

Corso Luigi Einaudi, 55/B - Torino

Appunti universitari Tesi di laurea Cartoleria e cancelleria Stampa file e fotocopie Print on demand Rilegature

NUMERO: 2188A

ANNO: 2017

APPUNTI

STUDENTE: Placido Daniele

MATERIA: Fondamenti di Ingegneria Nucleare - Formulario -Prof. Ravetto Il presente lavoro nasce dall'impegno dell'autore ed è distribuito in accordo con il Centro Appunti. Tutti i diritti sono riservati. È vietata qualsiasi riproduzione, copia totale o parziale, dei contenuti inseriti nel presente volume, ivi inclusa la memorizzazione, rielaborazione, diffusione o distribuzione dei contenuti stessi mediante qualunque supporto magnetico o cartaceo, piattaforma tecnologica o rete telematica, senza previa autorizzazione scritta dell'autore.

ATTENZIONE: QUESTI APPUNTI SONO FATTI DA STUDENTIE NON SONO STATI VISIONATI DAL DOCENTE. IL NOME DEL PROFESSORE, SERVE SOLO PER IDENTIFICARE IL CORSO.

FORMULARIO FONDAMENTI DI INGEGNERIA NUCLEARE

Fisica del reattore

Decadimento radioattivo

Assenza di sorgenti

$$N(t) - N(t + dt) = \lambda dt N(t); \frac{dN(t)}{dt} = -\lambda N(t) \text{ Legge di Bequerel}$$

$$N(t) = Ce^{-\lambda t} \text{ soluzione generale equazione differenziale}$$

$$N(t) = N_0 e^{-\lambda t} \text{ integrale particolare della legge di Bequerel}$$

$$N(t) = \frac{N_0}{2} \rightarrow t_{1/2} = \frac{\ln 2}{\lambda} \text{ tempo di dimezzamento}$$

$$\frac{N(t)}{N_0} = e^{-\lambda t} \text{ probabilità che un nucleo no sia decaduto}$$

$$e^{-\lambda t} \lambda dt \text{ probabilità che il decadimento avvengra tra t e t + dt}$$

$$\int_0^{+\infty} t * e^{-\lambda t} * \lambda dt \text{ vita media del nucleo radioattivo}$$

Con sorgente

 $dN(t) = -\lambda N(t)dt + R(t)dt$ equazione di Bequerel con sorgente, non omogenea

$$N(t) = N_0 e^{-\lambda t} + \int_0^t dt' * R(t') * e^{-\lambda(t-t')}$$
 integrale particolare

Se R(t) = S = costante

$$N(t) = N_0 e^{-\lambda t} + \frac{S}{\lambda} \left[1 - e^{-\lambda t} \right]$$
 solutione con sorgente costante

Se $N_0 = 0$

$$N(t) = \frac{S}{\lambda} \left[1 - e^{-\lambda t} \right]$$
 soluzione con 0 nuclei inizialmente presenti

In regime stazionario con sorgente costante

$$\frac{dN(t)}{dt} = \mathbf{0} \to N(t) = \frac{S}{\lambda}$$

 $N(t) * \lambda attivita'$

Deduzione teoria della diffusione

$$\begin{split} &\frac{1}{v}\frac{\partial \phi(\vec{r},t)}{\partial t} = -\nabla \cdot \vec{J}(\vec{r},t) - \Sigma_a \phi(\vec{r},t) + S(\vec{r},t) \text{ bilancio neutronico mezzo non moltiplicante} \\ &\psi(\vec{r},t) = S(\vec{r},t) + \Sigma_s \phi(\vec{r},t) \text{ densità di emissione} \\ &\psi\left(\vec{r},t-\frac{r}{v}\right)d\vec{r}\frac{dA_x\cos\theta}{4\pi r^2}e^{-\Sigma r} \text{ neutroni che attraversano l'area } dA_z \text{ al tempo t} \\ &J_{\overline{z}}(0,t) = \int_{S^+} \psi\left(\vec{r},t-\frac{r}{v}\right)d\vec{r}\frac{dA_z\cos\theta}{4\pi r^2}e^{-\Sigma r} \text{ corrente neutronica che attraversa} \\ &dA_z \text{ nella direzione discorde all'asse } z \\ &J_z^+(0,t) = \int_{S^-} \psi\left(\vec{r},t-\frac{r}{v}\right)d\vec{r}\frac{dA_z\cos\theta}{4\pi r^2}e^{-\Sigma r} \text{ corrente neutronica che attraversa} \\ &dA_z \text{ nella direzione discorde all'asse } z \\ &J_z^+(0,t) = \int_{S^-} \psi\left(\vec{r},t-\frac{r}{v}\right)d\vec{r}\frac{dA_z\cos\theta}{4\pi r^2}e^{-\Sigma r} \text{ corrente neutronica che attraversa} \\ &dA_z \text{ nella direzione concorde all'asse } z \\ &J_z^-(0,t) = \frac{1}{4\Sigma}\psi(0,t) + \frac{1}{6\Sigma^2}\left(\frac{\partial\psi(x,y,z,t)}{\partial z}\right)_0 \\ &J_z^+(0,t) = \frac{1}{4\Sigma}\psi(0,t) - \frac{1}{6\Sigma^2}\left(\frac{\partial\psi(x,y,z,t)}{\partial z}\right)_0 \\ &J_z(0,t) = J_z^+(0,t) - J_{\overline{z}}(0,t) = -\frac{1}{3\Sigma^2}\left(\frac{\partial\psi(x,y,z,t)}{\partial x}\right)_0 \\ &J_z(0,t) = J_y^+(0,t) - J_y^-(0,t) = -\frac{1}{3\Sigma^2}\left(\frac{\partial\psi(x,y,z,t)}{\partial x}\right)_0 \\ &J_y(0,t) = J_y^+(0,t) - J_y^-(0,t) = -\frac{1}{3\Sigma^2}\left(\frac{\partial\psi(x,y,z,t)}{\partial y}\right)_0 \\ &\psi(\vec{r},t) = S(\vec{r},t) + \Sigma_s\phi(\vec{r},t) \approx \Sigma_s\phi(\vec{r},t) \\ &\frac{\partial\psi(\vec{r},t)}{\partial r} = \Sigma_s\frac{\partial\phi(\vec{r},t)}{\partial r} \\ &\vec{J} = \sum_s \frac{\partial\phi(\vec{r},t)}{\partial r} \\ &\vec{J} = J_x\hat{t} + J_y\hat{t} + J_x\hat{k} = -\frac{\Sigma_s}{3\Sigma^2} \nabla\phi = -D\nabla\phi \text{ legge di Fick} \\ &D = \frac{\Sigma_s}{3\Sigma^2} \text{ coefficiente di diffusione} \\ &\Sigma = \Sigma_a + \Sigma_s \approx \Sigma_s \to D = \frac{1}{3\Sigma_s} \end{aligned}$$

$$\phi(\vec{r}) = \frac{S_0}{4\pi D} \frac{e^{-r/L}}{r}$$
 solutione del problema con sorgente in origine

$$\phi(\vec{r},r') = \frac{S_0}{4\pi D} \frac{e^{-|r-r'|/L}}{|r-r'|}$$
 solutione con sorgente posta in r'

$$G(\vec{r},r') = rac{1}{4\pi D} rac{e^{-|r-r'|/L}}{|r-r'|}$$
 funzione di Green puntiforme

$$\phi(\vec{r},r') = \int_{-\infty}^{+\infty} d\vec{r'} S(\vec{r'}) G(\vec{r},r')$$
 soluzione con qualunque sorgente

Con questo posso risolvere tuti i problemi in tutte le geometrie possibili

Geometria piana

Mezzo semi infinito contorno col vuoto

$$\phi(x) = \begin{cases} E \sinh \frac{x}{L} per \ 0 < x < a \\ C_2 e^{-x/L} per \ x > a \end{cases}$$

$$\phi(a^-) = \phi(a^+) \rightarrow E \sinh \frac{a}{L} = C_2 e^{-a/L}$$
 condizione di continuita' del flusso

 $J(a^+) - J(a^-) = S_0 bilancio della corrente$

$$\frac{DC_2}{L}e^{-a/L} - \frac{DE}{L}\cosh\frac{a}{L} = S_0$$

Dal sistema seguente si ricavano le costanti E e C_2

$$\begin{cases} E \sinh \frac{a}{L} = C_2 e^{-a/L} \\ \frac{DC_2}{L} e^{-a/L} - \frac{DE}{L} \cosh \frac{a}{L} = S_0 \end{cases}$$

Doppio contorno col vuoto: mezzo finito, slab

$$\phi(x) = \begin{cases} A \sinh \frac{x}{L} per \ 0 < x < x' \\ C \sinh \frac{a-x}{L} per \ x' < x < a \end{cases}$$

Imponendo le condizioni di continuità del flusso e sulla sorgente si ottiene

$$\begin{cases} A \sinh \frac{x'}{L} = C \sinh \frac{a - x'}{L} \\ \frac{DC}{L} \cosh \frac{a - x'}{L} - \frac{DA}{L} \cosh \frac{x'}{L} = S_0 \end{cases}$$

Caso non stazionario in mezzi moltiplicanti

$$\frac{1}{v} \frac{\partial \phi(\vec{r},t)}{\partial t} = D\nabla^2 \phi(\vec{r},t) - \Sigma_a \phi(\vec{r},t) + v\Sigma_f \Phi(\vec{r},t) + S(\vec{r},t) \text{ equazione diffusione mezzo}$$
moltiplicante omogeneo non stazionario
$$\Phi(\vec{r},t) = \sum_{n=1}^{\infty} \left[A_n(\mathbf{0}) e^{\alpha_n t} + v \int_0^t S_n(t') e^{\alpha_n(t-t')} dt' \right] * \varphi_n(\vec{r}) \text{ soluzione completa}$$

$$S_n(t') = \int_D S(\vec{r},t) \varphi_n(\vec{r}) d\vec{r} \text{ proiezione sorgente su armonica fondamentale}$$

$$\alpha_n = v \left[v\Sigma_f - \Sigma_a - DB_n^2 \right] = v\Sigma_a (1 + L^2 B_n^2) \left[\frac{k_\infty}{1 + L^2 B_n^2} - 1 \right] = \frac{k_n - 1}{l_n}$$

$$l_n = \frac{1}{v\Sigma_a (1 + L^2 B_n^2)} \text{ vita media neutroni mezzo finito}$$

$$l = \frac{1}{v\Sigma_a} \text{ vita media neutroni mezzo infinito}$$

$$P = \int_V E_f \Sigma_f \phi(\vec{r},t) d\vec{r} \text{ potenza}$$

$$E = \int_0^t dt' \left(\int_V E_f \Sigma_f \phi(\vec{r},t) d\vec{r} \right) \text{ energia}$$

$$E_f = 200 \text{MeV energia rilascata da fisione termica}$$

Caso senza sorgente

$$\begin{split} \Phi(\vec{r},t) &= \sum_{n=1}^{\infty} [A_n(0)e^{\alpha_n t}] * \varphi_n(\vec{r}) = \sum_{n=1}^{\infty} \left[A_n(0)e^{\frac{k_n - 1}{l_n} * t} \right] * \varphi_n(\vec{r}) \\ &= A_1(0)e^{\frac{k_1 - 1}{l_1} * t} * \varphi_1(\vec{r}) + \sum_{n=2}^{\infty} \left[A_n(0)e^{\frac{k_n - 1}{l_n} * t} \right] * \varphi_n(\vec{r}) \end{split}$$

$$\boldsymbol{\Phi}_{as} = \begin{cases} \lim_{t \to \infty} \boldsymbol{\Phi}(\vec{r}, t) = A_1(0) * \boldsymbol{\varphi}_1(\vec{r}) = costante \operatorname{con} k_1 = 1, \alpha_1 = 0\\ \lim_{t \to \infty} \boldsymbol{\Phi}(\vec{r}, t) = + \infty \operatorname{con} k_1 > 1, \alpha_1 > 0\\ \lim_{t \to \infty} \boldsymbol{\Phi}(\vec{r}, t) = 0 \operatorname{con} k_1 < 1, \alpha_1 < 0 \end{cases}$$

Caso con sorgente ma senza neutroni iniziali ($A_n(\mathbf{0}) = \mathbf{0}$)

$$\Phi(\vec{r},t) = \sum_{n=1}^{\infty} \left[v \int_{0}^{t} S_{n}(t') e^{\alpha_{n}(t-t')} dt' \right] * \varphi_{n}(\vec{r}) = \sum_{n=1}^{\infty} \left[v \int_{0}^{t} S_{n}(t') e^{\frac{k_{n}-1}{l_{n}} * (t-t')} dt' \right] * \varphi_{n}(\vec{r})$$

_
_

$$B_m = (2n-1)\frac{\pi}{a} \ B_n = (2n-1)\frac{\pi}{b} \ m, n = 1, 2, 3, \dots$$
$$\varphi_{1,1}(x,y) = \sqrt{\frac{2}{a}} * \cos\left(\frac{\pi}{a}x\right) * \sqrt{\frac{2}{b}} * \cos\left(\frac{\pi}{b}y\right) \ armonica\ fondamentale$$

Parallelepipedo finito

$$\varphi_{l,m,n}(x, y, z) = \sqrt{\frac{2}{a}} * \cos(B_l x) * \sqrt{\frac{2}{b}} * \cos(B_m y) * \sqrt{\frac{2}{c}} * \cos(B_n z)$$

$$B_l = (2n-1)\frac{\pi}{a} \quad B_m = (2n-1)\frac{\pi}{b} \quad B_n = (2n-1)\frac{\pi}{c} \quad l, m, n = 1, 2, 3, ...$$

$$\varphi_{1,1,1}(x, y, z) = \sqrt{\frac{2}{a}} * \cos\left(\frac{\pi}{a}x\right) * \sqrt{\frac{2}{b}} * \cos\left(\frac{\pi}{b}y\right) * \sqrt{\frac{2}{c}} * \cos\left(\frac{\pi}{c}z\right) \quad armonica \ fond.$$

Le soluzioni del parallelepipedo sono scritte per una distribuzione simmetrica.

Geometria cilindrica

$$\varphi_{m,n}(r,z) = \sqrt{\frac{2}{H}} * \cos(B_n z) * \frac{1}{R\sqrt{\pi}|J_1(j_m)|} * J_0(B_m r)$$

$$B_n = (2n-1)\frac{\pi}{H} \quad B_m = \frac{j_{0,m}}{R} \quad m,n = 1,2,3,...$$

$$j_{0,1} = 2,4048 \text{ primo zero funzione di Bessel}$$

$$B_{1,1}^2 = \left(\frac{\pi}{H}\right)^2 + \left(\frac{j_{0,1}}{R}\right)^2 \text{ buckling dell'armonicaf on damentale}$$

Progetto del reattore termico omogeneo in teoria della diffusione

$$\overline{\sigma} = \frac{\sqrt{\pi}}{2} * \sqrt{\frac{T_0}{T}} * \sigma(E_0) \text{ sezione } d' \text{ urto microscopica media termica}$$

$$T_0 = 293K E_0 = 0,025eV$$

<u>Nel caso non sia valido il comportamento $^{1/
u}$ si usa</u>

$$\overline{\sigma} = \frac{\sqrt{\pi}}{2} * \sqrt{\frac{T_0}{T}} * \sigma(E_0) * g(T)$$

g(T) coefficiente di Westcott

Fattore di moltiplicazione dei neutroni veloci

$$\varepsilon = \frac{1 + \frac{c_1 N(U_{238})}{N^M}}{1 + \frac{c_2 N(U_{238})}{N^M}} = \frac{\Theta + c_1(1 - e)}{\Theta + c_2(1 - e)} fattore di moltiplicazione veloce$$

Probabilità di sfuggire alle risonanze

$$p = exp\left[-\frac{N_A * I}{\Sigma_s * \xi}\right] probabilità di sfuggire alle risonanze$$

$$\Sigma_s = \Sigma_s^M + \Sigma_s^F = N^M * \sigma_s^M + N^F * \sigma_s^F$$

$$N_A \approx N(U_{238}) = N^F * (1 - e) \text{ concentrazione atomo assorbitore}$$

$$I = a\left[\frac{\Sigma_s * 10^{24}}{N_A}\right]^c = a\left[\frac{\sigma_s^M * \Theta + \sigma_s^F}{(1 - e)} * 10^{24}\right]^c \text{ integrale di risonanza}$$

$$\xi = \frac{\xi^M * \Sigma_s^M}{\Sigma_s^M + \Sigma_s^F} + \frac{\xi^F * \Sigma_s^F}{\Sigma_s^M + \Sigma_s^F} = \frac{\xi^M * \sigma_s^M * \Theta + \xi^F * \sigma_s^F}{\sigma_s^M * \Theta + \sigma_s^F}$$

 $\frac{\xi^M * \Sigma_s^M}{\Sigma_s^M + \Sigma_s^F} \text{ probalilita' che avvenga un urto nel moderatore}$

$$\frac{\xi^F * \Sigma_s^F}{\Sigma_s^M + \Sigma_s^F}$$
 probalilita' che avvenga un urto nel combustibile

Probabilità di non fuga termica

$$P_{NL}^{th} = \frac{1}{1+L^2 B^2}$$
$$L^2 = \frac{D}{\Sigma_a} = \frac{D^M + D^F}{\Sigma_a^M + \Sigma_a^F} \cong \frac{D^M}{\Sigma_a^M + \Sigma_a^F} = \frac{L_M^2}{1+Z} = L_M^2(1-f) \text{ area di diffusione}$$

 L_M^2 area di difusione del moderatore

$$P_{NL}^{th} = \frac{1}{1 + L_M^2(1 - f)B^2} \text{ probabilita' di non fuga termica}$$

Probabilità di non fuga veloce

$$\frac{\partial q(\vec{r}, u)}{\partial u} = D(u) * \nabla^2 \phi(\vec{r}, u) \text{ equaizone del rallentameto di Fermi}$$
$$\frac{\partial q(\vec{r}, u)}{\partial u} = \frac{D(u)}{\xi \Sigma_s(u)} * \nabla^2 q(\vec{r}, u) \text{ euqazione del rallentamento continuo di Fermi}$$

u letargia

Teoria multi gruppi energetici

Equazioni teoria a due gruppi energetici per sistemi non moltiplicanti omogenei

$$\begin{cases} \frac{1}{v_1} \frac{\partial \phi_1(\vec{r},t)}{\partial t} = D_1 \nabla^2 \phi_1(\vec{r},t) - \Sigma_1 \phi_1(\vec{r},t) + S_1(\vec{r},t); \quad \phi_1(\vec{r},t=0) \phi_{10}(\vec{r}) \\ \frac{1}{v_2} \frac{\partial \phi_2(\vec{r},t)}{\partial t} = D_2 \nabla^2 \phi_2(\vec{r},t) - \Sigma_2 \phi_2(\vec{r},t) + \Sigma_{1\to 2} \phi_1(\vec{r},t) + S_2(\vec{r},t); \quad \phi_2(\vec{r},t=0) \phi_{20}(\vec{r}) \end{cases}$$

Equazioni teoria a due gruppi energetici per sistemi moltiplicanti omogenei, caso stazionario

$$\begin{cases} D_1 \nabla^2 \phi_1(\vec{r}) - \Sigma_1 \phi_1(\vec{r}) + \frac{1}{k} \Big(\nu_1 \Sigma_{f1} \phi_1(\vec{r}) + \nu_2 \Sigma_{f2} \phi_2(\vec{r}) \Big) = 0 \\ D_2 \nabla^2 \phi_2(\vec{r}) - \Sigma_2 \phi_2(\vec{r}) + \Sigma_{1 \to 2} \phi_1(\vec{r}) = 0 \end{cases}$$

$$\eta * f = \frac{\nu_2 \Sigma_{f2}}{\Sigma_2}$$

$$p = \frac{\Sigma_{1 \to 2}}{\Sigma_1}$$

$$\varepsilon = \left[1 + \frac{\nu_1 \Sigma_{f1} * \Sigma_2 * (1 + L_2^2 B^2)}{\nu_2 \Sigma_{f2} * \Sigma_{1 \to 2}} \right]$$

$$P_{NL}^f = \frac{1}{1 + L_1^2 B^2}; \ L_1^2 = \frac{D_1}{\Sigma_1}$$

$$P_{NL}^{th} = \frac{1}{1 + L_2^2 B^2}; \ L_2^2 = \frac{D_2}{\Sigma_2}$$

$$k_{eff} = k_{\infty} * P_{nl}^{th} * P_{nl}^f = \eta f \varepsilon p * P_{nl}^{th} * P_{nl}^f$$

$$= \left(\frac{\nu_2 \Sigma_{f2}}{\Sigma_2} \right) \left(\frac{\Sigma_{1 \to 2}}{\Sigma_1} \right) \left[1 + \frac{\nu_1 \Sigma_{f1} * \Sigma_2 * (1 + L_2^2 B^2)}{\nu_2 \Sigma_{f2} * \Sigma_{1 \to 2}} \right] \left(\frac{1}{1 + L_1^2 B^2} \right) \left(\frac{1}{1 + L_2^2 B^2} \right)$$

$$\frac{\phi_1}{\phi_2} = \frac{\Sigma_2 * (1 + L_2^2 B^2)}{\Sigma_{1 \to 2}}$$
spettro o raporto spettrale del reattore

Cinetica neutronica

$$\begin{cases} \frac{dP(t)}{dt} = \frac{\rho - \beta}{\Lambda} P(t) + [vG(t)]\lambda + S(t) \\ \frac{d[vG(t)]}{dt} = -[vG(t)]\lambda + \frac{\beta}{\Lambda} P(t) \end{cases} equazioni della cinetica puntiforme \\ \rho = \frac{k_{eff} - 1}{k_{eff}} reattivita' \end{cases}$$

13

$$\frac{1}{t_E} = \frac{1}{t_H} + \frac{1}{t_B}; t_k = \frac{\ln(2)}{\lambda_k}$$

$$D = \frac{\Delta E}{m} \text{ dose assorbita } \left[\frac{J}{kg}\right] = [Gy]$$

$$1 [Gy] = 100[rad]$$

$$H = D * (QF) [Sv] \text{ dose equivalente}$$

$$QF \text{ quality factor}$$

$$1[Sv] = 100[rem]$$

$$N = aD + bD^2$$

$S = e^{-pN}$ celule che sopravvivono; p probabilità che le cellule muoiano

Radiation protectin (Capitolo 11)

$$\dot{D} = \phi E_{\gamma} \frac{\mu_{en}}{\rho} \text{ external dose rate}$$

$$\dot{D} = \overline{E} \phi \frac{\mu}{\rho}$$

$$\Delta E_a = H \frac{m}{(QF)}$$

$$\Delta E_r = AtE_d$$

$$H = \frac{AtE_d(QF)}{m} = \frac{AtE_d(QF)}{V * \rho}$$

$$\phi = \frac{S}{4\pi r^2}$$

$$\phi_u = \frac{S * e^{-\mu r'}}{4\pi r^2}$$

$$\dot{D} = \frac{ES\mu}{4\pi R^2 \rho}$$

$$\dot{H} = \dot{D}QF = QF * \frac{ES\mu}{4\pi R^2 \rho}$$

r'distanza dalla barriera; r distanza delle persno comuni

$$\boldsymbol{\phi} = \boldsymbol{B}\boldsymbol{\phi}_u$$

$1\mu Ci = 3,7 * 10^4 dps$ converione Curie – decadimenti per secondo

$$\boldsymbol{Q}_W = \boldsymbol{Q}_R - \boldsymbol{P}_e$$

Nuclear power plant (Capitolo 18)

$$PD = \frac{Q_R}{V_R} power density$$
$$Q_R$$

$$SP = \frac{Q_R}{m_U}$$
 specific power

Reactor theory introduction (Capitolo 19)

$$f_{het} = \frac{\Sigma_a^F \phi_F V_F}{\Sigma_a^F \phi_F V_F + \Sigma_a^M \phi_M V_M} = \frac{\Sigma_a^F}{\Sigma_a^F + \Sigma_a^M \varsigma(V_M/V_F)}$$

$$\zeta = rac{\varphi_M}{\phi_F}$$
 thermal disadvantage factor

Time dependent reactor behavior (Capitolo 20)

$$\frac{\phi}{\phi_0} = \frac{1}{1-k}; \frac{\phi_0}{\phi} = 1-k$$

$$n = n_0 * e^{\frac{t}{T}}$$

$$T = \frac{l}{\delta k}$$

$$l = \frac{1}{\nu * \Sigma_a^M}$$

$$\beta = 0,0065 = 0,65\% per U_{235}$$

 $\tau = 12,7s$ vita media neutroni ritardati

 $t_H = 8,8s$ tempo di dimezzamento neutroni ritardati

$$\overline{l} = \boldsymbol{\beta} \ast \boldsymbol{\tau}$$

$$T = \begin{cases} \frac{\beta * \tau}{\delta k} & se \ |\delta k| \ll \beta \\ \frac{l}{\delta k - \beta} & se \ \delta k > \beta \end{cases}$$

 $\rho \approx \delta k$ reactivity

 $\rho = \alpha * \Delta T$

$$\rho = \alpha_p \frac{\Delta P}{P}$$

INDICE

SEZIONE 1 FISICA DEL REATTORE

<u>Decadimento radioattivo</u> pag	1
<u>Deduzione teoria della diffusione</u> pagi	2
<u>Diffusione in mezzi moltiplicanti</u> pag	6
Soluzioni problema di Helmoltzpag8	3
Progetto del reattore termico omogeneo in teoria della diffusionepag	9
<u>Teoria multi gruppi energetici</u> pag1	3
<u>Cinetica neutronica</u> pag1	3
SEZIONE 2 IMPIANTI NUCLEARI	
Radiation and matrerials (Capitolo 5)pag14	4
Biological effects of radiation (Capitolo 10)	4
Radiation protectin (Capitolo 11)	5
Neutron chain reaction (Capitolo 16)pag1	6
Nuclear heat energy (Capitolo 17)pag1	6
Nuclear power plant (Capitolo 18)pag17	7
Reactor theory introduction (Capitolo 19)	7
Time dependent reactor behavior (Capitolo 20)	7