
 Corso Luigi Einaudi, 55/B - Torino

NUMERO: 2369A ANNO: 2018

A P P U N T I

STUDENTE: Chiapello Nicolò

MATERIA: Bigdata - Prof. Garza

Appunti universitari

Tesi di laurea

Cartoleria e cancelleria

Stampa file e fotocopie

Print on demand

Rilegature

Il presente lavoro nasce dall'impegno dell’autore ed è distribuito in accordo con il Centro Appunti.

Tutti i diritti sono riservati. È vietata qualsiasi riproduzione, copia totale o parziale, dei contenuti inseriti nel

presente volume, ivi inclusa la memorizzazione, rielaborazione, diffusione o distribuzione dei contenuti

stessi mediante qualunque supporto magnetico o cartaceo, piattaforma tecnologica o rete telematica,

senza previa autorizzazione scritta dell'autore.

AT T E N Z I O N E: Q U E S T I A P P U N T I S O N O FAT T I D A S T U D E N T I E N O N S O N O S TAT I V I S I O N AT I D A L D O C E N T E .
I L N O M E D E L P R O F E S S O R E , S E R V E S O L O P E R I D E N T I F I C A R E I L C O R S O .

Polytechnic of Turin

Master of Science in Computer Engineering

Chiapello Nicolò

- III -

Content

About this course

Name: Big Data: architectures and data analytics

Scientific-disciplinary sector: ING-INF/05

Activities: characterizing

Credits: 6 ECTS

Professor: Paolo Garza

Academic degree: master degree in computer engineering

Period: first year, second semester

Academic year: 2017 / 2018

Author: Chiapello Nicolò

Version: 1.0.1

About this work

This work would like to be the transposition of the class explanations, provided by the teacher.

This is the result of the writing done directly during lessons and following corrections and

adjustments (especially during exam preparation time). They are not lecturer stenography, but real-

time notes, with all the inaccuracies that this could lead to.

This work is not checked by the teacher in any way, so it could contain mistakes. If you find one you

are invited to signal it to the author, in order to correct it (nicochina.notes@gmail.com).

This notes are as is: they are an useful tool to help in studying, but they are not a source of academic

notions.

Legend

In this work the following convention is adopted:

- italic: concept/entity previously defined

- bold: relevant concept, in evidence

- underlined: mini-title to which the following text is referred to

- yellow bold: definition of a concept (reported in the final index)

- light blue: topic covered by the paragraph

mailto:nicochina.notes@gmail.com

- V -

Driver .. 27

Mapper .. 28

Reducer ... 28

Hadoop implementation of the MapReduce phases ... 28

MapReduce programs... 30

Driver class.. 30

Mapper class ... 31

Reducer class ... 31

Data types ... 32

InputFormat class ... 32

OutputFormat class .. 34

Code structure of a MapReduce program in Hadoop ... 34

1. Driver ... 34

2. Mapper ... 36

3. Reducer .. 36

4. Combiner ... 37

Personalized data types ... 38

Values .. 38

Keys ... 39

Sharing parameters among Driver, Mappers and Reducers ... 39

Counters .. 40

Map-only job ... 41

In-Mapper combiner ... 42

Advanced aspects ... 43

Multiple Inputs and Multiple Outputs ... 43

1. Multiple Inputs ... 43

2. Multiple Outputs .. 43

Distributed cache .. 44

Code structure ... 45

MapReduce design patterns .. 46

1. Summarization patterns .. 46

a. Numerical summarizations .. 46

b. Inverted index summarizations ... 47

c. Counting with Counters ... 48

2. Filtering patterns ... 48

a. Filtering ... 48

b. Top K ... 49

c. Distinct .. 50

3. Data organization patterns .. 51

a. Binning .. 51

b. Shuffling .. 52

4. Metapatterns .. 52

a. Job Chaining ... 52

5. Join patterns ... 53

a. Reduce side natural join ... 53

- VII -

d. Distinct transformation .. 80

e. Sample transformation ... 81

f. Set transformation .. 81

Summary: basic transformation .. 82

2. Basic actions ... 83

a. Collect action ... 83

b. Count action .. 83

c. CountByValue action .. 84

d. Take action .. 84

e. First action .. 85

f. Top action .. 85

g. TakeOrdered action .. 85

h. TakeSample action ... 86

i. Reduce action .. 86

j. Fold action ... 87

k. Aggregate action ... 88

Summary: basic actions .. 90

Key-value pair RDDs .. 91

Creating Pair RDDs .. 91

1. Transformations on Pair RDDs ... 92

a. ReduceByKey transformation .. 93

b. FoldByKey transformation ... 93

c. CombineByKey transformation ... 94

d. GroupByKey transformation.. 95

e. MapValues transformation .. 96

f. FlatMapValues transformation ... 96

g. Keys transformation ... 96

h. Values transformation .. 97

i. SortByKey transformation ... 97

Summary: transformations on PairRDDs ... 97

2. Set transformations on Pair RDDs.. 98

a. SubtractByKey transformation ... 99

b. Join transformation .. 99

c. CoGroup transformation .. 100

Summary: transformations on two PairRDDs .. 101

3. Actions on Pair RDDs ... 101

a. CountBykey action .. 101

b. CollectAsMap action ... 102

c. Lookup action .. 102

Summary: actions on PairRDDs .. 103

DoubleRDDs ... 104

1. Actions ... 104

2. Transformations.. 104

Cache, Accumulators, Broadcast variables .. 106

- IX -

Introduction ... 138

Data types ... 138

1. Local vector ... 138

2. Labelled point ... 139

Main concepts ... 140

Classification algorithms .. 142

Logistic regression and structured data ... 143

Decision tree and structured data ... 147

Categorical class labels .. 148

Textual data classification ... 153

Parameter tuning ... 158

Clustering algorithms .. 163

𝐾-means clustering algorithm ... 163

Itemset and association rule mining ... 166

FP-Growth algorithm and Association rule mining ... 166

Regression algorithms ... 169

Linear regression .. 169

a. Linear regression for structured data ... 169

b. Linear regression and textual data ... 172

Parameter tuning.. 172

STREAMING DATA ANALYSIS ...173

Motivation ... 173

Requirements .. 173

Other streaming system ... 173

Spark streaming .. 174

Word count .. 174

Key concepts .. 175

Fault-tolerance .. 175

Basic structure of a Spark streaming Program .. 176

Spark Streaming Context ... 176

Input Streams ... 176

1. TCP socket ... 176

2. HDFS folder .. 177

3. Other sources .. 177

1. Transformations ... 177

a. Basic Transformations on DStreams ... 177

b. Advanced Transformations on DStream ... 178

2. Actions ... 179

Start and run the computation .. 179

Window operation .. 181

- 11 -

Course presentation
Course of Big Data: architectures and data analytics in the second semester of the first year of the

master degree.

Professors

This course is hold by the following teachers:

 lecturer: Paolo Garza

 lab assistant: Daniele Apiletti

Teaching organization

With respect with the previous year, the course spend less time on Hadoop and more about Spark.

There are 10 laboratories:

 1-4 labs: Hadoop

 5-10 labs: Spark

We need a second account in LABINF, to access to big data cluster (BigData@Polito).

Topics

This course will deal with the following topics.

 Introduction to Big Data

 Hadoop

 Architecture

 MapReduce programming paradigm

 Spark

 Architecture

 Spark programs

 Data mining and Machine Learning libraries for Big Data

 MLlib (Apache Spark’s scalable machine learning library)

 Streaming data analysis

 Spark streaming

 SQL databases for relational big data and NoSQL databases

 Data models, Design, Querying

Hadoop is a framework used to store and analyse data. We will see MapReduce paradigm, on

Hadoop. It is used to solve basic problems (not all kind of problems) just using two functions: Map

and Reduce.

Spark is another framework, more complex, with more functionalities. It can also be executed on

Hadoop architecture.

- 13 -

INTRODUCTION TO BIG DATA

Big Data is, simply, a large amount of data (about petabytes) to be analysed in order to extract

information (by machine learning approach).

Internet is a huge source of data (Facebook, Google, etc…). Also sensor generate many data to be

analysed all together.

Using Internet is often performing queries. Analysing those queries, we can perform nowcasting.

While forecasting is something that will happen in the future, the nowcasting in predict something

that is happening right now.

Many companies has many data, but they do not know how to use them. How to use those data is

the most challenging task in the Big Data area.

Another main problem is the storage of those data. Locally some aggregation is performed and then

only interesting information are send trough Internet to reach the main control site.

Of course the algorithm efficiency is a problem, too.

Big Data source

There are many Big Data sources:

 user generated content (web and mobile): social network and website

 health and scientific computing: research, geographical distribution and medical diagnostic

 log files: web server log files, machine system log files

 IoT (Internet of Things): sensor network, RFID, smart meters

While a log file analysis is often performed offline, a sensor analysis have to be real-time, so an online

computing.

“If a service is free, so probably you’re the product.”

-cit. Garza

Big Data definition

There are many potential definition of Big Data, but there are some standard keyword.

The Big Data are data whose scale, diversity and complexity require new architecture, technique,

algorithms and analytics to manage it and extract value and hidden knowledge from it.

Big Data is about produce new architecture to solve new problem, but also to solve traditional

problems with new algorithms.

- 15 -

Big data challenges

The Big Data lead to many challenges of different type:

 technology and infrastructure: new architecture, programming paradigm and technique

 data management and analysis: data science related topics

The processors processes data, while hard drives store them. We need to transfer data from the disk

to the processor.

This task could became a bottleneck in our process. A possible solution is to split the file in different

independent smaller files and process them in a parallel way. Then, only at the end of all the

elaboration, local statistics are aggregated together.

Not all algorithm can be parallelised, because all file must be independent from the content of the

other files.

sequential execution

parallel execution

- 17 -

According to data locality, each computation should be performed locally, but to put all the racks

(standardized frame or enclosure for mounting multiple electronic equipment modules) together, a

network infrastructure (with switch) is required.

The communication inside a rack is much more faster.

Scalability

Scalability is the ability to grown up the power of the system. System must scale to address the

increasing amount of data, number of users and complexity of the problem.

Type of scalability:

 vertical scalability (scale up): increase the power of a single component

 horizontal scalability (scale out): increase the number and the parallelism of the whole

system

For large amount of data, scale out approach is better and less expensive (theoretically).

 single component: price not linear with respect to the amount of memory

 many components: price linear with respect to the amount of memory

With Hadoop framework we do not take care of the schedule or the parallelism management, because

the system do it automatically.

Hadoop provides a very high level API to address those tasks:

 parallelization

 distributed storage of data sets

 node failure management

 diverse input format

- 19 -

1. Distributed Big Data Processing Infrastructure

The Distributed Big Data Processing Infrastructure separates the “what” from the “how”, so

an high level view. Hadoop abstract away the “distributed” part of the problem (scheduling,

synchronization, etc…).

The programmer still should take care about the amount of data he send through the network

(because of the bottleneck problem).

2. HDFS

The HDFS (Hadoop Distributed File System) is the standard File System provided by Hadoop.

The programmer can use also some other distributed File System or a Database source for the

Hadoop application.

The HDFS is a distributed File System that is fault-tolerant and designed to handle huge files (𝐺𝐵

to 𝑇𝐵). A single data block store only one file, even though there’s also remaining free space. For this

reason HDFS is not the best choice for many little files.

Another principle of HDFS (and of MapReduce approach, too) is that collected new data are inserted

at the end of the file. There’s not random access to data (all data are read sequentially) and old data

are not updated.

 insert only at the end

 read all data (no random access)

 no update

In HDFS each file is split in chunks (pieces of the file) that are spread across the server. Each chunk

is replicated on different server a number of time that is a parameter of the framework (usually 3

times). Each replica cost time and computational power, so a trade-off is requested.

Replicas are stored in different racks (if possible) for persistence and availability matters.

Typically each chunk is 64𝑀𝐵 or 128𝑀𝐵.

- 21 -

Principles of Hadoop and MapReduce
We will analyse the Word Count problem, that is a simple introduction to the MapReduce paradigm

as well as Hello Word problem is to the general programming.

Word Count

The Word Count problem, given a large textual file of word as input, aims to count the number of

occurrences of each word. The output would be the list of the pair 〈𝑤𝑜𝑟𝑑, 𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛〉.

The sequential execution of this task is trivial: scan all the file, one word after the other and increase

a counter array at each word occurrence.

The parallel execution is much more interesting in order to improve the speed. The textual file is

divided into 𝑁 pieces and use to feed 𝑁 machines that provide a local solution (word frequency

inside the given section).

To avoid a bottleneck in the collection process, a second step is introduced. This second layer is

composed by 𝑁 machines that perform the merge of all local results. In order to parallelize also this

task, we can instruct each machine to perform the global result of a set of items having similar

characteristics (words starting with the same letter).

By using this approach each machines in the first layer have to send data to many machines in the

second layer, but the performances are really efficient (thanks to parallelization).

This method is the base concept for the MapReduce programming paradigm:

 first step: map function

 second step: reduce function

According to the file size, there are two possible solution:

 entire file fits in main memory: a traditional single node approach is more efficient, because

it avoid the overhead of the framework

 file too large to fit in main memory: detect a set of independent sub-tasks

We will analyse only the second possibility.

Implementation

For this implementation, suppose the following situations:

 the cluster has 3 servers

 the content of the input file is this string: “Toy example file for Hadoop. Hadoop running

example.”

 the input file is split in two chunks (number of replicas=1)

The Word Count problem is parallelized by splitting it into two distinct phases:

1. each server processes its chunk of data and counts the number of times each word appears

in its chunk

- each server can perform it independently ⟹ synchronization is not needed in this phase

- 23 -

MapReduce Programming Paradigm
MapReduce is based on functional programming in which everything is a function and those can

be sequentially applied to some data in order to retrieve a result. A chain of functions can be applied,

each works on the previous function’s output. The output is dependent only from the value of the

input; it is like a mathematical function, there is no stored state.

The MapReduce implements a subset of functional programming because it uses only two building

blocks:

 Map function

 Reduce function

Being the programming model so limited, the complexity of the problems we can solve is limited as

well.

The Map function is applied over each element of an input data set and emits a set of (𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒)

pairs.

The Reduce function is applied over each set of (𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒) pairs (emitted by the map function)

with the same key and emits a set of (𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒) pairs, that is usually the final result.

Example: Word Count

Text:

Given the Word Count problem, analyse it using the MapReduce approach.

 input: a textual file (i.e., a list of words)

 problem: count the number of times each distinct word appears in the file

 output: a list of pairs 〈𝑤𝑜𝑟𝑑, 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑖𝑛𝑝𝑢𝑡 𝑓𝑖𝑙𝑒〉

Solution:

We can see the input file as a list of words 𝐿. For each input word, we emit a key-value pair having

as key the word itself and as value the fixed number +1.

Instead of increasing the value of and already met word, we simply create a further key-value

pair (e.g. toy and example words), because there is no state about the number of occurrences.

The second step is to group the first set of key-value pair, by considering the key. The generated

key-value pairs have the word as key and the list of occurrences (+1) as value.

- 25 -

Phases

In the MapReduce paradigm there are three fixed steps:

 Map phase: applying the Map function to each key-value pair, we emit a set of key-value

pair

 Shuffle and Sort phase: merging the key-value pairs sharing the same key

 Reduce phase: merging the local results to compute the final one

The developer should take care only about Map and Reduce phases because the Shuffle and Sort one

is always the same. This step is automatically handled by Hadoop.

The mathematical representation: given the input list of words 𝐿, the Map function 𝑚(⋅) (applied to

each word 𝑤) is defined as follows:

 𝑚(𝑤) = (𝑤, 1)

The a new list 𝐿𝑚 of key-value pairs is generated. The key-value pairs in 𝐿𝑚 are aggregated by

key (i.e., by word in our example) generating many 𝐺𝑤 groups:

 𝐺𝑤 = (𝑤, [𝑙𝑖𝑠𝑡 𝑜𝑓 𝑣𝑎𝑙𝑢𝑒𝑠])

The Reduce function 𝑟(⋅) is applied to each group 𝐺𝑤 in order to obtain the final result:

 𝑟(𝐺𝑤) = (𝑤, sum(𝐺𝑤. [𝑙𝑖𝑠𝑡 𝑜𝑓 𝑣𝑎𝑙𝑢𝑒𝑠]))

The Map phase can be viewed as a transformation over each element of a data set. This

transformation is a function 𝑚(⋅) defined by the designer and each its application happens in

isolation (independently to other items), so can be parallelized.

The Reduce phase can be viewed as an aggregate operation. This aggregate function is a function

𝑟(⋅) defined by the designer and each group of key-value pairs with the same key can be processed

in isolation (so in parallel, but cannot merge different keys in this phase).

The Shuffle and Sort phase is always the same and it does not need to be defined by the designer.

Data structure

MapReduce is based on the key-value pair data structure. Everything is a list of key-value pair,

also the input (not as supposed in the previous example).

The keys and values can be:

 integer

 float

 string

 user defined structure

The design of MapReduce involves also the definition of the key and value structure for both input

and output data sets.

Formal definition

The map and reduce functions are formally defined as follows:

 𝑚𝑎𝑝: (𝑘1, 𝑣1) → [(𝑘2, 𝑣2)]

 𝑟𝑒𝑑𝑢𝑐𝑒: (𝑘2, [𝑣2]) → [(𝑘3, 𝑣3)]

- 27 -

Hadoop implementation of MapReduce
The designer/developer have to implement only two methods: map() and reduce(). They stand each

in the corresponding classes: Map and Reduce.

There is no need to manage the distributed execution of the phases. The Hadoop framework will also

take care of coordinate the execution:

 parallel execution of the map and reduce phases

 execution of the shuffle and sort phase

 scheduling of subtasks

 synchronization

In this course we will use Java programming language. An Hadoop MapReduce program consists in

three main classes:

 Driver: contains the main() method, the application workflow and all the needed

configuration

 Mapper: implements the map function

 Reducer: implements the reduce function

Each class is characterized by some specific interfaces/abstract classes and each class are

instantiated in an object.

Terminology

Just for sake of comprehension, we define some terminology:

 Driver class: configuration of the job and of the workflow

 Mapper class: implements the map function

 Reducer class: implements the reduce function

 Driver: instance of the Driver class

 Mapper: instance of the Mapper class

 Reducer: instance of the Reducer class

 (Hadoop) job: execution of a MapReduce program on a dataset (composed by many tasks)

 task: execution related to each instantiated object (Driver/Mappers/Reducers)

 input split: fixed-size portion of the input data (usually having the same size of a HDFS

block/chunk)

Driver

The Driver is a part of Hadoop MapReduce implementation. It is characterized by the main()

method, which accepts arguments from the command line (e.g. entry point of the application).

The Driver performs the following operations:

 configures the job: setting cluster options and defining the job name

 submits the job to the Hadoop Cluster: actually launch the job with submit() command

 coordinates the workflow of the application: specifying the Mapper/Reducer classes to use

and report the map()/reduce() functions in a MapReduce chain

- 29 -

Hadoop automatically splits the input file and creates a Mapper task for each input split. The

number of Mappers is defined by the number of input splits (so by the input file size).

The number of Reducer is specified by the developer, it depends on the specific situation.

Number of:

 Mappers: automatically defined by Hadoop

 Reducers: developer defined

Example:

Given three different servers containing only one input split each, the sequential action are

defined by the following diagrams.

Single reducer:

Having a single Reducer, Hadoop perform the following actions:

For efficiency reason the intermediate result are not stored in the distributed file system (HDFS),

but locally:

Usually the amount of data emitted by the Mapper should be smaller than the size of the input

file. If this does not happen, probably there is some issue.

- 31 -

 mapper class

 name of the class

 type of its input (𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒) pairs

 type of its output (𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒) pairs

 reducer class

 name of the class

 type of its input (𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒) pairs

 type of its output (𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒) pairs

 number of reducers

Mapper class

The Mapper class is a part of a MapReduce program. Using OO inheritance properties, there are

predefined templates, so it should:

 extends org.apache.hadoop.mapreduce.Mapper class

that is a generic class (with generic type parameters), so the developer should define the input key

type, input value type, output key type and output value type. The generic parameters are indicated

using the Java diamond operator.

The developer should implement only the following method:

 map(): analyses data

This method is automatically called by the framework for each (𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒) pair of the input file.

The map() method processes its input by using standard Java code and emits (𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒) pairs by

using the following method:

context.write(key, value);

A peculiar case of mapper is the identity mapper: the mapper simply emit the incoming

(𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒) pair without performing any computation or filtering on them. The reason for their

existence is that is possible to create a job without the reducer (map-only job), but it is not possible

to create a reduce-only job (the map element always should be present).

Reducer class

The Reducer class is a part of a MapReduce program. Using OO inheritance properties, there are

predefined templates, so it should:

 extends org.apache.hadoop.mapreduce.Reducer class

that is a generic class (with generic type parameters), so the developer should define the input key

type, input value type, output key type and output value type. The generic parameters are indicated

using the Java diamond operator.

The developer should implement only the following method:

 reduce(): group together similar data

- 33 -

There already are standard implementation for plain text files:

TextInputFormat

KeyValueTextInputFormat

and also for sequential/binary files:

SequenceFileInputFormat

Textual files are split into lines (linefeed or carriage-return separator) and a key-value pair is

emitted for each of them:

 TextInputFormat: the key is the position (offset) in the file of the first character and the value

is the content of the line

 KeyValueTextInputFormat: requires to specify a delimiter, the key is the string preceding the

delimiter and the value is the following one

Example:

Given a textual file, split it using standard InputFormat classes.

TextInputFormat:

KeyValueTextInputFormat:

- 35 -

 ...

 //Parse parameters
 numberOfReducers = Integer.parseInt(args[0]);
 inputPath = new Path(args[1]);
 outputDir = new Path(args[2]);
 ...

 // Define and configure a new job
 Configuration conf = this.getConf();
 Job job = Job.getInstance(conf);

 // Assign a name to the job
 job.setJobName("My first MapReduce program");

 // Set path of the input file/folder (if it is a folder, the job reads all
the files in the specified folder) for this job

 FileInputFormat.addInputPath(job, inputPath);

 // Set path of the output folder for this job
 FileOutputFormat.setOutputPath(job, outputDir);

 // Set input format
 job.setInputFormatClass(TextInputFormat.class);

 // Set job output format
 job.setOutputFormatClass(TextOutputFormat.class);

 // Set reduce class
 job.setReducerClass(ReducerBigData.class);

 // Set reduce output key and value classes
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(StatisticsWritable.class);

 // Set number of reducers
 job.setNumReduceTasks(numberOfReducers);

 // Execute the job and wait for completion
 if (job.waitForCompletion(true)==true)
 exitCode=0;
 else
 exitCode=1;

 return exitCode;
 }

 //main method of the Driver class
 public static void main(String args[]) throws Exception {
 // Exploit the ToolRunner class to "configure" and run the Hadoop application
 int res = ToolRunner.run(new Configuration(), new DriverBigData(), args);

 System.exit(res);
 }
}

- 37 -

 ReducerInputKeyType key,
 Iterable<ReducerInputValueType> values,
 Context context) throws IOException, InterruptedException {

 //process the input (key, [list of values]) pairs and emit a set of (key,

value) pairs
 context.write(new outputkey, new outputvalue);
 }

}

4. Combiner

The Combiner is a part of Hadoop MapReduce modelled in a class. Their instance are created in

the same node of the Mapper and have the aim to perform some aggregation in order to limit the

amount of network data.

Example:

Consider the Word Count problem having two Input Splits.

Standard solution:

With Combiners:

A Combiner is similar to a Reducer, but it is applied locally on the output of a single Mapper.

Frequently the we can exploit the same class both for the Combiner and for the Reducer.

- 39 -

public class SumAndCountWritable implements org.apache.io.Writable {
 //private variables
 private float sum = 0;
 private int count = 0;

 //methods to serialize and deserialize the contents of the instances of this

class
 @Override //serialize the fields of this object to out
 public void write(DataOutput out) throws IOException {
 out.writeFloat(sum);
 out.writeInt(count);
 }

 @Override //deserialize the fields of this object to out
 public void readFields(DataInput in) throws IOException {
 sum = in.readFloat(sum);
 count = in.readInt(count);
 }

 // Specify how to convert the contents of the instances of this class to a

String
 // Useful to specify how to store/write the content of this class in a textual

file
 public String toString() {
 String formattedString = new String("sum="+sum+",count="+count);

 return formattedString;
 }
}

Keys

Personalized data types can be used also to manage complex keys. In this situation it should be

comparable, so it must implement two interfaces:

org.apache.hadoop.io.Writable

org.apache.hadoop.io.ComparableWritable

Looking at two key, the program should know if one precedes the other or, at least, if they are equals.

The implementation is really similar to the value case.

Sharing parameters among Driver, Mappers and Reducers

We can send data among Driver, Mappers and Reducers. This three classes compose the standard

MapReduce application. They contain the Map and the Reduce function.

Sometimes the programmer need to share some parameters among them (e.g. a minimum threshold

of occurrences). To do so we can exploit the Configuration object: it contains a set of predefined

properties (name, value). This object is used by the gateway to properly configure the cluster for the

submitting of a task, but we can exploit it to set some particular personalized properties.

Those properties should be configured before submit the job. The properties are composed by the

pair 〈𝑝𝑟𝑜𝑝𝑒𝑟𝑦_𝑛𝑎𝑚𝑒; 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦_𝑣𝑎𝑙𝑢𝑒〉.

- 41 -

Example:

A user defined counter, to store the number input lines not consistent with the format, can be

defined, in the Driver, by the following code:

public static enum COUNTERS {

 ERROR_COUNT,

 MISSING_FIELD_RECORD_COUNT

}

This enum defines two counters:

 COUNTERS.ERROR_COUNT

 COUNTERS.MISSING_FIELDS_RECORD_COUNTER

In the Mapper or in the Reducer, we can increment the value of the wanted counter (for instance

COUNTERS.ERROR_COUNT counter):

context.getCounter(COUNTERS.ERROR_COUNT).increment(1);

At the end of the job, in the Driver, to retrieve the final value of the counter, we write the following

code (for COUNTERS.ERROR_COUNT counter):

job.getCounters().findCounter(COUNTERS.ERROR_COUNT);

The counters store only integer values, so we need to implement smart solution to store float value

(multiply for 10𝑥 and then to for 10−𝑥 at the end of the job) or to get the average of a value (store two

information in two different counters).

Be careful because invoking the method:

System.out.println(….);

The result will be shown inside the cluster (the machine actually performing the job), not in the shell

of our own IDE.

In our specific situation, the HUE environment show differ tabs for both: stdout, stderr and syslog.

Map-only job

To just select the lines satisfying a particular constraint and removing the other, we can exploit a

map-only job.

The Map part, in the emitted key-value pair:

 key: the whole line

 value: nothing

The Reduce do not perform any job: it simply move as output, the given input. For those situation

the Reducer is removed.

In the map-only job only the Map is implemented (not Reduce is created), so the output of the

Mapper is the output of the whole application.

We use a map-only job only when we want a filter on the input file. It’s the only possible application

for this kind of job.

The reduce-only job does not exists: it has no meaning.

- 43 -

Advanced aspects
Multiple Inputs and Multiple Outputs

The input for an Hadoop job could be an entire directory, but all files should have the same format.

Even the output can be composed by several files, but all having the same format.

In this chapter we will analyse how to exploits input/output having different format. This happens

often when we use different datasets.

1. Multiple Inputs

Is it possible to use a specific part of the Hadoop API to specify a different Mapper for each input

file, but the Mapper output should be the same.

A dataset is a set of files sharing the same format. For each different dataset is necessary to create

a specific Mapper able to handle that specific data format. However the key-value pair emitted by

all the Mappers should be consistent (same).

In order to handle multiple input format within the same application, it is possible to use several

times the addInputPath() method, of the MultipleInput class, in the Driver to add one input path

at a time. The method has the following parameters:

 object of the job

 input path to add

 input format class

 Mapper class associated with the specified input path

It is not necessary to specify several time the format of the Mapper output, because it is always the

same (it is consistent).

Example:

To handle two different input data types, creates two Mapper classes and define a multiple input:

MultipleInputs.addInputPath(job, new Path(args[1]), TextInputFormat.class,
 Mapper1.class);
MultipleInputs.addInputPath(job, new Path(args[2]), TextInputFormat.class,

 Mapper2.class);

2. Multiple Outputs

Similarly to the MultipleInput, sometimes we need to provide multiple outputs (several different

format and semantic).

Each file contains a specific subset of the emitted key-value pairs (based on some rules), so this

approach is usually used for splitting and filtering operations. There could be only one single folder

containing all the multiple output files.

We can specify the file name, by setting a specific prefix in order to distinguish one from another.

The standard prefix is “part-” with variant R (for using a reducer) or M (for map-only job).

- 45 -

The efficiency of the distributed cache approach depends on the number of multiple mappers (or

reducers) running on the same node because the copy during the initialization costs, so use it for

several tasks reduce the overall negative impact.

Code structure

We will analyse the template to implement the Distributed Cache by code.

To define the shared files in the Driver:

public int run(String[] args) throws Exception {
 ...
 // Add the shared/cached HDFS file in the
 // distributed cache
 job.addCacheFile(new Path("hdfs path").toUri());
 ...
}

To exploits the shared files in the Mapper or/and in the Reducer:

protected void setup(Context context) throws IOException, InterruptedException {
 ...
 String line;

 // Retrieve the paths of the local copies of the distributed files
 Path[] PathsCachedFiles = context.getLocalCacheFiles();

 // Read the content of the cached file and process it in this example the

content of the first shared file is opened
 BufferedReader file = new BufferedReader(
 new FileReader(
 new File(PathsCachedFiles[0].toString())
)
);

 // Iterate over the lines of the file
 while ((line = file.readLine()) != null) {
 // process the current line
 ...
 }

 file.close();

}

- 47 -

All the key-value pairs associated with the same key are always processed by the same Reducer

(generic MapReduce feature). There is one Reducer for each key.

In this pattern the key-value pairs emitted on the network are often equal to the input amount of

data (no filtering is applied).

The numerical summarizations pattern is used for the following use cases (situations):

 word count

 record count

 min/max/count

 average/median/standard deviation

Those applications can also be performed by a DBMS, but using MapReduce they are parallelized

and so they can handle a huge amount of data.

b. Inverted index summarizations

The inverted index summarization pattern is focused on creating an inverted index. An

inverted index is an index data structure storing a mapping from content to its location in the file.

It allows fast searches or data enrichment and it can be easily updated.

To create an inverted index with MapReduce, the final key should be a content (e.g. a specific word)

and the value should be the list of the positions of their occurrences.

The pattern is implemented as follows:

 Mappers: the output are (𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒) pairs in which the key is the fields to index (a keyword)

and the value is an unique identifier of the objects to associate with each “keyword”

 Reducers: receive a set of identifiers for each keyword and simply concatenate them

 Combiners: usually not used in this pattern because there are no values to aggregate

The diagram is similar to the numerical summarizations patterns, but it is different because the

final output contains a list of items (not single summary).

The Inverted Index Summarization pattern most famous use case:

 Web search engine (word ↔ list of URLs)

- 49 -

 Mappers: the output is a (𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒) pair, for each record that satisfy the enforced filtering

rule, in which the key is the primary key of the record and the value is the selected record

itself

Once filtered, the usage of key and value is not fixed (not only the proposed one allowed): are possible

other mapping between the input key-value and the output key-value pairs.

The filtering pattern typical use cases:

 record filtering (remove not interesting record)

 tracking events (identify interesting situations)

 distributed grep (find specific words in a text)

 data cleaning (remove errors from the incoming file)

b. Top K

The top 𝐾 pattern is focused on selecting the 𝐾 top records according to a ranking function. After

performing a rank often not all record are interesting, but only the most important ones according

to the ranking criteria.

The pattern is implemented usually using an in-mapper combiner:

 Mappers:

 each mapper initializes an in-mapper top 𝑘 list

- 𝑘 is usually small (𝑘 ≃ 10)

- the current top 𝑘-records of each mapper can be stored in main memory

- initialization performed in the setup method of the mapper

 the map function updates the current in-mapper top 𝑘 list

 the cleanup() method emits the 𝑘 key-value pairs associated with the in-mapper local

top 𝑘 records

- key is the null key

- value is a in-mapper top 𝑘 record

 Reducer:

 a single reducer is instantiated

 it computes the final top 𝑘 list by merging the local lists emitted by the mappers

- 51 -

The distinct pattern typical use cases:

 duplicate data removal

 distinct value selection

3. Data organization patterns

The data organization patterns are used to organize the data: it allows to split the input data in

subsets. They exploit the MultipleInput and MultipleOutput feature and usually provide the input

for another application.

The two main patterns are the following:

 binning

 shuffling

a. Binning

The binning pattern is focused on organize the input data into categories. Those groups are called

bins: smaller dataset containing similar records (according to some specified rules).

To do so with Hadoop it is possible to use MultipleOutput prefixes to define different output files (a

different prefix for each bin). Hence the number of output files is equal to the number of defined

bins. Often the resulting files are analysed by other applications.

The rules should be specified to the application (using coding constructs) and they should be effective

only over one single record (isolation required).

The pattern is implemented as a map-only job:

 Driver: sets an output file prefix to each bin, by means of MultipleOutput

 Mappers: according to some given rules, for each input (𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒) pair, they select the

proper output bin and emit a (𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒) in that file

 emitted key: input key

 emitted value: input value

- 53 -

It is also possible to run jobs in parallel and then merge their results. In the Driver there’s a proper

command to wait the end of a specified job and it is necessary for the synchronization among different

jobs.

5. Join patterns

The join patterns are used to implement the SQL-like join operators. The join operation is an

relational algebra operation that merge together two different tables joining the records that share

some value. The resulting schema is the sum of the two single schemas (excluding the overall).

The join patterns are the most frequent ones: they are really used to join different input files.

The main related patterns are the following:

 Reduce side join

 Map side join

We will focus on the natural join, however the pattern is analogous for the other types of joins:

 natural join

 theta-join

 semi-join

 outer-join

It is necessary to change only one function in the entire application.

a. Reduce side natural join

The reduce side natural join is focused on joining the content of two relations (tables). The

natural join has no predicates and join records according to the attribute having the same name.

The reduce side join is useful for big tables that cannot be stored in main memory. This approach

can always be used, but it less efficient than the map side join.

- 55 -

The pattern is implemented as a map-only job with a single mapper class that processes the content

of the large table. The distributed cache approach is used to provide a copy of the small table to each

node performing a map task.

It is needed only one class:

 Mapper: perform the “local natural join” between the current record (of the large table) and

the records of the small table (that is in the distributed cache loaded during the setup()

method)

c. Theta-join, semi-join, outer-join

The SQL language provides many types of joins:

 natural join

 theta-join

 semi-join

 outer-join

In order to implement them, the same pattern (shown above for the natural join) can be exploited

simply by changing the part called “local join”.

This step appears:

 reduce side join: in the Reducer

 map side join: in the Mapper

The “local join” should be substituted with the type of join of interest (theta-, semi-, or outer-join).

- 57 -

2. Projection

The projection, for each record of table 𝑅, keeps only the attributes in 𝑆 producing a relation with

schema 𝑆 and remove duplicates (if any):

 𝜋𝑆(𝑅)

In MapReduce the projection is implemented as follows:

 Mappers: analyse one record 𝑟 in 𝑅 at a time and for each of them they create a new record

𝑟′ (according to attribute in 𝑆) and emit a key-value pair where 𝑘𝑒𝑦 = 𝑟′ and 𝑣𝑎𝑙𝑢𝑒 = 𝑛𝑢𝑙𝑙

 Reducers: emit one key-value pair for each input (𝑘𝑒𝑦, [𝑙𝑖𝑠𝑡 𝑜𝑓 𝑣𝑎𝑙𝑢𝑒𝑠]) pair with 𝑘𝑒𝑦 = 𝑟’ and

𝑣𝑎𝑙𝑢𝑒 = 𝑛𝑢𝑙𝑙

3. Union

The union of two tables (𝑅 and 𝑆) having the same schema, produce a relation with the same

schema, but with a record 𝑡 for each record 𝑡 appearing in 𝑅 or 𝑆 (duplicated records are removed)

 𝑅 ∪ 𝑆

In MapReduce the union is implemented by defining two Mapper classes (one for 𝑅 and the other for

𝑆), but the task assigned to each mapper is the same.

 Mappers: one mapper for 𝑅 and another for 𝑆; they both emit a key-value pair, for each input

record 𝑡, in which 𝑘𝑒𝑦 = 𝑡 and 𝑣𝑎𝑙𝑢𝑒 = 𝑛𝑢𝑙𝑙

 Reducers: emit one (key, value) pair for each input (𝑘𝑒𝑦, [𝑙𝑖𝑠𝑡 𝑜𝑓 𝑣𝑎𝑙𝑢𝑒𝑠]) pair with 𝑘𝑒𝑦 = 𝑡

and 𝑣𝑎𝑙𝑢𝑒 = 𝑛𝑢𝑙𝑙

The duplicate are automatically removed by applying this pattern.

The problem of those solutions is the fact that all data are send through the network from the

Mappers to the Reducers. There is no filtering and this network hyper use is a problem especially

for big tables.

4. Intersection

The intersection of two tables (𝑅 and 𝑆) having the same schema, produce a relation with the same

schema, but with a record 𝑡 in the output if and only if 𝑡 appears in both relations (R and S)

 𝑅 ∩ 𝑆

In MapReduce it is implemented using two Mapper classes: each one associated with one table.

 Mappers: one mapper for 𝑅 and another for 𝑆; they both emit a key-value pair, for each input

record 𝑡, in which 𝑘𝑒𝑦 = 𝑡 and 𝑣𝑎𝑙𝑢𝑒 = 𝑡𝑎𝑏𝑙𝑒_𝑛𝑎𝑚𝑒

 Reducers: emit one key-value pair with 𝑘𝑒𝑦 = 𝑡 and 𝑣𝑎𝑙𝑢𝑒 = 𝑛𝑢𝑙𝑙 for each input

(𝑘𝑒𝑦, [𝑙𝑖𝑠𝑡 𝑜𝑓 𝑣𝑎𝑙𝑢𝑒𝑠]) pair with [𝑙𝑖𝑠𝑡 𝑜𝑓 𝑣𝑎𝑙𝑢𝑒𝑠] containing two values (both table names).

This happens if and only if both 𝑅 and 𝑆 contain 𝑡

- 59 -

Hadoop Internals
We will analyse how Hadoop works in its internal mechanism. Unfortunately they are not related

to the last version of Hadoop (so it is not a fundamental topic).

Terminology

Just for sake of comprehension, we recap some terminology:

 job: execution of a MapReduce application across a data set

 task: execution of a Mapper or a Reducer on a split of data

 task attempt: attempt to execute a task

Example:

Considering the running of a Word Count with 20 different splits. In this situation there are:

 1 job

 20 map tasks (one for each input split)

 a user specified number of reduce tasks

 at least 20 mapper tasks + number of reducers tasks attempts will be performed (more if

machine crashes)

Each task is attempted (task attempts) at least a maximum number of times (the maximum

number of attempts per task is a parameter of the cluster configuration, often 5 times). If there

is a temporary fault, the execution of each task may initially fail but it succeeds in the following

attempts.

Multiple attempts may occur in parallel (a.k.a. speculative execution). If there is enough

available resources (i.e., there are processors in the idle state and enough main memory to run

new tasks) Hadoop can duplicate a task and execute each “copy” of the task in a different node of

the cluster (containing the input split).

Anatomy of a MapReduce Job Run

The user works on a Client machine; try to submit a job means to send a message to the

JobTracker machine (only one for all the configuration) that creates the job and decide with node

will execute the application. The JobTracker requires some job information from the client: the folder

containing all input data, and the size in order to decide how many Mappers to instantiate.

The JobTracker will create a task for each Mapper and a task for each Reducer by sending a message

to the TaskTracer machine (there could be many for all the configuration) that will creates one

virtual machine for each Mapper/Reduce task.

If everything work properly, at the end each TaskTracker machine will send the result to the

JobTracker machine that forward it to the client. But a task fails, the TaskTracker tries to run it

again on the same node, and if the problem persist, it will try to execute it on another node.

The drawback of this configuration is that the JobTracker is a single point of failure.

- 61 -

The Mapper process the key-value pairs emitting a set of key-value pairs that will be inserted in a

circular buffer (in node main memory). Each key-value pair is extracted and sent to different queues

according to the key content, sort locally and then merge al together. The temporary result is stored

on the local disk and then sent to the Reducers (through the network).

2. Reducer side

In the Reducer task, the system receives data from many remote file systems (from the node

performing Map tasks). A single Reducer is related so many Mappers, so the input of the reduce

method is obtained by sequential merging (often in the local disk because of the dimension). Then

the reduce method is invoked on each (𝑘𝑒𝑦; [𝑙𝑖𝑠𝑡 𝑜𝑓 𝑣𝑎𝑙𝑢𝑒𝑠]) that generate the final result to be stored

in the distributed file system (HDFS). In particular one copy is stored in the same node running the

Reducer (to reduce network traffic) but the other two copies will be sent on the network (inside the

HDFS).

- 63 -

stored in the main memory of several nodes (each chunk in one node). The total amount of main

memory in the cluster is bigger enough to store all the result.

Using the main memory the performance increases up to a scale of 10.

Also for multiple analyses of the same data are improved in Spark, with respect to Hadoop.

In Hadoop al the parallel analysis takes data from the HDFS itself:

while Spark performs only one HDFS read and store data in the distributed memory:

Spark is preferred with respect to Hadoop because more performing and each job performed with

Hadoop can be done with Spark.

Spark exploits RDD (Resilient Distributed Dataset), a distributed collection of objects spread

across the nodes of a cluster, in particular in their main memory.

Spark programs are written in terms of operations on resilient distributed data sets. Datasets are

based on RDDs.

The RDDs are built and manipulated through a set of parallel:

 transformation: map, filter, join, …

 actions: count, collect, save, …

If a failure happens, the developer has no to take care of it because the Spark framework will

automatically rebuilt the job and perform it again.

The Spark computing framework provides a programming abstraction (based on RDDs) and

transparent mechanism to execute in parallel RDDs.

 hides complexities of fault-tolerance and slow machines

 manages scheduling and synchronization of the jobs

The used data types are only RDDs. The Spark companies suggest to represent data in the following

ways:

 relational data: use dataset

 unstructured data: use RDD

- 65 -

Main components

Spark is based on many components that exploits the same Spark core. All those component provide

some specific APIs to perform specific tasks.

The main components are the following:

 Spark SQL: used for structured data

 Spark Streaming: used for real-time analysis

 MLib: used for machine learning and data mining features

 GraphX: used to analyse and process graphs

The most important part is the Spark core that allows to write complete programs (only not specific

for a single environment).

The Spark core is based on the schedulers:

 standalone spark scheduler

 YarN scheduler

 Mesos

Spark is not characterized by its own distributed file system, but it exploits any (also HDFS).

Spark basic concepts

The RDDs are the primary abstraction in Spark: they are a distributed collection of objects spread

across the nodes of clusters. RDD is the main data type, each RDDs is split in partitions and stored

in the main memory of the executors running in the nodes.

Having more partitions means having more parallelism.

Example:

Consider a RDD split in 3 different partitions:

- 67 -

Spark programs

Spark support many programming languages:

 Scala

 Java

 Phyton

 R

The Scala programming language is the same language that is used to develop the Spark

framework and all its components (Spark Core, Spark SQL, Spark Streaming, MLlib, GraphX).

Spark programs consists only in a Driver class that contains the main method and defines the

workflow of the application. The Driver accesses Spark through the SparkContext object.

The Driver defines:

 local variables

 RDDs

 SparkContext object

The worker nodes of the cluster are used to run the application by means of the executors. Each

executors runs on its partition of the RDD(s) the operations that are specified in the driver.

Differently from Hadoop, Spark can be executed locally on a simple laptop. Each node is simulated

with a different thread that implement the parallelization.

Scala, like Java, runs on a virtual machine, so it is easier to implement a Spark job on a single

machine.

- 69 -

 JavaRDD<String> lines = sc.textFile(inputFile);

 // Count the number of lines in the input file
 // Store the returned value in the local variable numLines
 numLines = lines.count();

 // Print the output in the standard output (stdout)
 System.out.println("Number of lines="+numLines);

 // Close the Spark Context object
 sc.close();
 }
}

An action returns a local variable. There cannot be an OutOfMemory problem for an RDD.

In the same script can coexist local variables (local) and RDDs (distributed).

2. Word count

The word count problem is the simplest task in Big Data environment: consists in simply counting

the occurrences of each word in the input file.

In Spark there are two different type of data that the developer can exploits:

 local variables: used to store small objects/data

 RDDs: used to store big/large objects/data

The implementation of the Driver using lambda functions:

import java.util.Arrays;
import org.apache.spark.api.java.*;
import org.apache.spark.SparkConf;
import scala.Tuple2;

public class SparkWordCount {
 @SuppressWarnings("serial")
 public static void main(String[] args) {

 String inputFile = args[0];
 String outputPath = args[1];

 // Create a configuration object and set the name of the application
 SparkConf conf = new SparkConf().setAppName("Spark Word Count");

 // Create a Spark Context object
 JavaSparkContext sc = new JavaSparkContext(conf);

 //Build an RDD of Strings from the input textual file
 // Each element of the RDD is a line of the input file
 JavaRDD<String> lines = sc.textFile(inputFile);

 // Split/transform the content of lines in a list of words an store in the

words RDD
 JavaRDD<String> words =
 lines.flatMap(line ->
 Arrays.asList(line.split("\\s+")).iterator());

- 71 -

 }
 });

 //Map/transform each word in the words RDD to a pair (word,1) an store the

result in the words_one RDD
 JavaPairRDD<String, Integer> words_one =
 words.mapToPair(
 new PairFunction<String, String, Integer>() {
 @Override
 public Tuple2<String, Integer> call(
 String word) {
 return new Tuple2<String, Integer>(
 word.toLowerCase(), 1);
 }
 });

 //Count the num. of occurrences of each word.
 // Reduce by key the pairs of the words_one RDD and store the result (the

list of pairs (word, num. of occurrences) in the counts RDD
 JavaPairRDD<String, Integer> counts =
 words_one.reduceByKey(
 new Function2<Integer, Integer, Integer {
 @ Override
 public Integer call(Integer c1, Integer c2){
 return c1 + c2;
 }
 });

 // Store the result in the output folder
 counts.saveAsTextFile(outputPath);

 // Close the Spark Context object
 sc.close();
 }
}

Before to the Java8.0 version there was not lambda function, so anonymous classes should be

exploited. They require way more code, but are easier than the lambda functions.

Unnamed classes are classes created on the fly without specifying their name. It is necessary to

specify the abstract interface that it implements. Those interfaces have just one abstract method.

- 73 -

The developer can manually set the number of partitions. It is useful when reading file from the

local file system. To do so, the following method (from the JavaSparkContext class) is exploited:

textFile(String inputPath, int numPartitions);

Example:

Create RDDs from files, by specifying as 5 the desired number of partitions:

//Build an RDD of Strings from a local input textual file.
// The number of partitions is manually set to 5
// Each element of the RDD is a line of the input file
JavaRDD<String> lines = sc.textFile(inputFile, 5);

Parallelize local object collection

Given a local collection/list of local Java object, it is possible to transform them into RDDs by

exploiting the following two methods (from the JavaSparkContext class):

parallelize(List<T> list)

parallelize(List<T> list, int numPartitions)

Without specifying manually the number of partitions, the system automatically decide the number

of splits.

Example:

Create RDDs from a local Java collection:

//Create a local Java list
List<String> inputList = Arrays.asList("First element", "Second element",
 "Third element");

// Build an RDD of Strings from the local list.
// The number of partitions is set automatically by Spark
// There is one element of the RDD for each element of the local list
JavaRDD<String> distList = sc.parallelize(inputList);

No computation occurs when sc.parallelize() is invoked. Spark only records how to create the

RDD and then the data is lazily read from the input file only when the data is needed (i.e., when

an action is applied on the lines RDD, or on one of its “descendant” RDDs).

In order to create exactly 3 partitions:

//Build an RDD of Strings from the local list.
// The number of partitions is set to 3
// There is one element of the RDD for each element of the local list
JavaRDD<String> distList = sc.parallelize(inputList,3);

Save RDDs

Save in the file system

To store the content of the RDDs in the distributed file system the following method (from the

JavaRDD<T> class) is exploited:

saveAsTextFile(String outputPath);

It is necessary to specify the wanted path. The system automatically decide if data should be

read/write on the local file system or in the distributed one.

Again, in the output file, there is a line for each RDD element.

- 75 -

potentially change the order of some transformations or merge some of them based on its

optimization engine.

The actions return results to the Driver program (i.e. local variables), or in the storage. It is

important to check if the returned result is too large to be stored in the main memory.

Example:

Given the following script.

public static void main(String[] args) {
 // Initialization of the application
 ...

 // Read the content of a log file
 JavaRDD<String> inputRDD = sc.textFile("log.txt");

 // Select the rows containing the word "error"
 JavaRDD<String> errorsRDD = inputRDD.filter(line -> line.contains("error"));

 // Select the rows containing the word "warning"
 JavaRDD<String> warningRDD = inputRDD.filter(line ->
 line.contains("warning"));

 // Union errorsRDD and warningRDD
 // The result is associated with a new RDD: badLinesRDD
 JavaRDD<String> badLinesRDD = errorsRDD.union(warningRDD);

 // Remove duplicates lines (i.e., those lines containing both "error" and

"warning")
 JavaRDD<String> uniqueBadLinesRDD = badLinesRDD.distinct();

 // Count the number of bad lines by applying the count() action
 long numBadLines = uniqueBadLinesRDD.count();

 // Print the result on the standard output of the driver
 System.out.println("Lines with problems:" + numBadLines);
 ...
}

The related lineage graph is the following:

That graph can be improved by removing distinct() and union() (expensive operations) and

performing a filtering instead.

- 77 -

 R: Boolean

There are different solution (three).

Named class:

The more standard solution is to define a class, implementing the given interface.

//Define a class implementing the Function interface
class ContainsError implements Function<String, Boolean> {
 // Implement the call method
 public Boolean call(String x) {
 return x.contains("error");
 }
}
...
// Read the content of a log file
JavaRDD<String> inputRDD = sc.textFile("log.txt");

// Select the rows containing the word "error"
JavaRDD<String> errorsRDD = inputRDD.filter(new ContainsError());

When call() is invoked, this method analyzes the value of the parameter X and returns true if

the string x contains the substring “error”. Otherwise, it returns false.

The filter() transformation selects the elements of the inputRDD satisfying the constraint

specified in the call method of the ContainsError class.

An object of the ContainsError is instantiated and its call method is applied on each element x of

inputRDD. If the function returns true, then x is stored in the new errorsRDD RDD, otherwise x

is discarded.

Anonymous class:

It is also possible to define inline a class, without specifying its name (this is why its anonymous)

that has a limited scope and can be used only where it is defined:

//Read the content of a log file
JavaRDD<String> inputRDD = sc.textFile("log.txt");

// Select the rows containing the word “error”
JavaRDD<String> errorsRDD = inputRDD.filter(
 new Function<String, Boolean>() {
 public Boolean call(String x) {
 return x.contains("error");
 }
 });

The new Function<>(){} defines on the fly a temporary anonymous class implementing the

Function<String, Boolean> interface. An object of this class is instantiated and its call method

is applied on each element x of inputRDD. If the call method returns true then x is “stored” in the

new errorsRDD RDD, otherwise x is discarded.

The anonymous class itself is equal to the content of the ContainErrors class defined in the

previous solution based on named classes.

- 79 -

We are working with RDDs of Strings, hence, the data type T of the Function<T, Boolean>

interface we are implementing is String and also each element on which the lambda function is

applied is a String.

Example:

Create an RDD of integers containing the values {1, 2, 3, 3} and then create a new RDD containing

only the values greater than 2:

// Create an RDD of integers. Load the values 1, 2, 3, 3 in this RDD
List<Integer> inputList = Arrays.asList(1, 2, 3, 3);
JavaRDD<Integer> inputRDD = sc.parallelize(inputList);

// Select the values greater than 2
JavaRDD<Integer> greaterRDD = inputRDD.filter(element -> {
 if (element>2)
 return true;
 else
 return false;
 });

We are working with Integers, hence the data type T of the Function<T, Boolean> interface we

are implementing is Integer and also the elements we are analysing by means of the lambda

functions are Integer values.

b. Map transformation

This method is different form the one exploited in the MapReduce applications. To elaborate a

(𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒) pair we should use FlatMap transformation.

The Spark map transformation is a one-to-one relation: for each input element 𝑥 there could be

only one output element 𝑦 = 𝑓(𝑥). The function 𝑓(⋅) is defined by the user.

The exploited method (from the JavaRDD<T> class) is the following:

JavaRDD<R> map(Function<T, R>)

Example:

Create an RDD from a textual file containing the surnames of a list of users. Then create a new

RDD containing the length of each surname:

// Read the content of the input textual file
JavaRDD<String> inputRDD = sc.textFile("usernames.txt");

// Compute the lengths of the input surnames
JavaRDD<Integer> lenghtsRDD = inputRDD.map(element -> new Integer(element.length());

The element parameter, of the lambda function, is a String (as the inputRDD type), while the

lambda function itself should return an Integer (as the legthsRDD type).

Example:

Create an RDD of integers containing the values {1, 2, 3, 3} and then create a new RDD containing

the square of each input element:

//Create an RDD of integers. Load the values 1, 2, 3, 3 in this RDD
List<Integer> inputList = Arrays.asList(1, 2, 3, 3);
JavaRDD<Integer> inputRDD = sc.parallelize(inputList);

- 81 -

//Read the content of a textual input file
JavaRDD<String> inputRDD = sc.textFile("names.txt");
// Select the distinct names occurring in inputRDD
JavaRDD<String> distinctNamesRDD = inputRDD.distinct();

The distinct transformation is not efficient because it should send all the occurrences through the

network, in the shuffle operation. All the copy to the same element should be sent to the same node,

in order to discard duplicates. This implies an huge network usage because all input data should be

sent on the network.

In general, using the shuffling operation, could decrease the performance of the task. So distinct

should be used only if really needed.

e. Sample transformation

The sample transformation selects only a subset of the data. The developer should specify if it is

possible to have duplicates in the final outcome and the fraction of input size we would like to take

as sample.

The samples are selected randomly in the input RDD.

The used method (from the JavaRDD<T> class) is the following:

JavaRDD<T> sample(boolean withReplacement, double fraction);

Example:

Create an RDD from a file that contains a sentence for each line and then create a new RDD

containing a random sample of sentences (using the “without replacement” strategy and a fraction

of 20%):

//Read the content of a textual input file
JavaRDD<String> inputRDD = sc.textFile("sentences.txt");

// Create a random sample of sentences
JavaRDD<String> randomSentencesRDD = inputRDD.sample(false, 0.2);

f. Set transformation

Those transformation are applied on a pair of RDDs. Some of them implement standard set

transformations:

 union

 intersection

 subtract

 cartesian

All of them have two input RDDs (on one the method is applied, the second is passed as parameter)

and only one output RDD.

All those transformation have the same data type in input and in output, except for the Cartesian

one that allow mixed data types.

- 83 -

2. Basic actions

The Spark actions can return a local Java variable, or store the RDD content in an output file or a

database table.

a. Collect action

The collect action returns a local Java list of object containing the same objects of the considered

RDD.

Be careful about the size of the RDD: large amount of data cannot be memorized in a local variable

of the Driver.

The used method (from the JavaRDD<T> class) is the following:

List<T> collect()

Example:

Create an RDD of integers containing the values {1, 2, 3, 3} and retrieve the values of the created

RDD and store them in a local Java list that is instantiated in the Driver:

//Create an RDD of integers. Load the values 1, 2, 3, 3 in this RDD
List<Integer> inputList = Arrays.asList(1, 2, 3, 3);
JavaRDD<Integer> inputRDD = sc.parallelize(inputList);

// Retrieve the elements of the inputRDD and store them in a local Java list
List<Integer> retrievedValues = inputRDD.collect();

It is really important to check if the whole RDD content could fit in main memory, because

retrievedValues is a Java local variable (hence stored in RAM).

b. Count action

The count action simply count the number of elements of an RDD. There could never happen an

out of memory problem because the output data is a single value. There is no shuffling operation,

because only the local amount of elements is sent on the network.

The used method (from the JavaRDD<T> class) is the following:

long count();

- 85 -

The used method (from the JavaRDD<T> class) is the following:

List<T> take(int n);

This action could be used to perform the top-𝑘 pattern, but the list should be sorted before to take

the elements.

Example:

Create an RDD of integers containing the values {1, 5, 3, 3, 2} and then retrieve the first two

values of the created RDD and store them in a local Java list that is instantiated in the Driver:

//Create an RDD of integers. Load the values 1, 5, 3, 3, 2 in this RDD
List<Integer> inputList = Arrays.asList(1, 5, 3, 3, 2);
JavaRDD<Integer> inputRDD = sc.parallelize(inputList);

//Retrieve the first two elements of inputRDD and store them in a local Java list
List<Integer> retrievedValues = inputRDD.take(2);

e. First action

The first action is similar to the take(1) action: it returns the first element in the RDD. The

differences between take and first actions is that the second one returns a single object, not a

collection.

The used method (from the JavaRDD<T> class) is the following:

T first();

First vs take(1) actions: the only difference between first() and take(1) is given by the fact that

 first(): returns a single element of type T

 take(1): returns a list of elements containing one single element of type T

f. Top action

The top action returns a local Java list of objects containing the top 𝑛 (largest) elements of the

considered RDD. The used ordering criteria is the default one for class T, otherwise the descending

order is used.

The used method (from the JavaRDD<T> class) is the following:

List<T> top(int n);

g. TakeOrdered action

The take ordered action returns a local list of objects containing the top 𝑛 (smallest) elements of

the considered RDD. The ordering is specified by the developer by means of the class, passed as

parameter, implementing the java.util.Comparator<T> interface.

The used method (from the JavaRDD<T> class) is the following:

List<T> takeOrdered (int n, java.util.Comparator<T> comp);

- 87 -

The parameter of the reduce() method can be exploited directly using lambda expression (inside the

parenthesis) to avoid write an whole class.

Example:

Create an RDD of integers containing the values {1, 2, 3, 3}, then compute the sum of the values

occurring in the RDD and “store” the result in a local Java integer variable in the Driver:

//Create an RDD of integers. Load the values 1, 2, 3, 3 in this RDD
List<Integer> inputListReduce = Arrays.asList(1, 2, 3, 3);
JavaRDD<Integer> inputRDDReduce = sc.parallelize(inputListReduce);

// Compute the sum of the values
Integer sum= inputRDDReduce.reduce(
 (element1, element2) -> element1+element2);

Example:

Create an RDD of integers containing the values {1, 2, 3, 3}, then compute the maximum value

occurring in the RDD and “store” the result in a local Java integer variable in the Driver:

//Create an RDD of integers. Load the values 1, 2, 3, 3 in this RDD
List<Integer> inputListReduce = Arrays.asList(1, 2, 3, 3);
JavaRDD<Integer> inputRDDReduce = sc.parallelize(inputListReduce);

// Compute the maximum value
Integer max = inputRDDReduce.reduce(
 (element1, element2) -> {
 if (element1>element2)
 return element1;
 else
 return element2;
 });

j. Fold action

The fold action is similar to the reduce action, the only difference is that the given function could

also be not commutative (but still associative). So the fold action recursively merge together all

the elements (using the function specified as parameter) until it retrieve a single object.

An initial value (initial zero) should be provide together with a lambda function implementing the

call method of the Function2<T,T,T> interface.

The used method (from the JavaRDD<T> class) is the following:

T fold(T zeroValue, Function2<T, T, T> f);

Fold vs reduce: differently from the reduce action, the fold action is characterized by a “zero” value

and could be used to parallelize functions that are associative, but non-commutative (e.g.

concatenation of a list of strings). The given function should be at least associative, otherwise the

result depends on how the RDD is partitioned.

Example:

The concatenation of string has the following properties.

It is NOT commutative:

- 89 -

 public int numElements;

 public SumCount(int sum, int numElements) {
 this.sum = sum;
 this.numElements = numElements;
 }
 public double avg() {
 return sum/ (double) numElements;
 }
}

The usage of those class is the following:

//Create an RDD of integers. Load the values 1, 2, 3, 3 in this RDD
List<Integer> inputListAggr = Arrays.asList(1, 2, 3, 3);
JavaRDD<Integer> inputRDDAggr = sc.parallelize(inputListAggr);

//Instantiate the zero value
SumCount zeroValue = new SumCount(0, 0);

// Compute sum and number over the elements of inputRDDAggr
SumCount result = inputRDDAggr.aggregate(zeroValue,
 (a, e) -> {
 a.sum = a.sum + e;
 a.numElements = a.numElements + 1;
 return a;
 },
 (a1, a2) -> {
 a1.sum = a1. sum + a2.sum;
 a1.numElements = a1.numElements + a2.numElements;
 return a1;
 });

The graphical simulation of the example is the following:

- 91 -

Key-value pair RDDs
The pair RDDs are the Spark support to store key-value pairs. This data format was usually used

in MapReduce applications.

Pair RDDs are characterized by specific operations (reduceByKey(), join(), etc…) but also by the

standard operations for RDDs (filter(), map(), reduce(), etc…).

Pair RDDs allow:

 grouping data according to similar keys

 computing computation by key

The basic idea is similar to the MapReduce-based programs, but Spark provide more operations.

Creating Pair RDDs

Similarly to standard RDDs, also Pair RDDs are lazily created and evaluated (when an action

occurs).

Pair RDDs can be created from:

 standard RDDs:

 applying the mapToPair() transformation

 applying other specific transformations

 Java in-memory collection:

 Using the parallelizePairs() method of the SparkContext class

In Java there is not a specific class to represent pairs, so it exploits the Tuple2<> Scala class:

scala.Tuple2<K,V>

to represent tuples containing two values. In this case the first column is the key, while the second

is the actual value of the pair.

To instance a new object, we can invoke the constructor:

new Tuple2(key, value)

and to retrieve the content, there are two specific methods:

 first value (key): tuple._1()

 second value (value): tuple._2()

There are not the methods getKey() or getValue() because Tuple2 was not designed specifically to

handle key-value pairs. We semantically map the key to the first value and the value to the second

one.

The map to pair transformation is used to create a new PairRDD by applying it on each single

element of the input standard RDD.

For each 𝑥 input element, the 𝑦 = 𝑓(𝑥) tuple is inserted in the new PairRDD (where 𝑓(⋅) is defined

by the user).

The signature of the method (of the JavaRDD<T> class) is the following:

JavaPairRDD<K,V> mapToPair(PairFunction<T,K,V> function)

- 93 -

a. ReduceByKey transformation

The reduce by key transformation is similar to the reduce() action, but they have the following

differences:

 reduceByKey is a transformation while Reduce is an action

 reduce action returns a single value, while reduceByKey transformation returns a pair for

each key

The user provided function must be both associative and commutative, otherwise the result would

be partition-dependent.

The data type of the new PairRDD is the same of the input PairRDD, because the reduction is just

about merging, not changing.

The used method (of the JavaPairRDD<K,V> class) is the following:

JavaPairRDD<K,V> reduceByKey(Function2<V,V,V> f)

The f parameter should implement the Function2<V, V, V> interface and so define the following

method:

public V call(V element1, V element2)

Example:

Given a PairRDD containing the pair (𝑛𝑎𝑚𝑒, 𝑎𝑔𝑒), associate each name with the age of the

youngest user with that name.

// Given the PairRDD composed by (name,age)
JavaPairRDD<String, Integer> nameAgeRDD = ...;

// Select for each name the lowest age value
JavaPairRDD<String, Integer> youngestPairRDD =
 nameAgeRDD.reduceByKey(
 (age1, age2) -> {
 if (age1<age2)
 return age1;
 else
 return age2;
 });

The ReduceByKey transformation is useful also when we want to count the number of element, in a

set, associated with a specific key. This transformation is used to solve the WordCount problem.

b. FoldByKey transformation

The fold by key transformation is similar to the ReduceByKey one, but there are some slight

differences:

 foldByKey is characterized by a zero value

 the function can be just associative (not commutative)

The zero value is needed only when a set can be empty, but in BigData application it is difficult to

have empty sets, so FoldByKey is rarely used (ReduceByKey is preferred).

The used method (of the JavaPairRDD<K,V> class) is the following:

JavaPairRDD<K,V> foldByKey(V zeroValue, Function2<V,V,V> f);

- 95 -

 }
}

Afterwards we exploit it as follows:

JavaPairRDD<String, AvgCount> avgAgePerNamePairRDD = nameAgeRDD.combineByKey(
 inputElement -> new AvgCount(inputElement, 1),

 (intermediateElement, inputElement) -> {
 AvgCount combine = new AvgCount(inputElement, 1);
 combine.total = combine.total + intermediateElement.total;
 combine.numValues = combine.numValues +
 intermediateElement.numValues;
 return combine;
 },

 (intermediateElement1, intermediateElement2) -> {
 AvgCount combine = new AvgCount(intermediateElement1.total,
 intermediateElement1.numValues);
 combine.total = combine.total + intermediateElement2.total;
 combine.numValues = combine.numValues +
 intermediateElement2.numValues;
 return combine;
 });
avgAgePerNamePairRDD.saveAsTextFile(outputPath);

The three main parameters are the following:

 createCombiner(): given an Integer, it returns an AvgCount object

 mergeValue(): given an Integer and an AvgCount object, it combines them and returns an

AvgCount object

 mergeCombiner(): given two AvgCount objects, it combines them and returns an AvgCount

object

d. GroupByKey transformation

The group by key transformation conceptually returns the list of all the values related to the

same key. Actually, for each input tuple, it is created a key-value pair where the value is an

Iterable<> object over the whole list of values.

The used method (of the JavaPairRDD<K,V> class) is the following:

JavaPairRDD<K,Iterable<V>> groupByKey();

Example:

Given a PairRDD containing the pair (𝑛𝑎𝑚𝑒, 𝑎𝑔𝑒) (as in the previous example), create an output

file containing one line for each name followed by the ages of all the users with that name.

// Create one group for each name with the associated ages
JavaPairRDD<String, Iterable<Integer>> agesPerNamePairRDD = nameAgeRDD.groupByKey();
// Store the result in a file
agesPerNamePairRDD.saveAsTextFile(outputPath);

In the new PairRDD each pair/tuple is composed by:

 key: a string

 value: a list of integers

