

Corso Luigi Einaudi, 55/B - Torino

Appunti universitari Tesi di laurea Cartoleria e cancelleria Stampa file e fotocopie Print on demand Rilegature

NUMERO: 2192A

ANNO: 2017

APPUNTI

STUDENTE: Cavallo Federico

MATERIA: Ingegneria degli Acquiferi - Esercitazioni Complete - Prof. Sethi

Il presente lavoro nasce dall'impegno dell'autore ed è distribuito in accordo con il Centro Appunti. Tutti i diritti sono riservati. È vietata qualsiasi riproduzione, copia totale o parziale, dei contenuti inseriti nel presente volume, ivi inclusa la memorizzazione, rielaborazione, diffusione o distribuzione dei contenuti stessi mediante qualunque supporto magnetico o cartaceo, piattaforma tecnologica o rete telematica, senza previa autorizzazione scritta dell'autore.

ATTENZIONE: QUESTI APPUNTI SONO FATTI DA STUDENTIE NON SONO STATI VISIONATI DAL DOCENTE. IL NOME DEL PROFESSORE, SERVE SOLO PER IDENTIFICARE IL CORSO.

POLITECNICO DI TORINO

Corso di Laurea Magistrale in Ingegneria per l'Ambiente e il Territorio

Corso di **Ingegneria degli Acquiferi** *Professore Rajandrea SETHI* Relazione sulle esercitazioni – Parte 1

Federico CAVALLO s180421

Curva caratteristica	
Rendimento del sistema	41
ESERCITAZIONE DEL 12 APRILE 2016	
Metodo di Bower e Rice	45
Abbassamento iniziale s ₀	46
Determinazione dei coefficienti A, B e C	46
Calcolo del t _{90%}	47
Calcolo di $\ln\left(\frac{R_e}{r_d}\right)$	47
Calcolo di K _r	48
Verifica dell'esattezza dei calcoli finora eseguiti	50
Calcolo con Aqtesoly	51
Metodo KGS	
Allegato 1	53
Allegato 2	56

Federico Cavallo s180421

A questo punto si crea una griglia tridimensionale su Surfer utilizzando il comando *grid* \rightarrow *data*, importando questi dati dal foglio Excel. Si utilizzino come asse X i dati della seconda colonna, come asse Y i dati della terza colonna e come asse Z i dati della quota piezometrica H, ossia l'ultima colonna. Come risultato Surfer visualizza il piano piezometrico, riportando le linee equipotenziali e la quota alla quale si trovano, come riportato nella Fig. 1.

Calcolo della portata

Per calcolare il valore della portata d'acqua che fluisce attraverso la sezione di massima ampiezza che sottende la discarica si deve usare la seguente formula:

$$Q = K_{eq,h} A \frac{h_0 - h}{d}$$

Dove

- Q: portata
- K_{eq,h}: conducibilità idraulica equivalente orizzontale;
- A: sezione di massima ampiezza al di sotto della discarica;
- $h_0 h$: differenza di quota tra due isopieze qualsiasi;
- d: distanza orizzontale tra le due isopieze scelte.

Si riporta di seguito, in *Fig. 2*, la rappresentazione realizzata con l'ausilio del software Surfer 8 dell'area presa in esame, riportante il perimetro della discarica e i pozzi utilizzati come punti di misura per tracciare la superficie piezometrica, sulla quale sono state raffigurate le linee isopiezometriche.

Fig. 2. Costruzione grafica per la determinazione delle linee equipotenziali, del gradiente piezometrico e della direzione di flusso

Fig. 4. Costruzione grafica rappresentante la distanza d tra le due isopieze scelte (la linea rossa)

Adesso che si hanno tutti i dati li si sostituisce nella formula di partenza e si ottiene il valore della portata

$$Q = K_{eq,h} A \frac{h_0 - h}{d} = 0,003 \cdot 7809,942 \cdot \frac{0,1}{36,608} = 0,064 \ m^3 \cdot s^{-1}$$

Possiamo esprimere tale valore in litri al secondo $Q = 64,143 \text{ l}\cdot\text{s}^{-1}$, oppure calcolarlo in metri cubi al giorno $Q = 5541,983 \text{ m}^3 \cdot \text{giorno}^{-1}$.

ESERCITAZIONE DEL 15 MARZO 2016

L'obiettivo dell'esercitazione 2 è l'esecuzione mediante il software Aqtesolv e su Excel della prova di falda a pompaggio costante presentata da Walton. Nel 1962 Walton ha presentato i dati di una prova di pompaggio condotta il 2 Luglio 1953 nei pressi di Gridley, Illinois. Il pozzo di prova (well 3) era completamente penetrato in un acquifero di sabbia e ghiaia spessa 18 piedi in condizioni non artesiane. Il pompaggio è continuato per otto ore a una portata costante Q = 220 galloni per minuto. La risposta idraulica è stata monitorata in un pozzo di osservazione (well 1) posto ad una distanza r=824 ft dal pozzo di pompaggio. Le misure di tempo (*time*) e di abbassamento (*drawdown*) sono state registrati rispettivamente in minuti e in piedi.

Dopo aver portato a termine l'esecuzione della prova sul software:

- a) Creazione di un diagramma diagnostico per individuare la tipologia di acquifero;
- b) Verifica della correttezza dei parametri ottenuti con il metodo di Jacob calcolando l'intercetta e la pendenza della retta interpolatrice;
- c) Trasformare i risultati ottenuti in valori nel Sistema Internazionale.

Federico Cavallo s180421

Metodo di Jacob

Si è quindi realizzato un altro grafico, utilizzando la stessa serie di dati, ponendo solo l'asse orizzontale del tempo in base logaritmica. Dal grafico così ottenuto si crea una linea di tendenza logaritmica, operando in modo tale che la funzione intercetti i punti aventi valori spaziali e temporali molto elevati, condizione necessaria affinché il metodo di Jacob sia corretto (nel grafico realizzato con Excel si sono presi in considerazione gli ultimi cinque punti del grafico).

Si definisce t_0 il punto in cui la retta interseca l'asse orizzontale e Δs l'abbassamento avvenuto nel pozzo durante un ciclo logaritmico (vedi *Figura 3*).

Figura 3. Grafico realizzato con Excel, la retta è l'approssimazione logaritmica della funzione di Theis data da Jacob

Si è individuato come valore di $t_0 = 8$ min e come valore di $\Delta s = 6.1$ ft.

Politecnico di Torino

Per calcolare il valore del coefficiente di immagazzinamento S si deve usare la formula

$$S = 0.225 \ \frac{T \cdot t_0}{r^2}$$

Dove

- S: coefficiente di immagazzinamento dell'acquifero;
- T: trasmissività dell'acquifero;
- t₀: valore del tempo all'intersezione della retta con l'asse orizzontale;
- r: distanza del pozzo di osservazione dal pozzo di pompaggio.

Avendo ottenuto tutti i valori necessari li si sostituisce nella formula e si ricava il valore del coefficiente di immagazzinamento

$$S = 0.225 \ \frac{T \cdot t_0}{r^2} = 0.225 \ \frac{6.6 \cdot 8}{678976} = 1.75 \cdot 10^{-4} \ gal \ \cdot ft^{-3}$$

Dal momento che il valore di S espresso dal programma Aqtesolv è adimensionale occorre ricordare che 1 $ft^3 = 7.48 \ gal$, ottenendo quindi

$$S = \frac{1.75 \cdot 10^{-4}}{7.48} = 2.34 \cdot 10^{-5}$$

Entrambi i valori di S e di T sono molto simili, per cui si può affermare che i parametri ottenuti con il metodo di Jacob sono corretti.

Conversione nel S.I.

I valori usati e i risultati ottenuti sono stati finora espressi nelle unità di misura americane. Nella seguente tabella li si presenta convertiti nel Sistema Internazionale.

	u.d.n	n. americane	S.I.			
Q =	220	gallone per minuto	13,9	litri al secondo		
r =	824	feet	251	metri		
t ₀ =	8	minuti	480	secondi		
$\Delta s =$	6.1	feet	1,86	metri		
T =	9504	$gal \cdot ft^{-1} \cdot day^{-1}$	1,368	$l \cdot m^{-1} \cdot s^{-1}$		
S =	$1.75 \cdot 10^{-4}$	$gal \cdot ft^{-3}$	$2,34 \cdot 10^{-2}$	$l \cdot m^{-3}$		

Tabella 2. Conversione delle unità di misura

Individuazione della tipologia di acquifero

Time after pumping started	Drawdown (metri)	Time after pumping started	Drawdown (metri)	Time after pumping started	Drawdown (<i>metri</i>)	
(secondi)	((secondi)	((secondi)	(
15	0.0001277	276	0.038744625	5027	0.146171059	
18	0.000186487	325	0.04108983	5907	0.147871744	
21	0.000451669	381	0.050696466	6940	0.157839939	
25	0.000628166	448	0.057389053	8154	0.15568968	
29	0.000567903	526	0.062310111	9580	0.159979874	
34	0.001059921	619	0.070173409	11255	0.170423289	
40	0.002387515	727	0.073005449	13224	0.173330908	
47	0.001918178	854	0.080125305	15536	0.175829021	
55	0.003291334	1003	0.090942421	18254	0.179922942	
65	0.005386381	1179	0.093610335	21446	0.189632252	
76	0.006884709	1385	0.102302204	25197	0.193591424	
89	0.009748792	1627	0.103274019	29604	0.195199589	
105	0.012194681	1911	0.109223269	34782	0.208236258	
123	0.013363051	2246	0.119016577	40865	0.210661412	
145	0.016636115	2638	0.125650459	48012	0.21167185	
170	0.021609542	3100	0.126332884	56409	0.21923009	
200	0.024760736	3642	0.13394468	66275	0.225399594	
235	0.033084307	4279	0.137440968	77867	0.226832191	

Innanzi tutto si è inserito in un foglio Excel la serie di dati che indica l'entità dell'abbassamento del livello d'acqua nel pozzo di osservazione (W17) dall'inizio del pompaggio, riportata in *Tabella 1*.

Si è quindi creato da questa serie di dati un diagramma diagnostico ponendo entrambi gli assi in base logaritmica. L'andamento dei punti indica che si tratta di un acquifero confinato, in quanto l'abbassamento indotto dall'erogazione a portata costante d'acqua dal pozzo aumenta costantemente nel tempo. Il fatto che si tratta di acquifero confinato appare chiaro sia nel grafico ottenuto da Aqtesolv (*Figura 2*) che nel grafico sviluppato in Excel (*Figura 3*).

Figura 2. Grafico realizzato con Aqtesolv (la curva in blu rappresenta la funzione di Theis)

Figura 3. Grafico realizzato con Excel

Tabella 1. Dati del pozzo di osservazione

Calcolo dei parametri idrodinamici

Per calcolare il valore della trasmissività T si deve usare la formula

$$T = 0,183 \ \frac{Q}{\Delta s}$$

Dove

- T: trasmissività dell'acquifero;
- Q: portata di pompaggio;
- Δs : abbassamento avvenuto nel pozzo durante un ciclo logaritmico.

Dal momento che si hanno tutti i dati li si sostituisce nella formula e si ottiene il valore della trasmissività

$$T = 0.183 \frac{Q}{\Delta s} = 0.183 \frac{0.7}{0.074} = 1.73 \ l \ \cdot m^{-1} \cdot s^{-1} = 0.001731 \ m^2 \ \cdot s^{-1}$$

Per calcolare il valore del coefficiente di immagazzinamento S si deve usare la formula

$$S = 0,225 \ \frac{T \cdot t_0}{r^2}$$

Dove

- S: coefficiente di immagazzinamento dell'acquifero;
- T: trasmissività dell'acquifero;
- t₀: valore del tempo all'intersezione della retta con l'asse orizzontale;
- r: distanza del pozzo di osservazione dal pozzo di pompaggio.

Avendo ottenuto tutti i valori necessari li si sostituisce nella formula e si ricava il valore del coefficiente di immagazzinamento

$$S = 0,225 \ \frac{T \cdot t_0}{r^2} = 0,225 \ \frac{0,001731 \cdot 75}{0,1369} = 2,1338 \ l \ \cdot m^{-3}$$

Dal momento che il valore di S espresso dal programma Aqtesolv è adimensionale occorre ricordare che 1 $m^3 = 1000 \ litri$, ottenendo quindi

$$S = \frac{2,1338}{1000} = 0,002134$$

Metodo di Theis

Figura 5. Soluzione di Theis ottenuta con il software Aqtesolv

Si è provato ad applicare il metodo di Theis (*Figura 5*), ma la soluzione si discosta ancora di più da quelle riscontrate finora: il valore di T risulta essere inferiore a quello ottenuto nelle precedenti soluzioni, mentre il valore di S risulta essere una via di mezzo tra il valore ottenuto dai calcoli svolti nella pagina precedente e di quello ricavato su Aqtesolv. Questa soluzione sembra decisamente sbagliata.

Federico Cavallo s180421

Valori corretti

Abbiamo quindi applicato un intervallo per l'analisi dei dati sul programma Aqtesolv in modo che analizzi solamente i dati prelevati dopo 1278 secondi.

La soluzione ottenuta con Theis è la seguente (Figura 6):

Figura 6. Soluzione di Theis ottenuta con il software Aqtesolv utilizzando solo i dati ottenuti dopo 1278 secondi

ESERCITAZIONE DEL 5 APRILE 2016

L'obiettivo dell'esercitazione 4 è l'ottimizzazione di un sistema di approvvigionamento idrico utilizzando il software Excel. Un nuovo pozzo, denominato W3, è stato realizzato per l'approvvigionamento idrico del centro abitato di Brucoli (Siracusa). Il pozzo è fenestrato in corrispondenza di un acquifero confinato di spessore saturo b = 30 m e di trasmissività T = 0,05 m²/s. La geometria di completamento del pozzo è riportata in Figura 1 (a = 3,5 m; L = 13 m; $r_w=0,25$ m).

Figura 1: Schema di completamento del pozzo W3.

Ipotizzando che non vi sia danneggiamento di permeabilità, si determinino:

- a. l'equazione caratteristica dell'opera di captazione e la curva di efficienza idraulica;
- b. la valutazione del pozzo sulla base del criterio empirico di Walton.

Il sistema di approvvigionamento idrico alimentato da W3 è così costituito:

- sottosistema pozzo-acquifero, come definito dalla prova a gradini di portata;
- sottosistema condotta di adduzione:

tubazione rettilinea (lunghezza=170 m, coeff. di scabrezza 2m= 0.35)

3 saracinesche

- 1 valvola di ritegno a clapet
- 1 valvola di fondo della pompa ($B_t = 2 \cdot 10^{-3} \text{ m}, C_m = 0.015 \text{ m}$)
- sottosistema serbatoio di stoccaggio: $\Delta H = 60 \text{ m}$

Sapendo che il sistema idrico deve essere in grado di assicurare una portata compresa tra 45 e 55 l/s si richiede di:

- c. dimensionare la tubazione di adduzione così da garantire una velocità di flusso compresa tra
 0.5 e 2 m/s, per limitare sedimentazione di materiale sospeso e colpi d'ariete;
- d. individuare il sistema di pompaggio idoneo al funzionamento del sistema.

Federico Cavallo s180421

Efficienza idraulica

Si definisce efficienza idraulica di un pozzo il rapporto tra la portata specifica misurata in un pozzo in condizioni di stabilizzazione e la portata specifica che, nelle stesse condizioni, il pozzo avrebbe fornito se avesse avuto comportamento ideale (flusso laminare, pozzo completo, permeabilità costante anche intorno all'opera di captazione). Per calcolarla si usa la seguente formula:

$$E = \frac{B_1 Q}{s_m} \cdot 100 \ (\%)$$

Dove

- B₁Q: componente che rappresenta le perdite di carico per il flusso nell'acquifero;
- s_m: abbassamento stabilizzato del pozzo in seguito all'erogazione di una portata Q.

Dal momento che $BQ = B_1Q + B_2Q + B_3Q$ si ha che $B_1 = B - B_2 - B_3$, quindi si devono ricavare B_2 e B_3 .

Calcolo di B₂

B₂Q rappresenta le perdite di carico dovute all'eventuale parziale penetrazione e/o completamento del pozzo, e si calcola tramite la seguente formula:

$$B_2 = \frac{1}{2\pi T} \frac{1-\delta}{\delta} \left[ln \frac{4b}{r_w} - F(\delta, \varepsilon) \right]$$

Dove

- T: trasmissività dell'acquifero;
- $\delta = \frac{L}{h}$: lunghezza relativa del tratto finestrato;
- $\varepsilon = \left| \frac{2a+L-b}{2b} \right|$: eccentricità del tratto finestrato;
- $F(\delta, \varepsilon)$: Funzione adimensionale.

Dal momento che abbiamo tutti i dati si ottiene che $\delta = 0,43$ e $\varepsilon = 0.17$. Il valore della funzione adimensionale $F(\delta,\varepsilon)$ è ottenibile dal grafico di Figura 3 e vale F = 3.37.

Conoscendo ora tutti i valori necessari si può calcolare il valore di B₂, che vale $B_2 = 11,635 \ s \cdot m^{-1}$.

Figura 3. Funzione adimensionale $F(\delta, \varepsilon)$.

Ottimizzazione della capacità produttiva

Con riferimento al flusso dell'acqua, un sistema di approvvigionamento idrico può essere scomposto in 3 sottosistemi principali con le rispettive perdite di carico ΔH :

- ΔH_{1} , che rappresenta le perdite di carico nel sottosistema pozzo-acquifero;
- ΔH₂, che rappresenta le perdite di carico nella condotta di adduzione e sono la sommatoria di una serie di perdite che si verificano lungo i diversi elementi che compongono la condotta stessa, alcune distribuite (tratti rettilinei di tubazione) e altre localizzate (raccordi con angoli diversi, saracinesche, valvole di ritegno...);
- ΔH_{3} , che rappresenta le perdite di carico dovute alla prevalenza geodetica.

Si possono quindi calcolare i valori dei ΔH per differenti valori di portata Q. Si deve assicurare una portata compresa tra 0,045 m³·s⁻¹ e tra 0,055 m³·s⁻¹, ma si è deciso di prendere un intervallo più ampio per poter creare una curva caratteristica più precisa, e si è assunto n=2.

Diametro della tubazione di adduzione

Il diametro della tubazione di adduzione è stato calcolato con la formula:

$$d = \sqrt{\frac{4Q}{\pi v}}$$

dove v è la velocita del flusso nella condotta espresso in m·s⁻¹. Dovendo dimensionare la tubazione di adduzione in modo tale da garantire una velocità di flusso compresa tra 0.5 e 2 m·s⁻¹, si è utilizzato il valore di v = 2 m·s⁻¹ e di Q = 0.05 m³·s⁻¹.

Il valore ottenuto è d = 178 mm, e si è deciso di utilizzare la tubazione disponibile in commercio avente diametro interno d = 180 mm.

Perdite di carico ΔH_2 distribuite

Per il calcolo delle perdite di carico distribuite nelle condotte rettilinee si impiega la formula di Kutter:

$$\Delta H = L \cdot 0,000649 \cdot \left(1 + \frac{2m}{\sqrt{d}}\right)^2 \cdot \frac{Q^2}{d^5}$$

Dove

- L: lunghezza della tubazione;
- 2m: coefficiente che dipende dallo stato d'uso della condotta;
- d: diametro della tubazione;
- Q: portata erogata.

Avendo tutti i valori necessari per i calcoli si riportano di seguito i valori di Q e $\Delta H_{2 \text{ distribuite}}$:

$Q(m^3/s)$	$\Delta H_{2 \text{ distribuite}}(m)$
0,015	0,024219154
0,02	0,043056274
0,025	0,067275428
0,03	0,096876617
0,035	0,13185984
0,04	0,172225096
0,045	0,217972388
0,05	0,269101713
0,055	0,325613073
0,06	0,387506467
0,065	0,454781895
0,07	0,527439358
0,075	0,605478855

Tabella 5. Perdite di carico distribuite nella condotta di adduzione.

$\Delta H_2 \ saracinesche$

Le perdite di carico localizzate dovute alla presenza della saracinesca si calcolano con la seguente formula:

$$\Delta H_{saracinesche} = 0.18 \cdot \frac{v^2}{2g} \cdot n$$

Dove

• v: velocità di flusso nella tubazione;

• g: accelerazione di gravità;

• n: numero di saracinesche.

Avendo tutti i valori necessari per i calcoli si riportano di seguito i valori:

$Q(\mathbf{m}^{3}\cdot\mathbf{s}^{-1})$	ΔH _{2 saracinesche} (m)
0,025	0,014014653
0,03	0,011678878
0,035	0,010010466
0,04	0,008759158
0,045	0,007785918
0,05	0,007007327
0,055	0,006370297
0,06	0,005839439
0,065	0,005390251
0,07	0,005005233
0,075	0,004671551

Tabella 7. Perdita di carico localizzata dovuta alla presenza delle saracinesche.

$\Delta H_2 \ valvola \ di \ fondo \ della \ pompa$

Le perdite di carico localizzate dovute alla presenza della valvola di fondo della pompa si calcola con la seguente formula:

$$\Delta H = \left[0,55 + 4\left(\frac{B_t}{d} - 0,1\right) + \frac{0,155}{\left(\frac{C_m}{d}\right)^2}\right] \cdot \left(\frac{v^2}{2g}\right)$$

Dove

- B_t: risalto diametrale del piatto;
- d: diametro interno della tubazione;
- C_m: corsa verticale della molla;
- v: velocità di flusso nella tubazione;
- g: accelerazione di gravità.

Avendo tutti i valori necessari per i calcoli si riportano di seguito i valori:

$Q(\mathbf{m}^{3}\cdot\mathbf{s}^{-1})$	$\Delta \mathrm{H}_{2}$ valvola fondo pompa (m)
0,025	1,109828433
0,03	1,598152944
0,035	2,175263729
0,04	2,841160789
0,045	3,595844124
0,05	4,439313733
0,055	5,371569617
0,06	6,392611776
0,065	7,50244021
0,07	8,701054918
0,075	9,9884559

Tabella 9. Perdite di carico localizzate dovute alla presenza della valvola di fondo della pompa.

Perdite di carico ΔH₃

Le perdite di carico ΔH_3 rappresentano le perdite di carico dovute alla prevalenza geodetica, ossia dovute alla spinta per trasportare l'acqua fino alla quota del serbatoio di stoccaggio, se questo è sopraelevato rispetto al livello della tubazione di trasporto.

Nel caso in questione si sa che $\Delta H_3 = 60$ m.

Per capire qual è la pompa che soddisfa le condizioni ottimali del sistema si devono rispettare i seguenti vincoli:

- rispettare le esigenze di approvvigionamento non scendendo al di sotto di un valore minimo di portata accettabile, in questo caso pari a 0,045 m³·s⁻¹ (162 m³·h⁻¹).
- Essere compatibile con la capacità produttiva del sistema pozzo-acquifero non superando un valore massimo di portata, in questo caso pari a 0,055 m³·s⁻¹ (198 m³·h⁻¹).
- Corrispondere alla pompa che presenta il rendimento più elevato.

Una volta verificato il rispetto dei primi due vincoli, la procedura di ottimizzazione richiede di confrontare la curva caratteristica del sistema con le curve caratteristiche delle pompe presenti in commercio, verificando i valori di rendimento che corrispondono alle diverse intersezioni.

Si è quindi valutato, in *Figura 6*, quali delle curve caratteristiche delle pompe presenti in commercio rientrano nel range di valori:

- $162 \text{ m}^3 \cdot \text{h}^{-1} < Q < 198 \text{ m}^3 \cdot \text{h}^{-1};$
- $62 \text{ m} < \Delta \text{H} < 75 \text{ m}.$

Figura 6. Curve caratteristiche di prevalenza di un gruppo di pompe commerciali.

ESERCITAZIONE DEL 12 APRILE 2016

L'obiettivo dell'esercitazione 5 è l'interpretazione di uno slug test utilizzando il software Excel e Aqtesolv. Nel mese di maggio 2006 è stato svolto presso il comune di Robassomero (Torino) uno slug test nel piezometro PPDP10, completato in un acquifero non confinato.

La geometria di completamento del piezometro e le informazioni relative all'acquifero ed allo slug utilizzato per la prova sono forniti qui di seguito e riassunti in *Figura 1*:

Piezometro:

- Diametro interno 4 pollici
- Diametro di skin 6 pollici
- Profondità di completamento piezometro: 18.0 m da p.c.

Acquifero:

Slug:

٠

Diametro: 2 pollici

Lunghezza: 1 m

Trasduttore:

Diametro di perforazione 6 pollici

Sommità tratto finestrato: 13.0 m da p.c.

- Bottom: 18.7 m da p.c.
- Soggiacenza: 7.32 m da p.c.

• Profondità a cui è collocato il trasduttore di pressione: 12 m da p.c.

Figura 1: Schema di completamento del piezometro.

Metodo di Bower e Rice

Innanzi tutto si è inserito in un foglio Excel la serie di dati relativi agli abbassamenti piezometrici misurati dal piezometro PPDP10 in un pozzo a parziale penetrazione, completato, in un acquifero non confinato, durante lo svolgimento di uno slug test. Si sono quindi ottenuti i valori degli abbassamenti s, in quanto i valori registrati sono da sottrarre alla profondità alla quale si trova il piezometro rispetto al piano campagna, ossia 6,68 metri.

Dal momento che si considerano i valori da t = 701 s a t = 1332 s si è sottratto 700 s ai valori del tempo, in modo da far iniziare la prova da t = 1 s. Le tabelle coi valori di t (s) e s (m)sono consultabili nell'Allegato 1.

Figura 2. Grafico realizzato con Excel rappresentante l'andamento degli abbassamenti s nel tempo t.

Nel grafico di *Figura 2* mostra l'andamento nel tempo registrato dal piezometro degli abbassamenti nel pozzo. Si può osservare che questi si recuperano nel tempo, fino a tendere a zero per tempi molto alti.

Questo perché lo slug test è eseguito in modo da produrre un'istantanea variazione del livello statico nel pozzo e misurare, in funzione del tempo, il conseguente recupero del livello originario nel pozzo stesso. In questa prova si è prodotta una brusca diminuzione di livello rimuovendo un cilindro completamente immerso in acqua e monitorando la risalita che si crea per il flusso dall'acquifero verso il pozzo.

Calcolo del t_{90%}

Per ottenere un riscontro se la durata della prova è sufficiente si può calcolare il tempo $t_{90\%}$ necessario a recuperare il 90% della variazione di livello iniziale. Tale valore si ottiene usando la formula:

$$t_{90\%} = 1.15 \cdot \frac{r_w^2}{K_r \cdot L} \cdot \ln\left(\frac{R_e}{r_d}\right)$$

Dove

- r_w: diametro interno del pozzo;
- K_r: conducibilità idraulica radiale dell'acquifero nelle immediate vicinanze del pozzo;
- L: lunghezza del tratto finestrato;
- R_e: raggio effettivo;
- r_d: raggio di skin a partire dal quale l'acquifero è indisturbato.

Per svolgere il calcolo si deve prima trovare il valore del $\ln\left(\frac{R_e}{r_d}\right)$ e il valore di K_r.

Calcolo di ln $\left(\frac{R_e}{r_d}\right)$

Per ottenere il $\ln\left(\frac{R_e}{r_d}\right)$, avendo un pozzo a parziale penetrazione, si deve usare la seguente formula:

$$\ln\left(\frac{R_e}{r_d}\right) = \left\{\frac{1,1}{\ln\left(\frac{D}{r_d}\right)} + \frac{A + B \cdot \ln\left[\frac{b-D}{r_d}\right]}{\frac{L}{r_d}}\right\}$$

Dove

- R_e: raggio effettivo;
- r_d: raggio di skin a partire dal quale l'acquifero è indisturbato;
- D: profondità del pozzo nel mezzo saturo;
- b: spessore del mezzo saturo;
- L: lunghezza del tratto finestrato.

Avendo tutti i valori necessari li si sostituisce nella formula e si ricava che $\ln\left(\frac{R_e}{r_d}\right) = 3,3977.$

Infine si sono realizzati i seguenti grafici (*Figura 4 - 5*) nei quali è rappresentata la linea di tendenza che, secondo Butler, meglio approssima la retta che interpreta il sistema (dalla quale si ricava m):

Figura 5. Grafico con gli assi normali rappresentante in forma esponenziale la retta c meglio interpreta la prova.

Dato che la funzione della linea di tendenza ha forma $s = s_0 \cdot e^{-mt}$, dai grafici si trova che il valore di m, preso in valore assoluto, è m = 0.014. Volendo essere più precisi, possiamo utilizzare la formula inversa e ricavare il valore di m prendendo un punto sul grafico (di *Figura 4*) per il quale passa la linea di tendenza. Si è preso il punto P di coordinate t = 85 s e s = 0.06 m, e si è ottenuto

che
$$m = \frac{ln(\frac{s_0}{s})}{t} = \frac{ln(\frac{0,2024}{0.06})}{85} = 0,0143.$$

49

Calcolo con Aqtesolv

Questo metodo è stato eseguito sul software Aqtesolv, utilizzando per la realizzazione della curva sempre l'intervallo di valori compreso tra 82 s < t < 117 s, ed il risultato è il seguente (*Figura 7*).

Figura 7. Soluzione di Bower e Rice ottenuta con il software Aqtesolv.

Come si può osservare, i valori ottenuti su Excel risultano molto simili a quello ottenuto su Aqtesolv, tanto da poter essere ritenuti corretti.

Allegato 1

t (s)	s (m)												
1	0,2367	42	0,064	83	0,1103	124	0,036	165	0,0204	206	0,0128	247	0,0083
2	0,2368	43	0,0616	84	0,1089	125	0,0358	166	0,0197	207	0,0126	248	0,0087
3	0,2409	44	0,0621	85	0,1118	126	0,0351	167	0,0205	208	0,0124	249	0,0085
4	0,2302	45	0,0571	86	0,1118	127	0,0349	168	0,021	209	0,0122	250	0,0084
5	0,2324	46	0,0586	87	0,1064	128	0,0319	169	0,0208	210	0,012	251	0,0078
6	0,2215	47	0,0576	88	0,1018	129	0,0316	170	0,0188	211	0,0124	252	0,0082
7	0,2195	48	0,0566	89	0,1058	130	0,032	171	0,0191	212	0,0123	253	0,0079
8	0,2072	49	0,0575	90	0,1029	131	0,0315	172	0,0192	213	0,0124	254	0,0081
9	0,2021	50	0,0551	91	0,0979	132	0,0307	173	0,0197	214	0,0116	255	0,0077
10	0,1973	51	0,054	92	0,1022	133	0,0297	174	0,0187	215	0,0114	256	0,008
11	0,2036	52	0,055	93	0,0962	134	0,0297	175	0,0193	216	0,0112	257	0,0074
12	0,1941	53	0,0519	94	0,0925	135	0,0308	176	0,0174	217	0,0121	258	0,0078
13	0,1844	54	0,0491	95	0,0987	136	0,0304	177	0,0173	218	0,0109	259	0,0076
14	0,1847	55	0,0504	96	0,0953	137	0,0282	178	0,0173	219	0,011	260	0,0075
15	0,1784	56	0,0504	97	0,0907	138	0,0287	179	0,017	220	0,0114	261	0,0075
16	0,178	57	0,0506	98	0,0903	139	0,03	180	0,0169	221	0,011	262	0,0075
17	0,1805	58	0,0495	99	0,0865	140	0,0294	181	0,0171	222	0,0115	263	0,0074
18	0,172	59	0,0471	100	0,091	141	0,0293	182	0,017	223	0,0106	264	0,0074
19	0,1723	60	0,0463	101	0,0899	142	0,0273	183	0,0173	224	0,0112	265	0,0068
20	0,1623	61	0,0475	102	0,0891	143	0,0262	184	0,0173	225	0,0102	266	0,007
21	0,1568	62	0,0438	103	0,0862	144	0,0281	185	0,0159	226	0,0109	267	0,0073
22	0,1624	63	0,0439	104	0,085	145	0,0262	186	0,017	227	0,0102	268	0,0067
23	0,1516	64	0,0459	105	0,0772	146	0,0254	187	0,0164	228	0,0104	269	0,007
24	0,1548	65	0,0447	106	0,0802	147	0,0258	188	0,016	229	0,0104	270	0,0067
25	0,152	66	0,0425	107	0,0768	148	0,0246	189	0,0164	230	0,0105	271	0,0065
26	0,1508	67	0,0428	108	0,0738	149	0,0249	190	0,0154	231	0,01	272	0,0064
27	0,1418	68	0,0422	109	0,0756	150	0,0259	191	0,0156	232	0,0096	273	0,0066
28	0,1502	69	0,043	110	0,0722	151	0,024	192	0,0151	233	0,0096	274	0,0065
29	0,1397	70	0,0433	111	0,0743	152	0,0232	193	0,0153	234	0,0096	275	0,0066
30	0,1405	71	0,0417	112	0,0733	153	0,0238	194	0,0144	235	0,0097	276	0,0061
31	0,1327	72	0,0416	113	0,0748	154	0,0226	195	0,0153	236	0,0095	277	0,0065
32	0,1342	73	0,0382	114	0,0704	155	0,0231	196	0,0144	237	0,0094	278	0,0063
33	0,13	74	0,038	115	0,0702	156	0,0228	197	0,0149	238	0,0091	279	0,0063
34	0,1311	75	0,0396	116	0,0695	157	0,0219	198	0,0148	239	0,0092	280	0,0065
35	0,129	76	0,0377	117	0,0708	158	0,0236	199	0,0146	240	0,0094	281	0,0059
36	0,1267	77	0,0373	118	0,0645	159	0,0226	200	0,014	241	0,0091	282	0,006
37	0,1306	78	0,0371	119	0,0627	160	0,0226	201	0,0141	242	0,0092	283	0,0061
38	0,1263	79	0,038	120	0,0627	161	0,0223	202	0,013	243	0,0092	284	0,0057
39	0,1166	80	0,0369	121	0,0666	162	0,0206	203	0,0129	244	0,009	285	0,006
40	0,1193	81	0,0341	122	0,0661	163	0,0219	204	0,0134	245	0,0085	286	0,006
41	0,1195	82	0,0351	123	0,0606	164	0,0221	205	0,013	246	0,009	287	0,0055

t (s)	s (m)												
589	0,0006	596	0,0006	603	0,0006	610	0,0006	617	0,0005	624	0,0005	631	0,0005
590	0,0006	597	0,0006	604	0,0006	611	0,0006	618	0,0006	625	0,0005	632	0,0005
591	0,0006	598	0,0006	605	0,0006	612	0,0005	619	0,0005	626	0,0005		
592	0,0006	599	0,0006	606	0,0006	613	0,0006	620	0,0005	627	0,0005		
593	0,0006	600	0,0006	607	0,0006	614	0,0006	621	0,0005	628	0,0005		
594	0,0007	601	0,0006	608	0,0006	615	0,0005	622	0,0005	629	0,0005		
595	0,0006	602	0,0006	609	0,0006	616	0,0006	623	0,0005	630	0,0005		

t (s)	s (m)												
288	0,0236	331	0,016	374	0,0112	417	0,0084	460	0,0056	503	0,004	546	0,0032
289	0,0236	332	0,0152	375	0,0104	418	0,0076	461	0,006	504	0,004	547	0,0032
290	0,0224	333	0,0152	376	0,0112	419	0,008	462	0,0056	505	0,0044	548	0,0032
291	0,0228	334	0,0144	377	0,0108	420	0,0076	463	0,0056	506	0,004	549	0,0032
292	0,0216	335	0,0144	378	0,01	421	0,0076	464	0,006	507	0,004	550	0,0032
293	0,0208	336	0,0144	379	0,01	422	0,0072	465	0,0056	508	0,0044	551	0,0032
294	0,0224	337	0,0144	380	0,01	423	0,0076	466	0,0052	509	0,004	552	0,0032
295	0,0216	338	0,0148	381	0,0108	424	0,0076	467	0,0052	510	0,004	553	0,0032
296	0,02	339	0,0148	382	0,0104	425	0,0076	468	0,0056	511	0,004	554	0,0032
297	0,022	340	0,014	383	0,01	426	0,0072	469	0,0052	512	0,004	555	0,0032
298	0,0212	341	0,0148	384	0,01	427	0,0068	470	0,0052	513	0,004	556	0,0032
299	0,0208	342	0,0148	385	0,0104	428	0,0072	471	0,0052	514	0,004	557	0,0028
300	0,02	343	0,0136	386	0,0096	429	0,0072	472	0,0052	515	0,004	558	0,0032
301	0,02	344	0,0136	387	0,01	430	0,0072	473	0,0052	516	0,004	559	0,0032
302	0,0204	345	0,0136	388	0,01	431	0,0072	474	0,0052	517	0,004	560	0,0028
303	0,0204	346	0,0132	389	0,01	432	0,0072	475	0,0052	518	0,004	561	0,0028
304	0,0204	347	0,014	390	0,0096	433	0,0072	476	0,0052	519	0,004	562	0,0032
305	0,0196	348	0,014	391	0,0096	434	0,0068	477	0,0048	520	0,0036	563	0,0032
306	0,0196	349	0,0132	392	0,0092	435	0,0072	478	0,0052	521	0,004	564	0,0028
307	0,0184	350	0,0132	393	0,0096	436	0,0068	479	0,0052	522	0,004	565	0,0032
308	0,02	351	0,0136	394	0,0092	437	0,0068	480	0,0048	523	0,0036	566	0,0028
309	0,018	352	0,0136	395	0,0092	438	0,0068	481	0,0048	524	0,004	567	0,0028
310	0,018	353	0,0132	396	0,0092	439	0,0068	482	0,0048	525	0,004	568	0,0028
311	0,0184	354	0,0124	397	0,0088	440	0,0068	483	0,0052	526	0,0036	569	0,0028
312	0,018	355	0,0132	398	0,0092	441	0,0064	484	0,0048	527	0,0036	570	0,0028
313	0,0184	356	0,0132	399	0,0092	442	0,0064	485	0,0048	528	0,0036	571	0,0028
314	0,018	357	0,0128	400	0,0092	443	0,0064	486	0,0048	529	0,0036	572	0,0028
315	0,0184	358	0,012	401	0,0088	444	0,0064	487	0,0048	530	0,0036	573	0,0028
316	0,0172	359	0,0124	402	0,0088	445	0,0068	488	0,0048	531	0,0036	574	0,0028
317	0,0172	360	0,012	403	0,0092	446	0,0064	489	0,0048	532	0,0036	575	0,0028
318	0,0184	361	0,012	404	0,0092	447	0,0064	490	0,0048	533	0,0036	576	0,0028
319	0,018	362	0,0116	405	0,0084	448	0,006	491	0,0044	534	0,0036	577	0,0028
320	0,0176	363	0,0116	406	0,0088	449	0,006	492	0,0044	535	0,0036	578	0,0028
321	0,0164	364	0,0116	407	0,0088	450	0,0064	493	0,0044	536	0,0036	579	0,0028
322	0,0164	365	0,0112	408	0,0084	451	0,0064	494	0,0048	537	0,0032	580	0,0028
323	0,0164	366	0,0116	409	0,0084	452	0,006	495	0,0048	538	0,0036	581	0,0028
324	0,0168	367	0,012	410	0,0084	453	0,0064	496	0,0048	539	0,0032	582	0,0028
325	0,0168	368	0,0112	411	0,0084	454	0,006	497	0,0044	540	0,0036	583	0,0028
326	0,0156	369	0,0112	412	0,0084	455	0,0056	498	0,0044	541	0,0036	584	0,0028
327	0,016	370	0,0116	413	0,0084	456	0,006	499	0,0048	542	0,0032	585	0,0028
328	0,0164	371	0,0112	414	0,0084	457	0,006	500	0,0044	543	0,0032	586	0,0028
329	0,0152	372	0,0108	415	0,0084	458	0,006	501	0,0044	544	0,0032	587	0,0024
330	0,0156	373	0,0108	416	0,0084	459	0,006	502	0,0044	545	0,0032	588	0,0024

POLITECNICO DI TORINO

Corso di Laurea Magistrale in Ingegneria per l'Ambiente e il Territorio

Corso di **Ingegneria degli Acquiferi** *Professore Rajandrea SETHI* Relazione sulle esercitazioni – Parte 2

Federico CAVALLO s180421

Pump and Treat	37
Progettazione di un sistema Pump and Treat	38
Barriera reattiva permeabile	41
Progettazione di massima di una PRB	42
Conclusioni	46

Prova in colonna

Funzioni erf ed erfc

La funzione $erf(\beta)$ è la funzione degli errori di Gauss che si definisce come

$$erf(\beta) = \frac{2}{\sqrt{\pi}} \int_0^\beta e^{-t^2} dt$$

E la funzione $erfc(\beta)$ è detta funzione degli errori complementare, ossia

$$erfc(\beta) = 1 - erf(\beta) = \frac{2}{\sqrt{\pi}} \int_{\beta}^{\infty} e^{-t^2} dt$$

Per definire le due funzioni si sono presi valori di β compresi tra -3 e +3 (*Tabella 1*), in quanto per valori di β < -2 e per valori di β > +2 le funzioni diventano stazionarie, e si è ottenuto il *Grafico 1*.

β	erf(β)	erfc(β)	β	erf(β)	erfc(β)	β	erf(β)	erfc(β)	β	erf(β)	erfc(β)
-3	-0,99998	1,99998	-1,45	-0,95970	1,95970	0,1	0,11246	0,88754	1,65	0,98038	0,01962
-2,95	-0,99997	1,99997	-1,4	-0,95229	1,95229	0,15	0,16800	0,83200	1,7	0,98379	0,01621
-2,9	-0,99996	1,99996	-1,35	-0,94376	1,94376	0,2	0,22270	0,77730	1,75	0,98667	0,01333
-2,85	-0,99994	1,99994	-1,3	-0,93401	1,93401	0,25	0,27633	0,72367	1,8	0,98909	0,01091
-2,8	-0,99992	1,99992	-1,25	-0,92290	1,92290	0,3	0,32863	0,67137	1,85	0,99111	0,00889
-2,75	-0,99990	1,99990	-1,2	-0,91031	1,91031	0,35	0,37938	0,62062	1,9	0,99279	0,00721
-2,7	-0,99987	1,99987	-1,15	-0,89612	1,89612	0,4	0,42839	0,57161	1,95	0,99418	0,00582
-2,65	-0,99982	1,99982	-1,1	-0,88021	1,88021	0,45	0,47548	0,52452	2	0,99532	0,00468
-2,6	-0,99976	1,99976	-1,05	-0,86244	1,86244	0,5	0,52050	0,47950	2,05	0,99626	0,00374
-2,55	-0,99969	1,99969	-1	-0,84270	1,84270	0,55	0,56332	0,43668	2,1	0,99702	0,00298
-2,5	-0,99959	1,99959	-0,95	-0,82089	1,82089	0,6	0,60386	0,39614	2,15	0,99764	0,00236
-2,45	-0,99947	1,99947	-0,9	-0,79691	1,79691	0,65	0,64203	0,35797	2,2	0,99814	0,00186
-2,4	-0,99931	1,99931	-0,85	-0,77067	1,77067	0,7	0,67780	0,32220	2,25	0,99854	0,00146
-2,35	-0,99911	1,99911	-0,8	-0,74210	1,74210	0,75	0,71116	0,28884	2,3	0,99886	0,00114
-2,3	-0,99886	1,99886	-0,75	-0,71116	1,71116	0,8	0,74210	0,25790	2,35	0,99911	0,00089
-2,25	-0,99854	1,99854	-0,7	-0,67780	1,67780	0,85	0,77067	0,22933	2,4	0,99931	0,00069
-2,2	-0,99814	1,99814	-0,65	-0,64203	1,64203	0,9	0,79691	0,20309	2,45	0,99947	0,00053
-2,15	-0,99764	1,99764	-0,6	-0,60386	1,60386	0,95	0,82089	0,17911	2,5	0,99959	0,00041
-2,1	-0,99702	1,99702	-0,55	-0,56332	1,56332	1	0,84270	0,15730	2,55	0,99969	0,00031
-2,05	-0,99626	1,99626	-0,5	-0,52050	1,52050	1,05	0,86244	0,13756	2,6	0,99976	0,00024
-2	-0,99532	1,99532	-0,45	-0,47548	1,47548	1,1	0,88021	0,11979	2,65	0,99982	0,00018
-1,95	-0,99418	1,99418	-0,4	-0,42839	1,42839	1,15	0,89612	0,10388	2,7	0,99987	0,00013
-1,9	-0,99279	1,99279	-0,35	-0,37938	1,37938	1,2	0,91031	0,08969	2,75	0,99990	0,00010
-1,85	-0,99111	1,99111	-0,3	-0,32863	1,32863	1,25	0,92290	0,07710	2,8	0,99992	0,00008
-1,8	-0,98909	1,98909	-0,25	-0,27633	1,27633	1,3	0,93401	0,06599	2,85	0,99994	0,00006
-1,75	-0,98667	1,98667	-0,2	-0,22270	1,22270	1,35	0,94376	0,05624	2,9	0,99996	0,00004
-1,7	-0,98379	1,98379	-0,15	-0,16800	1,16800	1,4	0,95229	0,04771	2,95	0,99997	0,00003
-1,65	-0,98038	1,98038	-0,1	-0,11246	1,11246	1,45	0,95970	0,04030	3	0,99998	0,00002
-1,6	-0,97635	1,97635	-0,05	-0,05637	1,05637	1,5	0,96611	0,03389			
-1,55	-0,97162	1,97162	0	0,00000	1,00000	1,55	0,97162	0,02838			
-1.5	-0.96611	1.96611	0.05	0.05637	0.94363	1.6	0.97635	0.02365			

Tabella 1. Valori delle funzioni adimensionali $erf(\beta)$ ed $erfc(\beta)$ per -3 < β < +3.

Federico Cavallo s180421

Dove:

- D₀ coefficiente di diffusione molecolare;
- D_{C,L} coefficiente di diffusione cinematico longitudinale;
- α_L coefficiente di dispersività longitudinale;
- v_e velocità efficace.

Per i valori di velocità dell'acqua di falda riscontrabili nei sistemi acquiferi gli effetti della diffusione molecolari sono trascurabili rispetto a quelli della dispersione cinematica per cui, nel caso in questione, si trascura D₀. Il valore della velocità effettiva è pari a $v_e = \frac{v}{n_e} = \frac{Q}{n_e \pi r^2} = 0,000175 \ m \cdot s^{-1}$, mentre il valore del coefficiente di dispersività longitudinale è proporzionale alla scala del fenomeno, in questo caso la lunghezza L della colonna, e risulta essere $\alpha_L = 0,1 \cdot L = 0,04 \ m$, pertanto $D_L = \alpha_L v_e = 7 \cdot 10^{-6} \ m^2 \cdot s^{-1}$.

Dato che i fenomeni longitudinali sono quantitativamente più importanti di quelli trasversali, si può trascurare il valore della dispersione idrodinamica trasversale.

Profili di concentrazione

L'andamento delle concentrazioni in funzione dello spazio e del tempo in una dimensione deriva dalla soluzione dell'equazione differenziale del trasporto di massa per soluti non reattivi e ad immissione continua realizzata da Ogata – Banks:

$$\frac{C}{C_0} = \frac{1}{2} \left[erfc\left(\frac{x - v_e t}{2\sqrt{D_L t}}\right) + e^{\frac{v_e x}{D_x}} \cdot erfc\left(\frac{x + v_e t}{2\sqrt{D_L t}}\right) \right]$$

Per valori di v_e, x e t tipici delle applicazioni pratiche il secondo termine della soluzione, legato alle condizioni al contorno in ingresso alla colonna, è trascurabile in quanto avendo valori di tempo t molto grandi il termine $erfc\left(\frac{x+v_et}{2\sqrt{D_Lt}}\right)$ tende a zero. È inoltre la soluzione esatta che si otterrebbe considerando una geometria infinita del sistema. Si ha quindi la soluzione semplificata di Ogata – Banks:

$$\frac{C}{C_0} = \frac{1}{2} \cdot erfc\left(\frac{x - v_e t}{2\sqrt{D_L t}}\right)$$

Si deve valutare il profilo di concentrazione usando entrambe le soluzioni dopo 10 minuti dall'inizio della prova e dopo 50 minuti.

Per t = 3000 secondi, supponiamo di campionare la nostra colonna in dieci parti e supponiamo che continui, in modo da ottenere il profilo completo. Si riccavano i valori riportati in *Tabella 3* dai quali si ottiene il *Grafico 3*.

x (m)	O-B semplificata	O-B completa	x (m)	O-B semplificata	O-B completa
0	0,994786082	1	0,64	0,287026549	0,345245
0,04	0,991011635	0,998952	0,68	0,224433583	0,274006
0,08	0,985030046	0,996705	0,72	0,170417269	0,211088
0,12	0,975904021	0,992473	0,76	0,125539972	0,157688
0,16	0,962499579	0,985193	0,8	0,089645237	0,114127
0,2	0,943544837	0,973534	0,84	0,0620053	0,079967
0,24	0,917740713	0,955971	0,88	0,04151513	0,05421
0,28	0,883921572	0,930927	0,92	0,026891465	0,035534
0,32	0,841250038	0,896987	0,96	0,016843712	0,022512
0,36	0,789415858	0,853143	1	0,010197355	0,013778
0,4	0,728798565	0,799047	1,04	0,005964822	0,008144
0,44	0,66055225	0,735205	1,08	0,003369933	0,004647
0,48	0,58658078	0,663052	1,12	0,001838356	0,002559
0,52	0,50939244	0,584895	1,16	0,000968072	0,00136
0,56	0,431849627	0,503694	1,2	0,000491987	0,000697
0,6	0,356854368	0,422737			

Tabella 3. Valori delle concentrazioni normalizzate secondo la soluzione di Ogata – Banks semplificata e secondola soluzione di Ogata – Banks completa dopo 50 minuti dall'inizio della prova.

Grafico 3. Profili delle concentrazioni normalizzate secondo la soluzione di Ogata – Banks semplificata e secondo la soluzione di Ogata – Banks completa dopo 50 minuti dall'inizio della prova.

In questo caso si può osservare come entrambe le soluzioni di Ogata – Banks siano corrette, in quanto il tempo t è sufficientemente elevato da rendere pressoché trascurabile il secondo termine della soluzione completa e pressoché simili i due profili di concentrazione. In termini non matematici la quantità di tracciante che all'inizio si era dispersa in direzione opposta alla direzione di flusso (vedi i profili a 10 minuti) ormai è stata sospinta dal flusso nella direzione delle x positive, quindi sul grafico abbiamo il 100% della concentrazione immessa (per x = 0 i due profili coincidono) e le differenze tra i due profili saranno sempre più piccole più aumenterà il tempo.

Federico Cavallo s180421

Prova di tracciamento in campo

In questa prova l'acquifero è infinitamente esteso sia in direzione x che in direzione y e ha spessore b, si considera la sorgente di immissione nel punto (0,0) impulsiva lineare verticale, quindi si considera il caso di una geometria bidimensionale. Il pozzo di monitoraggio è posto a 7 metri di distanza lungo la stessa linea di flusso, pertanto è localizzato nel punto (7,0). Di seguito in *Tabella 4* vengono riportati i dati sperimentali relativi alle concentrazioni di tracciante misurate nel pozzo di monitoraggio, da cui si ottiene il *Grafico 4*.

tempo (day)	$C (mg \cdot l^{-1})$	tempo (day)	$C (mg \cdot l^{-1})$	tempo (day)	$C (mg \cdot l^{-1})$
0,2	3,91E-02	6	1,65E+00	19	1,78E-01
0,4	1,97E-02	7	1,43E+00	20	2,60E-01
0,6	4,88E-02	8	1,27E+00	21	1,95E-01
0,8	5,48E-02	9	1,09E+00	22	1,17E-01
1	1,68E-01	10	9,74E-01	23	1,81E-01
1,2	3,17E-01	11	8,52E-01	24	1,49E-01
1,4	5,54E-01	12	7,23E-01	25	1,24E-01
1,6	7,37E-01	13	5,31E-01	26	1,09E-01
1,8	1,06E+00	14	4,56E-01	27	7,31E-02
2	1,19E+00	15	4,24E-01	28	9,16E-02
3	1,89E+00	16	3,59E-01	29	1,33E-02
4	1,93E+00	17	3,44E-01	30	7,81E-02
5	1,87E+00	18	2,98E-01	31	3,28E-02

Grafico 4. Profilo delle concentrazioni registrate nel pozzo di misurazione nel tempo.

Nel *Grafico 5* sono mostrate le due curve caratteristiche: quella ottenuta dai dati sperimentali e quella ottenuta dalla soluzione di Wilson e Miller utilizzando $\alpha_x = 2,218$.

Grafico 5. Profilo delle concentrazioni misurate nel tempo nel pozzo di misurazione (curva blu) e profilo delle concentrazioni ottenute dalla soluzione di Wilson e Miller per $\alpha_x = 2,218$ (curva rossa).

Esercitazione del 10 maggio 2016

L'obiettivo dell'esercitazione 7 è valutare, nell'ambito di uno studio relativo ad una contaminazione di un acquifero non confinato, il trasporto di un contaminante non reattivo (tracciante) a scala di laboratorio (geometria monodimensionale) e a scala di campo (geometria tridimensionale).

Prova in colonna

Durante una serie di carotaggi in corrispondenza della zona satura è stato prelevato un campione indisturbato, costituito da sabbia da media a grossolana, che è stato utilizzato per effettuare delle prove di trasporto in colonna. La sabbia è stata utilizzata per realizzare una colonna della lunghezza L = 0.4 m, raggio interno r = 16 mm. La porosità efficace è risultata pari a n_e = 0.32.

La colonna è stata inizialmente saturata con acqua deionizzata, e successivamente sono stati iniettati separatamente due contaminanti: tricloroetilene TCE, un solvente molto diffuso, e malathion, un insetticida organofosfato con limitata tossicità per l'uomo.

Entrambi sono stati iniettati ad una concentrazione $C_0 = 10$ mg/l e con una portata costante Q = 4.5×10^{-5} l/s. Dati i parametri che caratterizzano il mezzo poroso (Errore. L'origine riferimento non è stata trovata.) ed i contaminanti (Errore. L'origine riferimento non è stata trovata.), si calcoli

- a. la velocità effettiva dei contaminanti;
- b. la curva di breakthrough dei due contaminanti.
- c. Si confrontino infine i risultati ottenuti per i due contaminanti con quelli ottenuti per il tracciante dell'esercitazione precedente.

Parametro	Valore
Densità (bulk density), p	1750 kg/m^3
Contenuto di C organico, foc	0.45%

Parametro	Tricloroetilene	Malathion
Formula di struttura		
Coefficiente di partizione Koc	0.061 m ³ /kg	0.087 m ³ /kg
Tempo di dimezzamento $t_{1/2}$	330 d	0.6 d

Tabella 1: Proprietà del mezzo poroso utilizzato per il riempimento della colonna.

Prova in colonna

Si è innanzitutto proceduto ad individuare alcuni parametri dell'acquifero e dei due inquinanti necessari per i calcoli.

Si è ottenuto il valore di velocità efficace $v_e = \frac{Q\pi r^2}{n_e} = 1,795 \cdot 10^{-4} \ m \cdot s^{-1}$ ed il valore di diffusività longitudinale $D_x = v_e \cdot 0, 1L = 6,99 \cdot 10^{-6} \ m^2 \cdot s^{-1}$.

Per il tricloroetilene si è individuato il coefficiente di ritardo $R_{TCE} = 1 + \frac{\rho_{TCE}}{n_e} f_{OC TCE} K_{OC TCE} = 2,5$ e il coefficiente di degradazione naturale $\lambda_{TCE} = \frac{0,693}{t_{\frac{1}{2}TCE}} = 2,427 \cdot 10^{-8} s^{-1}$.

Per il malathion si è individuato il coefficiente di ritardo del malathion $R_M = 1 + \frac{\rho_M}{n_e} f_{OC M} K_{OC M} =$ 3,141 e il coefficiente di degradazione naturale $\lambda_M = \frac{0.693}{\frac{t_1}{2}M} = 1,335 \cdot 10^{-5} s^{-1}$.

Distribuzione di concentrazioni

L'andamento delle concentrazioni in funzione dello spazio e del tempo in una dimensione deriva dalla seguente soluzione dell'equazione differenziale del trasporto di massa per soluti reattivi soggetti a degradazione naturale e adsorbimento ad immissione continua:

$$\frac{C}{C_0} = \frac{1}{2} \left[erfc\left(\frac{Rx - v_e t \sqrt{1 + \frac{4\lambda D_x}{v_e^2}}}{2\sqrt{D_x Rt}}\right) \cdot e^{\frac{v_e x}{2D_x} \left(1 - \sqrt{1 + \frac{4\lambda D_x}{v_e^2}}\right)} + erfc\left(\frac{Rx + v_e t \sqrt{1 + \frac{4\lambda D_x}{v_e^2}}}{2\sqrt{D_x Rt}}\right) \cdot e^{\frac{v_e x}{2D_x} \left(1 + \sqrt{1 + \frac{4\lambda D_x}{v_e^2}}\right)} \right]$$

Si deve valutare la distribuzione di concentrazione usando la soluzione dopo 10 minuti dall'inizio della prova e dopo 50 minuti.

A 50 minuti

Per t = 3000 secondi, supponendo di campionare la nostra colonna in dieci parti, si ricavano i seguenti valori (*Tabella 4*) dai quali si ottiene il *Grafico 2*.

x (m)	C/C ₀ TCE (-)	C/C ₀ M (-)
0	1	1
0,04	0,978185271	0,96141548
0,08	0,935259728	0,890761622
0,12	0,865459028	0,784082304
0,16	0,767413399	0,647047466
0,2	0,646032506	0,494907163
0,24	0,512165891	0,347612068
0,28	0,379813768	0,222581035
0,32	0,262037933	0,129202082
0,36	0,167457711	0,067698379
0,4	0,09878845	0,031914762

Tabella 4. Valori delle concentrazioni normalizzate dei due contaminanti rispetto alle rispettive concentrazioniiniziali C0 dopo 50 minuti dall'inizio della prova.

Grafico 2. Distribuzione delle concentrazioni normalizzate dei due contaminanti rispetto alle rispettive concentrazioni iniziali C₀ dopo 50 minuti dall'inizio della prova.

Come si può osservare anche in questo grafico il malathion continua a presentare valori di concentrazione inferiori a quelli del TCE sia per il suo tempo di degradazione naturale molto più rapido sia per il suo coefficiente di ritardo maggiore di quelli del TCE.

Prova di tracciamento in campo

Anche in questo caso si è innanzitutto proceduto ad individuare alcuni parametri dell'acquifero e dei due inquinanti necessari per i calcoli.

Si è stimato il valore di diffusività longitudinale $D_x = v_e \cdot 0, 1L = 5 \cdot 10^{-7} m^2 \cdot s^{-1}, \quad D_y = \frac{D_x}{10} = 5 \cdot 10^{-8} m^2 \cdot s^{-1} e D_z = \frac{D_x}{100} = 5 \cdot 10^{-9} m^2 \cdot s^{-1}.$

Per i coefficienti di ritardo R ed i coefficienti di degradazione naturale λ del tricloroetilene e del malathion, essendo il terreno lo stesso usato nella prova in colonna, si sono usati gli stessi valori calcolati precedentemente.

Soluzione di Robbins

L'andamento delle concentrazioni in funzione dello spazio e del tempo in tre dimensioni deriva dalla soluzione dell'equazione differenziale del trasporto di massa per soluti reattivi soggetti a degradazione naturale e adsorbimento a sorgente areale ed immissione continua ricavata da Domenico Robbins. In particolare si userà la soluzione eseguita lungo l'asse x del plume (y = 0, z = 0), ossia la seguente formula:

$$\frac{C}{C_0} = \frac{1}{2} \cdot e^{\frac{v_e x}{2D_x} \left(1 - \sqrt{1 + \frac{4\lambda D_x}{v_e^2}}\right)} \cdot erfc\left(\frac{Rx - v_e t}{2\sqrt{D_x Rt}}\right) \cdot erf\left(\frac{Y}{4\sqrt{\frac{D_x x}{v_e}}}\right) \cdot erf\left(\frac{Z}{2\sqrt{\frac{D_x x}{v_e}}}\right)$$

Si deve valutare la concentrazione dei due contaminanti usando la soluzione di Robbins 8 anni dopo il posizionamento della sorgente inquinante a 50 metri lungo l'asse del plume.

Dal momento che sono noti tutti i valori si ottiene che la concentrazione di tricloroetilene è 0,0444 volte la concentrazione di TCE presente alla sorgente, e la concentrazione di malathion è $1,8x10^{-49}$ volte la concentrazione di TCE presente alla sorgente.

x (m)	C/C ₀ TCE	C/C ₀ Malathion	x (m)	C/C ₀ TCE	C/C_0 Malathion
0	1	1	26	0,296439261	8,72275E-26
1	0,960392479	0,109380001	27	0,281664616	9,43929E-27
2	0,922376073	0,011964273	28	0,267616557	1,02143E-27
3	0,885851239	0,001308664	29	0,254262789	1,10527E-28
4	0,850647257	0,000143122	30	0,241571806	1,19597E-29
5	0,816468148	1,56453E-05	31	0,229512992	1,29411E-30
6	0,783046291	1,70892E-06	32	0,218056695	1,4003E-31
7	0,750248623	1,86479E-07	33	0,207174279	1,51523E-32
8	0,71806645	2,03272E-08	34	0,196838157	1,63961E-33
9	0,686563217	2,21352E-09	35	0,187021809	1,77424E-34
10	0,655828798	2,40814E-10	36	0,177699782	1,91998E-35
11	0,625951639	2,61771E-11	37	0,168847692	2,07775E-36
12	0,597005475	2,84347E-12	38	0,160442207	2,24857E-37
13	0,569044996	3,08678E-13	39	0,152461031	2,43353E-38
14	0,542106136	3,34913E-14	40	0,144882878	2,63381E-39
15	0,516208346	3,63214E-15	41	0,137687448	2,85069E-40
16	0,491357445	3,93753E-16	42	0,130855395	3,08558E-41
17	0,467548399	4,26719E-17	43	0,124368294	3,33998E-42
18	0,444767748	4,62315E-18	44	0,118208615	3,61554E-43
19	0,422995633	5,0076E-19	45	0,112359679	3,91403E-44
20	0,402207433	5,42292E-20	46	0,106805634	4,23737E-45
21	0,382375069	5,87167E-21	47	0,101531413	4,58767E-46
22	0,363468038	6,35664E-22	48	0,096522706	4,96719E-47
23	0,345454225	6,88083E-23	49	0,091765924	5,37839E-48
24	0,328300543	7,44751E-24	50	0,087248164	5,82393E-49
25	0,311973434	8,06021E-25			

Allegato 1

Procedura di analisi di rischio

L'analisi del rischio sanitario ambientale è la procedura per la valutazione del grado d'inquinamento di un sito e per la definizione della priorità di intervento sul sito stesso. In particolare, l'analisi di rischio è lo strumento riconosciuto per definire le concentrazioni obbiettivo che devono essere raggiunte a seguito degli interventi di bonifica.

È bene distinguere il concetto di rischio di inquinamento dal rischio sanitario ambientale.

• Il *rischio di inquinamento* esprime la probabilità che si verifichi u degrado della qualità delle acque a seguito del concretizzarsi di una soluzione di pericolo.

• Il *rischio sanitario ambientale* è la quantificazione del danno tossicologico prodotto all'uomo o all'ambiente per effetto di una sorgente inquinante.

La procedura si articola in più fasi e si approfondisce a vari livelli:

1. Caratterizzazione del sito, che comprende tutte le indagini ambientali necessarie per la caratterizzazione del sito contaminato.

2. Definizione del modello concettuale, che consiste nell'individuazione dei soggetti potenzialmente esposti, delle vie di esposizione, delle vie di migrazione e nella scelta dei contaminanti indice.

3. Determinazione delle concentrazioni nel punto di esposizione mediante la simulazione di migrazione di diversi contaminanti dalla sorgente al punto di esposizione.

4. Calcolo del rischio.

5. Analisi decisionale, che comprende la fase connessa alla gestione del rischio.

Nota: le fasi 1 e 2 costituiscono il piano della caratterizzazione che identifica il primo livello dell'analisi di rischio.

In sintesi i livelli dell'analisi si possono riassumere come segue:

• Il *primo livello* consiste nel confrontare la contaminazione del sito con i valori limite.

• Il secondo livello consiste in un analisi di rischio utilizzando software appositi semplificati.

• Il *terzo livello* rappresenta un stadio più approfondito di analisi di rischio in cui vengono utilizzati software più sofisticati tenendo conto di dati chimici, fisici e biologici specifici del sito. Si procede con un analisi dettagliata dell'evoluzione che subisce il contaminante dalla sorgente al corso d'acqua superficiale.

Rilascio nel mezzo non saturo

Il processo di degrado della qualità dell'acqua di falda ha inizio con la formazione di percolato. Il percolato è costituito da una miscela di diversi componenti la cui concentrazione è descritta dal coefficiente di partizione suole-percolato K_{sw} , definito come il rapporto, in condizioni stazionarie,

25

Attenuazione nel mezzo non saturo

Il percolato che si produce è interessato da un flusso verticale verso il mezzo saturo; tale flusso determina una riduzione della concentrazione del contaminante in arrivo al mezzo saturo.

Nel caso studio analizzato si ha la seguente configurazione:

Figura 1. Configurazione del caso studio in esame

Figura 2. Piezometria dell'area contaminata in esame

Come si può notare dalla Figura 1 la soggiacenza L_2 è circa uguale allo spessore della sorgente contaminate. Di conseguenza il fenomeno di attenuazione nel mezzo non saturo è trascurabile.

La concentrazione dei contaminanti presenti nella zona di miscelazione in falda sono ricavati, a partire dalla corrispondete concentrazione nella sorgente di rilascio, mediante l'inversa della formula (4).

Si riportano di seguito le concentrazioni nella Tabella 6.

_	Arsenico	Cromo VI	1,1,2- tricloroetano	1,2- cisdicloroetilene
C ₀	752,4078108	10363,5474	19095,49384	4346,150593

Tabella 6. Valori calcolati delle concetrazioni dei contaminanti presenti nella zona di miscelazione

Diluizione e attenuazione in falda

L'inquinante subisce un ulteriore processo di diluizione e attenuazione per effetto dei fenomeni che accompagnano il trasporto e la dispersione nel sistema acquifero. Tale diluizione è misurata dal fattore DAF(Diluition Attenuation Factor) definito dall'espressione seguente:

$$DAF = \frac{C_0}{C_f} \tag{5}$$

Dove,

 C_f : concentrazione dell'inquinate in falda a valle della zona di miscelazione.

Dalla formula di Domenico Robbins per sorgente areale ed immissione continua, riportata di seguito

$$\frac{C_f}{C_0} = \exp\left\{\left(\frac{x}{2\alpha_x}\right) \cdot \left[1 - \sqrt{1 + \frac{4\lambda_i \alpha_x R_i}{\nu_e}}\right]\right\} \cdot \operatorname{erf}\left[\frac{S_w}{4\sqrt{\alpha_y x}}\right] \cdot \operatorname{erf}\left[\frac{S_d}{2\sqrt{\alpha_z x}}\right]$$

Dall'inverso della formula (5) è si calcolano le concentrazioni dei contaminanti in falda. I valori sono riportati nella seguente tabella:

	Arsenico	Cromo VI	1,1,2- tricloroetano	1,2- cisdicloroetilene
C _f	627,5889577	8644,31204	11665,42879	905,962242

Tabella 7. Valori calcolati delle concentrazioni degli inquinanti in falda

Fattore di attenuazione complessivo

Il processo di degrado della qualità delle risorse idriche subisce un'attenuazione complessiva che è misurata dal NAF(Natural Attenuation Factor) definito come

$$NAF = \frac{\text{concentrazione del contaminante nella sorgente inquinante}}{\text{concentrazione del contaminante al punto di esposizione}} = \frac{C_{suolo}}{C_{POE}}$$

Dove,

 C_{POE} : concentrazione del contaminante subito prima dell'immissione nel fiume(C_f) oppure in fiume subito dopo la diluizione del plume nel corso d'acqua(C_r).

Sulla base di quanto analizzato rispetto al percorso di esposizione per ingestione di acque contaminate il valore del NAF è ottenibile dalla relazione

$$NAF = \frac{LDF \cdot DAF \cdot RDF}{K_{sw} \cdot LAF}$$

Si ricorda che nella presente trattazione il valore del parametro LAF si è approssimato cautelativamente uguale ad 1.

Si riportano nella Tabella 10 i valori calcolati del parametro NAF a monte e a valle del corso d'acqua.

NAF prima del fiume	3,027459258	0,919679896	0,205736115	0,082784907
NAF nel fiume	10447,7619	3173,815322	709,9953332	285,6907142

Tabella 10. Valori calcolari del Natural Attenuation Factor a monte e a valle del corso d'acqua.

Calcolo del rischio

Rischio cancerogeno

L'incremento di probabilità di contrarre un tumore a causa dell'esposizione di una singola sostanza è stimato dal parametro IELCR (Individual Excess Lifetime Cancer Risk).

$$IELCR = C_{POE} \cdot E \cdot SF$$

Si riportano di seguito in Tabella 12 i valori calcolati per IELCR a monte e nel corso d'acqua:

	Arsenico	Cromo VI	Totale	Valori di legge
IELCR prima del				
fiume	0,02689667	0,123490172	0,015039	<10 ⁻⁵
IELCR nel fiume	7,79388E-06	3,57839E-05	4,35778E-05	<10 ⁻⁵

Tabella 12. Valori di IELCR prima e nel corso d'acqua

L'incremento di probabilità di contrarre un tumore nel corso della vita per effetto dell'esposizione al processo di contaminazione non deve superare il range $10^{-6} \div 10^{-4}$. In particolare, la normativa italiana ritiene accettabile un rischio individuale, ovvero associato ad un'unica specie di inquinante, minore di 10^{-6} (una probabilità di tumore in più ogni milione di persone esposte), e un rischio cumulativo, ovvero dovuto alla cumulazione degli effetti per più sostanze, minore di 10^{-5} .

Come è possibile notare i valori cumulativi sono superiori ai valori stabiliti dalla normativa italiana sia prime del fiume che dopo l'immissione nel fiume.

Esercitazione del 24 maggio 2016

Si è considerato il sito contaminato studiato durante la precedente esercitazione. L'applicazione della procedura di analisi di rischio sanitario ambientale di 2° livello ha evidenziato la presenza di condizioni di rischio per la saluta umana e la conseguente necessità di un intervento di bonifica che porti le concentrazioni in uscita dal sito a valori pari alle CSC.

Considerando la presenza di una sorgente areale, si sono confrontate le tecniche di Pump & Treat e Barriera Reattiva Permeabile.

L'esercitazione 9 si pone i seguenti obiettivi:

- Progettare e dimensionare i due interventi di bonifica limitatamente alla sola rimozione del Cromo, del Tricloroetano e del Dicloroetilene (si trascuri la presenza dell'Arsenico).

- Stimare i costi dei due diversi interventi dopo 10 e 20 anni di esercizio.

- Progettare un idoneo sistema di monitoraggio (posizione e frequenza), considerando un costo di prelievo e analisi dei campioni di acqua di falda di 530 €/campione.

- Identificare l'intervento preferibile, sulla base di considerazioni sia economiche sia tecniche. Per la progettazione del sistema Pump & Treat:

- Tramite prova di pozzo a gradini di portata è stata ricavata l'equazione caratteristica dell'opera di captazione, avente coefficienti B e C uguali rispettivamente a 290 s/m² e 2450 s²/m⁵.

- L'abbassamento stabilizzato in pozzo dovuto al pompaggio non deve superare la metà dello spessore saturo dell'acquifero. Si valuti quindi il numero di pozzi necessari per la cattura del fronte contaminato.

- Costo medio per il trattamento dell'acqua contaminata estratta: 3.3 €/m³

- Costo di installazione dei pozzi 750 €/metro

Per la progettazione della Barriera Reattiva Permeabile:

- Il materiale di riempimento della barriera è costituito da ferro zerovalente millimetrico ad elevata superficie specifica.

Le seguenti caratteristiche del materiale reattivo sono state fornite dal produttore:

Parametro	U.m.	Valore
Porosità	-	0.35
Conducibilità idraulica	m/s	0.0014
Densità bulk	kg/m^3	3000

Figura 4. Ubicazione della sorgente inquinante e piezometria dell'acquifero superficiale.

Pump and Treat

Il metodo consiste nel realizzare un certo numero di pozzi completati nella falda da bonificare, mediante i quali estrarre l'acqua contaminata che poi verrà trattata. Questa tecnica è utilizzata per la rimozione di inquinanti miscibili con l'acqua. Il sistema pump and treat possono essere progettati sia per rimuovere i contaminanti dall'acquifero sia per realizzare un controllo idraulico del plume inquinante.

Si riporta di seguito la Tabella 1 contenente il valore di portata calcolata per singolo pozzo e i relativi dati utili al calcolo.

Pump & Treat		
con 1 pozzo		
Q singolo pozzo	<mark>0,039872</mark>	m^3/s
y max	254,5455	m
ymax/2	127,2727	m
x0	33,29969	m
Х	221,2458	m

Tabella 14. Portata Q per singolo pozzo e dati utili al calcolo

Come si può notare il valore trovato è maggiore della Q limite.

Si è proseguito il ragionamento provando a progettare un'erogazione con due pozzi utilizzando la formula empirica per pozzi multipli allineati.

$$Q = \frac{y_{max}}{4} \cdot bv$$

Si riporta di seguito la Tabella 2 contente i valori di portata calcolati

Pump & Treat		
con 2 pozzi		
Q tot	0,039872	m^3/s
Q singolo pozzo	0,019936	m^3/s

Tabella 15.Valori di portata Q calcolati con 2 pozzi

In questo caso la portata emunta dai singoli pozzi è minore della Q limite calcolata con il metodo a gradini. Quindi si è assunto di progettare il sistema Pump and Treat con due pozzi in esercizio. Si è quindi determinata la zona di captazione utilizzando la formula (1) facendo variare y fino a $y_{max}/2$ e utilizzando come valore di Q la somma delle portate erogate dai due pozzi.

Si riporta di seguito il diagramma della zona di captazione:

Figura 5. Zona di captazione

Barriera reattiva permeabile

Il principio su cui è basata è il seguente: del materiale reattivo viene posto all'interno del sistema acquifero in modo da essere attraversato dall'acqua contaminata che si muove per effetto del gradiente naturale. Le reazioni che si instaurano all'interno della barriera consentono di degradare o di immobilizzare il contaminante che la attraversa.

Le possibili configurazioni sono:

• Trincee continue che si estendono su tutto o su una porzione dello spessore saturo

• Sistemi Funnel and Gate, costituite da una barriera a bassa permeabilità a forma di imbuto, utilizzata per indirizzare il flusso di acqua dalla regione contaminata ad una zona di trattamento permeabile.

In tutte le soluzioni progettuali è necessario che la permeabilità del materiale reattivo non sia inferiore alla permeabilità dell'acquifero per evitare la diversione delle linee di flusso attorno alla barriera. Le reazioni che avvengono nella zona di trattamento possono essere:

- Reazioni chimiche
- Separazione fisica
- Degradazione biologica
- Adsorbimento

Quelle più utilizzate sono costituite da ferro zero valente quale materiale reattivo per la degradazione si solventi clorurati, rimossi dall'acqua di falda attraverso un processo di ossido riduzione nel corso del quale il ferro zero valente si ossida a ferro bi-valente riducendo le sostanze alogenate ad idrocarburi con l'eliminazione degli ioni cloruro.

$$Fe^{0} \rightarrow Fe^{2} + 2e^{-}$$
$$RCl + 2e^{-} + H^{+} \rightarrow RH + Cl^{-}$$
$$Fe^{0} + RCl + H^{+} \rightarrow Fe^{2} + RH + Cl^{-}$$

I vantaggi di una PRB(Permeable Reactive Barrier) sono:

• Non necessità di impianti fuori terra né somministrazione di energia

• Consente di degradare i plume contaminati con sorgenti distribuite o difficilmente localizzabili

- Ampio ventaglio di contaminati trattati
- Ottimo rapporto costi benefici
- Minimi costi di gestione

I limiti principali sono dovuti al:

• Trattamento della sola frazione solubile