. Memory-mapped I/O: allows I/O registers to be accessed as memory 

locations. 
• ADV: these registers can be accessed using simply (and only) Load 
and Store instructions.

• DIS: the total number of addresses reserved to the memory is 
reduced. As a result, the memory address space is reduced.

2. Isolated I/O: the addressing spaces for memory and I/O are separated 
and activated by special signals.
• ADV: the memory addressing space is untouched.
• DIS: higher complexity (new signals). The programmer should use 
specific instructions to access I/O ports (bigger instruction set).

I/O Device Interface: it is a circuit between a device and the 
interconnection network. It provides the means for data transfer and 
exchange of status and control information. It includes data, status, and 
control registers accessible with Load and Store instructions (memory-
mapped I/O).
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Context Switching: An ISR may modify the contents of registers already in 
use by the main (non-interrupt) code. To prevent corruption of the main 
code by the ISR a ‘context switch’ may be performed.
A context switch is a section of code that saves and restores important 
processor information (registers and flags values).

!5
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3. I/O operations: a running program may require I/O, which may 
involve a file or an I/O device 

4. File-system manipulation: the file system is of particular 
interest. Obviously, programs need to read and write files and 
directories, create and delete them, search them, list file 
Information, permission management. 

5. Communications: processes may exchange information, on the same 
computer or between computers over a network. Communications may be 
via shared memory or through message passing (packets moved by the 
OS)

6. Error detection: the OS needs to be constantly aware of possible 
errors
• May occur in the CPU and memory hardware, in I/O devices, in 
user program 

• For each type of error, OS should take the appropriate action to 
ensure correct and consistent computing. 

Another set of OS functions exists for ensuring the efficient operation 
of the system itself via resource sharing 

1. Resource allocation: when multiple users or multiple jobs running 
concurrently, resources must be allocated to each of them. There 
are many types of resources 
• Special allocation code: for example CPU cycles, main memory, 
and file storage may have special allocation code 

• General request and release code: for example I/O devices may 
have general request and release code (2 phase lock mechanism?) 

2. Accounting: to keep track of which users use how much and what 
kinds of computer resources 

3. Protection and security: the owners of information stored in a 
multiuser or networked computer system may want to control use of 
that information, concurrent processes should not interfere with 
each other 
• Protection involves ensuring that all access to system resources 
is controlled 

• Security of the system from outsiders requires user 
authentication, extends to defending external I/O devices from 
invalid access attempts.  

Operating systems goals:
 

1. Multiplexing: A key requirement for an operating system is to 
support several activities at once: the operating system must time-
share the resources of the computer among the programs.

2. Isolation: the OS must also arrange for isolation between the 
processes: if one process has a bug or fails, it shouldn’t affect 
other programs. 

3. Interaction: Complete isolation is too strong, since it should be 
possible for process to interact.

"2
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System Calls: 
1. Typically written in a high-level language (C or C++) 
2. A request to the operating system to perform some activity 
3. System calls are expensive: the system needs to perform many things 

before executing a system call:
• The computer (hardware) saves its state.
• The OS code takes control of the CPU, privileges are updated.
• The OS examines the call parameters.
• The OS performs the requested function.
• The OS saves its state (and call results).
• The OS returns control of the CPU to the caller. 

4. System Calls are accessed by programs via a high-level Application 
Program Interface (API) rather than direct system call use.

Kernel: 
Portion of operating system that is in main memory. It contains the most 
frequently used functions. A kernel can be:

1. Monolithic kernel systems provide services like process and memory 
management, interrupt handling and I/O communication, file system, 
etc. in kernel space. As the name suggest it is a single static 
binary file: all kernel services exist and execute in the kernel 
address space.

2. Microkernel: the kernel is broken down into separate processes, 
known as servers. Some of the servers run in kernel space and some 
run in user-space. All servers are kept separate and run in 
different address spaces. Servers invoke "services" from each other 
by sending messages via IPC (Interprocess Communication). This 
separation has the advantage that if one server fails, other 
servers can still work efficiently.
• Modern OS use this approach or an hybrid approach.
• Examples of servers are:

a. device drivers
b. file server 
c. windowing system 
d. security services.

"4
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Context Switch: 
1. When CPU switches to another process, the system must save the 

state of the old process and load the saved state for the new 
process via a context switch 

2. Context of a process is represented in the PCB 
3. Context-switch time is overhead; the system does no useful work 

while switching
4. Time dependent on hardware support: 

• it depends on the memory speed, the number of registers that 
must be copied, and the existence of special instructions (e.g., 
a single instruction to load or store all registers) 

• typical speeds are a few milliseconds.  

!2

Process Control Block (PCB):
 
It is the most important data structure in an OS. Contains important 
process's informations like: 

1. Process identifier: unique numeric identifier of the process
2. Process state: new, ready, running, waiting, terminated 
3. Register Context:

• Program counter (PC): the address of the next instruction to be 
executed

• CPU registers. 
4. CPU scheduling information: needed by the OS to perform its 

scheduling function. 
• process priority
• scheduling-related information (e.g., the amount of time that 
the process has been waiting and the amount of time that the 
process executed the last time it was running)

• pointers to scheduling queues 
5. Memory-management information: mapping between virtual and 

physical memory locations. 
6. Accounting information: used for billing purposes and performance 

measurements:
• the amount of CPU and real time used 
• main memory storage occupancy 

7. I/O status information: resources allocated to the process 
• HW units: the list of I/O devices allocated to the process 
• the list of open files.

Process table:

Each entry of the process table represent a process and contains the 
PCB.
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• Generally, process is identified and 
managed via a unique process 
identifier (pid), which is an integer 
number (a variable of type pid_t). 

• Process creation: fork system call 
creates new process

• Process modification: exec system call 
(used after a fork) to replace the 
process’s memory space with a new 
program. 

There are some special processes: 
1. PID = 0 is usually the scheduler process and is often known as the 

swapper: it is part of the kernel and is known as a system process. 
2. PID = 1 is usually the init process and is invoked by the kernel at 

the end of the bootstrap procedure. 

2. Process termination:
• Process executes the last statement and asks the operating system to 
delete itself (via the exit() system call or the return instruction 
executed in the main() function) 

• Parent may terminate the execution of children processes (via a 
signal kill) 

• Process resources are deallocated by the operating system. 

Shared resources: The parent and the child process may: 
1. share all the resources (same user level context memo1ry space) or 
2. partly share the resources or 
3. not share at all the resources (separated user level context memory 

space). 

!4

3.29 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

A tree of processes

There are some special processes: 
process ID 0 is usually the scheduler process and is often known as the 
swapper: it is part of the kernel and is known as a system process.
Process ID 1 is usually the init process and is invoked by the kernel at 
the end of the bootstrap procedure.

int fork(void)

If the return code is zero for the new (child) process. 
If the return code is child PID for the parent process.
If the return code < 0, an error occurred in the process creation. 

The two processes (parent and child) share: 
• the same program code
• the file descriptors (stdin, stdout and all the open files)
• the user ID, the group ID, the root directory, the working directory 

The new process consists of a copy 
of the address space of the original 
process. 
Both processes share the same value 
of the Program Counter register: for 
this reason both processes continue 
the execution at the instruction 
after the fork().

© Proprietà riservata dell'autore - Digitalizzazione e distribuzione a cura del CENTRO APPUNTI - Corso Luigi Einaudi, 55 - Torino / Pagina 15 di 108

© Proprietà riservata dell'autore - Digitalizzazione e distribuzione a cura del CENTRO APPUNTI - Corso Luigi Einaudi, 55 - Torino / Pagina 15 di 108



© Francesco Ricci 2018 Chapter 3

NOTE:
The argument to wait()is the address on an integer variable or the NULL 
pointer.

If it's not NULL, the system writes 16 bits of status information about 
the terminated child.
 
Among these 16 bits, the higher 8 bits contain the lower 8 bits of the 
argument the child passed to exit(), while the lower 8 bits are all zero 
if the process exited correctly, and contain error information if not. 

Zombie processes:
 
A process that terminates cannot leave the system until its parent 
accepts its return code. 
Note: the parent accepts the child’s return code either via a wait() or 
if it terminates 
If its parent process is already dead, it’ll already have been adopted by 
the “init” process, which always accepts its children’s return codes. 
However, if a process’s parent is alive but never terminates, the 
process’s return code will never be accepted and the process will remain 
a zombie. 
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3.65 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Note

The argument to wait()is the address on an integer variable or the NULL pointer 
If it's not NULL, the system writes 16 bits of status information about the terminated 
child. 
Among these 16 bits, the higher 8 bits contain the lower 8 bits of the argument the 
child passed to exit(), while the lower 8 bits are all zero if the process exited correctly, 
and contain error information if not. 

ZERO STATUS
Value returned to the parent process

STATUS ERROR CODE

Value received by the parent process

CHILD

PARENT

exit(status)

wait(&status)

pid = waitpid(waiting_for_pid, &status, options);

• wait() waits for any child;
• waitpid() waits for a specific child (the one with pid = 
waiting_for_pid)

• Options: usually 0 (NULL)... but there are many more! (See man).

Read the exit value: 

The status value received by the parent from the child via exit() or 
wait() can be easily read through macros available in <sys/wait.h> 
(e.g., WIFEXITED, WEXITSTATUS, etc.). 
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Multithreaded programming 

Single thread vs multithreads: in traditional operating systems, each 
process has an address space and a single thread of control. There are 
frequently solutions in which it is desirable to have multiple threads of 
control in the same address space running concurrently (concurrency: 
execute different operations in parallel. Those instructions are 
independent, and in general are found by  partitioning the program in a 
top down approach), as though they are (almost) separate tasks. 
Programming with threads is a natural way to handle concurrency.

             

!1
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Single Thread vs. Multithreads

In traditional operating systems, each process has an address space and a 
single thread of control

There are frequently solutions in which it is desirable to have multiple 
threads of control in the same address space running concurrently, as 
though they are (almost) separate tasks.

Programming with threads is a natural way to handle concurrency

Process A

Thread 1

Process B Thread1
Thread2
Thread3
Thread4

Monothreaded process Multithreaded process Multi-threaded process Mono-threaded process

Example of multithreads (II):
Consider a word processor composed of the following threads: 

1. a thread interacts with the user 
2. a thread handles reformatting the document in the background and 

performing spell checking 
3. a thread handles the disk backups without interfering with the 

others in order to automatically save the entire file every few 
minutes to protect the user against losing the work in the event 
of program crash.

Example of multithreads (I):
Consider how a Web server can improve performance and interactivity by 
using threads. 

1. When a Web server receives requests for images and pages from 
many clients, it serves each request (from each client) with a 
different thread.

2. The process that receives all the requests, creates a new 
separate thread for each request received.

3. This new thread sends the required information to the remote 
client.

4. While this thread is doing its task, the original thread is free 
to accept more requests.

5. Web servers are multiprocessor systems that allow for concurrent 
completion of several requests, thus improving throughput and 
response time. 

Create a number of threads, and for each thread do:
1. get network message from client
2. get URL data from disk
3. send data over network 

The advantage of this particular approach is the time saved: the 
longest wait is due to disk latency, so even if the customer is served 
in the same amount of time, more customers are served in less time. It 
means that response time is the same, lead time is improved.
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Performance Benefits:
1. It takes far less time to create a new thread in an existing 

process than to create a new process (100x times faster), because 
it requires less resources/data structures . 

2. It takes less time to terminate a thread than a process 
3. It takes less time to switch between 2 threads within the same 

process than to switch between processes
4. Threads between the same process share memory and files: they can 

communicate with each other without invoking the kernel. 
5. Useful if some threads are I/O-bound => overlap computation and I/O 

As a result:
1. If there is an application (or function) that should be implemented 

as a set of related units of execution, it is far more efficient to 
do so as a collection of threads rather than a collection of 
separate processes. 

2. Parallel execution: the same process is executed in parallel on a 
multicore CPU. 

NB:  signals and alarms are related to a process, not a thread!
NB2: each thread has it’s own stack.

!3

PER PROCESS ITEMS 
(items shared by all threads in a process)

PER THREAD ITEMS 
(items private to each thread)

Address space Program counter

Global variables Registers

Open files Stack

Child processes State

Pending alarms

Signals and signal handlers

Accounting information

Thread Control Block (TCB)
In a multicore architecture, there is the possibility that every 
processor handle a thread, but also that a single core handles multiple 
threads (not at the same time: run a bit the first one, than switch to 
the second one, ecc.). In order to keep track of all threads, we need 
to store some informations in a particular data structure, called 
Thread control block. In general, each thread has: 

1. an identifier 
2. a set of registers (including the program counter and stack 

pointer) 
3. a set of attributes (including the state, the stack size, 

scheduling parameters, etc). 
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Implementing threads:

  

Implemented as a thread library, which contains the code for thread 
creation, termination, scheduling and switching 
Kernel sees one process and it is unaware of its thread activity 
   

!5
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Implementing Threads

Processes define an address 
space; threads share the address 
space

Process Control Block (PCB) 
contains process-specific 
information 

Owner, PID, heap pointer, 
priority, active thread, and 
pointers to thread information

Thread Control Block (TCB) 
contains thread-specific information

Stack pointer, PC, thread state 
(running, …), register values, a 
pointer to PCB, …

Code

Initialized data

Heap

Process’s 
address space

Stack – thread1

PC
SP

State
Registers

…

TCB for 
Thread1

Stack – thread2

PC
SP

State
Registers

…

TCB for 
Thread2

• Processes define an address space 
• Threads share the address space 

• Process Control Block (PCB) contains 
process-specific information 

1. Owner
2. PID
3. heap pointer
4. priority
5. active thread
6. pointers to thread information 

• Thread Control Block (TCB) contains 
thread-specific information 

1. Stack pointer
2. PC
3. thread state (running, …)
4. register values
5. a pointer to PCB
6.  ... 

Thread Libraries 
Thread libraries provide programmer with APIs (Application Programming 
Interface) for creating and managing threads. There are two primary 
ways of implementing a thread: 

1. User-Level Threads (ULT): library entirely in user space (invoking 
a function in the library results in a local function call in user 
space and not a system call). ALL DATA ARE INSIDE USER LEVEL.

2. Kernel-Level Threads (KLT): Kernel-level library supported by the 
OS (system call).
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• this procedure checks if the thread must be put into blocked 
state. If so, it saves its context, calls the thread scheduler to 
pick another thread to run 

• the thread scheduler looks in the thread table for a ready thread 
to run and restores its context 

9. When a thread requires the intervention of the kernel (through a 
system call), the process changes its state and all the threads are 
blocked. 

ULT comments:
1. ADV: Fast to create and switch

• procedures that saves the thread's state and the scheduler are 
user procedures 

• no system call is needed 
• no context switch is needed 

2. DISADV: When a ULT executes a system call, all the threads within 
the process are blocked E.g., read from file can block all threads 

3. DISADV: User-level scheduler can fight with kernel-level scheduler 
4. DISADV: A multithread application cannot take advantage of 

multiprocessing. A kernel assigns one process to only one processor 
at a time. There are applications that would benefit the ability to 
execute portions of code simultaneously. 

Kernel-Level Threads: 
The kernel knows the threads and manages them 
There is no thread table in each process. Instead, the kernel has a 
thread table that keeps track of all the threads in the system 
When a process wants to create a new thread or destroy an existing 
thread, it makes a kernel call, which then does the creation or 
destruction by updating the kernel thread table 
The thread table containing TCBs holds the same information as with the 
ULT, but now kept in the kernel instead of in user space. 

KLT comments:
1. ADV: Kernel-level threads do not block process for a system call 

• if one thread in a process is blocked by a system call (e.g., 
for a page fault), the kernel can easily check if the process 
has one thread ready to run 

2. ADV: Only one scheduler (and kernel has global view)
3. DISADV: Can be difficult to make efficient (create & switch) 

!7
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Kernel Level Threads

Thread management done by the kernel

Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition 4.24

Kernel-Level Threads

© Proprietà riservata dell'autore - Digitalizzazione e distribuzione a cura del CENTRO APPUNTI - Corso Luigi Einaudi, 55 - Torino / Pagina 25 di 108

© Proprietà riservata dell'autore - Digitalizzazione e distribuzione a cura del CENTRO APPUNTI - Corso Luigi Einaudi, 55 - Torino / Pagina 25 di 108



© Francesco Ricci 2018 Chapter 4

!9

     int pthread_create( pthread_t *thread, pthread_attr_t *attr, 
   void *start_routine, void *arg); 

Arguments:
1. thread: a unique identifier for the new thread returned by the 

subroutine (its type is pthread_t): for this reason you pass an 
address!

2. attr: it specifies a thread attributes object, or NULL for the 
default values (see later, an example of attribute) 

3. start_routine: the C routine that the thread will execute once it 
is created. It is a function... after that it dies. 

4. arg: a single argument that may be passed to start_routine. It 
must be passed by reference as a pointer cast of type void. Cast 
back into the start_routine. NULL may be used if no argument is 
to be passed. 

Return value: If successful, it returns 0. Otherwise, it returns a 
nonzero error code.

Example:

#include <stdio.h> 
#include <pthread.h> 

main() { 
pthread_t f2_thread, f1_thread, f3_thread; // unique identifiers
int i1=1,i2=2;      // arguments
void *f2(), *f1(),*f3();       // prototypes of start_routines
pthread_create(&f1_thread,NULL,f1,&i1); 
pthread_create(&f2_thread,NULL,f2,&i2); 
pthread_create(&f3_thread,NULL,f3,NULL);   // no argument passed
... 

} 

void *f1(void *i){ // start routine
int a;  
a = * ((int *) i); 

} 

void *f2(void *i){
...  

}  
void *f3() { 
}

Multiple arguments pass in pthread_create()

We can pass only one parameter to the thread using pthread_create() 
system call: to overcome this limitation, we can build a data structure 
(struct) and pass the pointer to that data structure in the 
pthread_create().
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Thread / Process termination 

A whole process (with all its threads) terminates if: 
1. one of its threads executes an exit() => If one thread is executing 

an exit() [remember: exit() means termination of a process!]  the 
entire process terminates.

2. one of its threads receives a signal to terminate 
3. the main thread executes a return() 

A single thread terminates if: 
1. It executes a pthread_exit()
2. It executes a return() in its initial function
3. It receives a pthread_cancel() from another thread.

!11

void pthread_exit(void *ret_val)
 
1. When a thread has finished its work, it can exit by calling the 

pthread_exit() library procedure.
2. The pthread_exit() function terminates the calling thread and 

returns a value via ret_val that (if the thread is joinable) is 
available to another thread in the same process that calls 

3. The thread then vanishes and is no longer schedulable and the stack 
is released.

#include <stdio.h>  
#include <stdlib.h>  
#include <signal.h>  
#include <sys/types.h>  
#include <unistd.h>  
#include <pthread.h> /* POSIX threads */ 
 
void *my_thread(void *);
int sharedVar ; /* global variable */

int main() {
pthread_t tid;

sharedVar = 1234;  
printf("Main: sharedVar= %d\n", sharedVar); 
pthread_create(&tid, NULL, my_thread, NULL); 
sleep(1); /* yield to another thread */ 

printf("Main: sharedVar= %d\n", sharedVar);

sharedVar = 999;  
printf("Main: sharedVar= %d\n", sharedVar); 
sleep(1); /* yield to another thread */ 

printf("Main: sharedVar= %d\n", sharedVar); 
printf("DONE\n");  
exit(0); 

} 
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This BIG example gives as output the following:

Which is the error? After the main 
create thread 0, the thread should 
print on the screen an ‘hello 
world’ message. However, the 
thread number isn’t the correct 
one (I expect from 0 to 4, instead 
the program displays from 1 to 5).

Why this error occurs? Look the 
pthread_create(): t is a pointer! 
During the creation of the thread, 
the value of t changes! In other 

words, the for loop is faster than the thread creation. A possible way to 
fix the program is to implement a local array of numbers (the army 
contains 0,1,2,3,…). The pthread_create() receive a certain array 
element, that will remain the same forever, even if the for loop 
continues to increment the value of t. 

This was an example of bad synchronization. 

!13

“BIG” EXAMPLE:

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#define NUM_THREADS 5

void *PrintHello (void *threadid) {
long * tid;  
tid = (long *) threadid;  
printf("Hello World! It's me, thread #%ld!\n", * tid); 
pthread_exit(NULL); 

}  

int main(int argc, char *argv[]) {  
pthread_t threads[NUM_THREADS]; 
int rc;  
long t; 

for(t=0; t<NUM_THREADS; t++) { 
printf("In main: creating thread %ld\n", t);  
rc = pthread_create(&threads[t],NULL,PrintHello,(void *)&t); 

if (rc) { 
    printf("ERROR; return code from pthread_create() is 

%d\n", rc);
   exit(-1);
    }

} 
pthread_exit(NULL); 

}

In main: creating thread 0  
In main: creating thread 1 
Hello World! It's me, thread #1! 
In main: creating thread 2 
Hello World! It's me, thread #2! 
Hello World! It's me, thread #3! 
In main: creating thread 3  
In main: creating thread 4 
Hello World! It's me, thread #4! 
Hello World! It's me, thread #5! 
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Example: idea is to crate a thread and wait until the end of the thread

#include <stdio.h> 
#include <stdlib.h> 
#include <pthread.h> 

void *howdy(void *vargp);

int main() { 
pthread_t tid; 

pthread_create(&tid, NULL, howdy, NULL); 
pthread_join(tid, NULL);    // wait until the created 

 // thread terminates  
exit(0); 

} 

void *howdy(void *vargp) {  // start_routine
  printf("Hello, world!\n");
  pthread_exit(NULL);
}
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NOTES:
1. atoi : make the transaction form string to number (int).
2. argv[1] : parameter that I pass to the program before the run phase 

(if any).
3. argv[0] contains the name of the program.

EXECUTION: in the main function, an attribute is passed. If it is >= 0, a 
thread is created, and that number is passed as an argument. The main 
will wait until the thread terminates (pthread_join). The tread perform 
the summation function (for loop) and then exit. The total is stored in a 
global variable, so both main thread and secondary thread can access it. 
Finally the main thread prints the result on the screen. 

!17

Example: implement the summation function ∑x from 1 to argv[1], 
supposing argv[1] >= 0, running it inside  a separate thread.
#include <stdio.h> 
#include <pthread.h>

int sum; /* data shared by the thread(s) */ 
void *runner(void *param);       /* thread's start_routine prototype */

int main(int argc, char *argv[]) {  

pthread_t tid; // thread ID

if (argc != 2) { 
fprintf(stderr,"usage: a.out <integer value>\n"); 
return -1; 

} 

if (atoi(argv[1]) < 0) {  
fprintf(stderr,"Argument %d must be non-negative\n", 

atoi(argv[1])); 
return -1; 

} 

/* create the thread */ 
pthread_create(&tid, NULL, runner, argv[1]); 

/* now wait for the thread to exit */ 
pthread_join(tid, NULL); 

printf("sum = %d\n",sum); 
} 

void *runner(void *param) {  
int i, upper = atoi(param); 
sum = 0; 

 
for (i = 1; i <= upper; i++) {

sum += i; 
} 

pthread_exit(0); 
}
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int pthread_cancel (pthread_t tid)
 
It terminates the specified thread (it has a pthread_exit embedded), 
identified by the thread identifier tid. It returns zero in case of 
success, otherwise an error code, in case of failure.

int pthread_detach (pthread_t tid)

The pthread_detach() function marks the thread identified by tid as 
detached. When a detached thread terminates, its resources are 
automatically released back to the system without the need for another 
thread to join with the terminated thread.
 
A detached thread cannot be joined: all the future calls pthread_join 
to thread tid will fail with an error code.

Parameter: tid is a thread identifier 
Return value: 0, in case of success; an error code, in case of failure.
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Process Synchronization 
Concurrency: The system must support concurrent execution of threads 

1. Scheduling: it deals with execution of “unrelated” threads 
2. Concurrency: it deals with execution of “related” threads 

Why is it necessary? 
1. Cooperation: One thread may need to wait for the result of some 

operation done by another thread (e.g. “Calculate Average” must 
wait until all “data reads” are completed)

• Each process is aware of the other 
• Processes Synchronization  
Exchange information with one another (Shared memory, Message 
passing) 

2. Competition: Several threads may compete for exclusive use of 
resources (e.g. two threads trying to increment the value in a 
memory location)

• Processes compete for resources
• Each process could exist without the other 

Resources: An object, necessary to a task in order to be executed.
 

1. Hardware resources:
• Co-processor
• I/O system (e.g., printer, disks)
• memory
• network

2. Software resources:
• buffer memory space
• portion of code source. 

  
Mutual Exclusion: this is a fundamental concept. It requires some 
definitions first:

1. Critical resource: a resource not shareable for which sharing by 
the threads must be controlled by the system.
(e.g. “Calculate Average”: a shared variable ‘cnt’ could be shared 
among threads. Is important however that only one thread at a time 
can access/manipulate that resource. If a thread has not finished 
the manipulation of the resource, and another thread reads it, it 
will cause unexpected behavior and hard-to-replicate bugs.

2. Critical section (or critical region) of a program: a part of a 
program (= portion of code) where access to a critical resource 
occurs.

3. Mutual exclusion: If one thread is going to use a shared (= 
critical) resource (like a file a variable, printer, register, etc)
the other threads must be excluded from using the same resource.
It means that when a process is inside a critical section that 
contains the critical resource ‘a’, all the other processes that 
share the critical resource ‘a’ must not enter a critical section.

NB: a child inherit the same open files of the parent.

"1

© Proprietà riservata dell'autore - Digitalizzazione e distribuzione a cura del CENTRO APPUNTI - Corso Luigi Einaudi, 55 - Torino / Pagina 39 di 108

© Proprietà riservata dell'autore - Digitalizzazione e distribuzione a cura del CENTRO APPUNTI - Corso Luigi Einaudi, 55 - Torino / Pagina 39 di 108



© Francesco Ricci 2018 Chapter 5

Example: Producer-Consumer problem

In this example 2 processes are involved: a producer process produces 
information that is consumed by a consumer process later. Since the 
producer and the consumer can work at different speeds, a buffer is 
needed where the producer can temporarily store data that can be 
retrieved by the consumer at a more appropriate speed.

The buyer can store a certain number of informations, and an integer 
‘count’ keeps track of the number of full positions of the buffer. 
Initially, count is set to 0. It is incremented by the producer after it 
produces a new information that store into the buffer. It is decremented 
by the consumer after it consumes an information stored into the buffer. 
The buffer is treated as a circular array: two integers (in and out) 
points respectively to the next free position and the fist full position.

If count reaches the size of the buffer (buffer is full of info) the 
producer has to wait; if the buffer is empty (count = 0) the consumer has 
to wait. The following is a section of example’s code:  

 

"3

6.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Example: Producer-Consumer Problem

Paradigm for cooperating processes
producer process produces information that is consumed by a 
consumer process later

Since a producer and a consumer can work at different speeds, a
buffer is needed where the producer can temporarily store data that
can be retrieved by the consumer at a more appropriate speed

An integer count keeps track of the number of full buffers.  
Initially, count is set to 0. 
It is incremented by the producer after it produces a new buffer 
It is decremented by the consumer after it consumes a buffer.

bufferProducer Consumer

#define BUFFER_SIZE 10 
typedef struct { 

... 
} item; 

item buffer[BUFFER_SIZE]; 
int in = 0;  
int out = 0;

while(1) {
/* produce an item and put in nextProduced */
while (count == BUFFER_SIZE) 

; // do nothing  
buffer [in] = nextProduced;  
in = (in + 1) % BUFFER_SIZE; 
count++; 

}

while (true) {  
while (count == 0) 

; // do nothing 
nextConsumed = buffer[out]; 
out = (out + 1) % BUFFER_SIZE; 
count--; 

/* consume the item in nextConsumed 
}

Bounded buffer

Producer

Consumer
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3. Exit Section: the end of the critical section, releasing or 
allowing others in.

4. Remainder Section: rest of the code after the critical section. 

Solution to critical-section problem: the critical section must enforce 
all 3 of the following rules:
 

1. Mutual Exclusion: if process Pi is executing in its critical 
section, then no other processes can be executing in their critical 
sections.

2. Progress: if no process is executing in its critical section and 
there exist some processes that wish to enter their critical 
section, then the selection of the processes that will enter the 
critical section next cannot be postponed indefinitely. (deadlock 
represent a violation of progress).  

3. Bounded Waiting: a bound must exist on the number of times that 
other processes are allowed to enter their critical sections after 
a process has made a request to enter its critical section and 
before that request is granted. (starvation represent a violation 
of bounded waiting).

Speed and Number of CPUs: No assumption may be made about speeds or 
number of CPUs. 
  

Concurrency requirements: 
1. Among all threads that have CSs for the same resource, only one 

thread at a time is allowed into its CS 
2. It must not be possible for a thread requiring access to a CS to be 

delayed indefinitely => no deadlock, no starvation 
3. When no thread is in a CS, any thread requesting entry to the CS 

must be granted permission without delay 
4. No assumptions are made about the relative thread speeds or number 

of processors. 
5. A thread remains inside its CS for a finite time only. 

Other ways to report the rules: requirements for CS problem:
1. Safety (aka mutual exclusion): guarantee eta are correct, by 

allowing only one process/thread at a time inside CS
2. Liveness (aka progress): if nobody has access and somebody wants to 

get in, somebody gets in 
3. No starvation (aka bounded waiting): if you want to get in, you 

will eventually get in 
"5
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SOFTWARE SOLUTIONS:

ALGORITHM 0: use of shared variable 'inside'.

MUTUAL EXCLUSION VIOLATION: since a scheduler is present, the order of 
execution of the instructions of the two processes is not known. Most of 
the time the two process instructions are interleaved. The code is 
unsafe, because a situation like this could happen:

// inside = false
Thread i: while(inside) continue; // the thread enter the critical 

// section, but has not set 
// inside = true yet.

Thread j: while(inside) continue; // also thread j enters the 
// critical section, because 
// inside is still false.  

Both access the critical section at the same time!

PROGRESS: ok
BOUNDED WAITING: for small number of processes is ok

ALGORITHM 1: use of shared variable turn; 

MUTUAL EXCLUSION: ok
PROGRESS VIOLATION (STARVATION): there is a strict order of execution of 
the processes: in fact the scheme is P0-P1-P0-P1.. (in case f 2 
processes). This scheme can cause STARVATION! In fact there is no 
guarantee that such a certain scheme is always followed. For example: 
process P0 enters the CS rarely, instead P1 wants to access CS 
frequently. P1 has to wait until P0 re-enter the CS, so waste a lot of 
time! (The resource is available, so is not deadlock, but starvation).

"7

char inside = 0; // boolean variable
do { 

while (inside) continue;  
inside = true; 
/* critical section */ 
inside = false; 
/* reminder section */ 

} while (1)

char turn = i; // Pi can enter CS
do {

// CS is accessed by j  
while (turn != i);
/* critical section */
turn = j; 
/* reminder section */ 

} while (1);

do {
// CS is accessed by i  
while (turn != j);
/* critical section */
turn = i; 
/* reminder section */ 

} while (1);
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HARDWARE SYNCHRONIZATION:
Any solution to the CS problem requires a simple tool: a lock. 
Race conditions are prevented by requiring that critical regions be 
protected by locks.

We want to define an hardware 
solution that guarantees that the 
lock is used by one single 
process at a time.

Lock: prevents someone from doing something 
1. Lock before entering critical section and before accessing shared 

data
2. Unlock when leaving, after accessing shared data 
3. Wait if locked: all synchronization involves waiting. 

Hardware Synchronization: 

1. Disabling interrupts: 
• It disable context switching too (switching from a process to 
another require a specific interrupt). 

• It cannot be done for long (or some interrupts will be lost) 
• User processes are not allowed to do that 
• I/O may be needed while in a critical section (and it will never 
be completed with interrupts disabled) 

• It disables even time interrupts, thus not allowing preemption
• It does not work in a multi-processor system, anyway! (Mutual 
ex. not preserved!)

• Mutual exclusion is guaranteed 
• Degrades efficiency because processor cannot interleave threads 
when interrupts are disabled

• Simplest solution, but is not desirable to give a thread the 
power of controlling interrupts. 

• Generally not an accepted solution
2. Test and set: 

• the hardware lock is done with a binary flag (which indicates if 
the resource is free or not). 

• Each task will test the flag before using the resource: if it is 
already used by another task, it will do a busy waiting, 
otherwise the task will set the flag 'busy' before entering the 
CS and will set the flag 'free' after the exit from the CS. 

• Is important the usage of a sort of atomic operation that can 
test the flag and set the 'busy' value. (Otherwise two 
interleaved processes can read the 'free' lock and enter CS).

• Modern processors usually have a "TEST and SET" instruction 
allowing to do the first access to the memory (read the flag 
value) and the second access to the memory (write 'busy' in the 
flag) in a concatenated way. 

3. Compare & swap: see slides to learn more about it. We not studied 
this argument in depth this year.

4. Special atomic hardware instructions: by definition an atomic 
operation is an operation that always runs to completion (without 

"9

do { 
acquire lock 
/* critical section */
release lock 
/* remainder section */

} while (TRUE); 
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OS SOLUTIONS:

Binary semaphore:

1. As said before, the integer value can range only between 0 and 1
2. Binary semaphores are known also as mutex locks as they are locks 

that provide mutual exclusion.
3. We can use binary semaphore to deal with the CS problem for 

multiple processes.
4. The n processes share a semaphore, mutex, initialized to 1

        THREAD A                   THREAD B 

  

"11

Semaphores
Hardware solutions are too complex for the application programmer; a 
new synchronization tool, called semaphore, has been proposed (by 
professor Edsger Dijkstra, 1965). A semaphore is a data structure 
(typically a integer variable, always protected by the OS).

Semaphores do not require busy waiting! There are two standard 
operations modify a semaphore S: 

• wait()   (originally called: P() )
• signal() (originally called: V() ) 

The OS must guarantee that those two operations are atomic. It means 
that the assembler operations required to execute a wait() or signal() 
must never be interleaved with something else. [wait and signal are CS 
and should be protected].

There are two types of semaphores: counting (the int value of semaphore 
can range over unrestricted domain. The more is higher, more processes 
are waiting) and binary (semaphore int value can only assume 0 or 1).

6.74 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Semaphores

The semaphore used by railroads indicates whether the train can 
proceed.  When it’s lowered (a), an oncoming train is expected.  If it 
is raised (b), the train can continue.

a) Stop b) All Clear

6.77 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Using Semaphores for Mutex

1 repeat
2 wait(mutex);
3   critical section
4   signal(mutex);
5   remainder section
6 until FALSE

1 repeat
2 wait(mutex);
3   critical section
4 signal(mutex);
5   remainder section
6 until FALSE

semaphore mutex = 1 -- unlocked

Thread A Thread B

6.78 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Using Semaphores for Mutex

semaphore mutex = 0 -- locked

1 repeat
2 wait(mutex);
3   critical section
4   signal(mutex);
5   remainder section
6 until FALSE

1 repeat
2 wait(mutex);
3   critical section
4 signal(mutex);
5   remainder section
6 until FALSE

Thread A Thread B
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      Implementation of wait()              Implementation of signal()

1. Note that the semaphore value may be negative. 
2. However, in order to enforce mutual exclusion, the value should be 

less or equal than 1. It can assume any negative number (see point 3). 
3. Its magnitude is the number of processes waiting on that semaphore. 
4. The list of waiting processes can be easily implemented by a link 

field in each process control block (PCB). 

Advantages:
1. OS guarantees that Wait and Signal are atomic
2. Programmer does not need to worry about interleaving within the 

entry and exit sections. 
3. No spin locks 
4. Semaphores are machine-independent 
5. They are simple but very general 
6. They work with any number of processes 
7. We can have as many critical regions as we want by assigning a 

different semaphore to each critical region 
OS designer must use the features of the hardware to provide semaphores.
Key point: it means that hardware strategies are used, and they may vary 
from machine to machine, but the programmer still use the same wait() and 
signal(). It is convenient to the programmer, but is not a "solution". 

"13

Semaphore implementation:
1. The main disadvantage of Test&Set is the busy waiting. The simplest 

semaphore implementation (called spinlock) has this issue. 
2. To overcome this limitation, the concept of block() and wakeup() are 

introduced:
Typedef struct {

int value;
struct process *list // pointer to the waiting list

} semaphore 

• block() : place the process into the appropriate waiting 
list (each semaphore has its own one).

• wakeup() : remove one process from the waiting list and 
place it in there ready queue

• Block and wakeup are used into the wait() and signal() 
functions

wait (semaphore *S) { 
S->value--; 
if (S->value < 0) {  
    add this proc to S->list; 
    block(); 
} 

}

signal (semaphore *S) { 
S->value++; 
if (S->value <= 0) {  
  remove a proc from S->list;
  wakeup(P); 
} 

}

© Proprietà riservata dell'autore - Digitalizzazione e distribuzione a cura del CENTRO APPUNTI - Corso Luigi Einaudi, 55 - Torino / Pagina 51 di 108

© Proprietà riservata dell'autore - Digitalizzazione e distribuzione a cura del CENTRO APPUNTI - Corso Luigi Einaudi, 55 - Torino / Pagina 51 di 108



© Francesco Ricci 2018 chapter 5

!2

6.98 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process States

running ready ready_queue

time-out

dispatch

running ready

A process is in running state. 
Because there are many other 
processes, after a certain 
time-out, that process is 
moved into a waiting state 
(fairness). After a while, it 
will return into the running 
state (dispatch).

A running process wants to 
access a CS. It looks at the 
semaphore: if it is already 
locked, the process is moved 
to a 'blocked' state. In this 
state, the process does not 
continue to waste cpu time. 
(Using wait(s) system call, 
there is not busy waiting).

The signal(si) moves a single 
process form a waiting state 
(waiting_queue) to the 
ready_queue. Sooner or later 
the scheduler will dispatch 
it, moving it to the running 
state. 

Of course, when a process 
complete its execution, it 
expires, and a new process is 
dispatched from the 
ready_queue into the running 
state.
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Implementation of semaphores: 
 

1. Any software schemes, such as Peterson’s algorithm, can be used to 
implement semaphores. However, the busy-waiting in each of them 
imposes a large overhead. 

• Recall that the Peterson’s algorithm discussed above involves 
only two processes. Generalizing this algorithm for n processes 
to implement general semaphores has a large overhead. 

2. Hardware implementation based on 
• test and set instruction 

a. the busy-waiting in the V() and P() operations are 
relatively short 

• disabling interrupts 
a. there is no wait loop, but this approach works only on a 

single processor system.

Implementing a binary semaphore by Test and Set: 

Initial values: 
• S.value = 1  
• S.flag = 0  
• S.L = NULL 

Implementing a counting semaphore by Test and Set: 

Initial values: 
• S.value = 1  
• S.flag = 0  
• S.L = NULL 

NB: flag=0 means the lock is unlocked (in test&set works opposite way).

!4

Typedef struct { 
int value; 
struct process *list; // pointer to waiting_list

} semaphore

wait(S): 

repeat until test-and-set(S.flag) 
if (S.value == 0) { 

add this process to S.L; 
sleep & S.flag=0; 

} else { 
S.value = 0; 
S.flag=0; 

}

signal(S): 

repeat until test-and-set(S.flag) 
if (queue is not empty) {  

wakeup(); // move proc from 
    // blocked 2 ready

} else {
S.value = 1; 
S.flag=0 

}

Typedef struct { 
int value; 
struct process *list; // pointer to waiting_list

} semaphore

wait(S): 

repeat until test-and-set(S.flag)
S.value--; 
if (S.value < 0) { 

add this process to S.L; 
sleep & S.flag=0; 

} else {  
S.flag=0; 

}

signal(S): 

repeat until test-and-set(S.flag)
S.value++; 
if (S.value <= 0) {  

wakeup(); // move proc from 
    // blocked 2 ready

}
S.flag = 0;
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Condition variables:

A condition variable is a queue that processes can put themselves on when 
some state of execution (i.e. some condition) is not reached (by waiting 
on the condition) 

They support two operations: 
1. cond.wait(): suspends this process until signaled (it sleeps on the 

waiting queue associated to the condition variable)
2. cond.signal(): wakes up one process waiting on the condition 

variable 
• If no process is waiting, signal has no effect (e.g., signals 
on condition variables aren’t “saved up”). 

Condition variables, with respect to semaphores, have no initial state 
(S.value in not initialized). 
The process executing a cond.signal() will actually wake up another 
process (if any is waiting, otherwise any effect).

Typically the condition variable works within a critical section; we need 
to protect the condition variable with a mutex semaphore...
The operations work in that way: 

1. cond.wait(condition, mutex): 
• the process is suspended (sleeping on the waiting queue 
associated to the condition variable) 

• It releases the critical section lock (mutex) 
2. cond.signal(condition): wakes up one process waiting on the 

condition variable 
• when that condition variable is signaled, a sleeping process 
will become ready again; it will attempt to reacquire that 
critical section lock and only then it will be able to proceed. 

     

!1
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Consumer/Producer with Bounded Buffer:

We already tacked this problem before. Now ew are interested on a more 
general version of it. In fact, the problem could be generalized in the 
case of more than one producer, and more the one consumer. Is important 
the synchronization between all producers and between all consumers. 

Example: if consumers are not synchronized, 2 process could consume the 
same data, causing an unexposed program behavior.

Recall: Two processes (at least) use a shared buffer located in memory. 
The buffer has a fixed non infinite size (in other words, is bounded). 
The producer(s) writes on the buffer and the consumer(s) reads from it. 
A full buffer stops the producer(s), an empty buffer stops the 
consumers(s).

 

Correctness Constraints: 
1. Consumer must wait for producer to fill buffers, if empty 

(scheduling constraint) 
2. Producer must wait for consumer to empty buffers, if full 

(scheduling constraint) 
3. Only one thread can manipulate buffer queue at a time (mutual 

exclusion) 

The solution adopt 3 Semaphores: 
1. mutex                       (initially mutex = 1, means unlocked) 
2. full   (counting semaphore) (initially full  = 0) # of full cells
3. empty  (counting semaphore) (initially empty = n) # of empty cells

Like in the previous chapter implementation, two pointers are used:
1. in : points to the first possible empty space in the buffer
2. out : points to the oldest data in the buffer still not consumed

Lets introduce two functions: append and take are CS because they use the 
shared buffer. We protect them with the three previously described 
semaphores.

NB: the data type 
of v could be 
different from 
int.
Just be consistent 
in the two 
functions. 

!3

6.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Consumer/Producer with Bounded Buffer

Two processes (at least) use a shared buffer in memory
The buffer is finite (i.e. bounded)
The producer writes on the buffer and the consumer 
reads from it
A full buffer stops the producer
An empty buffer stops the consumer

producer consumer

buffer of size n

void append(int v) {
b[in] = v; // write new data in buffer
in = (in+1)%N; // updates pointer 'in' value

}

int take(void) {
w = b[out]; // read data from buffer
out = (out+1)%N; // updates pointer 'out' value
return w;

}
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Readers-Writers problem: 

A data set is shared among a number of concurrent processes. They can be 
divided into two groups:

1. Readers : only read the data set; they do not perform any updates. 
Many readers may access a database without fear of data corruption 
(interference) 

2. Writers : can both read and write.
 
Correctness constraints: 

1. Many readers can read at the same time: any writer can be involved.
2. Only one writer can write on the shared resource at the same time: 

any writers and reader can be involved. Each writer has exclusive 
access. 

Possibile implementations:

1. Readers wait only if a writer has already obtained access permission 
(no reader will be kept waiting if there are writers waiting) 

2. Writers have priority, start right away, temporarily blocking readers. 
Once a writer is ready, that writer has to perform its write as soon 
as possible, after old readers (or writer) are completed. Thus, if a 
writer is waiting to access the object, no new readers may start 
reading.  

A solution to either problem may result in starvation. 
1. with reader precedence: Writers
2. with writer precedence: Readers. 

Possible solution (implementation 1):

Shared Data: 
1. data set        (can be a file, a struct or just a variable)
2. int readcount   (initially readcount= 0)   (current number of readers) 
3. semaphore mutex (initially mutex = 1)      (protect readcount updates) 
4. semaphore wrt   (initially wrt = 1)     (protect exclusion of writers) 
  

!5
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Dining Philosophers Problem: model allocating several resources among 
several processes. 

Plot: Five philosophers are seated around a circular 
table. On the table there are five plates of 
spaghetti, and five forks, one between each pair of 
plates.  
Philosophers spend most of the time thinking and 
sometimes they eat. ︎ When they want to eat, they need 
two forks. They pick up one and then the other one, 
not both of them at the same time.
Each processes is modeled with a thread.

Wrong implementation (deadlock): 

Shared data: semaphore fork[5] (initially {1,1,1,1,1} => all unlocked)

Deadlock:
Due of scheduler 
instruction 
interleaving, if all 
five philosophers 
take their left fork 
simultaneously, no 
one will be able to 
take the right fork 
and the program will 
remain blocked 
forever.

Possible solutions:

0) Teach philosophers to eat spaghetti with 1 single fork (not feasible)
1) Allow at most 4 philosophers at the table. Still will be 5 plates and 

5 forks
• At least one process will have access to both forks, it will leave 
the table, giving possibility to another process to take two 
forks...

• Implemented with a counting semaphore.
2) Use asymmetry – odd philosophers pick up left first, while even 

philosophers pick up right first 
3) Check to see if both forks are available, then pick them up

• Make the two consecutive take_fork() a single atomic operation 
take_forks(). Same for put_forks()

• Add an additional state: THINKING, HUNGRY, EATING. Hungry means the 
philosopher want to eat, but forks are not available yet.

!7
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while(TRUE) {
Think();
Grab first fork;
Grab second fork;
Eat();
Put down first fork;
Put down second fork;

}

Each philosopher is
modeled with a thread

do{ 
wait(fork[i]); // get left fork  
wait(fork[(i+1)%5]); // get right fork  

 
/* eat */  

 
signal(fork[i]);       // return left fork  
signal(fork[(i+1)%5]); // return right fork  

/* think */  
 
} while(true);
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Semaphore Operations: 

1. Semaphore variable is of type sem_t
2. Atomic operations to initialize, increment and decrement value
3. Semaphore functions start with sem_ 
4. All semaphore functions: if successful, return 0, otherwise they 

return -1 and sets errno to indicate the error. 

#include <semaphore.h>
int sem_init     (sem_t *sem, int pshared, unsigned int value); 
int sem_destroy  (sem_t *sem);  
int sem_wait     (sem_t *sem);  
int sem_trywait  (sem_t *sem);  
int sem_post     (sem_t *sem);  
int sem_getvalue (sem_t *sem, int *sval); 

     

!9

int sem_init (sem_t *sem, int pshared, unsigned int value)

Initializes semaphore to value parameter. 
pshared is the type of semaphore: 
• if 0, then semaphore is local to the current process (used by 
threads of the same process).

• else the semaphore may be shared between processes (for example 
process and child). The semaphore should be located in a region of 
shared memory. Any process that can access the shared memory region 
can operate on the semaphore using sem_post, sem_wait, etc.

int sem_getvalue (sem_t *sem, int *sval)

Allows the user to examine the value of a semaphore. It sets the 
integer referenced by sval to the value of the examined semaphore.

int sem_destroy (sem_t *sem);

Destroys a previously initialized semaphore.  
If sem_destroy attempts to destroy a semaphore that is being used by 
another process, it may return –1.

int sem_wait (sem_t *sem)

Classical semaphore wait operation. If the semaphore value is 0, 
sem_wait blocks until it can successfully decrement value.

int sem_trywait (sem_t *sem)

Similar to sem_wait except instead of blocking on 0, it returns –1 and 
sets errno to EAGAIN.
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CPU scheduling 
1. The objective of multiprogramming is to have some process running at 

all times, to maximize the CPU utilization. In general, one of the 
OS's goals is to manage resources (one of which is the CPU).

2. The objective of time sharing is to switch the CPU among processes so 
frequently that users can interact with each program while it is 
running.

3. To meet these objectives, the process scheduler selects an available 
process for program execution on the CPU. The scheduling is important 
both in multi-cores and single-core systems.

4. Virtual memory: it is a very common technique. The goal is to have 
multiple processes run together, so is important to have them inside 
the main memory. If a process is very long (= code size is high), it 
may saturate the main memory, denying other processes to be executed. 
Virtual memory size is grater than physical main memory, because it 
includes also a section of secondary memory. This approach gives two 
advantages:

• I don't need a physical main memory large as the program I want to 
run. Without this technique a long process cannot be executed, 
because it doesn't fit in memory. 

• Temporal and spacial locality: is not necessary to store all the 
code and resources of the single process/program always in the RAM; 
a large part is stored on the secondary memory. Because of temporal 
and spacial locality, the RAM misses remains low.

Process Scheduling Queues: 

1. Job queue: set of all processes in the system

2. Ready queue: set of all processes residing in main memory, ready 
and waiting to execute

3. Device queues: set of processes waiting for an I/O device. Each 
device has its own device queue.

4. Processes migrate among the various queues. 

5. Queues are generally stored as linked lists

Schedulers 

1. Long-term scheduler (or job scheduler): selects which processes should 
be brought into the ready queue.

• In a batch system active processes are spooled to a mass-storage 
device, where they are kept for later execution. The long-term 
scheduler selects processes from this pool and loads them into 
memory for execution.

• It is invoked not very frequently (seconds, minutes). Because of 
the longer interval between executions, the long-term scheduler 
can afford to be slower (w.r.t. short-term scheduler), and can 
apply more complex policies to gain some performance advantages.

!1
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Medium Term Scheduler: 

Some operating systems may introduce an additional, intermediate level of 
scheduling. 

Swapping scheme: It could be advantageous to remove processes from memory 
and thus reduce the level of multiprogramming. Later, the process could 
be reintroduced in memory, and its execution can be continued where it 
left off.

Swapping scheme is convenient because performance does not depends on the 
total number of programs but by their distribution (remember that best 
performance requires balance between I/O and CPU bound program). If the 
balance changes too much, the medium scheduler can re-establish an 
equilibrium by moving one or more processes in another queue (swapping 
operation).

To summarize: 

1. Long-term scheduler:

• Determines which programs are admitted to the system for 
processing (and so controls the degree of multiprogramming).

• Attempts to keep a balanced mix of processor-bound and I/O-bound 
processes (optimize system performance and CPU usage).

2. Medium-term scheduler: 

• it makes swapping decisions based on the current degree of 
multiprogramming, in order tore-establish an equilibrium between 
CPU-bound and I/O bound processes. 

3. Short-term scheduler: 

• selects from the ready queue in memory which process to execute 
next. 

• It is invoked on events that may lead to choose another process 
for execution: clock and I/O interrupts, operating system calls 
and traps, signals.

!3
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Addition of Medium Term Scheduling

o A process is swapped by the medium-term scheduling
o Swapping may be necessary to improve the process mix of I/O-bound and 

CPU-bound processes or because a change in memory requirements 
causes that some memory has to be freed up.
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Preemptive vs. nonpreemptive scheduling:

Many CPU scheduling algorithms have both preemptive and nonpreemptive 
versions: 

1. Preemptive: 

• schedule a new process even when the current process does not 
intend to give up the CPU

• Currently running process may be interrupted and moved to the 
Ready state by the OS

• Prevents one process from monopolizing the processor 

2. Non-preemptive: 

• Once a process is in the running state, it will continue until it 
terminates or blocks for an I/O 

• only schedule a new process when the current one does not want CPU 
any more. 

3. CPU scheduling decisions may take place when a process: 

• Switches from running to waiting state (I/O request) 

• Switches from running to ready state (CPU receives an interrupt) 

• Switches from waiting to ready (completion of an I/O operation) 

• Terminates

Scheduling under 1 and 4 is nonpreemptive; 

Scheduling under 2 and 3 is preemptive. 

!5
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Scheduling Policies: 

The dispatcher implement a scheduling policy. The policy depend on the 
requirements; here are some of the most used policies:

1. FCFS (first come, first served)

2. SJF (shortest job first)

3. PriorityScheduling

4. Round robin 

5. Multilevel queues

6. Multilevel feedback queues

First Come First Served (FCFS): 

1. FIFO: assigns a process to the CPU based on the order of arrival

2. Non-preemptive: A process keeps running on a CPU until it is blocked  
or terminated.

3. Short jobs can get stuck behind long jobs (convoy effect): when a 
process is moved to the read list, must wait until all previously 
arrived jobs are completed.

4. Very simple to implement

5. Turnaround time is not ideal 

Shortest Job First (SJF):

1. SJF runs whatever job puts the least demand on the CPU, also known as 
STCF (shortest time to completion first).

2. Associate with each process the length of its next CPU burst. Use 
these lengths to schedule the process with the shortest time 

3. Advantages: 

• Provably optimal in terms of turnaround time

• Gives minimum average waiting time for a given set of processes

• Great for short jobs

• Small degradation for long jobs

4. Disadvantages: 

• The difficulty is knowing the length of the next CPU request: can 
be estimated  using the length of previous CPU bursts, using 
exponential averaging. 

• Non-preemptive

Shortest remaining time first (SRTF): 

It is a preemptive version of SJF. If a new job arrives in the ready 
queue with a shorter time to completion than the current executing 
process, SRTF preempts the CPU for the new job.  

!7
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Determining Length of Next CPU Burst

o Optimal scheduling
o Preemptive SJF is superior to non preemptive SJF.
o However, there are no accurate estimations to know the length of the next 

CPU burst
o Can only estimate the length
o Can be done by using the length of previous CPU bursts, using exponential 

averaging
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Round Robin (RR):

1. Goal is an equal distribution of processing time: n processes 
running, each gets 1/n of the CPU time. RR execute the processes in 
order.

2. Round Robin periodically releases the CPU from long-running jobs 

• Based on timer interrupts

• Preemptive: a process can be forced to leave its running state and 
replaced by another running process 

• Time slice (or time quantum):  interval between timer interrupts 
(usually 10-100 milliseconds) 

• Most widely used scheduling algorithm

3. After the time slice has elapsed, the process is preempted and added 
to the end of the ready queue. In this way, the ready queue is 
treated as a circular queue.

4. If there are n processes in the ready queue and the time quantum is 
q, then each process gets 1/n of the CPU time in chunks of at most q 
time units at once (if the process is shorter than the time quantum, 
the switch is anticipated).  No process waits more than (n-1)q time 
units. If the list of ready processes is very long, every single 
process will wait a lot of time.

5. If time slice is too long: scheduling degrades to FCFS. Long 
processes not released until termination.

6. If time slice is too short: context switching cost dominates 
(overhead)

7. Time quantum set to ~100 milliseconds (usually)

8. Context switches typically cost < 1 millisecond. Context switch is 
usually negligible (< 1% per time slice).

Example: suppose time quantum Q = 20 and suppose ready queue contains 
processes P1, P2, P3, P4. If process have length reported in the table:

Process
Burst 
time Wait time

P1 53 57 +24 = 81

P2 17 20

P3 68 37 + 40 + 17= 94 

P4 24 57 + 40 = 97

!1

NB: by decreasing the time 
quantum size, the number of 
context switch increase. This 
approach can benefit short 
processes, but also introduce 
an overhead. On the right, 
there is a graphical 
representation of quantum...
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Multilevel feedback queue:
1. Multilevel feedback queues algorithm uses multiple queues with 

different priorities 
• Round robin at each priority level
• Run highest priority jobs first
• Once those finish, run next highest priority, etc 
• Jobs start in the highest priority queue
• If time slice expires, drop the job by one level 
• If process waits for I/O, push the job up by one level

2. We can move processes between queues!
3. Approximates SRTF 

• A CPU-bound (with long CPU bursts) job drops like a rock (not 
very effective)

• I/O-bound (with short CPU bursts) jobs stay near the top 
• Unfair for long running jobs: a counter-measure is aging. Aging 
technique keep track of the last time a process was served and 
increase the priority (of long running jobs) accordingly.

Example: pag 69 

queue on the top has the highest 
priority, but also the shortest quantum. 
A long job will fall to the lower 
priority queue... in this way processes 
travel from one level to the other…

Is easy to see an important difference 
between multilevel feedback queue and 
multilevel queues:  the number of 
entries is different! (feedback has just 
1 entry, ‘standard’ has 2 entries).

Side note: we are talking about scheduling algorithms like a black box 
near the CPU that gives the new process to be executed. But remember that 
this black box is an algorithm executed by the CPU. The CPU schedule 
itself the processes. Now, how much time is required to choose the next 
process to be executed? It depends on the algorithm used: 
o(1): in RR the processes have a certain order. CPU just pick the next in 
the list.
o(N): in SRTF, the CPU should look at all the processes, one by one, 
understanding how much time they require to terminate. Then choose the 
shorter one. => overhead!

!3

© Proprietà riservata dell'autore - Digitalizzazione e distribuzione a cura del CENTRO APPUNTI - Corso Luigi Einaudi, 55 - Torino / Pagina 77 di 108

© Proprietà riservata dell'autore - Digitalizzazione e distribuzione a cura del CENTRO APPUNTI - Corso Luigi Einaudi, 55 - Torino / Pagina 77 di 108



© Francesco Ricci 2018 Chapter 7 

Rate monotonic (RM):
RM is an optimal static-priority scheduling. It assigns priority 
according to period (a task with a shorter period has higher priority).

Utilization bound: It always executes first the job with shorter period, 
and this can cause a deadline miss. For this reason, a real-time system 
is schedulable under RM if 

∑Ui ≤ n(21/n -1)

-------------------------------------------------------------------------
Earliest Deadline First (EDF):
EDF is an optimal dynamic priority scheduling. A task with a shorter 
deadline has a higher priority, it means it executes a job with the 
earliest deadline.

Utilization Bound: real-time system is schedulable under EDF if 

∑Ui ≤ 1. 
However during overload conditions, there may be a domino effect: even if 
a deadline is not met, the system will prioritize the execution of that 
job, causing other deadline misses.

!5
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RM Utilization Bounds
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o Real-time system is schedulable under RM if
∑Ui ≤ n (21/n-1)
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Single Queue Multiprocessor Scheduling (SQMS): 

1. Most basic design: all processes go into a single queue. CPUs pull 
tasks from the queue as needed. 

2. Advantages: good for load balancing (CPUs pull processes on demand).
3. Disadvantages: 

• The process queue is a shared data structure: it necessitates 
locking, or careful lock-free design

• SQMS does not respect cache affinity! In the worst case scenario 
every CPU have a lot of different processes. In numa architecture it 
means a communication on the shared bus, that is slow!

Multiple Queue Multiprocessor Scheduling (MQMS): 

1. SQMS can be modified to preserve affinity
2. Each CPU maintains it’s own queue of processes, and it means that 

every CPU schedule its processes independently.
3. Advantages: 

• Very little shared data, because queues are (mostly) independent
• Respects cache affinity 

4. Disadvantages: 
• MQMS is prone to load imbalance due to: 

a. different number of processes per CPU
b. variable behavior across processes (short or long, I/O bound or 

CPU bound). 
• Must be dealt with through process migration!  

a. Push migration: a processor can ask some other processor to take 
one or more processes. It is implemented as follow: a specific 
task periodically checks the load on each processor and, if it 
finds an imbalance, evenly distributes the load by moving 
processes from overloaded to idle or less-busy processors  

b. Pull migration: a processor can ask some other processor to give 
one or more processes. It is implemented as follow: an idle 
processor pulls a waiting task from a busy processor

 
c. Migration can cause conflicts with processor affinity (move data 

from a workspace to another).
d. Often a combination of the pull and push migration approaches is 

implemented. Example: Linux implements both techniques: it runs 
its load balancing algorithm every 200 ms (push migration) or 
whenever the run_queue for a processor is empty (pull migration) 

 
 

 

!7
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Interprocess communication (IPC) 
A process is independent if it cannot be affected by the other processes 
executing in the system. 
A process is cooperating if it can affect or be affected by the other 
processes executing in the system. Any process that shares data with 
other processes is a cooperating process. Cooperation is important and 
bring two main advantages: modularity and speed-up. 

The cooperation (or exchange of data and information) is implemented by 
means of interprocess communication (IPC) mechanism. Two models of IPC:

1. Shared memory: a region of memory 
that is shared by cooperating 
processes. They can exchange 
information by reading and writing 
data to the shared region. 

2. Message passing: communication 
takes place by means of messages 
exchanged between the cooperating 
processes. 

Shared Memory:

1. Shared memory allows 2 or more processes to access the same memory 
as if they all called malloc() and were returned pointers to the 
same actual memory. When one process changes the memory, all the 
other processes see the modification. 
• In general, one process creates or allocates the shared memory 
segment

• The size and access permissions for the segment are set when it 
is created 

• The process then attaches the shared segment, causing it to be 
mapped into its current data space 

• If needed, the creating process then initializes the shared 
memory. 

• Once created, and if permissions permit, other processes can 
gain access to the shared memory segment and map it into their 
data space 

• For each process involved, the mapped memory appears to be no 
different from any other of its memory addresses 

• Each process accesses the shared memory relative to its 
attachment address 

2. Shared memory is the fastest, but not necessarily the easiest, way 
for processes to communicate with another one. 

3. FAST: Access to a shared memory is as fast as accessing a process’s 
non shared memory, and it does not require a system call or entry 
to the kernel 

4. DIFFICULT: Because the kernel does not synchronize accesses to 
shared memory, the programmer must provide his own synchronization: 
is critical that two processes don't write to the same memory 
location at the same time. 

!1
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key_t ftok(const char *path, int id)

1. type key_t is actually a long, you can use any number you want.
2. ftok() generate a unique key, from two arguments:
• path is the file that this process can read, 
• id is usually just set to some arbitrary char, like 'A'. 

3. The ftok() function uses information about the named file (in 
particular its inode number) and the id to generate a probably-
unique key for the shared memory segment.

void *shmat(int shmid, const void *shmaddr, int shmflg) 

Attach a shared memory segment: shmat is used to attach the referenced 
shared memory segment into the calling process's data segment. 
Parameters:

1. shmid is a valid shared memory identifier
2. shmaddr allows the calling process some flexibility in assigning 

the location of the shared memory segment
• If a nonzero value is given, shmat uses this as the attachment 
address for the shared memory segment 

• If shmaddr is 0, the system will choose an available address 
3. shmflg is used to specify the access permissions for the shared 

memory segment and to request special attachment conditions, such 
as a read-only segment 

Return value: if successful, it returns the address of the actual 
attachment; if fails, it returns -1.

int shmdt (void * shmaddr)

Detach a process from a shared memory segment: usually when a process 
finished with a shared memory segment, the segment should be detached 
using shmdt(). 
To detach a segment, it is needed to pass the address returned by 
shmat(). 

Parameter: void *shmaddr: a reference to an attached memory segment 
(the shared memory pointer).
Return value: if successful, it returns 0, otherwise -1 (failure).

int shmctl(int shmid, int cmd, struct shmid_ds *buf)

It call returns info about a shared memory segment, and can modify it. 
Parameters: 

1. shmid corresponds to the shared memory identifier (i.e., the 
address returned by shmat()) 

2. cmd: perform a specific operation coded into a command. Examples: 
• to obtain information: IPC_STAT (see man pages) 
• to remove a segment: pass IPC_RMID as the second parameter and 
NULL as the third parameter. 
a. The segment is removed when the last process that has 

attached it, finally detaches it.
3. buf is a pointer to a structure. Depending on the command, can 

perform different tasks or be totally unnecessary (NULL).
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NOTES: 
- the process that creates a new mailbox is the initial 
owner of the mailbox that can receive messages through 
this mailbox.

- The ownership and receiving privilege may be passed to 
other processes through appropriate system calls. This 
provision could result in multiple receivers for each 
mailbox. 

Synchronization: 
︎
Message passing may be either blocking or non-blocking ︎ 

1. Blocking is considered synchronous
• Blocking send: the sender blocks until the message is received ︎
• Blocking receive: the receiver blocks until a message is available

2. Non-blocking is considered asynchronous 
• Non-blocking send: the sender sends the message and continues 
• Non-blocking receive: the receiver receives a valid message or 
null 

Possible combinations are 
1. ︎blocking send and blocking receive (rendez-vous)
2. non blocking send and blocking receive
3. non blocking send and non blocking receive. 

Buffering:
Mailboxes (aka message queues) can be implemented in 3 ways: 

1. Zero capacity (0 messages can be stored). The sender must wait for 
receiver (rendez-vous).

2. Bounded capacity (finite length of n messages can be stored inside 
mailbox). The sender must wait if mailbox is full.

3. Unbounded capacity (infinite mailbox's length). Sender never waits. 

POSIX Message Queue:
︎
A message queue is a linked list of messages stored within the kernel and 
identified by a message queue identifier. 
A message is composed of message type and message data. It can be either 
private or public:

• private: it can be accessed only by its creating process or child 
processes of that creator.

• public: it can be accessed by any process that knows the queue’s 
key. 

!5
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int msgrcv(int msqid, void *msgp, size_t msgsz, 
long msgtype, int msgflg)

A program can remove a message from the message queue by calling 
msgrcv(). 
︎Parameters:

1. msqid corresponds to the message queue identifier (the value 
returned by msgget() )

2. msgp argument points to a user-defined buffer for holding the 
message to be retrieved (the format is the same data structure 
type+data adopted by the sender)

3. msgsz specifies the actual size of the message text

4. msgtype can be used by the receiver for message selection
• ︎ = 0 : first message available in a FIFO queue
•  > 0 : first message on queue whose type equals msgtype
•  < 0 : first message on queue whose type is the lowest value 
less than or equal to the absolute value of msgtype

︎  
5. msflg: flag argument is a bit mask (see the man pages): 

Return value: if successful, returns the number of bytes in the text of 
the message, otherwise it returns -1.

int msgctl(int msqid, int cmd, struct msqid_ds *buf)

It is used to perform control operations on a message queue.
︎Parameters:

1. msqid corresponds to the message queue identifier (i.e., the value 
returned by msgget())

2. cmd: perform a specific operation coded into a command. Examples:
• to obtain information: IPC_STAT (see man pages)
• to remove a message queue: IPC_RMID as the second parameter and 
NULL as the third parameter. 
a. The message queue (and any data still on the queue) is 

removed.
b. The removal is immediate and any other process still using 

the message queue will get an error on its next attempted 
operation on the queue.

3. buf is a pointer to a structure. Depending on the command, can 
perform different tasks or be totally unnecessary.
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// RECEIVER

#define BUF_SIZE 512

struct my_msg_struct {
long int my_msg_type;
char some_text[BUF_SIZE];

};
 
int main(){

int running = 1;  
int msgid;  
struct my_msg_struct some_data; 
long int type_rcv = 0; 
int mykey = getuid(); 

msgid = msgget((key_t) mykey, 0666 | IPC_CREAT);

if (msgid == -1) {
printf("msgget() failed.\n");
exit(EXIT_FAILURE); 

} 

while(running) {  
if (msgrcv(msgid, &some_data, BUF_SIZE, type_rcv, 0) == -1){

printf("msgrcv() failed.\n");
exit(EXIT_FAILURE);

      }
      

printf("You wrote: %s", some_data.some_text);

if (strncmp(some_data.some_text,"end", 3) == 0){
running = 0; 

} 
} 

  
if (msgctl(msgid, IPC_RMID, 0) == -1) {

printf("msgctl() failed.\n");
exit(EXIT_FAILURE);

} 

exit(EXIT_SUCCESS);
}
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int open(char *path, int flags [ , int mode ] ) 

It makes a request to the OS to use a file.
Parameters:

1. path argument specifies the file you would like to use
 

2. flags and mode arguments specify how you would like to use it 
(mode is optional).

Return value:
a. If the operating system approves your request, it will return a 

file descriptor to you. This is a non-negative integer. Any future 
accesses to this file needs to provide this file descriptor.

b. If it returns -1, then you have been denied access; check the 
value of global variable "errno" to determine why (or use perror() 
to print corresponding error message). Possible error cases:
• wrong file name set (e.g. already exist). 
• open a read-only file in write mode.

void perror(char * s)

Print a message on stderr (usually correspond to the display). The 
message explain what kind of error occurred. 
Parameters:

1. Pointer s: the programmer can attach a custom message (pointed by 
s) just before the error message (useful for debugging).

2. Different kind of errors could occur. Each error is a associated 
with a number; a table links the error string with the number.

The allowable option_flags as defined in #include <fcntl.h> are: 
 
  #define O_RDONLY 0 /* open the file for reading only */
  #define O_WRONLY 1 /* open the file for writing only */
  #define O_RDWR 2 /* open the file for both reading and 

writing*/
  #define O_APPEND 010 /* append (writes guaranteed at the end)*/
  #define O_CREAT 00400  /* open with file create 

(uses third open arg) */  
  #define O_EXCL 02000 /* error if create and file exists */ 

Multiple values are combined using the | operator (i.e. bitwise OR). 
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Open, close, read and write system calls are really important! They are 
used by many higher level libraries. Since they are atomic operations, 
concurrent access is not a problem!

NB: Which is the size occupied by a pointer? The size of a pointer is 
FIXED and depends on the architecture, and in particular on the memory 
size (pointer is an address and should cover all memory positions)! 

NB: Which is the type (int, char, ...) of a pointer? Because a pointer 
has a fixed size, a pointer to a char or int or long int has the same 
size! You are not able to understand what type of data it is pointing 
to ... this information is crucial, because tells the OS how many bytes 
should read at a time. A cast is necessary! 

NB: the malloc function take as input the number of bytes to reserve. It 
returns a pointer: it has no type associated with, and a cast is 
necessary.

"4

#include <fcntl.h>   // Example of read()

int main() { 
char *c; 
int fd, num;
c = (char *) malloc(100 * sizeof(char));  //(char *) is a cast.

 
fd = open(“file.txt", O_RDONLY);  
if (fd < 0) { 

perror(”file.txt"); 
exit(1); 

}

num = read(fd, c, 10);   // num store how may bytes were read
   // 1 byte = 1 char

printf("called read(%d, c, 10), which read %d bytes.\n”, fd, 
num); 

c[num] = ‘\0';   // print the string, without any 
  // random chars at the end 

  
printf("Read the string: %s\n", c); 
close(fd); 

}
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Standard Input, Output and Error:

Every process in Unix starts out with three file descriptors predefined: 
• File descriptor 0 is standard input. 
• File descriptor 1 is standard output. 
• File descriptor 2 is standard error. 

You can read from standard input, using read(0, ...), and write to 
standard output using write(1, ...) or using two library calls 

• printf 
• scanf 

"6

off_t lseek(int fd, off_t offset, int whence)
 

All open files have a "file pointer" associated with them to record the 
current position for the next file operation. 

1. When file is opened, file pointer points to the beginning of the 
file

2. After reading/write m bytes, the file pointer moves m bytes 
forward 

The lseek moves the file pointer explicitly.
Parameters:

1. whence argument specifies from where the seek (= search) should 
be performed 
• SEEK_SET: from the beginning of the file
• SEEK_CUR: from the current value of the pointer
• SEEK_END: from the end of the file

2. offset represent the offset of the pointer (measured in bytes). 
Could be negative.

3. fd is the file descriptor 

Return value: if successful, it returns the offset of the pointer (in 
bytes) from the beginning of the file. If there was an error moving the 
pointer, it returns -1.

The lseek is really convenient because allow us to move forward and 
backward inside the file, without reading it (a file is just a sequence 
of chars).

Examples:
 
• lseek(f1, 100, SEEK_SET)  // starting from the beginning of the file, 

// the pointer now points to the 100th byte.
• lseek(f1, 0, SEEK_SET)    // return to the beginning of the file
• lseek(f1, 0, SEEK_END)    // start from the end of the file
• lseek(f1, -100, SEEK_END) // starting form the end of the file, move 

// the pointer 100 bytes back.
• lseek(f1, 0, SEEK_CUR)    // returns the offset between the current 

// pointer position and the beginning 
// of the file.
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