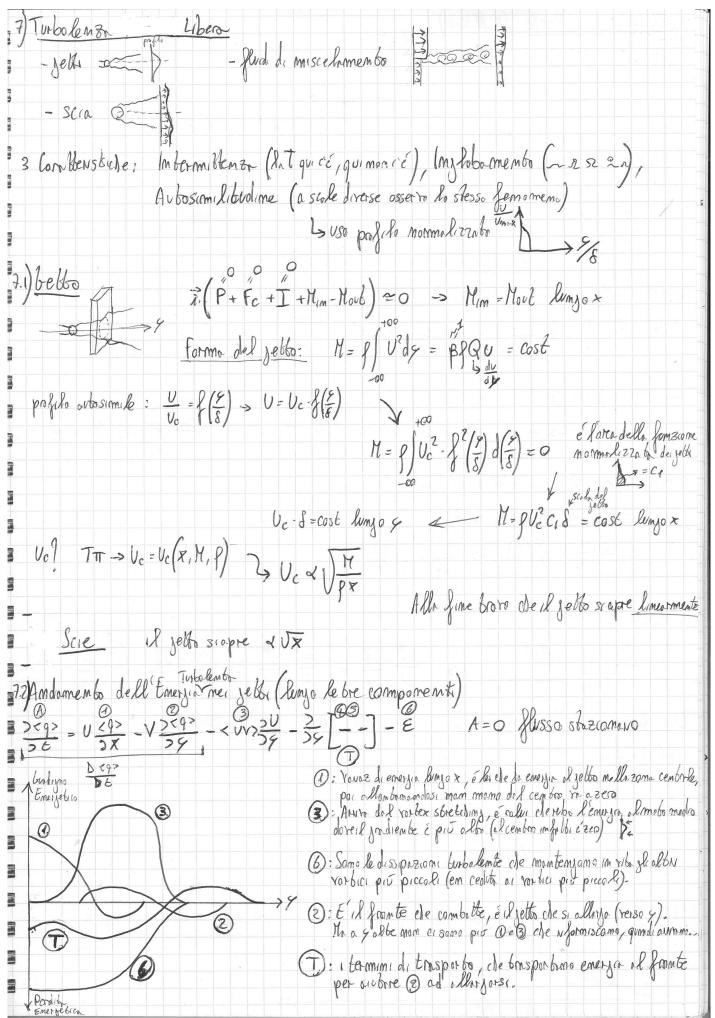
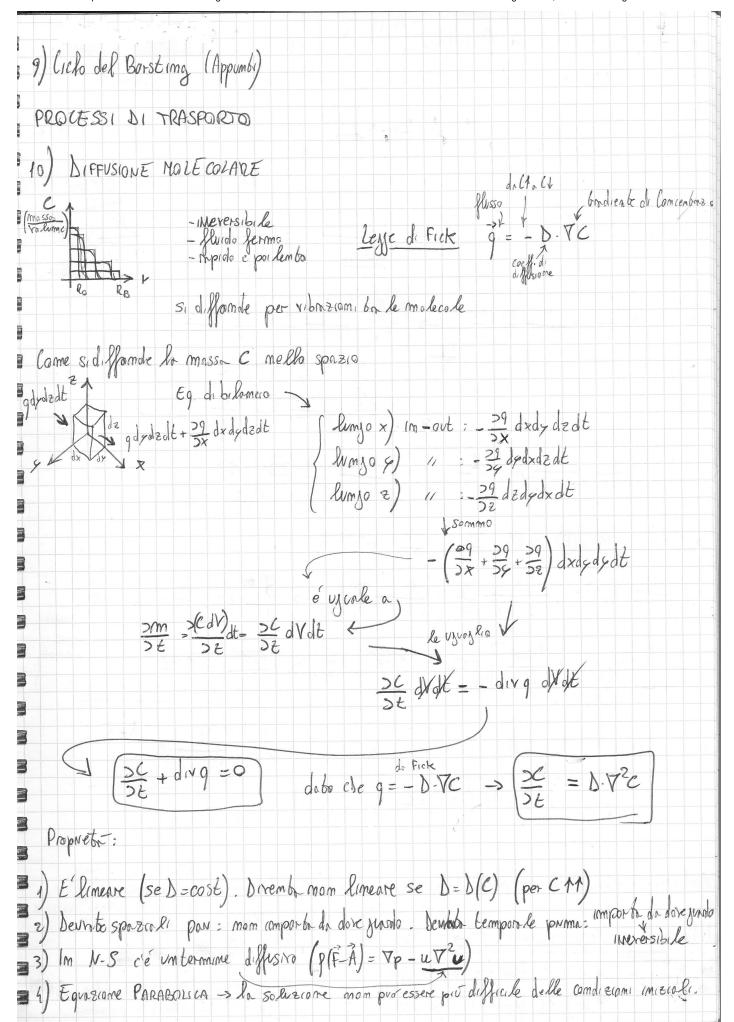
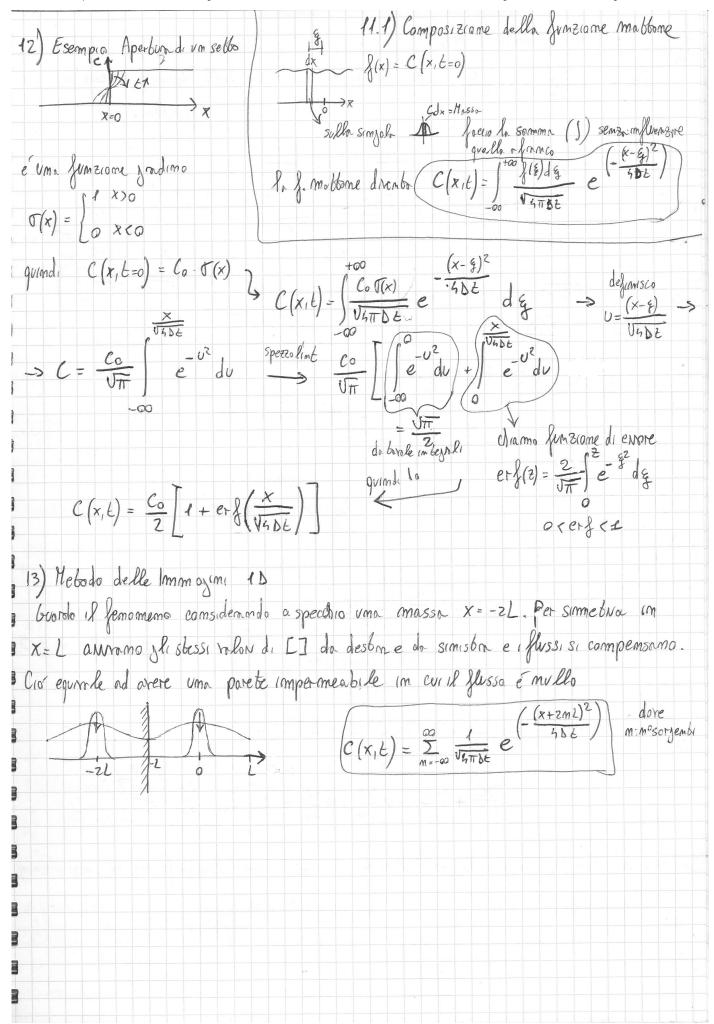


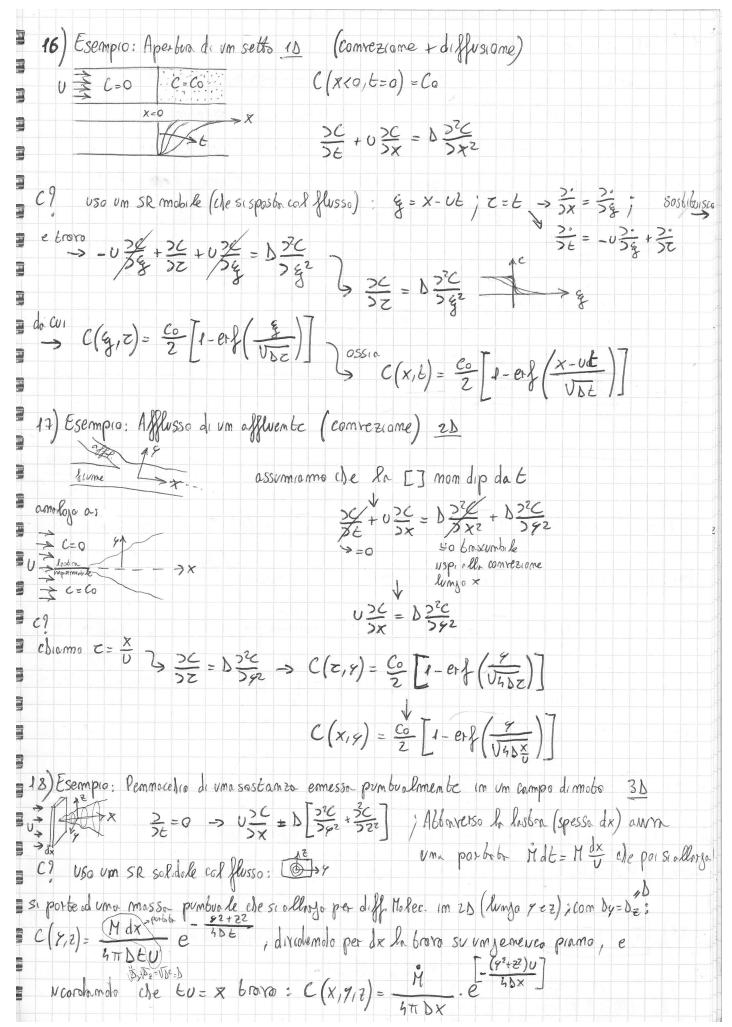
Appunti universitari
Tesi di laurea
Cartoleria e cancelleria
Stampa file e fotocopie
Print on demand
Rilegature

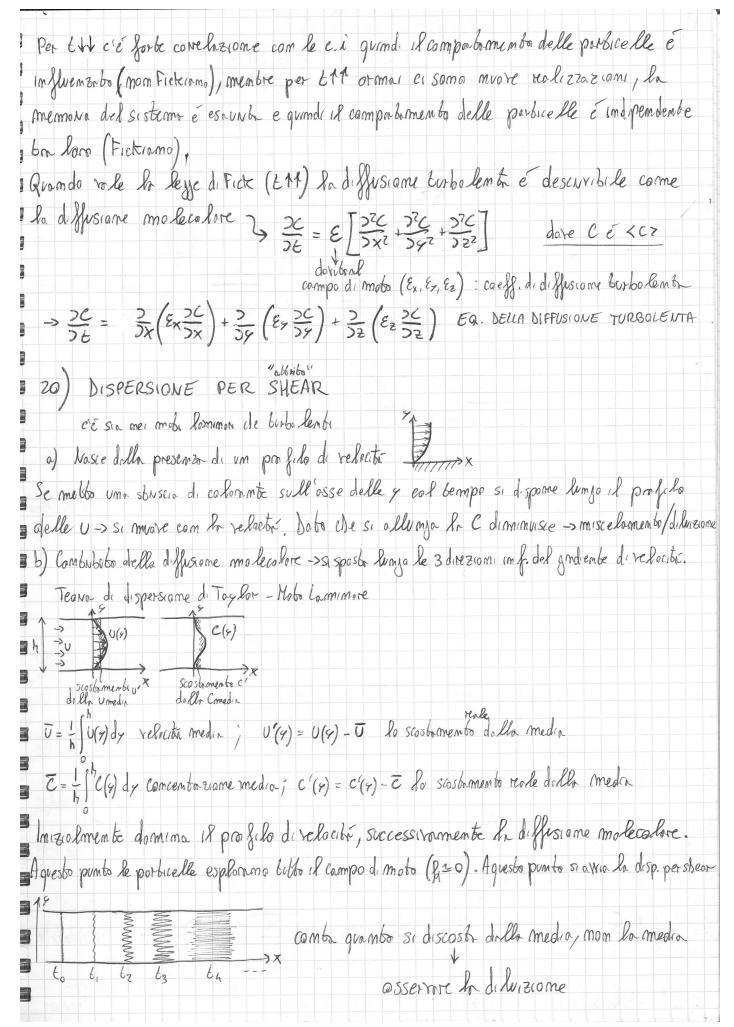
NUMERO: 2302A ANNO: 2017

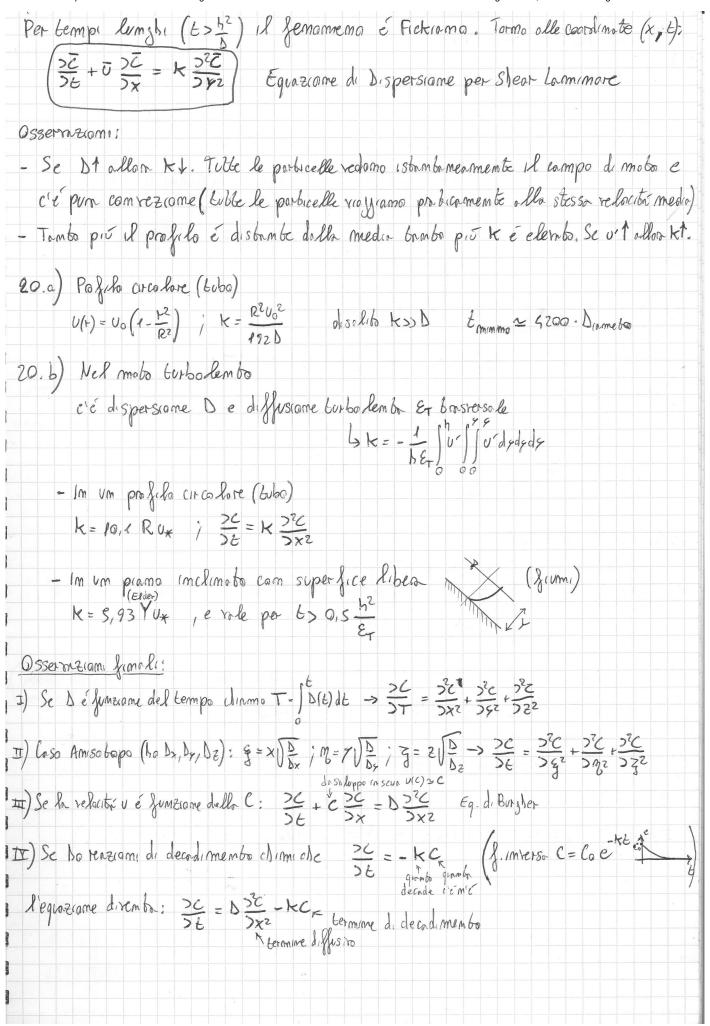

APPUNTI

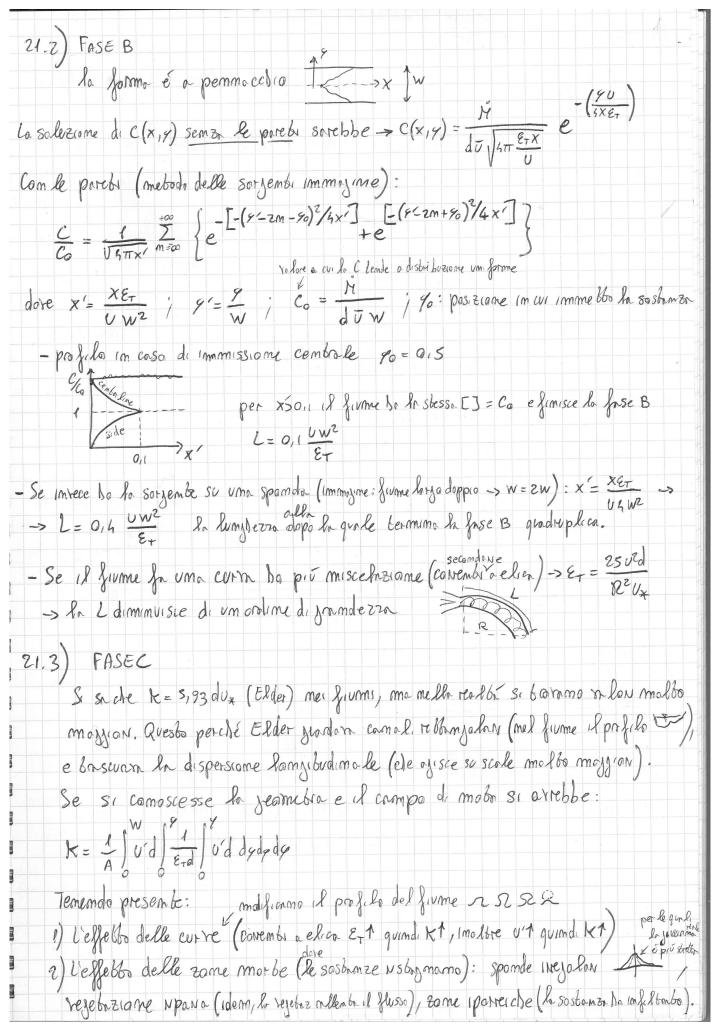

STUDENTE: Cavallo Federico

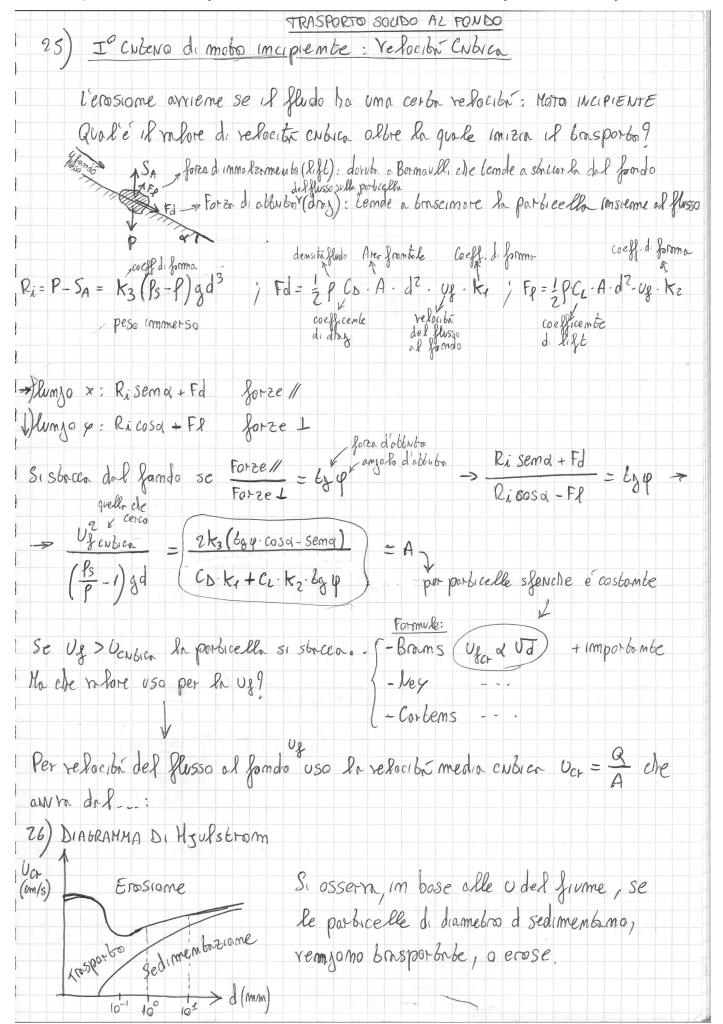

MATERIA: Idraulica Ambientale - Esercitazioni Complete - Dimostrazioni per Esame - Prof. Ridolfi

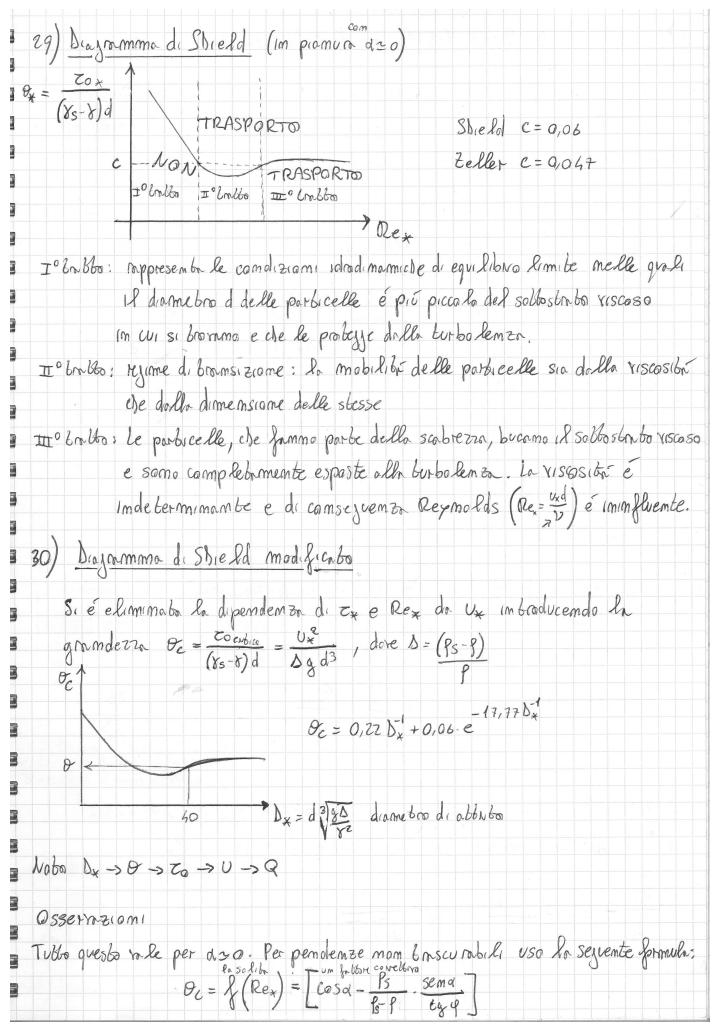

Il presente lavoro nasce dall'impegno dell'autore ed è distribuito in accordo con il Centro Appunti. Tutti i diritti sono riservati. È vietata qualsiasi riproduzione, copia totale o parziale, dei contenuti inseriti nel presente volume, ivi inclusa la memorizzazione, rielaborazione, diffusione o distribuzione dei contenuti stessi mediante qualunque supporto magnetico o cartaceo, piattaforma tecnologica o rete telematica, senza previa autorizzazione scritta dell'autore.

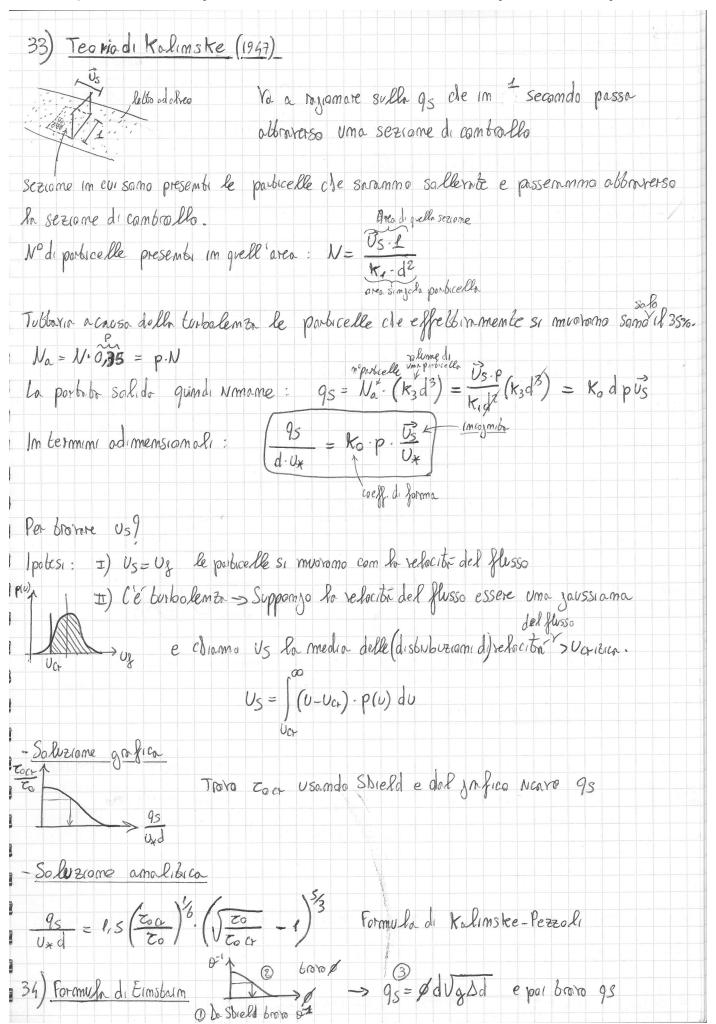

1	DIHOSTRAZIONI PER L'ESAME DI	
	IDRAULICA AMBIENTALE	
	(prof. Ridolfi)	
1) Equazio	one di Novier - Stokes	
9($(\vec{F} - \vec{A}) = \text{grad} \vec{\rho} - u \nabla^2 \vec{\sigma}$	
com Js	Prindici di Elmsteim:	
701 7t	$+ U_3 \frac{\partial U_i}{\partial x_3} = -\frac{1}{9} \frac{\partial P}{\partial x_i} + 2 \frac{\partial U_i^{\dagger}}{\partial x_3 \partial x_3} - g \mathcal{E}_{i3}$	
2) Equa	Zione di Combinuità	
> 01 > X1	$+\frac{\partial U_2}{\partial x_2} + \frac{\partial U_3}{\partial x_3} = 0 \qquad \Rightarrow \qquad d_1 y \vec{U} = 0$	
com g.	Ri Indici di Einstein:	
>Ui >Xi		
3) Equazi	ane del Mato Media	
<u>>Vi</u> >€	$-U_{3} \frac{\partial U_{i}}{\partial x_{3}} \frac{1}{\partial x_{3}} \frac{\partial \langle U_{3} U_{i} \rangle}{\partial x_{3}} = -\frac{1}{\rho} \frac{\partial \rho}{\partial x_{i}} + \frac{1}{\rho} \frac{\partial^{2} U_{i}}{\partial x_{3} \partial x_{3}} - \frac{\partial}{\partial x_{i}} \delta_{i3}$	
3.1) Eq	genziame di Reymolds	
<u>DL</u> Dt	$\frac{di}{dt} = -\frac{p}{p} > \frac{2}{2k_5} < \frac{2}{3} > -88i_3$	
	> Temsiami di Resmolds	4

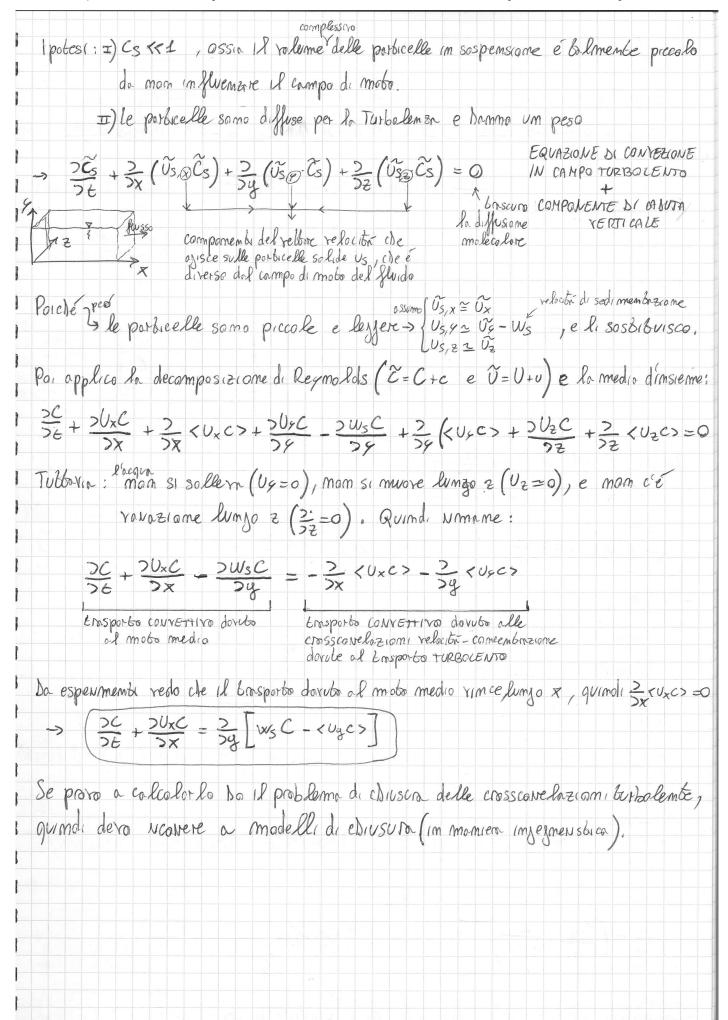


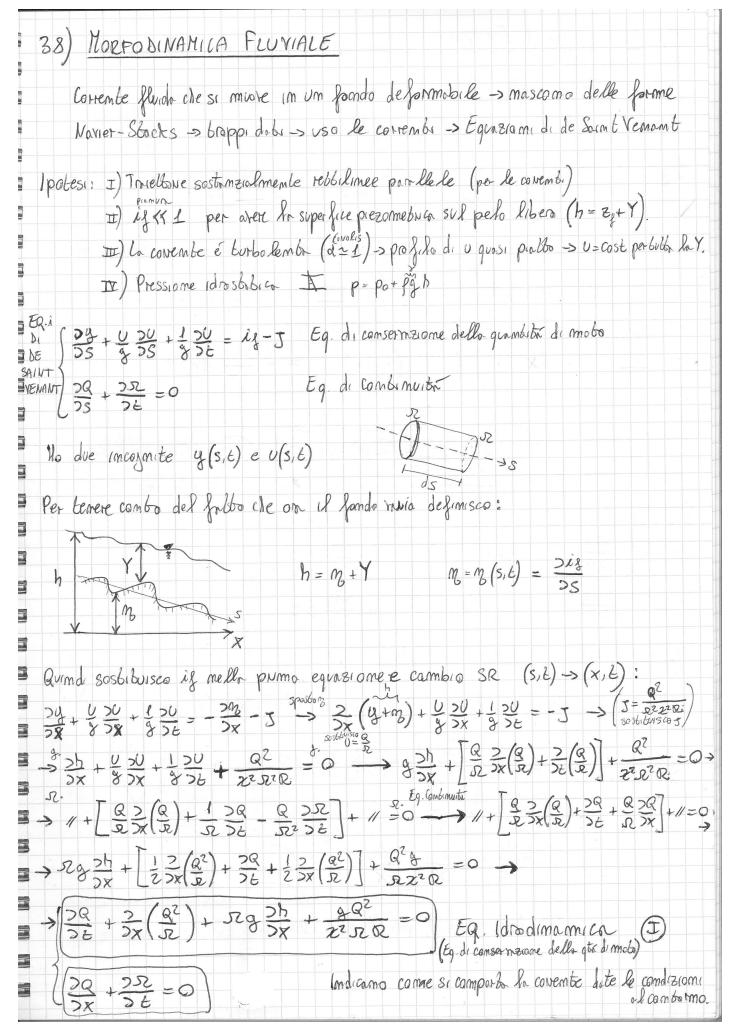


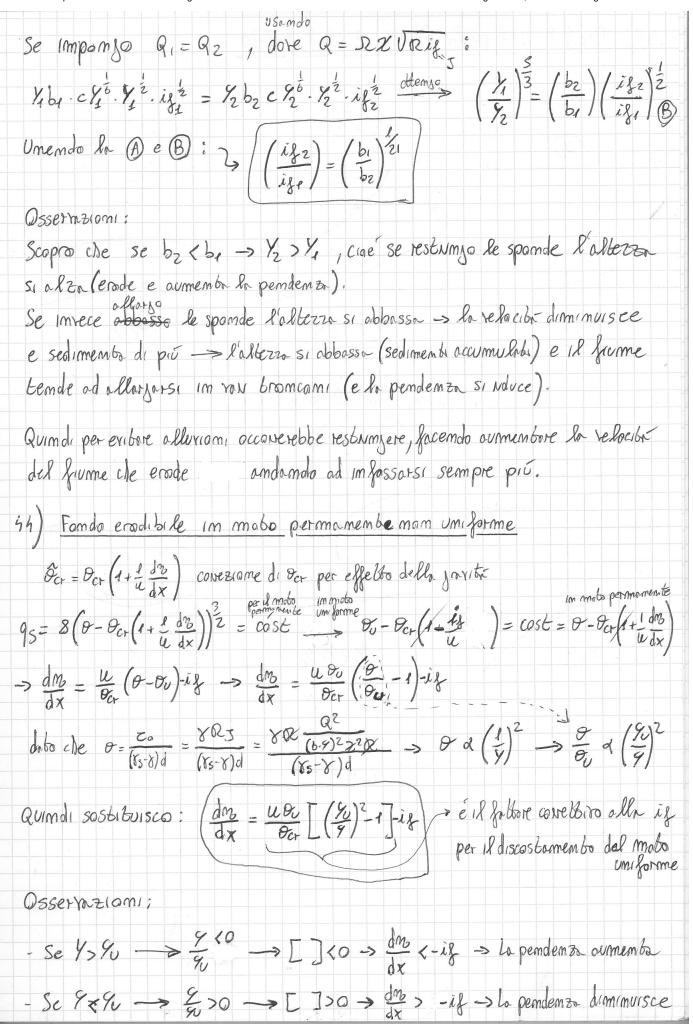












Si pua fimalimente chiudere il sistema:	Porbiti Selida Mato
$\partial = \frac{\tau_0}{(\gamma_3 - \gamma)d} \longrightarrow \int = \int (\theta, \theta_{cr}) \longrightarrow q_S = \int \sqrt{2} d^3$	Porbits Slide m_060 $\Rightarrow Q_S = 9_S - 5_g$
41) Teona delle Cambtensbiehe di Riemann	
Eq. De Saint Vemant -> eq. differenziali iperbaliche	
la soluziame e la composizion somo le ronabili (3).	ne di timbe omde guante
Le omde viagiamo: 2 sulla superfice libera (amde idr 1 sul fomdo (amde di forndo c3)	odinamiche (1, cz)
Le onde idrodimamiche samo quelle che, im bose a Fr, Nesson - Fr <1 > Us <1 > Us < Vgg l'ando Noole lo	
- Fr>1 -> U8 >1 -> U8 > Jgg Randa Mom Nesco	
le ande di fondo somo lejate alle perturbazioni del fondo. La relacibi con cui l'eg di Exmer si propaja sul fondo.	ho e si pué capire quanté
$C_3 = \frac{V_3}{1 - F_V^2} \left(\frac{2RS}{5U} - \frac{2RS}{5V} \right)$ $-Se F_V < 1 L$	
Ossernziami:	
- Se Fr > 1 l'omda di fondo usale verso monte. M (reloce) (sovernota di monte) Fr > 1 la covernte usente solo a ville, ma il fond l'ando di l'ando di guindi nei fiumi con Fr < 1 la covernte usente	er firms perbambo com o me usembe amche amombe. la covembe else la sposba), etrabado alle) amche a mante, ma 12
fondo me Nsente so lo a mille.	

POLITECNICO DI TORINO

Corso di Laurea Magistrale in Ingegneria per l'Ambiente e il Territorio

a.a. 2017/2018

Corso di Idraulica Ambientale

Esercitazioni

Docenti:

Prof. Luca Ridolfi Prof. Costantino Manes

> Federico Cavallo S245415

Esercitazione 1: calcolo flussi turbolenti di CO2

Gli obbiettivi di questa esercitazione sono i seguenti:

- 1. Calcolo flusso atmosferico di CO₂ emessa dal terreno alpino;
- 2. Analisi statistica delle serie di dati, in particolare calcolando: media, deviazione standard, CV, flusso turbolento di CO₂, distribuzione di frequenza e correlazioni;

Sono disponibili le misure delle velocità del vento nelle tre dimensioni u, v, w, la temperatura dell'aria e la concentrazione della CO₂.

Queste misure sono state effettuate su una serie di 30 minuti ad una frequenza di 20 Hz (36000 dati).

Il sito di misura è collocato a Davos, in Svizzera, ad una quota di 2540 m s.l.m.

La tecnica utilizzata è la eddy-covariance, la quale si può applicare ovunque ci sia uno scambio di sostanze tra una superficie (in questo caso la neve) e una corrente turbolenta che la lambisce (flusso di CO₂).

Svolgimento:

Per il <u>calcolo del flusso atmosferico di CO₂</u>, emessa o assorbita, è necessario considerare solo la componente della velocità del vento perpendicolare al terreno w(t).

Il flusso di CO₂ si calcola come il prodotto tra la concentrazione c(t) e la relativa velocità w(t):

$$f(t) = w(t) c(t)$$
(1.1)

Grazie alla decomposizione di Reynolds, è possibile vedere w(t) e c(t) come la somma delle medie di queste grandezze (W e C), che rimangono costanti per tutti i tempi, e le fluttuazioni turbolente in funzione del tempo w'(t) e c'(t), pari alla differenza tra il valore delle grandezze misurate (w(t) e c(t)) e la loro media. Di conseguenza la (1.1) diventa:

$$f(t) = (W + w'(t)) (C + c'(t))$$
(1.2)

Si procede quindi a considerare la media d'insieme del flusso di CO₂, e grazie a questo si può considerare praticamente uguale a zero il termine W, in quanto il flusso medio della velocità perpendicolare al terreno in prossimità di quest'ultimo è circa uguale a zero.

Di conseguenza il flusso medio di CO₂ si ottiene utilizzando la seguente relazione:

$$\langle f(t) \rangle = W C + \langle w' c' \rangle = \langle w' c' \rangle$$
 (1.3)

Dalla (1.3) si ottiene un valore del flusso pari a -0.000397 mol/(sm²).

Questo valore indicherebbe che la CO_2 venga assorbita dalla neve, il che non ha senso dal momento che nella neve non abbiamo alghe o altri tipi di piante o organismi che potrebbero assorbire la CO_2 presente nell'aria.

Di conseguenza si può ipotizzare che ci sia un <u>errore</u> della rilevazione delle velocità da parte dello strumento.

2

In questo caso si è deciso di suddividere il campione di dati in 20 classi. È stata scelta questa suddivisione in quanto si è osservato dal grafico che una suddivisione maggiore non avrebbe fornito ulteriori indicazioni rispetto a quelle che si possono osservare scegliendo questa suddivisione. Si osserva dalla Figura 1.1 una distribuzione modale avente un solo picco.

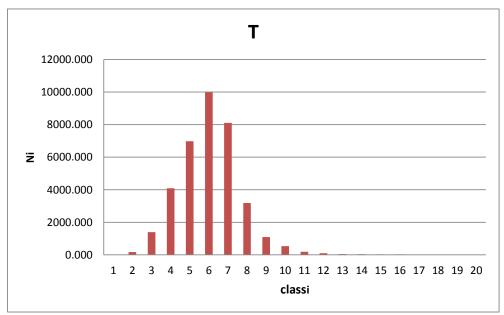


Figura 1.1

Si è scelta la stessa suddivisione per la velocità lungo v e lungo w, mentre per la velocità lungo u si è deciso di aumentare il numero di classi a 50 per mettere maggiormente in risalto il fatto di avere una distribuzione bimodale (Figure 1.2, 1.3 e 1.4).

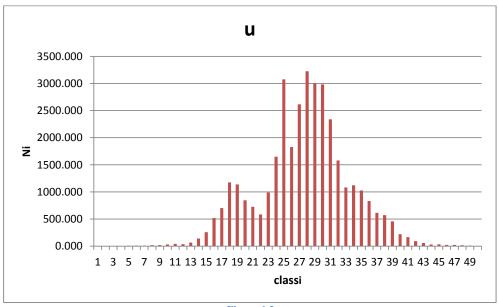


Figura 1.2

4

<u>L'autocorrelazione</u> ρ si calcola tramite una serie di operazioni:

- Si calcolano le serie delle fluttuazioni x' e y', le quali in questo caso coincidono dal momento che si calcola l'autocorrelazione.
- Si sfasano le due serie di un intervallo pari allo sfasamento T, uguale a 20 secondi per la t', per u' e per v' e pari a 1 secondo invece per w'.

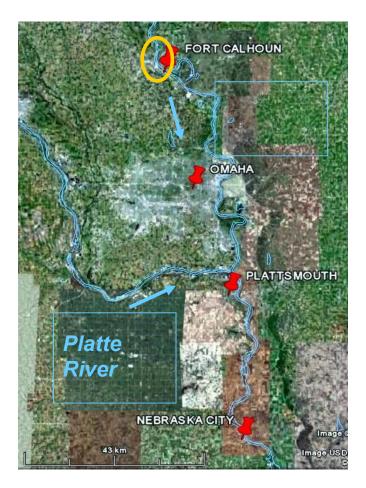
- Si calcola R(T) come media di [x'₁y'₄ x'₂y'₅].
- Si ripete per tutti i valori di T, normalizzando alla fine

$$\rho(T) = R(T) / (\sigma_x \sigma_y)$$

Su Excel si procede al calcolo utilizzando la funzione CORRELAZIONE(x,y), creando una tabella come quella riportata di seguito (Tabella 1.3).

Tabella 1.3

	Α	В	С
	(Colonna dati)	(Colonna sfasamento)	
1	25	0	=correlazione(A1:A4;
			A1:A4)
2	45	1	=correlazione(A1:A4;
			A2:A5)
3	23	2	
4	46	3	
5		4	


In Tabella 1.4 si riportano i risultati dei calcoli sopra esposti, e in Figura 1.5 i relativi grafici dell'autocorrelazione.

Dalla Figura 1.5 si osserva che i diagrammi vengono rappresentati fino ad una autocorrelazione pari a 0.2, in quanto per valori inferiori l'autocorrelazione non è significativa a causa di errori strumentali.

Esercitazione 2: trasporto di inquinanti nei corsi d'acqua

PROBLEMA:

- La centrale nucleare di Fort Calhoun (Nebraska, USA) è situata sulla sponda destra del Missouri River. Si vuole verificare quali siano le concentrazioni nel corso d'acqua in seguito ad un incidente che comporti un <u>rilascio istantaneo</u> nel fiume di 100 kg di uranio in forma disciolta.
- \triangleright Si richiede in particolare di determinare gli effetti di tale rilascio sulle <u>concentrazioni nel</u> <u>tempo</u> C(x,t) in corrispondenza di alcuni centri urbani (Figura 2.1);
- \triangleright L'analisi deve essere effettuata per le condizioni di <u>piena</u> e di <u>magra</u>. In particolare, per le città presenti sul tratto di fiume in esame si identifichino <u>quando e per quanto tempo</u> la concentrazione sia superiore al valore limite di concentrazione ammissibile fornito dall'OMS ($C_{LIM} = 15 \,\mu\text{g/L}$).

Missouri River

$$K = 0.011 \frac{w^2 U^2}{d u_*}$$
 Fischer

$$K = 0.058 \frac{dU}{S}$$
 Mcquivery & Keefer

$$K = 0.18 \left(\frac{u_*}{U}\right)^{1.5} \frac{w^2 U^2}{d u_*}$$
 Liu

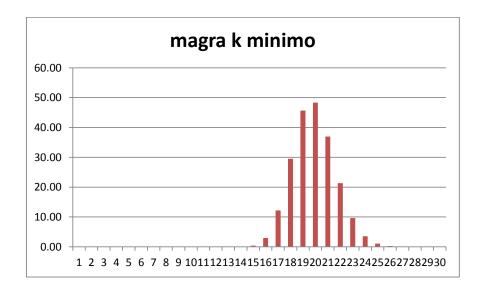
$$K = 5.915 d u_* \left(\frac{w}{d}\right)^{0.62} \left(\frac{U}{u_*}\right)^{1.428}$$
 Seo & Chong

$$K = 2.0 d u_* \left(\frac{w}{d}\right)^{1.5}$$
 Iwasa & Aya

$$K = 10.612 dU \left(\frac{U}{u_*}\right)$$
 Kashefipour & Falconer

$$K = 2.0 d u_* \left(\frac{w}{d}\right)^{0.96} \left(\frac{U}{u_*}\right)^{1.25}$$
 Saway & Dutta

I dati utilizzati nelle formule sopra riportante e i relativi risultati sono riportati in Tabella 2.2 e 2.3.


Tabella 2.2

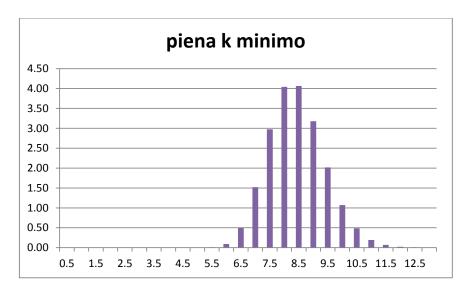

		Q	w	Α	if	U media	d	u*	epsilon t
missouri a monte	magra	131	157	198	0.0002	0.66	1.26	0.05	0.04
missouri a monte	piena	2744	316	1747	0.0002	1.57	5.53	0.10	0.35
missouri a vallo	magra	141	166	375	0.0002	0.38	2.26	0.07	0.09
missouri a valle	piena	5021	335	2100	0.0002	2.39	6.27	0.11	0.42
platte river	magra	10							
	piena	2277							

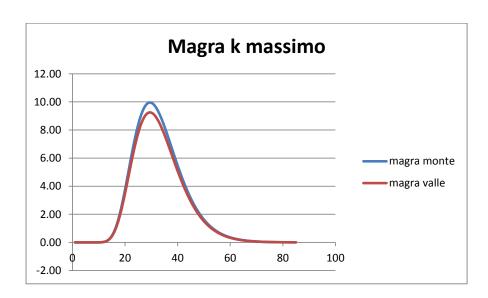
Tabella 2.3

	Fischer	McQuivery	Liu	Seo	Iwasa	Kashefipuor	Saway
Monte							
magra	1891.94	241.97	638.23	297.39	174.27	117.77	327.11
Monte							
piena	4706.42	2518.23	1314.96	2015.64	497.63	1389.74	1663.93
Valle							
magra	284.94	246.33	347.39	151.32	189.47	50.91	162.05
Valle							
piena	10151.10	4346.54	1659.36	3888.44	543.18	3429.07	2944.01

10

Dall'analisi dei grafici, si evince che la concentrazione limite di 15 μ g/L è superata a Omaha solo nel caso del fiume in magra utilizzando la relazione che prevede il K minimo. La concentrazione limite in particolare viene superata dopo un tempo di rilascio di 16 ore e rimane oltre tale valore per 6 ore

Questo risultato è da ricercarsi nel fatto che durante un evento di magra, essendoci una portata molto bassa, l'inquinante non può diluirsi in molta acqua, e di conseguenza le concentrazioni rimangono più elevate. Questo effetto è anche incrementato dal fatto di aver preso il K minimo, che indica il fatto che l'inquinante si disperde più lentamente.


Di seguito vengono riportati i grafici delle concentrazioni di inquinanti a *Plattsmouth*, prima della confluenza (x=72 km).

Da questi grafici si possono fare le stesse osservazioni fatte per i grafici relativi a Omaha, con l'unica differenza che le concentrazioni hanno valori inferiori dal momento che la distanza percorsa dall'inquinante è maggiore.

Di seguito vengono riportati i grafici per le concentrazioni di inquinanti dopo la confluenza con il *Platte River*. Su questi grafici sono anche riportate le concentrazioni ottenute dai grafici precedenti, in modo da poter notare l'abbassamento della curva delle concentrazioni a causa della diluizione del contaminante con l'acqua del Platte River, la quale è pulita.

Le concentrazioni dell'inquinante dopo la confluenza sono state calcolate effettuando un bilancio di massa, ovvero Q_{MONTE} = Q_{VALLE} C_{VALLE} , e ricavando da questa relazione la concentrazione a valle C_{VALLE} .

Il calcolo della concentrazione di inquinante a Nebraska City si ricava grazie alla seguente formula

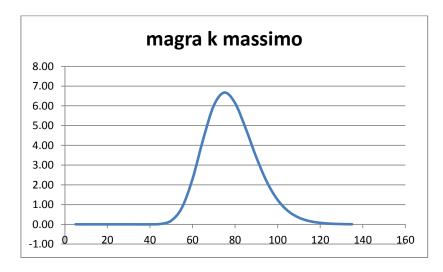
$$C(x,t) = \sum_{i=1}^{N} \frac{m_i}{A\sqrt{4\pi K(t-t_i)}} \cdot \exp\left[-\frac{\left((x-x_{AFFL}) - U(t-t_i)^2\right)^2}{4K(t-t_i)}\right]$$
(2.3)

Dove i valori di massa rilasciata m_i sono calcolati dalla concentrazione a valle dell'affluente come:

$$m_i = Q C_{VALLE}(t_i) \Delta t \tag{2.4}$$

I tempi t_i sono i tempi in cui discretizzare la curva delle concentrazioni. Nel caso in esame si è scelto di considerare un intervallo temporale di 85 ore, discretizzato ad intervalli di 1 ora.

Di conseguenza è necessario impostare su Excel una matrice dove sull'asse delle y ad ogni tempo t_i è associata una massa di inquinante m_i , mentre sull'asse delle x sono riportati i tempi t di arrivo della massa di inquinante m_i relativa ad ogni tempo t_i a Nebraska City ad intervalli di 5 ore.


Ne segue che per $t_i > t$, la (2.3) non darà luogo a risultati sensati.

Si sommano quindi in colonna i valori delle concentrazioni, ottenendo il valore di concentrazione totale associato ad ogni tempo t.

Si riporta di seguito un estratto di tabella utilizzata su Excel per il calcolo sopra descritto.

		t [s]	18000	36000	54000
mi [kg]	ti [ore]		5	10	15
0.0	1	3600	0.00	0.00	0.00
0.0	2	7200	0.00	0.00	0.00
0.0	3	10800	0.00	0.00	0.00
0.0	4	14400	0.00	0.00	0.00
0.0	5	18000	#DIV/0!	0.00	0.00
0.0	6	21600	#NUM!	0.00	0.00
0.0	7	25200	#NUM!	0.00	0.00
0.0	8	28800	#NUM!	0.00	0.00
0.0	9	32400	#NUM!	0.00	0.00

La tabella va realizzata per ognuna delle 4 curve in precedenza trovate, ottenendo i seguenti grafici:

16

Si osserva che a Nebraska City, indipendentemente dal K scelto, si ottengono valori di concentrazione di inquinante inferiori alla soglia di concentrazione massima.

I calcoli svolti in precedenza sono sempre stati eseguiti considerando l'ipotesi dell'equazione 1D. Questa ipotesi è valida solo quando il soluto è ben miscelato su tutta la sezione; di conseguenza è necessario calcolare la lunghezza minima L_{MIN} necessaria affinché il soluto sia miscelato dalla turbolenza ϵ_T su tutta la larghezza w del corso d'acqua, utilizzando la seguente formula valida per immissione centrale:

$$L_{MIX1} = 0.1 \frac{w^2}{\varepsilon_t} U \tag{2.5}$$

dove:

$$\varepsilon_t = 0.6 \, d \, u_* \qquad \qquad u_* = \sqrt{g \, d \, S}$$

Nella Tabella 2.4 sono riportati i risultati ottenuti dalla (2.5).

Tabella 2.5

		L min	L min
		(m)	(km)
monte	magra	43326.77	43.33
	piena	45400	45.40
valle	magra	11482.03	11.48
	piena	64327.7	64.33

Si osserva che per quanto riguarda il tratto a valle della confluenza si ottengono lunghezza inferiori ai 47 km, ovvero dove si trova la prima località nella quale bisogna rilevare le concentrazioni (Omaha): l'ipotesi 1D è verificata.

Nel tratto a valle invece, essendoci 59 km tra il punto di confluenza e la città di Nebraska City, in caso di fiume in magra l'ipotesi è verificata, mentre non lo è in caso di piena.

Dove:

$$\begin{cases} \alpha = \frac{3}{8} & \text{se } \frac{H_{DUNA}/d}{0.34} \le 1 \\ \alpha = \frac{3}{2} & \text{se } \frac{H_{DUNA}/d}{0.34} > 1 \end{cases}$$

Dalla relazione precedente si ottiene un valore di 1,58, il quale risultando maggiore di 1 implica la scelta di α pari a 3/2.

Il valore di α appena ottenuto si sostituisce nella (3.3), ottenendo un valore di h₀ pari a 0,012.

Questo valore a sua volta si sostituisce nella (3.2), ottenendo al variare di x il grafico riportato in Figura 3.1.

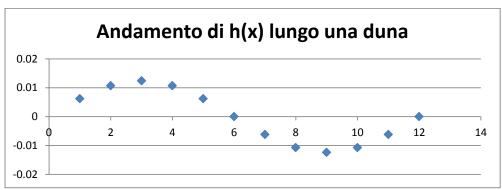


Figura 3.1

Applicando l'andamento sinusoidale del carico in superficie all'equazione del moto di filtrazione è possibile ottenere una stima delle <u>scale tipiche</u> di:

- velocità di filtrazione (superficiale): $u_0 = K k h_0$ [m/s]
- tempo di filtrazione (superficiale): $t_0 = n/(k u_0)$ [s]

dove n (-) è la porosità e K (m/s) la conducibilità idraulica dei sedimenti.

Si ricavano dalla precedenti relazioni u_0 pari a 9.08 m/s e t_0 pari a 175,24 ore (7,3 giorni).

Queste scale permettono il calcolo delle <u>due proprietà fondamentali</u> che descrivono il processo di scambio:

FLUSSO q [m/s]: rappresenta la portata di acqua scambiata per unità di superficie:

$$q = \frac{u_0}{\pi} \tag{3.4}$$

Si ottiene q = 2.89E-07 m/s

DISTRIBUZIONE DEI TEMPI DI RESIDENZA R(t) [-]: rappresenta l'intervallo dei tempi che una particella di acqua può trascorrere nei sedimenti, prima di tornare nel corso d'acqua:

20

Dal momento che R è in funzione sia di t_i che di τ , è necessario impostare su Excel una matrice dove sull'asse delle x vengono riportati i tempi t_i , mentre sull'asse delle y vengono riportati i tempi τ , come si osserva nel seguente estratto di tabella utilizzata su Excel per i calcolo.

Tabella 3.1

magra k minimo a Omaha		ti ->	2	3	4
τ [ore]	τ [s]	Cτ [ug/l]			
1	3600	0.00	0	0	0
2	7200	0.00	#DIV/0!	6.2113E-236	6.2112E-236
3	10800	0.00	3.4138E-143	#DIV/0!	3.4138E-143
4	14400	0.00	1.44021E-97	1.44023E-97	#DIV/0!
5	18000	0.00	8.73878E-71	8.73899E-71	8.73911E-71
6	21600	0.00	2.01953E-53	2.0196E-53	2.01965E-53
7	25200	0.00	1.93948E-41	1.93956E-41	1.93963E-41
8	28800	0.00	8.08014E-33	8.08057E-33	8.08093E-33
9	32400	0.00	1.93102E-26	1.93114E-26	1.93124E-26
10	36000	0.00	1.24594E-21	1.24603E-21	1.24611E-21

I tempi τ variano da 1 ora (inizio sversamento di inquinante a Fort Calhoun) a 29 ore, e ad ogni tempo τ è associata la concentrazione di inquinante che si è registrata ad Omaha.

I tempi t_i sono i tempi di osservazione ad Omaha, che variano da 1 ora a tempi molto grandi come ad esempio 1000 ore, fino a trovare quel valore di t_i al quale è associata una concentrazione di inquinante inferiore ai valori limite di concentrazione.

Si sommano in colonna i valori delle masse di inquinante, trovando quindi il valori totale di inquinante presente nell'alveo del fiume associato ad ogni ora t_i dopo l'inizio dello sversamento di uranio a monte di Omaha.

È importante notare come per t_i inferiori a τ (questo problema si riscontra quindi fino a t_i = 29 ore), non bisogna sommare tutti i valori di massa di inquinante presenti su tutta la colonna, ma è necessario sommare solo le masse associate a t_i inferiori a τ , ovvero osservando la Tabella 3.1 si sommano solo i valori di massa di inquinante che si trovano al di sopra della cella #DIV/0!.

Il valore limite di massa di inquinante, pari a $m_{LIM} = 1.5*10^{-7} \text{ Kg/m}^2$, si raggiunge dopo 460 ore, ovvero dopo 19 giorni.

I valori della massa di inquinante in funzione del tempo t_i sono riportati nel diagramma di Figura 3.3.

Esercitazione 4: trasporto solido

Problema:

- Il Fly River è il secondo corso d'acqua della Papua Nuova Guinea, e riceve un elevato carico di sedimenti provenienti da una miniera di rame sull'Ok Tedi, suo affluente.
- Il trasporto dei sedimenti, in parte contaminati conseguentemente all'attività estrattiva, è stato origine di problemi ambientali a partire dall'apertura della miniera nel 1985.
- Obbiettivo dell'esercitazione è <u>stimare la portata media annua [Mt/anno] di sedimenti</u> trasportati (al fondo e in sospensione) dal Fly River.

Portate e caratteristiche del Fly River:

Dall'analisi della curva di durata delle portate si è scelto di considerare i valori riportati in Tabella 4.1, dove vengono riportate anche le caratteristiche del corso d'acqua. Si noti che:

- a) i valori di portata più bassa sono stati discretizzati in classi più ampie (in termini di probabilità) di quelli più elevati. Questo perchè le portate alte originano maggior trasporto solido.
- b) fa eccezione il dato di portata più elevata, che corrisponde alla portata di bankfull (alveo principale pieno). Il motivo è che al crescere della portata le caratteristiche idrauliche (profondità, tensioni tangenziali...) cambiano poco, e lo stesso vale per il trasporto solido.

Probabilità Profondità Portata Larghezza Area nell'anno m^2 $Q_k (m^3/s)$ p_k (-) d (m) wk (m) 0.3 986 4.5 319 1435.5 1916 0.2 7.4 336 2486.4 2530 0.1 8.5 345 2932.5 2844 0.1 9 352 3168.0 3020 0.3 9.5 358 3401.0

Tabella 4.1

Caratteristiche dei sedimenti:

- L'analisi della curva granulometrica ha rilevato che i sedimenti sono costituti essenzialmente da materiale sabbioso, con densità relativa $\rho_S/\rho=2.65$.
- Le dimensioni dei sedimenti sono sufficientemente omogenee da poter considerare il diametro mediano ($D_{50} = D = 0.211$ mm) rappresentativo di tutti i sedimenti.
- Unicamente ai fini del calcolo delle <u>resistenze idrauliche</u> verrà invece usato il diametro D_{90} = 0.425 mm, caratteristico della frazione più grossolana.

24

$$\theta = \frac{\tau_0}{(\rho_S - \rho)g D} \qquad \text{con} \qquad \tau_0 = \gamma d S$$

Il valore critico θ_C è presente in molte formule di trasporto e rappresenta la soglia di inizio movimento dei grani solidi. È un concetto approssimato (non esiste una vera soglia) ma utile ai fini pratici.

$$\theta_{C} = 0.22 \, \mathbf{Re}_{p}^{-0.6} + 0.06 \cdot 10^{(-7.7 \, \mathbf{Re}_{p}^{-0.6})}$$

La portata solida adimensionale può essere calcolata tramite le formule riportate di seguito:

$$\Phi = 10(\theta - \theta_c) \theta^{3/2} \frac{U}{u_*} \frac{\rho}{\rho_s}$$
 Shields

$$\Phi = 8(\theta' - \theta_c)^{3/2}$$
 Meyer-Peter & Muller

$$\Phi = 1.5 \theta' \left(\frac{\theta_c}{\theta'}\right)^{1/6} \left(\sqrt{\frac{\theta'}{\theta_c}} - 1\right)^{5/3}$$
 Pezzoli

$$\Phi = 17(\theta' - \theta_c)(\sqrt{\theta'} - \sqrt{\theta_c})$$
 Ashida & Michiue

$$\frac{43.5\Phi}{1+43.5\Phi} = 1 + \frac{1}{2} \left[erf\left(-\frac{0.143}{\theta'} - 2 \right) - erf\left(\frac{0.143}{\theta'} - 2 \right) \right]$$
 Einstein

Si provano tutte, dopodichè si scartano eventuali risultati estremi (molto diversi dagli altri) e si fa una media dei valori rimasti (che danno anche un'idea dell'incertezza di stima).

Effetto resistenza:

Nelle formule più recenti al posto di θ compare il parametro θ ' che include solo le <u>resistenze di</u> attrito:

$$\theta' = \frac{\tau_0'}{(\rho_S - \rho)gD}$$

Dove:
$$\tau_0' = \gamma dS'$$

$$S' = S \left(\frac{k_s}{k_s'} \right)^{3/2}$$

$$k_s = \frac{U}{d^{2/3} S^{1/2}}$$

$$k_s' = \frac{26}{D_{90}^{1/6}}$$

26

$$c_{s,a} = \frac{q_b}{11.6 \, a \, \mu_s}, \quad a = 2 \, D_{90}$$
 Einstein

$$c_{s,a} = 0.015 \frac{D}{a} \left(\frac{\theta'}{\theta_c} - 1 \right)^{1.5} Re_p^{-0.2}, \quad a = \max[3D_{90}, 0.01d]$$
 Van Rijn

$$\mathbf{c}_{s,a} = 0.65 \frac{\gamma_o \left(\frac{\theta'}{\theta_c} - 1\right)}{1 + \gamma_o \left(\frac{\theta'}{\theta_c} - 1\right)} \quad \left[\gamma_o = 0.0024\right] \quad , \quad a = 3D_{90} + 26.3\theta'D \qquad \text{Smith e McLean}$$

$$C_{s,a} = \frac{AZ_u^5}{1 + \frac{A}{0.3}Z_u^5}$$
, $a = 0.05d$ $\left[Z_u = \frac{u_*'}{w_s} \mathbf{Re}_p^{0.6} S^{0.07}, A = 5.7 \cdot 10^{-7} \right]$ Garcia e Parker

Calcolo trasporto solido ed in sospensione:

- Per ogni valore di portata Q_k , si calcola la portata solida (volumetrica) per unità di larghezza $[m^2/s]$ di fondo $q_{b,k}$ e in sospensione $q_{ss,k}$.
- Si calcolano le portate solida in massa (sia al fondo che in sospensione):

$$G_{b,k} = \rho_S \cdot q_{b,k} \cdot w_k$$
 , $G_{ss,k} = \rho_S \cdot q_{ss,k} \cdot w_k$ [kg/s]

• Calcolare la portata solida media annua (sia al fondo che in sospensione) come somma pesata dei contributi delle singole portate:

$$\overline{G_b} = \sum G_{b,k} p_k$$
 , $\overline{G}_{ss} = \sum G_{ss,k} p_k$

• Calcolare infine la portata solida totale:

$$\overline{G}_{TOT} = \overline{G}_b + \overline{G}_{cc}$$

I risultati finali sono riportati nelle seguenti tabelle (Tabella 4.3 e 4.4).

Tabella 4.3: trasporto solido di fondo

Portata Q	qb	Gb,k		Gb
m³/s	m2/s	kg/s	kg/s	Mt/anno
986	2.76E-06	2.34		
1916	4.24E-06	3.77		
2530	6.24E-06	5.70	4.64	0.146
2844	7.09E-06	6.62		
3020	6.85E-06	6.50		

Esercitazione 5: erosione di un alveo fluviale

PROBLEMA:

La realizzazione di una traversa in un corso d'acqua innesca un processo di erosione a causa dell'impossibilità per la portata solida presente nel tratto di monte di oltrepassare la traversa. Il tratto interessato, di lunghezza L=1 km, termina con una soglia fissa non erodibile.

Valutare, per il tratto A VALLE della traversa:

- a) l'entità dell'escavazione al piede della traversa;
- b) i profili del fondo del fiume dopo 2, 6 mesi e 1, 2, 5 anni dalla costruzione della traversa.

EFFETTO DELLA TRAVERSA

- Dal punto di vista del trasporto solido, la traversa rappresenta un'interruzione della continuità fluviale.
- Ne consegue che, in assenza di interventi esterni, nella sezione a valle della traversa (x=0) si avrà $q_s=0$.
- Se il fondo è erodibile, la corrente ristabilisce la sua capacità di trasporto solido erodendo i sedimenti sul fondo.
- Il risultato è un progressivo abbassamento del fondo, con riduzione della pendenza, finché il fiume non assume una nuova pendenza di equilibrio S_{eq} .

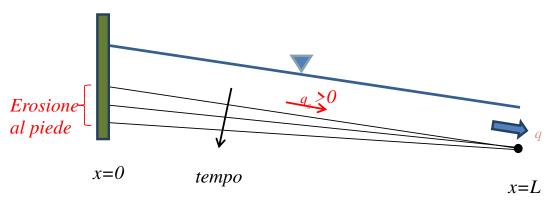
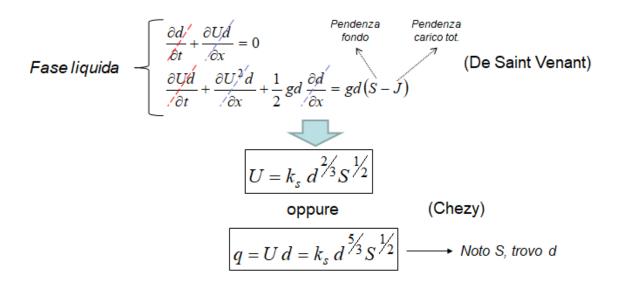



Figura 5.1

FIUME:

- $q = 0.3 \text{ m}^2/\text{s}$ (portata per unità di larghezza)
- > $S_0 = 5*10^{-3}$ (pendenza iniziale) > $k_s = 20 \text{ m}^{1/3} \text{ s}^{-1}$ (coeff. Strickler)
- ightharpoonup L = 1 km (lunghezza tratto interessato)
- \rightarrow $\eta = 0$ per x = L (soglia non erodibile)

Da quest'ultima formula è possibile ricavare la *profondità d* della corrente nota la pendenza dell'alveo S, la quale si ricava grazie alle formule descritte di seguito.

La **portata solida** invece si ricava utilizzando la formula di <u>Meyer-Peter e Muller</u>:

$$q_s = \sqrt{\Delta g D^3} \, 8 (\theta' - \theta_{cr})^{3/2}$$

Dove:

$$\Delta = \frac{\rho_{S}}{\rho} - 1$$

$$\theta' = \frac{\tau_{0}'}{(\rho_{S} - \rho)gD} \quad \text{con} \quad \tau_{0}' = \gamma dS' \quad \text{e} \quad S' = S \left(\frac{k_{s}}{k_{s}'}\right)^{3/2}$$

$$k_{s} = \frac{U}{d^{2/3}S^{1/2}}$$

$$k_{s}' = \frac{26}{D_{90}^{1/6}}$$

$$\theta_{C} = 0.22 \operatorname{Re}_{p}^{-0.6} + 0.06 \cdot 10^{(-7.7 \operatorname{Re}_{p}^{-0.6})} \quad \text{con} \quad \operatorname{Re}_{p} = \frac{\sqrt{\Delta gD}D}{V}$$

Per la risoluzione dell'**equazione di Exner** si procede con una tecnica di calcolo alle differenze finite, discretizzando la lunghezza L=1000 m con degli intervalli Δx di 100 m.

Questo metodo consiste nell'utilizzare una formula numerica grazie alla seguente formula esplicita

$$\eta_{i}^{t+1} = \eta_{i}^{t} - \frac{\Delta t}{(1-n)\Delta x} \left[(q_{s})_{i+1}^{t} - (q_{s})_{i}^{t} \right]$$

32

	300	0.39	0.39	0.39
	400	0.39	0.39	0.39
	500	0.39	0.39	0.39
	600	0.39	0.39	0.39
	700	0.39	0.39	0.39
	800	0.39	0.39	0.39
	900	0.39	0.39	0.39
	1000	0.39	0.39	0.39
	0	9.39E-04	9.19E-04	9.01E-04
	100	9.39E-04	9.29E-04	9.20E-04
	200	9.39E-04	9.39E-04	9.39E-04
	300	9.39E-04	9.39E-04	9.39E-04
	400	9.39E-04	9.39E-04	9.39E-04
S'	500	9.39E-04	9.39E-04	9.39E-04
	600	9.39E-04	9.39E-04	9.39E-04
	700	9.39E-04	9.39E-04	9.39E-04
	800	9.39E-04	9.39E-04	9.39E-04
	900	9.39E-04	9.39E-04	9.39E-04
	1000	9.39E-04	9.39E-04	9.39E-04
	0	0.15	0.14	0.14
	100	0.15	0.15	0.14
	200	0.15	0.15	0.15
	300	0.15	0.15	0.15
	400	0.15	0.15	0.15
θ'	500	0.15	0.15	0.15
	600	0.15	0.15	0.15
	700	0.15	0.15	0.15
	800	0.15	0.15	0.15
	900	0.15	0.15	0.15
	1000	0.15	0.15	0.15
	0	0.00E+00	0.00E+00	0.00E+00
	100	6.69E-05	6.59E-05	6.49E-05
	200	6.69E-05	6.69E-05	6.69E-05
	300	6.69E-05	6.69E-05	6.69E-05
	400	6.69E-05	6.69E-05	6.69E-05
qs	500	6.69E-05	6.69E-05	6.69E-05
	600	6.69E-05	6.69E-05	6.69E-05
	700	6.69E-05	6.69E-05	6.69E-05
	800	6.69E-05	6.69E-05	6.69E-05
	900	6.69E-05	6.69E-05	6.69E-05
	1000	6.69E-05	6.69E-05	6.69E-05
	0	4.99	4.98	4.97
ηt+1	100	4.50	4.50	4.50
	200	4.00	4.00	4.00
	300	3.50	3.50	3.50