

Appunti universitari
Tesi di laurea
Cartoleria e cancelleria
Stampa file e fotocopie
Print on demand
Rilegature

NUMERO: 2188A ANNO: 2017

APPUNTI

STUDENTE: Placido Daniele

MATERIA: Fondamenti di Ingegneria Nucleare - Formulario - Prof. Ravetto

Il presente lavoro nasce dall'impegno dell'autore ed è distribuito in accordo con il Centro Appunti. Tutti i diritti sono riservati. È vietata qualsiasi riproduzione, copia totale o parziale, dei contenuti inseriti nel presente volume, ivi inclusa la memorizzazione, rielaborazione, diffusione o distribuzione dei contenuti stessi mediante qualunque supporto magnetico o cartaceo, piattaforma tecnologica o rete telematica, senza previa autorizzazione scritta dell'autore.

FORMULARIO FONDAMENTI DI INGEGNERIA NUCLEARE

Fisica del reattore

Decadimento radioattivo

Assenza di sorgenti

$$N(t) - N(t + dt) = \lambda dt N(t); \frac{dN(t)}{dt} = -\lambda N(t) Legge di Bequerel$$

 $N(t) = Ce^{-\lambda t}$ soluzione generale equazione differenziale

 $N(t) = N_0 e^{-\lambda t}$ integrale particolare della legge di Bequerel

$$N(t) = \frac{N_0}{2} \rightarrow t_{1/2} = \frac{\ln 2}{\lambda} tempo di dimezzamento$$

$$rac{N(t)}{N_0}=e^{-\lambda t}\, probabilit$$
à che un nucleo no sia decaduto

 $e^{-\lambda t}$ λdt probabilità che il decadimento avvengra tra t e t+dt

$$\int_0^{+\infty} t * e^{-\lambda t} * \lambda dt \ vita \ media \ del \ nucleo \ radio attivo$$

Con sorgente

 $dN(t) = -\lambda N(t)dt + R(t)dt$ equazione di Bequerel con sorgente, non omogenea

$$N(t) = N_0 e^{-\lambda t} + \int_0^t dt' * R(t') * e^{-\lambda(t-t')}$$
 integrale particolare

Se R(t) = S = costante

$$N(t) = N_0 e^{-\lambda t} + \frac{S}{\lambda} [1 - e^{-\lambda t}]$$
 soluzione con sorgente costante

Se
$$N_0 = 0$$

$$N(t) = \frac{S}{\lambda} [1 - e^{-\lambda t}]$$
 soluzione con 0 nuclei inizialmente presenti

In regime stazionario con sorgente costante

$$\frac{dN(t)}{dt} = 0 \rightarrow N(t) = \frac{S}{\lambda}$$

$$N(t) * \lambda attivita'$$

Deduzione teoria della diffusione

$$\frac{1}{v}\frac{\partial\phi(\vec{r},t)}{\partial t} = -\nabla\cdot\vec{J}(\vec{r},t) - \Sigma_a\phi(\vec{r},t) + S(\vec{r},t) \text{ bilancio neutronico mezzo non moltiplicante}$$

$$\psi(\vec{r},t) = S(\vec{r},t) + \Sigma_S \phi(\vec{r},t)$$
 densità di emissione

$$\psi\left(\vec{r},t-rac{r}{v}
ight)d\vec{r}rac{dA_z\cos\vartheta}{4\pi r^2}e^{-\Sigma r}$$
 neutroni che attraversano l'area dA_z al tempo t

$$J_z^-(0,t) = \int_{s^+} \psi\left(\vec{r},t-\frac{r}{v}\right) d\vec{r} \frac{dA_z\cos\vartheta}{4\pi r^2} e^{-\Sigma r} \ corrente \ neutronica \ che \ attraversa$$

$$dA_z \ nella \ direzione \ discorde \ all' \ asse \ z$$

$$J_z^+(0,t) = \int_{s^-} \psi\left(\vec{r},t-\frac{r}{v}\right) d\vec{r} \frac{dA_z\cos\vartheta}{4\pi r^2} e^{-\Sigma r} \ corrente \ neutronica \ che \ attraversa$$

$$dA_z \ nella \ direzione \ concorde \ all'asse \ z$$

$$J_{z}^{-}(0,t) = \frac{1}{4\Sigma}\psi(0,t) + \frac{1}{6\Sigma^{2}} \left(\frac{\partial\psi(x,y,z,t)}{\partial z}\right)_{0}$$

$$J_z^+(0,t) = \frac{1}{4\Sigma}\psi(0,t) - \frac{1}{6\Sigma^2} \left(\frac{\partial \psi(x,y,z,t)}{\partial z}\right)_0$$

$$J_z(0,t) = J_z^+(0,t) - J_z^-(0,t) = -\frac{1}{3\Sigma^2} \left(\frac{\partial \psi(x,y,z,t)}{\partial z}\right)_0$$

$$J_x(0,t) = J_x^+(0,t) - J_x^-(0,t) = -\frac{1}{3\Sigma^2} \left(\frac{\partial \psi(x,y,z,t)}{\partial x}\right)_0$$

$$J_{y}(0,t) = J_{y}^{+}(0,t) - J_{y}^{-}(0,t) = -\frac{1}{3\Sigma^{2}} \left(\frac{\partial \psi(x,y,z,t)}{\partial y} \right)_{0}$$

$$\psi(\vec{r},t) = S(\vec{r},t) + \Sigma_s \phi(\vec{r},t) \approx \Sigma_s \phi(\vec{r},t)$$

$$\frac{\partial \psi(\vec{r},t)}{\partial r} = \Sigma_s \frac{\partial \phi(\vec{r},t)}{\partial r}$$

$$\vec{J} = J_x \hat{\imath} + J_y \hat{\jmath} + J_z \hat{k} = -\frac{\Sigma_s}{3\Sigma^2} \nabla \phi = -D\nabla \phi \text{ legge di Fick}$$

$$D = \frac{\Sigma_s}{3\Sigma^2} \ coefficiente \ di \ diffusione$$

$$\Sigma = \Sigma_a + \Sigma_s \approx \Sigma_s \to D = \frac{1}{3\Sigma_s}$$

$$\phi(\vec{r}) = \frac{S_0}{4\pi D} \frac{e^{-r/L}}{r}$$
 soluzione del problema con sorgente in origine

$$\phi(\vec{r},r') = \frac{S_0}{4\pi D} \frac{e^{-|r-r'|/L}}{|r-r'|}$$
 soluzione con sorgente posta in r'

$$G(\vec{r},r')=rac{1}{4\pi D}rac{e^{-|r-r'|/L}}{|r-r'|}$$
 funzione di Green puntiforme

$$\phi(\vec{r},r') = \int_{-\infty}^{+\infty} d\vec{r'} S(\vec{r'}) G(\vec{r},r')$$
 soluzione con qualunque sorgente

Con questo posso risolvere tuti i problemi in tutte le geometrie possibili

Geometria piana

Mezzo semi infinito contorno col vuoto

$$\phi(x) = \begin{cases} E \sinh \frac{x}{L} & per \ 0 < x < a \\ C_2 e^{-x/L} & per \ x > a \end{cases}$$

$$\phi(a^-) = \phi(a^+) \rightarrow E \sinh \frac{a}{L} = C_2 e^{-a/L}$$
 condizione di continuita' del flusso

$$J(a^{+}) - J(a^{-}) = S_0 bilancio della corrente$$

$$\frac{DC_2}{L}e^{-a/L} - \frac{DE}{L}\cosh\frac{a}{L} = S_0$$

Dal sistema seguente si ricavano le costanti E e \mathcal{C}_2

$$\begin{cases} E \sinh \frac{a}{L} = C_2 e^{-a/L} \\ \frac{DC_2}{L} e^{-a/L} - \frac{DE}{L} \cosh \frac{a}{L} = S_0 \end{cases}$$

Doppio contorno col vuoto: mezzo finito, slab

$$\phi(x) = \begin{cases} A \sinh \frac{x}{L} \ per \ 0 < x < x' \\ C \sinh \frac{a - x}{L} \ per \ x' < x < a \end{cases}$$

Imponendo le condizioni di continuità del flusso e sulla sorgente si ottiene

$$\begin{cases} A \sinh \frac{x'}{L} = C \sinh \frac{a - x'}{L} \\ \frac{DC}{L} \cosh \frac{a - x'}{L} - \frac{DA}{L} \cosh \frac{x'}{L} = S_0 \end{cases}$$

Caso non stazionario in mezzi moltiplicanti

$$\frac{1}{v}\frac{\partial \phi(\vec{r},t)}{\partial t} = D\nabla^2\phi(\vec{r},t) - \Sigma_a\phi(\vec{r},t) + v\Sigma_f\Phi\left(\overrightarrow{r},t\right) + S(\vec{r},t) \ equazione \ diffusione \ mezzo$$

moltiplicante omogeneo non stazionario

$$\Phi(\vec{r},t) = \sum_{n=1}^{\infty} \left[A_n(0) e^{\alpha_n t} + \nu \int_0^t S_n(t') e^{\alpha_n (t-t')} dt' \right] * \varphi_n(\vec{r}) \ solutione \ completa$$

$$S_n(t') = \int_D S(\vec{r},t) \, \phi_n(\vec{r}) d\vec{r}$$
 proiezione sorgente su armonica fondamentale

$$\alpha_n = v \left[v \Sigma_f - \Sigma_a - D B_n^2 \right] = v \Sigma_a (1 + L^2 B_n^2) \left[\frac{k_\infty}{1 + L^2 B_n^2} - 1 \right] = \frac{k_n - 1}{l_n}$$

$$oldsymbol{l_n} = rac{1}{v \Sigma_a (1 + L^2 B_n^2)}$$
 vita media neutroni mezzo finito

$$oldsymbol{l} = rac{1}{
u \Sigma_a}$$
 vita media neutroni mezzo infinito

$$P = \int_{V} E_{f} \Sigma_{f} \phi(\vec{r}, t) d\vec{r}$$
 potenza

$$E = \int_0^t dt' \left(\int_V E_f \Sigma_f \ \phi(\vec{r},t) d\vec{r} \right)$$
 energia

 $E_f = 200 MeV$ energia rilascata da fisione termica

Caso senza sorgente

$$\begin{split} \Phi(\vec{r},t) &= \sum_{n=1}^{\infty} [A_n(0)e^{\alpha_n t}] * \varphi_n(\vec{r}) = \sum_{n=1}^{\infty} \left[A_n(0)e^{\frac{k_n-1}{l_n}*t} \right] * \varphi_n(\vec{r}) \\ &= A_1(0)e^{\frac{k_1-1}{l_1}*t} * \varphi_1(\vec{r}) + \sum_{n=2}^{\infty} \left[A_n(0)e^{\frac{k_n-1}{l_n}*t} \right] * \varphi_n(\vec{r}) \end{split}$$

$$\boldsymbol{\varPhi}_{as} = \begin{cases} \lim_{t \to \infty} \boldsymbol{\varPhi}(\vec{r},t) = A_1(0) * \boldsymbol{\varphi}_1(\vec{r}) = costante \text{ con } k_1 = 1, \alpha_1 = 0 \\ \lim_{t \to \infty} \boldsymbol{\varPhi}(\vec{r},t) = + \infty \text{ con } k_1 > 1, \alpha_1 > 0 \\ \lim_{t \to \infty} \boldsymbol{\varPhi}(\vec{r},t) = 0 \text{ con } k_1 < 1, \alpha_1 < 0 \end{cases}$$

Caso con sorgente ma senza neutroni iniziali ($A_n(0) = 0$)

$$\Phi(\vec{r},t) = \sum_{n=1}^{\infty} \left[v \int_{0}^{t} S_{n}(t') e^{\alpha_{n}(t-t')} dt' \right] * \varphi_{n}(\vec{r}) = \sum_{n=1}^{\infty} \left[v \int_{0}^{t} S_{n}(t') e^{\frac{k_{n}-1}{l_{n}}*(t-t')} dt' \right] * \varphi_{n}(\vec{r})$$

$$B_m = (2n-1)\frac{\pi}{a} B_n = (2n-1)\frac{\pi}{b} m, n = 1, 2, 3, ...$$

$$\varphi_{1,1}(x,y) = \sqrt{\frac{2}{a}} * \cos\left(\frac{\pi}{a}x\right) * \sqrt{\frac{2}{b}} * \cos\left(\frac{\pi}{b}y\right) \text{ armonica fondamentale}$$

Parallelepipedo finito

$$\varphi_{l,m,n}(x,y,z) = \sqrt{\frac{2}{a}} * \cos(B_l x) * \sqrt{\frac{2}{b}} * \cos(B_m y) * \sqrt{\frac{2}{c}} * \cos(B_n z)$$

$$B_l = (2n-1)\frac{\pi}{a}$$
 $B_m = (2n-1)\frac{\pi}{b}$ $B_n = (2n-1)\frac{\pi}{c}$ $l, m, n = 1, 2, 3, ...$

$$\varphi_{1,1,1}(x,y,z) = \sqrt{\frac{2}{a}} * \cos\left(\frac{\pi}{a}x\right) * \sqrt{\frac{2}{b}} * \cos\left(\frac{\pi}{b}y\right) * \sqrt{\frac{2}{c}} * \cos\left(\frac{\pi}{c}z\right) \ armonica\ fond.$$

Le soluzioni del parallelepipedo sono scritte per una distribuzione simmetrica.

Geometria cilindrica

$$\varphi_{m,n}(r,z) = \sqrt{\frac{2}{H}} * \cos(B_n z) * \frac{1}{R\sqrt{\pi}|J_1(j_m)|} * J_0(B_m r)$$

$$B_n = (2n-1)\frac{\pi}{H}$$
 $B_m = \frac{j_{0,m}}{R}$ $m, n = 1, 2, 3, ...$

 $oldsymbol{j_{0,1}}=\mathbf{2,4048}$ primo zero funzione di Bessel

$$B_{1,1}^2 = \left(\frac{\pi}{H}\right)^2 + \left(\frac{j_{0,1}}{R}\right)^2$$
 buckling dell'armonicafondamentale

Progetto del reattore termico omogeneo in teoria della diffusione

$$\overline{\sigma} = \frac{\sqrt{\pi}}{2} * \sqrt{\frac{T_0}{T}} * \sigma(E_0)$$
 sezione d'urto microscopica media termica

$$T_0 = 293K \ E_0 = 0,025eV$$

Nel caso non sia valido il comportamento $^{1}\!/_{v}$ si usa

$$\overline{\sigma} = \frac{\sqrt{\pi}}{2} * \sqrt{\frac{T_0}{T}} * \sigma(E_0) * g(T)$$

g(T) coefficiente di Westcott

Fattore di moltiplicazione dei neutroni veloci

$$\varepsilon = \frac{1 + \frac{c_1 N(U_{238})}{N^M}}{1 + \frac{c_2 N(U_{238})}{N^M}} = \frac{\Theta + c_1 (1 - e)}{\Theta + c_2 (1 - e)} \ fattore \ di \ moltiplicazione \ veloce$$

Probabilità di sfuggire alle risonanze

$$p = exp\left[-rac{N_A*I}{\Sigma_s*\xi}
ight]$$
 probabilità di sfuggire alle risonanze

$$\Sigma_s = \Sigma_s^M + \Sigma_s^F = N^M * \sigma_s^M + N^F * \sigma_s^F$$

$$N_A \approx N(U_{238}) = N^F * (1 - e)$$
 concentrazione atomo assorbitore

$$I = a \left[\frac{\Sigma_s * 10^{24}}{N_A} \right]^c = a \left[\frac{\sigma_s^M * \Theta + \sigma_s^F}{(1 - e)} * 10^{24} \right]^c \text{ integrale di risonanza}$$

$$\xi = \frac{\xi^M * \Sigma_S^M}{\Sigma_S^M + \Sigma_S^F} + \frac{\xi^F * \Sigma_S^F}{\Sigma_S^M + \Sigma_S^F} = \frac{\xi^M * \sigma_S^M * \Theta + \xi^F * \sigma_S^F}{\sigma_S^M * \Theta + \sigma_S^F}$$

$$rac{\xi^M * \Sigma^M_s}{\Sigma^M_s + \Sigma^F_s}$$
 probalilita'che avvenga un urto nel moderatore

$$rac{\xi^F*\Sigma^F_s}{\Sigma^M_s+\Sigma^F_s}$$
 probalilita'che avvenga un urto nel combustibile

Probabilità di non fuga termica

$$P_{NL}^{th} = \frac{1}{1 + L^2 B^2}$$

$$L^2 = rac{D}{\Sigma_a} = rac{D^M + D^F}{\Sigma_a^M + \Sigma_a^F} \cong rac{D^M}{\Sigma_a^M + \Sigma_a^F} = rac{L_M^2}{1 + Z} = L_M^2 (1 - f) area \ di \ diffusione$$

 ${\it L}_{\it M}^2$ area di difusione del moderatore

$$P_{NL}^{th} = rac{1}{1 + L_M^2 (1 - f) B^2} \ probabilita' di \, non \, fuga \, termica$$

Probabilità di non fuga veloce

$$\frac{\partial q(\vec{r},u)}{\partial u} = D(u) * \nabla^2 \phi(\vec{r},u) \ equaizone \ del \ rallentameto \ di \ Fermi$$

$$\frac{\partial q(\vec{r},u)}{\partial u} = \frac{D(u)}{\xi \Sigma_s(u)} * \nabla^2 q(\vec{r},u) \ euqazione \ del \ rallentamento \ continuo \ di \ Fermi$$

u letargia

Teoria multi gruppi energetici

Equazioni teoria a due gruppi energetici per sistemi non moltiplicanti omogenei

$$\begin{cases} \frac{1}{v_{1}} \frac{\partial \phi_{1}(\vec{r},t)}{\partial t} = D_{1} \nabla^{2} \phi_{1}(\vec{r},t) - \Sigma_{1} \phi_{1}(\vec{r},t) + S_{1}(\vec{r},t); & \phi_{1}(\vec{r},t=0) \phi_{10}(\vec{r}) \\ \frac{1}{v_{2}} \frac{\partial \phi_{2}(\vec{r},t)}{\partial t} = D_{2} \nabla^{2} \phi_{2}(\vec{r},t) - \Sigma_{2} \phi_{2}(\vec{r},t) + \Sigma_{1\to 2} \phi_{1}(\vec{r},t) + S_{2}(\vec{r},t); \phi_{2}(\vec{r},t=0) \phi_{20}(\vec{r}) \end{cases}$$

Equazioni teoria a due gruppi energetici per sistemi moltiplicanti omogenei, caso stazionario

$$\begin{cases} D_1\nabla^2\phi_1(\vec{r}) - \Sigma_1\phi_1(\vec{r}) + \frac{1}{k}\Big(\nu_1\Sigma_{f1}\phi_1(\vec{r}) + \nu_2\Sigma_{f2}\phi_2(\vec{r})\Big) = 0\\ D_2\nabla^2\phi_2(\vec{r}) - \Sigma_2\phi_2(\vec{r}) + \Sigma_{1\rightarrow 2}\phi_1(\vec{r}) = 0 \end{cases}$$

$$\eta * f = \frac{\nu_2 \Sigma_{f2}}{\Sigma_2}$$

$$p = \frac{\Sigma_{1\to 2}}{\Sigma_1}$$

$$\varepsilon = \left[1 + \frac{\nu_1 \Sigma_{f1} * \Sigma_2 * \left(1 + L_2^2 B^2\right)}{\nu_2 \Sigma_{f2} * \Sigma_{1 \to 2}}\right]$$

$$P_{NL}^f = \frac{1}{1 + L_1^2 B^2}; \ L_1^2 = \frac{D_1}{\Sigma_1}$$

$$P_{NL}^{th} = \frac{1}{1 + L_2^2 B^2}; \ L_2^2 = \frac{D_2}{\Sigma_2}$$

$$\begin{aligned} k_{eff} &= k_{\infty} * P_{nl}^{th} * P_{nl}^{f} = \eta f \varepsilon p * P_{nl}^{th} * P_{nl}^{f} \\ &= \left(\frac{v_{2} \Sigma_{f2}}{\Sigma_{2}}\right) \left(\frac{\Sigma_{1 \rightarrow 2}}{\Sigma_{1}}\right) \left[1 + \frac{v_{1} \Sigma_{f1} * \Sigma_{2} * \left(1 + L_{2}^{2} B^{2}\right)}{v_{2} \Sigma_{f2} * \Sigma_{1 \rightarrow 2}}\right] \left(\frac{1}{1 + L_{1}^{2} B^{2}}\right) \left(\frac{1}{1 + L_{2}^{2} B^{2}}\right) \end{aligned}$$

$$\frac{\phi_1}{\phi_2} = \frac{\Sigma_2 * \left(1 + L_2^2 B^2\right)}{\Sigma_{1 \rightarrow 2}} \; spettro \; o \; raporto \; spettrale \; del \; reattore$$

Cinetica neutronica

$$\begin{cases} \frac{dP(t)}{dt} = \frac{\rho - \beta}{\Lambda} P(t) + [vG(t)]\lambda + S(t) \\ \frac{d[vG(t)]}{dt} = -[vG(t)]\lambda + \frac{\beta}{\Lambda} P(t) \end{cases} equazioni \ della \ cinetica \ puntiforme$$

$$\rho = \frac{k_{eff} - 1}{k_{eff}} reattivita'$$

$$\frac{1}{t_E} = \frac{1}{t_H} + \frac{1}{t_B}; \ t_k = \frac{\ln(2)}{\lambda_k}$$

$$D = \frac{\Delta E}{m} \ dose \ assorbita \left[\frac{J}{kg} \right] = [Gy]$$

$$1 [Gy] = 100 [rad]$$

$$H = D * (QF) [Sv] dose equivalente$$

QF quality factor

$$1[Sv] = 100[rem]$$

$$N = aD + bD^2$$

 $S=e^{-pN}$ celule che sopravvivono; p $\,$ probabilit $\dot{
m a}$ che le cellule muoiano

Radiation protectin (Capitolo 11)

$$\dot{D} = \phi E_{\gamma} \frac{\mu_{en}}{\rho}$$
 external dose rate

$$\dot{D} = \overline{E} \, \phi \frac{\mu}{\rho}$$

$$\Delta E_a = H \frac{m}{(QF)}$$

$$\Delta E_r = AtE_d$$

$$H = \frac{AtE_d(QF)}{m} = \frac{AtE_d(QF)}{V * \rho}$$

$$\phi = \frac{S}{4\pi r^2}$$

$$\phi_u = \frac{S * e^{-\mu r t}}{4\pi r^2}$$

$$\dot{D} = \frac{ES\mu}{4\pi R^2 \rho}$$

$$\dot{H} = \dot{D}QF = QF * \frac{ES\mu}{4\pi R^2 \rho}$$

r'distanza dalla barriera; r distanza delle persno comuni

$$\phi = B\phi_u$$

 $1\mu Ci = 3,7 * 10^4 dps$ converione Curie – decadimenti per secondo

$$Q_W = Q_R - P_e$$

Nuclear power plant (Capitolo 18)

$$PD = \frac{Q_R}{V_R}$$
 power density

$$SP = \frac{Q_R}{m_U} specific power$$

Reactor theory introduction (Capitolo 19)

$$f_{het} = \frac{\Sigma_a^F \phi_F V_F}{\Sigma_a^F \phi_F V_F + \Sigma_a^M \phi_M V_M} = \frac{\Sigma_a^F}{\Sigma_a^F + \Sigma_a^M \zeta(V_M/V_F)}$$

$$\zeta = \frac{\phi_{M}}{\phi_{F}}$$
 thermal disadvantage factor

Time dependent reactor behavior (Capitolo 20)

$$\frac{\phi}{\phi_0} = \frac{1}{1-k} \; ; \; \frac{\phi_0}{\phi} = 1-k$$

$$n = n_0 * e^{\frac{t}{T}}$$

$$T = \frac{l}{\delta k}$$

$$l = \frac{1}{v * \Sigma_{\alpha}^{M}}$$

$$m{\beta} = 0,0065 = 0,65\%~per~U_{235}$$

 $\tau = 12,7s$ vita media neutroni ritardati

 $t_{H}=8,8s\ tempo\ di\ dimezzamento\ neutroni\ ritardati$

$$\bar{l} = \beta * \tau$$

$$T = \begin{cases} \frac{\beta * \tau}{\delta k} & se \ |\delta k| \ll \beta \\ \frac{l}{\delta k - \beta} & se \ \delta k > \beta \end{cases}$$

 $\rho \approx \delta k$ reactivity

$$\rho = \alpha * \Delta T$$

$$\rho = \alpha_p \frac{\Delta P}{P}$$

INDICE

SEZIONE 1 FISICA DEL REATTORE

<u>Decadimento radioattivo</u>	pag1
Deduzione teoria della diffusione	pag2
Diffusione in mezzi moltiplicanti	pag6
Soluzioni problema di Helmoltz	pag8
Progetto del reattore termico omogeneo in teoria della diffusione	pag9
Teoria multi gruppi energetici	pag13
<u>Cinetica neutronica</u>	pag13
SEZIONE 2 IMPIANTI NUCLEARI	
Radiation and matrerials (Capitolo 5)	pag14
Biological effects of radiation (Capitolo 10)	pag14
Radiation protectin (Capitolo 11)	pag15
Neutron chain reaction (Capitolo 16)	pag16
Nuclear heat energy (Capitolo 17)	pag16
Nuclear power plant (Capitolo 18)	pag17
Reactor theory introduction (Capitolo 19)	pag17
Time dependent reactor behavior (Capitolo 20)	pag17