

Appunti universitari
Tesi di laurea
Cartoleria e cancelleria
Stampa file e fotocopie
Print on demand
Rilegature

NUMERO: 2145A ANNO: 2017

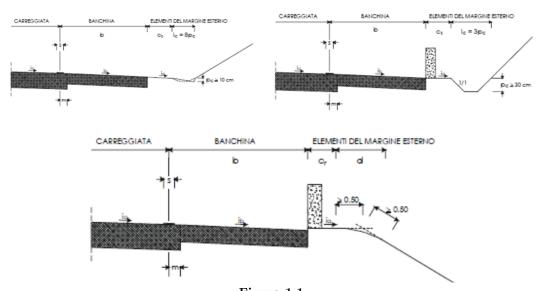
APPUNTI

STUDENTE: Faraci Alessio

MATERIA: Costruzione di strade ferrovie ed aeroporti (CSFA) -Esercitazioni - Prof. Riviera Santagata Il presente lavoro nasce dall'impegno dell'autore ed è distribuito in accordo con il Centro Appunti. Tutti i diritti sono riservati. È vietata qualsiasi riproduzione, copia totale o parziale, dei contenuti inseriti nel presente volume, ivi inclusa la memorizzazione, rielaborazione, diffusione o distribuzione dei contenuti stessi mediante qualunque supporto magnetico o cartaceo, piattaforma tecnologica o rete telematica, senza previa autorizzazione scritta dell'autore.

COSTRUZIONI DI STRADE FERROVIE E AEROPORTI

Alessio Faraci 237719



Indice

1.	Individuazione della geometria del rilevato	2
2.	Classificazione del terreno d'appoggio	4
3.	Scelta del terreno per la costruzione del rilevato	8
4.	Calcolo dei cedimenti indotti dalla presenza del solido stradale	21
5.	Scelta delle modalità di compattazione	39
6.	Programmazione tempistiche di lavorazione dei movimenti terra	45
7.	Esecuzione controlli in corso d'opera sulle opere in terra	79
8.	Esecuzione del mix-design delle miscele bituminose	82
9.	Esecuzione dei controlli finali sulla pavimentazione	105

1. Individuazione della geometria del rilevato

La geometria del rilevato è trapezoidale. Prima di eseguire i movimenti di terra nel tratto interessato, bisogna procedere con lo scoticamento, asportando la terra vegetale trasportandola in idonei luoghi di deposito provvisorio (come previsto dall'art. 1.4.1 del Capitolato CIRS). Deriva da ciò una modifica della situazione progettuale iniziale: la quota del piano campagna si abbassa di 0,5 m, la livelletta sarà ad una quota pari a 3,5 m rispetto il piano campagna, mentre la falda si troverà ad 1 m da esso. Per quanto concerne il dimensionamento trasversale, oltre alla larghezza della carreggiata pari a 22,00 m, bisogna tener conto del dimensionamento degli arginelli. Supponendo che il dispositivo di ritenuta sia un guard rail a filo banchina, quindi privo di alcun ingombro, risulta per il dimensionamento dell'arginello in **Figura 1.1** utilizzando la **Tabella 1.1** c_r =0,5 m.

- Figura 1.1 -

* in caso di ingombro del dispositivo di ritenuta

ELEMENTO	DENOMINAZIONE	STRADA	DIMENSIONE
s		A - B	0,25 m
	striscia di delimitazione	C- D - E	0,15 m
		F	0,12 m
m	bordo carreggiata	tutte	≥ 0,30 m
i _c	pendenza trasversale		
	carreggiata in rettifilo	tutte	2,5 %
	in curva		≥ 2,5 %
i _b	pendenza trasversale	tutte	= i _c
	banchina		
Cr	ciglio o arginello in	A - B - C - D	* ≥ 0,75 m
	rilevato	E - F	≥ 0,50 m
d	raccordo	ove previsto	1,00 m
Cs	ciglio in scavo	ove previsto	come c _r
ia	pendenza trasversale	tutte	4 %
	c _r e c _s		
1 _c	larghezza cunetta	tutte	≥ 0,80 m
Pc	profondità cunetta	tutte	vedi figure

- Tabella 1.1 -

vedi Tab. 3.4.a al Cap. 3

banchina

2. Classificazione del terreno d'appoggio

In base ai dati granulometrici in **Tabella 2.1** e di suscettività dell'acqua in **Tabella 2.2**, si procede alla classificazione del terreno dello strato 2 attraverso la procedura UNI 11531-1:

$\mathbf{Diametro} \; [\mathrm{mm}]$	${\bf Trattenuto}~[{\rm g}]$	$T_{progressivo}$ [g]	$T_{ m progressivo} \ [\%]$	$\mathbf{P_{progressivo}}\left[\%\right]$
63	-	0	0	100
31,5	4022,8	4022,8	19,6	80,4
16	1272,5	5295,3	25,8	74,2
8	1231,5	6526,8	31,8	68,2
4	1600,9	8127,7	39,6	60,4
2	964,7	9092,4	44,3	55,7
1	1252,0	10344,4	50,4	49,6
0,5	1929,3	12273,7	59,8	40,2
$0,\!4$	533,6	12807,3	62,4	37,6
0,25	1046,8	13854,1	67,5	32,5
0,125	1252,1	15106,2	73,6	26,4
0,075	985,1	16091,3	78,4	21,6
0,063	266,8	16358,1	79,7	20,3
0,002	2907,8	19265,9	93,9	6,1
< 0.002	1258,7	20524,6	100,0	0
Totale	20524.6			

Totale 20524,6

- Tabella 2.1 - Dati granulometrici

w _L [%]	w _P [%]
41,2	32,2

- Tabella 2.2 - Risultati dei limiti di Atterberg

Trattenuto progressivo in peso:

$$T_{prog,i}^{(g)} = \sum T_i$$

Trattenuto progressivo in percentuale:

$$T_{prog,i}^{(\%)} = \frac{T_{prog,i}^{(g)}}{S} = \frac{T_{prog,i}^{(g)}}{20524,6}$$

$$IP = w_{_L} - w_{_P} = 41, 2 - 32, 2 = 9 \ \%$$

Passante progressivo:

$$P_{\textit{prog}} = 100 - T_{\textit{prog},i}^{(\%)}$$

Dall'analisi granulometrica ai vagli n°10 (2 mm), n°40 (0,425 mm), e n°200 (0,063 mm), e utilizzando i valori del limite liquido w_L , del limite plastico IP, e dell'indice di gruppo IG, si classifica il terreno col sistema HRB attraverso la **Tabella 2.3**.

Classificazione generale		Frazione	Terre ghiaio-sabbioso azione passante al setaccio 0,063 mm ≤ 35%						Terre limo-argillose Frazione passante al setaccio 0,063 mm > 35%				
Gruppo	A1		A3		A	12		A4	A5	A6		A 7	A8
Sottogruppo	A1-a	A1-b		A2-4	A2-5	A2-6	A2-7				A7-5	A7-6	
Frazione passante al setaccio 2 mm 0,4 mm 0,063 mm	≤50 ≤30 ≤15	≤50 ≤25	- >50 ≤10	≤35	<u> </u>	≤35	≤35	- >35	- >35	- >35	- >35	- >35	
Caratteristiche della frazione passante al setaccio 0,4 mm LL (Limite liquido) IP (Indice di plasticità)	. ≤6	≤6	N.P.	≤40 ≤10	>40 ≤10	≤40 >10	>40 >10	≤40 ≤10	>40 ≤10	≤40 >10	>40 >10 IP≤LL-30	>40 >10 IP > LL-30	
Indice di gruppo	0		0	0		≤4)	≤8	≤12	≤16 ≤20			
Tipi usuali dei materiali caratteristici costituenti il gruppo	Ghiaia o breo breccia sabbi grossa, pom vulcaniche,	osa, sabbia ice, scorie	Sabbia fina	Ghia		bbia lim illosa	osa o	Limi poco compressibili	Limi molto compressibili	Argille poco compressibili	Argille molto compressibili e mediamente plastiche	Argille molto compressibili e molto plastiche	Torbe di recente o remota formazione, detriti organici
Qualità portanti quale terreno di sottofondo in assenza di gelo		Da eccellent	e a buono						Da m	ediocre a scad	ente		Da scartare
Azione del gelo sulle qualità portanti	Nessu	ına o lieve		Media		Molto elevata		Media	Elevata	Media			
Ritiro e rigonfiamento	1	Vullo		-	Nullo o	lieve		Lieve o m	edio	Elevato	Elevato	Molto elevato	
Permeabilità	Е	levata		Media o scars			rsa Scarsa o nulla						
N.P. = non plastico; - = Non necessario p	oer la classificaz	zione.	'										

- Tabella 2.3 -

Dunque il terreno è un ${f A2-5}$: ghia
ia o sabbia limosa o argillosa.

La bassa plasticità (IP<10) e la frazione fine non eccessiva (<35%) di questi terreni, permettono di modificare facilmente il loro contenuto d'acqua. Generalmente presentano bassa permeabilità e modesta risalita capillare: perciò non richiedono particolari provvedimenti per proteggere dal gelo lo strato di sottofondo (o sottofondazione) e la soprastante pavimentazione.

Si proceda ora alla classificazione del terreno secondo l'EN 14688-2:

Soil fractions	Sub-fractions	Symbols	Particle sizes mm
Very coarse soil	Large boulder	LBo	> 630
	Boulder	Во	> 200 to 630
	Cobble	Co	> 63 to 200
Coarse soil	Gravel	Gr	> 2.0 to 63
	Coarse gravel	CGr	> 20 to 63
	Medium gravel	MGr	> 6,3 to 20
	Fine gravel	FGr	> 2.0 to 6,3
	Sand	Sa	> 0,063 to 2,0
	Coarse sand	CSa	> 0.63 to 2.0
	Medium sand	MSa	> 0.2 to 0.63
	Fine sand	FSa	> 0.063 to 0.2
Fine soil	Silt	Si	> 0.002 to 0.063
	Coarse silt	CSi	> 0.02 to 0.063
	Medium silt	MSi	> 0.006 3 to 0.02
	Fine silt	FSi	> 0.002 to 0.006 3
	Clay	CI	≤ 0,002

3. Scelta del terreno per la costruzione del rilevato

In prossimità della zona di intervento sono disponibili tre differenti tipologie di terreno di cui sono note le caratteristiche granulometriche e di suscettività termica. Si procede alla classificazione di questi terreni secondo la procedura UNI 11531-1:

- Terreno A

Diametro [mm]	Trattenuto [g]	T _{progressivo} [g]	$T_{\text{progressivo}}$ [%]	$\mathbf{P}_{\mathrm{progressivo}}\left[\% ight]$
63	-	0	0	100
31,5	165,2	165,2	1,2	98,8
16	516,7	681,9	4,9	95,1
8	521,0	1202,9	8,6	91,4
4	578,6	1781,5	12,7	87,3
2	269,2	2050,7	14,6	$85,\!4$
1	1536,0	3586,7	25,5	74,5
0,5	990,8	4577,5	32,6	67,4
$0,\!4$	545,5	5123,0	36,4	63,6
0,25	899,0	6022,0	42,8	57,2
0,125	875,9	6897,9	49,1	50,9
0,075	847,7	7745,6	55,1	44,9
0,063	204,1	7949,7	56,6	$43,\!4$
0,002	4706,8	12656,5	90,0	10,0
< 0.002	1400,0	14056,5	100,0	0

Totale 14056,5

- Tabella 3.1 - Dati granulometrici

w _L [%]	$\mathbf{w_P}\left[\%\right]$
42,2	34,9

- Tabella 3.2 - Risultati dei limiti di Atterberg

Trattenuto progressivo in peso:

$$T_{prog,i}^{(g)} = \sum T_i$$

Trattenuto progressivo in percentuale:

$$T_{prog,i}^{(\%)} = \frac{T_{prog,i}^{(g)}}{S} = \frac{T_{prog,i}^{(g)}}{14056,5} \\ IP = w_{L} - w_{P} = 42, 2 - 34, 9 = 7, 3 \% \\ IP = w_{L} - w_{P} = 42, 2 - 34, 9 =$$

Passante progressivo:

$$P_{\mathit{prog}} = 100 - T_{\mathit{prog},i}^{(\%)}$$

Dall'analisi granulometrica ai vagli n°10 (2 mm), n°40 (0,425 mm), e n°200 (0,063 mm), e utilizzando i valori del limite liquido w_L , del limite plastico IP, e dell'indice di gruppo IG, si classifica il terreno col sistema HRB attraverso la **Tabella 3.3**.

Classificazione generale	Terre ghiaio-sabbioso Frazione passante al setaccio 0,063 mm ≤ 35%						Terre limo-argillose Frazione passante al setaccio 0,063 mm > 35%						Torbe e terre organiche palustri		
Gruppo	A1		A3		A	12		A4		A5		A6	į.	7	A8
Sottogruppo	A1-a	A1-b		A2-4	A2-5	A2-6	A2-7						A7-5	A7-6	
Frazione passante al setaccio 2 mm 0,4 mm 0,063 mm	≤50 ≤30 ≤15	≤50 ≤25	>50 ≤10	<u>.</u> ≤35	_ ≤35	≤35	<u>.</u> ≤35	- >35		<u> </u>		- >35	- >35	- >35	
Caratteristiche della frazione passante al setaccio 0,4 mm LL (Limite liquido) IP (Indice di plasticità)	. ≤6	. ≤6	N.P.	≤40 ≤10	>40 ≤10	≤40 >10	>40 >10	≤40 ≤10		>40 ≤10		≤40 >10	>40 >10 IP ≤ LL-30	>40 >10 IP > LL-30	
Indice di gruppo	0		0	0		≤4		≤8 ≤12				≤16 ≤20			
Tipi usuali dei materiali caratteristici costituenti il gruppo	Ghiaia o breo breccia sabbi grossa, pom vulcaniche,	osa, sabbia ice, scorie	Sabbia fina	Ghia		bbia lim illosa	osa o					Argille poco compressibili	Argille molto compressibili e mediamente plastiche	Argille molto compressibili e molto plastiche	Torbe di recente o remota formazione, detriti organici
Qualità portanti quale terreno di sottofondo in assenza di gelo		Da eccellent	e a buono						Da mediocre a scadente				Da scartare		
Azione del gelo sulle qualità portanti	Nessuna o lieve Media		Molto elevata		ı		Media	Elevata	Media						
Ritiro e rigonfiamento	fiamento Nullo Nullo o lie		lieve		Lieve o m	e o medio Elevato		Elevato	Elevato	Molto elevato					
Permeabilità	Е	levata		Media o scars			rsa Scarsa o nulla								
N.P. = non plastico; - = Non necessario p															

- Tabella 3.3 -

Dunque il terreno è un ${f A5}$: limo molto compressibile.

La consistenza di queste terre (IP<10) cambia sensibilmente per modeste variazioni del contenuto d'acqua; La permeabilità può variare entro limiti abbastanza ampi; ne risulta un'estrema sensibilità alla risalita capillare, al rigonfiamento ed all'azione del gelo. Pertanto, il rilevato deve essere protetto dalle acque interne ed esterne, mediante strati anticapillari.

Si proceda ora alla classificazione del terreno secondo l'EN 14688-2:

Soil fractions	Sub-fractions	Symbols	Particle sizes mm
Very coarse soil	Large boulder	LBo	> 630
	Boulder	Во	> 200 to 630
	Cobble	Co	> 63 to 200
Coarse soil	Gravel	Gr	> 2.0 to 63
	Coarse gravel	CGr	> 20 to 63
	Medium gravel	MGr	> 6,3 to 20
	Fine gravel	FGr	> 2.0 to 6,3
	Sand	Sa	> 0,063 to 2,0
	Coarse sand	CSa	> 0.63 to 2.0
	Medium sand	MSa	> 0.2 to 0.63
	Fine sand	FSa	> 0,063 to 0,2
Fine soil	Silt	Si	> 0,002 to 0,063
	Coarse silt	CSi	> 0.02 to 0.063
	Medium silt	MSi	> 0.006 3 to 0.02
	Fine silt	FSi	> 0.002 to 0.006 3
	Clay	CI	≤ 0,002

- Terreno B

${\bf Diametro} \ [mm]$	${\bf Trattenuto}~[{\rm g}]$	$T_{progressivo}$ [g]	$T_{ m progressivo} \ [\%]$	$\mathbf{P}_{\mathbf{progressivo}}\left[\% ight]$
63	-	0	0	100
31,5	3567,1	3567,1	13,1	86,9
16	6752,9	10320,0	37,9	62,1
8	4736,8	15056,8	55,3	44,7
4	2973,8	18030,6	66,2	33,8
2	2073,4	20104,0	73,8	$26,\!2$
1	1101,4	21205,4	77,9	$22,\!1$
0,5	1195,7	22401,1	82,3	17,7
0,4	412,1	22813,2	83,8	$16,\!2$
0,25	832,1	23645,3	86,8	13,2
0,125	796,8	24442,1	89,8	10,2
0,075	503,1	24945,2	91,6	8,4
0,063	404,3	25349,5	93,1	6,9
0,002	925,8	26275,3	96,5	3,5
< 0.002	955,4	27230,7	100,0	0
Totale	27230,7			

- Tabella 3.4 - Dati granulometrici

w _L [%]	$\mathbf{w_P}\left[\%\right]$
10,5	5,8

- Tabella 3.5 - Risultati dei limiti di Atterberg

Trattenuto progressivo in peso:

$$T_{\mathit{prog},i}^{(g)} = \sum T_i$$

Trattenuto progressivo in percentuale:

$$T_{prog,i}^{(\%)} = \frac{T_{prog,i}^{(g)}}{S} = \frac{T_{prog,i}^{(g)}}{27230,7} \\ IP = w_{L} - w_{P} = 10,5 - 5,8 = 4,7 \%$$

Passante progressivo:

$$P_{\textit{prog}} = 100 - T_{\textit{prog},i}^{(\%)}$$

Dall'analisi granulometrica ai vagli n°10 (2 mm), n°40 (0,425 mm), e n°200 (0,063 mm), e utilizzando i valori del limite liquido w_L , del limite plastico IP, e dell'indice di gruppo IG, si classifica il terreno col sistema HRB (UNI 11531-1) attraverso la **Tabella 3.6**.

Classificazione generale	Terre ghiaio-sabbioso Frazione passante al setaccio 0,063 mm ≤ 35%							Terre limo-argillose Frazione passante al setaccio 0,063 mm > 35%				Torbe e terre organiche palustri	
Gruppo		A1	A3		A	12		A4	A5	A6	,	١7	A8
Sottogruppo	A1-a	A1-b		A2-4	A2-5	A2-6	A2-7				A7-5	A7-6	
Frazione passante al setaccio 2 mm 0,4 mm 0,063 mm	≤50 ≤30 ≤15	≤50 ≤25	>50 ≤10	≤35	_ ≤35	≤35	. ≤35	- >35	- >35	_ >35	- >35	- >35	
Caratteristiche della frazione passante al setaccio 0,4 mm LL (Limite liquido) IP (Indice di plasticità)	<u>.</u> ≤6	- ≤6	N.P.	≤40 ≤10	>40 ≤10	≤40 >10	>40 >10	≤40 ≤10	>40 ≤10	≤40 >10	>40 >10 IP ≤ LL-30	>40 >10 IP > LL-30	
Indice di gruppo		0	0	0		≤4		≤8	≤12	≤16	≤	20	
Tipi usuali dei materiali caratteristici costituenti il gruppo	breccia sat grossa, po	eccia, ghiaia o obiosa, sabbia omice, scorie e, pozzolane	Sabbia fina	Ghia	ia o sal argi	bbia lim illosa	osa o	Limi poco compressibili	Limi molto compressibil	Argille poco compressibili	Argille molto compressibili e mediamente plastiche	Argille molto compressibili e molto plastiche	Torbe di recente o remota formazione, detriti organici
Qualità portanti quale terreno di sottofondo in assenza di gelo		Da eccellente a buono Da mediocre a scadente						Da scartare					
Azione del gelo sulle qualità portanti	Nes	ssuna o lieve			Medi	a		Molto ele	vata	Media	Elevata	Media	
Ritiro e rigonfiamento		Nullo o lieve			Lieve o m	edio	Elevato	Elevato	Molto elevato				
Permeabilità	Elevata Media o scarsa Scarsa o nulla												
N.P. = non plastico; - = Non necessario													

- Tabella 3.6 -

Dunque il terreno è un $\bf A1\text{-}a:$ ghia
ia o breccia, sabbia grossa, pozzolane.

Sono materiali rocciosi non evolutivi e terre granulari, generalmente di più o meno grossa pezzatura, pressoché insensibili all'azione dell'acqua e del gelo.

Si proceda ora alla classificazione del terreno secondo l'EN 14688-2:

Soil fractions	Sub-fractions	Symbols	Particle sizes mm
Very coarse soil	Large boulder	LBo	> 630
	Boulder	Во	> 200 to 630
	Cobble	Co	> 63 to 200
Coarse soil	Gravel	Gr	> 2.0 to 63
	Coarse gravel	CGr	> 20 to 63
	Medium gravel	MGr	> 6,3 to 20
	Fine gravel	FGr	> 2.0 to 6.3
	Sand	Sa	> 0,063 to 2,0
	Coarse sand	CSa	> 0.63 to 2.0
	Medium sand	MSa	> 0.2 to 0.63
	Fine sand	FSa	> 0,063 to 0,2
Fine soil	Silt	Si	> 0,002 to 0,063
	Coarse silt	CSi	> 0.02 to 0.063
	Medium silt	MSi	> 0.006 3 to 0.02
	Fine silt	FSi	> 0.002 to 0.006 3
	Clay	CI	≤ 0,002

- Terreno C

${\bf Diametro} \ [mm]$	${\bf Trattenuto}~[{\rm g}]$	$T_{progressivo}$ [g]	$\mathbf{T}_{\mathrm{progressivo}}$ [%]	$\mathbf{P}_{\mathbf{progressivo}}\left[\% ight]$
63	_	0	0	100
31,5	-	0	0,0	100,0
16	370,6	370,6	2,0	98,0
8	488,3	858,9	4,7	95,3
4	850,5	1709,4	9,3	90,7
2	1647,1	3356,5	18,3	81,7
1	2055,3	5411,8	29,6	70,4
0,5	844,1	6255,9	34,2	65,8
0,4	1008,9	7264,8	39,7	60,3
0,25	3808,9	11073,7	60,5	39,5
0,125	2964,8	14038,5	76,7	23,3
0,075	2594,2	16632,7	90,9	9,1
0,063	888,6	17521,3	95,7	4,3
0,002	523,7	18045,0	98,6	1,4
< 0,002	256,8	18301,8	100,0	0
Totalo	19201 9			

Totale 18301,8

- Tabella 3.7 - Dati granulometrici

w _L [%]	w _P [%]
18,8	-

- Tabella 3.8 - Risultati dei limiti di Atterberg

Trattenuto progressivo in peso:

$$T_{\mathit{prog},i}^{(g)} = \sum T_i$$

Trattenuto progressivo in percentuale:

$$T_{prog,i}^{(\%)} = \frac{T_{prog,i}^{(g)}}{S} = \frac{T_{prog,i}^{(g)}}{18301.8}$$

Passante progressivo:

$$P_{\mathit{prog}} = 100 - T_{\mathit{prog},i}^{(\%)}$$

Indice plastico:

$$IP = w_{\scriptscriptstyle L} - w_{\scriptscriptstyle P} = 18, 8 - 0 = 18, 8 \%$$

Dall'analisi granulometrica ai vagli n°10 (2 mm), n°40 (0,425 mm), e n°200 (0,063 mm), e utilizzando i valori del limite liquido w_L , del limite plastico IP, e dell'indice di gruppo IG, si classifica il terreno col sistema HRB (UNI 11531-1) attraverso la **Tabella 3.9**.

Classificazione generale	Terre ghiaio-sabbioso Frazione passante al setaccio 0,063 mm ≤ 35%							Terre limo-argillose Frazione passante al setaccio 0,063 mm > 35%				Torbe e terre organiche palustri	
Gruppo	A1	1	A3		A	2		A4	A5	A6 A7		17	A8
Sottogruppo	A1-a	A1-b		A2-4	A2-5	A2-6	A2-7				A7-5	A7-6	
Frazione passante al setaccio 2 mm 0,4 mm 0,063 mm	≤50 ≤30 ≤15	≤50 ≤25	>50 ≤10	≤35	_ ≤35	≤35	≤35	- >35	- >35	<u>-</u> >35	- >35	- >35	
Caratteristiche della frazione passante al setaccio 0,4 mm LL (Limite liquido) IP (Indice di plasticità)	• ≤6	≤6	N.P.	≤40 ≤10	>40 ≤10	≤40 >10	>40 >10	≤40 ≤10	>40 ≤10	≤40 >10	>40 >10 IP ≤ LL-30	>40 >10 IP > LL-30	
Indice di gruppo	0		0	0		≤4		≤8	≤12	≤16	≤	20	
Tipi usuali dei materiali caratteristici costituenti il gruppo	Ghiaia o breo breccia sabbi grossa, pom vulcaniche,	iosa, sabbia nice, scorie	Sabbia fina	Ghia	ia o sal argi	obia lim Ilosa	osa o	Limi poco compressibili	Limi molto compressibili	Argille poco compressibili	Argille molto compressibili e mediamente plastiche	Argille molto compressibili e molto plastiche	Torbe di recente o remota formazione, detriti organici
Qualità portanti quale terreno di sottofondo in assenza di gelo	Da eccellente a buono Da mediocre a scadente						Da scartare						
Azione del gelo sulle qualità portanti	Nessu	ına o lieve			Medi	a		Molto ele	vata	Media	Elevata	Media	
Ritiro e rigonfiamento	Nullo o lieve			Lieve o m	edio	Elevato	Elevato	Molto elevato					
Permeabilità	Elevata Media o scarsa Scarsa o nulla												
N.P. = non plastico; - = Non necessario													

- Tabella 3.9 -

Dunque il terreno è un $\mathbf{A3}$: sabbia fine.

Le sabbie di questo gruppo si prestano male al costipamento per mancanza di coesione e di portanza. L'impiego è limitato alla realizzazione di bonifiche dei piani di posa dei rilevati e di strati anticapillari; terre di questo gruppo possono essere impiegate nella formazione del corpo del rilevato se presentano un coefficiente di uniformità (D60/D10) non inferiore a 7.

Si proceda ora alla classificazione del terreno secondo l'EN 14688-2:

Soil fractions	Sub-fractions	Symbols	Particle sizes mm
Very coarse soil	Large boulder	LBo	> 630
	Boulder	Во	> 200 to 630
	Cobble	Co	> 63 to 200
Coarse soil	Gravel	Gr	> 2.0 to 63
	Coarse gravel	CGr	> 20 to 63
	Medium gravel	MGr	> 6,3 to 20
	Fine gravel	FGr	> 2.0 to 6,3
	Sand	Sa	> 0,063 to 2,0
	Coarse sand	CSa	> 0.63 to 2.0
	Medium sand	MSa	> 0.2 to 0.63
	Fine sand	FSa	> 0.063 to 0.2
Fine soil	Silt	Si	> 0,002 to 0,063
	Coarse silt	CSi	> 0.02 to 0.063
	Medium silt	MSi	> 0.006 3 to 0.02
	Fine silt	FSi	> 0.002 to 0.006 3
	Clay	CI	≤ 0,002

Possiamo dunque riassumere nella ${\bf Tabella}~{\bf 3.10}$ le classificazioni dei 3 terreni:

	Classificazione					
Terreno	UNI 11531-1	EN 14688-2				
A	A5	sasiCl				
В	A1-a	Gr				
\mathbf{C}	A3	Sa				

- Tabella 3.10 -

Priorità di impiego dei terreni					
Classificazione	Tipologia				
A1	Materiali rocciosi non evoluti e terre granulari				
A2-4	Ghiaia limosa				
A2-5	Sabbia limosa				
A3	Sabbie				
A2-6	Ghiaia argillosa				
A2-7	Sabbia argillosa				
A4	Limo poco compressibile				
A5	Limo fortemente compressibile				
A6	Argilla poco compressibile				
A7	Argilla fortemente compressibile				

- Tabella 3.11 -

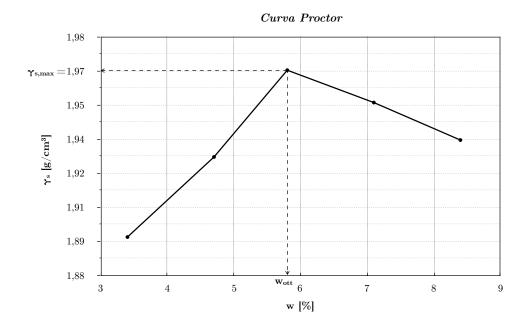
Dunque, risulta dallo studio effettuato, e riferendoci alla **Tabella 3.11**, che il terreno da utilizzare per la costruzione del rilevato è il terreno B.

Massa dell'umido:

$$m_{_{\! \! u}}=m_{_{\! TOT}}-m_{_{\! f}}$$

Massa del secco:

$$w = \frac{m_u - m_s}{m_s} \quad \Rightarrow \quad m_s = \frac{m_u}{1 + \frac{w}{100}}$$


Massa volumica secca:

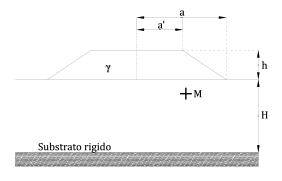
$$\gamma_s = \frac{m_s}{V_f}$$

Provino	m _{TOT} [g]	w [%]
1	14345,7	3,4
2	14472,5	4,7
3	14602,4	5,8
4	14622,5	7,1
5	14640,2	8,4

$\mathbf{m_u}\left[\mathrm{g}\right]$	$\mathbf{m}_{\mathrm{s}} \; [\mathrm{g}]$	$\gamma_{\rm s}~[{\rm g/cm^3}]$
4157,5	4020,8	1,90
4284,3	4092,0	1,93
4414,2	4172,2	1,97
4434,3	4140,3	1,95
4452,0	4107,0	1,94

$\mathbf{m_f} [g]$	$V_{\rm f}$ [cm ³]
10188,2	2120,6

Dalla curva Proctor si ricava $~w_{ott}=5.8~\%~e~\gamma_{s,max}=1.97~g/cm^3~corrispondenti ai dati sperimentali del provino 3.$


(a) Cedimento immediato

Per calcolare il cedimento immediato si utilizza la formula di Giroud formulata per strisce di carico trapezoidali:

$$S_{i} = \frac{\gamma \cdot h}{E_{u}} \cdot \frac{a^{2}}{a - a'} \cdot \left\{ r_{H} - \left(\frac{a'}{a}\right)^{2} \cdot r'_{H} \right\}$$

Questa formula indica la dipendenza dei cedimenti immediati dai seguenti parametri:

- (a) sovraccarico $\gamma \cdot h$ (con γ massa volumica del terreno costituente il corpo del rilevato)
- (b) modulo di Young del terreno d'appoggio in condizioni non drenate E_u
- (c) parametri geometrici a, a'
- (d) parametri di influenza di Giroud r_h , r'_h

$$a' = 11,5 m;$$

$$a = 16,75 m;$$

$$h = 3.5 m;$$

$$H = 5 m$$

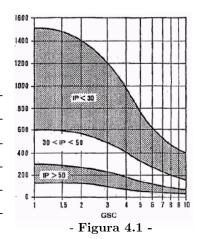
Fissati i parametri geometrici si procede con il calcolo del modulo di Young in condizioni non drenate E_u . Esistono due metodi per la stima del modulo:

(a) Metodo di Magnagn (per terreni stratificati)

$$E_{u,m} = \frac{D_m \cdot H}{\sum_{i=1}^N \frac{D_i \cdot H_i}{E_{u,i}}}$$

$$D_m, H$$
 D_i, H_i

con E_u =modulo di Young medio (undrained) D_m =sforzo deviatorico medio


(b) Metodo di Duncan e Buchignani (terreni omogenei)

$$E_{y} = f(c_{y}, GSC, PI)$$
 con $GSC = OCR$

E_u si calcola attraverso la **Tabella 4.3** o graficamente attraverso la **Figura 4.1**

GSC	$E_{\mathrm{u}}/c_{\mathrm{u}}$							
GSC	PI < 30	30 < PI < 50	PI > 50					
<3	600	300	125					
3 - 5	400	200	75					
> 5	150	75	50					
> 5	150	75	50					

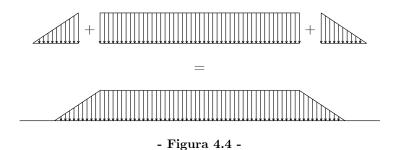
- Tabella 4.3 -

Punto	\boldsymbol{x}	\boldsymbol{a}	a,	H	x/a	x/a	H/a	H/a,	r_h	r'_h
P	0	16,75	11,5	5	0	0	0,3	0,4	0,139	0,139
\mathbf{Q}	11,5	16,75	11,5	5	0,7	1,0	0,3	0,4	0	-0,06
\mathbf{R}	16,75	16,75	11,5	5	1,0	1,5	0,3	0,4	-0,06	-0,03

Conversioni:

$$\gamma = 1,98 \ g \ / \ cm^3 = 1,98 \cdot 10^3 = 1980 \ kg \ / \ m^3$$

$$E_{u} = 20,4 \; MPa = 20,4 \cdot 10^{6} \frac{N}{m^{2}} = 20,4 \cdot 10^{6} \frac{kg}{9,81 \; m^{2}} = 2079510,7 \; kg \; / \; m^{2}$$


Utilizzando la formula di Giroud ricaviamo i cedimenti immediati puntuali:

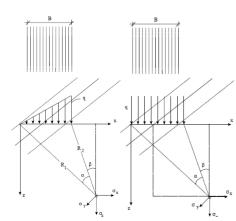
$$S_{i} = \frac{\gamma \cdot h}{E_{u}} \cdot \frac{a^{2}}{a - a'} \cdot \left\{ r_{H} - \left(\frac{a'}{a}\right)^{2} \cdot r'_{H} \right\}$$

Punto	γ	h	γh	E_u	a	a'	a^2	$(a'/a)^2$	a-a'	r_h	r'_h	S_i
P	1980	3,5	6930	2079510,7	16,75	11,5	280,56	0,47	5,25	0,139	0,139	0,013
${f Q}$	1980	3,5	6930	2079510,7	16,75	11,5	$280,\!56$	0,47	$5,\!25$	0	-0,06	0,005
${f R}$	1980	3,5	6930	2079510,7	16,75	11,5	$280,\!56$	0,47	$5,\!25$	-0,06	-0,03	-0,008

Il cedimento immediato dello strato sarà dato dalla media matematica dei tre:

$$S_{i} = \frac{S_{i,P} + S_{i,Q} + S_{i,R}}{3} = \frac{0,013 + 0,005 - 0,008}{3} = 0,0033 \; m = 3,3 \; mm$$

Per ottenere un valore di S_c rappresentativo della situazione reale, occorre suddividere lo strato compressibile (strato 2) in differenti sottostrati, valutando per ciascuno di essi il cedimento in alcuni punti caratteristici. Nel caso in esame utilizziamo gli stessi punti già utilizzati nel calcolo del cedimento immediato.


Calcoliamo adesso gli incrementi di tensione per una condizione di carico triangolare, e per una condizione di carico rettangolare, e poi li sovrapponiamo. Si fissa un sistema di riferimento, la cui origine coincide con uno dei due estremi del carico, e avente le direzioni in modo che tutti i punti considerati siano positivi. Le tensioni indotte risultano essere:

 \cdot per una condizione di carico verticale triangolare:

$$\sigma_z = \frac{q}{\pi} \left[\frac{x}{B} \cdot \alpha - \frac{1}{2} \cdot \sin(2\beta) \right]$$

· per una condizione di carico verticale uniforme:

$$\sigma_z = \frac{q}{\pi} \left[\alpha + \sin \alpha \cdot \cos \left(\alpha + 2\beta \right) \right]$$

q : carico per unità di superficie

 $\alpha,\beta: espressi\ in\ radianti\ (se\ diretti\ nello\ stesso\ verso\ degli\ assi\ sono\ da\ considerare\ positivi,\ altrimenti\ negativi)$

 β : negativo per i punti sotto l'area caricata

$$\beta = \arctan\left(\frac{\overline{2Q'}}{\overline{QQ'}}\right) = \arctan\left(\frac{23}{2,5}\right) = 83,8^{\circ} = 1,46^{rad}$$

$$Q) \qquad \left\{ (\alpha + \beta) = \arctan\left(\frac{\overline{1Q'}}{\overline{QQ'}}\right) = \arctan\left(\frac{28,25}{2,5}\right) = 84,9^{\circ}$$

$$\alpha = (\alpha + \beta) - \beta = 1,1^{\circ} = 0,02^{rad}$$

$$R = \arctan\left(\frac{\overline{2R'}}{RR'}\right) = \arctan\left(\frac{28,25}{2,5}\right) = 84,9^{\circ} = 1,48^{rad}$$

$$R = \arctan\left(\frac{\overline{1R'}}{RR'}\right) = \arctan\left(\frac{33,5}{2,5}\right) = 85,7^{\circ}$$

$$\alpha = (\alpha + \beta) - \beta = 0,8^{\circ} = 0,01^{rad}$$

Noti α e β per ogni punto (P,Q,R) si procede con la stima degli incrementi di tensione $\Delta \sigma'_{V}$ dovuto alla presenza del rilevato (condizione di carico triangolare):

$$\sigma_z = \frac{q}{\pi} \left[\frac{x}{B} \cdot \alpha - \frac{1}{2} \cdot \sin(2\beta) \right]$$

$$q = \gamma \cdot h = 1,98 \cdot 10^{3} \cdot 3,5 = 6930 \ kg \ / \ m^{2} = 6930 \cdot \frac{9,81}{10^{3}} = 67,98 \ kPa$$

$$\sigma_{_{z,P}} = \frac{q}{\pi} \left\lceil \frac{\overline{1P^{\, \cdot}}}{\overline{12}} \cdot \alpha - \frac{1}{2} \cdot \sin \left(2\beta \right) \right\rceil = \frac{67,98}{\pi} \left[\frac{16,75}{5,25} \cdot 0,07 - \frac{1}{2} \cdot \sin \left(2 \cdot 1,36 \right) \right] \\ = 0,058 \; kPa$$

$$\sigma_{_{z,Q}} = \frac{q}{\pi} \left[\frac{\overline{1Q'}}{12} \cdot \alpha - \frac{1}{2} \cdot \sin \left(2\beta \right) \right] = \frac{67,98}{\pi} \left[\frac{28,25}{5,25} \cdot 0,02 - \frac{1}{2} \cdot \sin \left(2 \cdot 1,46 \right) \right] \\ = 0,005 \; kPa$$

$$\sigma_{_{z,R}} = \frac{q}{\pi} \left\lceil \frac{\overline{1R'}}{\overline{12}} \cdot \alpha - \frac{1}{2} \cdot \sin \left(2\beta \right) \right\rceil = \frac{67,98}{\pi} \left[\frac{33,5}{5,25} \cdot 0,01 - \frac{1}{2} \cdot \sin \left(2 \cdot 1,48 \right) \right] = 0,002 \; kPa$$

Punti	α°	$oldsymbol{lpha}^{rad}$	β°	$oldsymbol{eta}^{rad}$	q	x	В	$\sin(2\beta)$	$\sigma_{_{z,P}}$
Р	3,8	0,07	77,7	1,36	67,98	16,75	5,25	0,42	0,058
Q	1,1	0,02	83,8	1,46	67,98	$28,\!25$	$5,\!25$	0,21	0,005
R	0,8	0,01	84,9	1,48	67,98	33,50	5,25	0,18	0,002

$$Q = \frac{\beta}{\alpha} = 0^{rad}$$

$$\alpha = \arctan\left(\frac{\overline{12}}{\overline{2Q}}\right) = \arctan\left(\frac{5,25}{2,5}\right) = 64,5^{\circ} = 1,13^{rad}$$

$$R$$

$$\begin{cases}
\beta = -\alpha = -64,5^{\circ} = -1,13^{rad} \\
\alpha = \arctan\left(\frac{\overline{12}}{1R}\right) = \arctan\left(\frac{5,25}{2,5}\right) = 64,5^{\circ} = 1,13^{rad}
\end{cases}$$

Noti α e β per ogni punto (P,Q,R) si procede con la stima degli incrementi di tensione $\Delta \sigma'_{V}$ dovuto alla presenza del rilevato (condizione di carico triangolare):

$$\sigma_z = \frac{q}{\pi} \left[\frac{x}{B} \cdot \alpha - \frac{1}{2} \cdot \sin(2\beta) \right]$$

$$q = \gamma \cdot h = 1,98 \cdot 10^3 \cdot 3,5 = 6930 \ kg \ / \ m^2 = 6930 \cdot \frac{9,81}{10^3} = 67,98 \ kPa$$

$$\sigma_{_{z,P}} = \frac{q}{\pi} \left\lceil \frac{\overline{1P'}}{\overline{12}} \cdot \alpha - \frac{1}{2} \cdot \sin\left(2\beta\right) \right\rceil = \frac{67,98}{\pi} \left[\frac{16,75}{5,25} \cdot 0,07 - \frac{1}{2} \cdot \sin\left(2 \cdot 1,36\right) \right] \\ = 0,058 \; kPa$$

$$\sigma_{_{z,Q}} = \frac{q}{\pi} \left[\overline{\frac{12}{12}} \cdot \alpha - \frac{1}{2} \cdot \sin \left(2\beta \right) \right] = \frac{67,98}{\pi} \left[\frac{5,25}{5,25} \cdot 1,13 - \frac{1}{2} \cdot \sin \left(2 \cdot 0 \right) \right] \\ = 24,36 \; kPa$$

$$\sigma_{_{z,R}} = \frac{q}{\pi} \Bigg[\frac{\overline{0}}{12} \cdot \alpha - \frac{1}{2} \cdot \sin \left(2\beta \right) \Bigg] = \frac{67,98}{\pi} \Bigg[\frac{0}{5,25} \cdot 1,13 - \frac{1}{2} \cdot \sin \left(2 \cdot (-1,13) \right) \Bigg] = 8,41 \; kPa$$

Punti	α°	$oldsymbol{lpha}^{rad}$	eta°	$oldsymbol{eta}^{rad}$	\overline{q}	x	В	$\sin(2\beta)$	$\sigma_{_{z,P}}$
P	3,8	0,07	77,7	1,36	67,98	16,75	5,25	0,42	0,058
Q	64,5	1,13	0,0	0,00	67,98	$5,\!25$	$5,\!25$	0,00	$24,\!36$
R	64,5	1,13	-64,5	-1,13	67,98	0,00	$5,\!25$	-0,78	8,41

$$Q = \frac{\beta}{\alpha} = 0^{rad}$$

$$\alpha = \arctan\left(\frac{\overline{12}}{\overline{2Q}}\right) = \arctan\left(\frac{23}{2,5}\right) = 83,8^{\circ} = 1,46^{rad}$$

$$R = \arctan\left(\frac{\overline{2R'}}{\overline{RR'}}\right) = \arctan\left(\frac{5,25}{2,5}\right) = 64,5^{\circ} = 1,13^{rad}$$

$$(\alpha + \beta) = \arctan\left(\frac{\overline{1R'}}{\overline{RR'}}\right) = \arctan\left(\frac{28,25}{2,5}\right) = 84,9^{\circ}$$

$$\alpha = (\alpha + \beta) - \beta = 20,4^{\circ} = 0,36^{rad}$$

Noti α e β per ogni punto (P,Q,R) si procede con la stima degli incrementi di tensione $\Delta \sigma'_{V}$ dovuto alla presenza del rilevato (condizione di carico triangolare):

$$\begin{split} &\sigma_z = \frac{q}{\pi} \Big[\alpha + \sin \alpha \cdot \cos \left(\alpha + 2\beta \right) \Big] \\ &q = \gamma \cdot h = 1,98 \cdot 10^3 \cdot 3,5 = 6930 \ kg \ / \ m^2 = 6930 \cdot \frac{9,81}{10^3} = 67,98 \ kPa \\ &\sigma_{z,P} = \frac{q}{\pi} \Big[\alpha + \sin \alpha \cdot \cos \left(\alpha + 2\beta \right) \Big] \ = \frac{67,98}{\pi} \Big[2,71 + \sin(2,71) \cdot \cos \left(2,71 - 1,36 \cdot 2 \right) \Big] = 67,70 \ kPa \\ &\sigma_{z,Q} = \frac{q}{\pi} \Big[\alpha + \sin \alpha \cdot \cos \left(\alpha + 2\beta \right) \Big] \ = \frac{67,98}{\pi} \Big[1,46 + \sin(1,46) \cdot \cos \left(1,46 + 2 \cdot 0 \right) \Big] = 33,97 \ kPa \end{split}$$

 $\sigma_{_{z,R}} = \frac{q}{\pi} \Big[\alpha + \sin \alpha \cdot \cos \left(\alpha + 2\beta \right) \Big] = \frac{67,98}{\pi} \Big[0,36 + \sin(0,36) \cdot \cos \left(0,36 + 2 \cdot 1,13 \right) \Big] = 1,21 \; kPa$

Punti	$lpha^{\circ}$	$oldsymbol{lpha}^{rad}$	eta°	$oldsymbol{eta}^{rad}$	q	$\sin(\alpha)$	$\cos(\alpha + 2\beta)$	$\sigma_{_{z,P}}$
P	155,4	2,71	-77,7	-1,36	67,98	0,42	1,00	67,70
Q	83,8	1,46	0,0	0,00	67,98	0,99	0,11	33,97
R	20,4	$0,\!36$	64,5	1,13	67,98	0,35	-0,86	1,21

(c) Cedimento secondario

Ultimatosi il processo di consolidazione, si manifesta un'ulteriore aliquota, definita cedimento secondario e attribuita al comportamento viscoso del terreno sotto tensioni efficaci costanti:

$$S_c(t) = c_{\alpha\varepsilon} \cdot H \cdot \log_{10} \frac{t}{t_{100}}$$

 $con c_{qe} = coefficiente di consolidazione secondaria$

 $t_{\scriptscriptstyle{100}}$ = tempo necessario al termine della consolidazione primaria

Questo contributo di cedimento può essere importante nel caso di terreni organici. Poichè il terreno in esame è un A2-5 (non organico), ai fini progettuali il suo valore è irrilevante.

(d) Cedimento totale

Si ottiene infine il cedimento totale:

$$S_{_{TOT}} = S_{_i} + S_{_c}(t) = 0,33 + 24,1 = 24,4\ cm$$

Esso risulta essere maggiore di 15 cm. Bisogna dunque verificare i requisiti richiesti dal Capitolato Speciale d'Appalto CIRS.

(e) Verifica dei cedimenti

Al termine dei lavori di realizzazione del rilevato stradale devono sussistere le seguenti condizioni:

$$\left\{ \begin{array}{l} S_{\it residuo} < 10\% \; S_{\it TOT} \\ S_{\it residuo} < 5 \; cm \end{array} \right.$$

(bisogna scegliere il più vincolante tra i due)

In aggiunta, interessa predire anche l'evoluzione del cedimento nel tempo. Nel caso di materiali a grana grossa (caratterizzati da elevata conducibilità idraulica) è lecito assumere che il cedimento avvenga contestualmente all'applicazione del carico. Al contrario, nei materiali a grana fine (caratterizzati da bassissima conducibilità idraulica), il tempo richiesto per il raggiungimento dell'entità finale del cedimento può risultare estremamente lungo. Questo fenomeno transitorio che vede accoppiati il flusso dell'acqua e la deformazione della fase solida detto processo di consolidazione, è descritto dal modello matematico della teoria monodimensionale della consolidazione di Terzaghi che si basa sulle seguenti assunzioni:

- (a) il mezzo poroso è saturo
- (b) l'acqua e le particelle di terreno sono incomprimibili
- (c) le deformazioni sono infinitesime
- (d) il flusso d'acqua e gli spostamenti del terreno avvengono solo in direzione verticale
- (e) la conducibilità idraulica del mezzo poroso è costante

Dunque il cedimento residuo risulta essere:

$$S_{\mathit{res}} = S_{\mathit{TOT}} - S_{\mathit{i}} - U_{\mathit{m,80gq}} \cdot S_{\mathit{c}} = 24, 4 - 0, 3 - 0,908 \cdot 24, 1 = 2,2 \; cm$$

Poichè:

$$\begin{split} S_{res} &= 2,2 \ cm < 5 \ cm \\ S_{res} &= 2,2 \ cm < 10\% \ S_{TOT} = 2,4 \ cm \end{split}$$

il cedimento risulta essere conforme alle prescrizioni contenute nelle norme tecniche CIRS.

Le prestazioni che si controllano e che permettono di definire la procedura di compattazione da adottare sono:

- (a) densità secca del materiale steso (grado di addensamento);
- (b) portanza.

Si analizzano di seguito i risultati delle indagini sperimentali effettuate mediante la prova del cono di sabbia: per ciascun mezzo di costipamento utilizzato e per ciascun spessore di stesa provato si ottiene l'andamento della densità del secco γ_s in funzione del numero di passate e del contenuto di umidità di costipamento adottato; una volta individuato bisogna indicare il limite prestazionale richiesto pari al 95% $\gamma_{s,max}$; occorre inoltre individuare l'intervallo di accettazione del contenuto d'acqua all'interno del quale valutare i livelli prestazionali.

Come previsto dall'art. 1.5 Capitolato CIRS):

"Dato che la portanza di una terra dipende dal suo contenuto d'acqua in misura più o meno grande in relazione alla natura della terra stessa, i livelli prestazionali vengono valutati per contenuti d'acqua compresi tutti nell'intervallo:

$$w_{_{ott-2\%}} < w < w_{_{ott+2\%}}$$

Se il contenuto d'acqua del materiale al momento delle prove dovesse risultare esterno all'intervallo sopra specificato, la capacità portante può essere stimata a partire dalle misure effettuate e tenendo opportunamente conto dell'influenza dell'umidità."

Limite prestazionale richiesto:

$$95\% \gamma_{s,max} = 0.95 \cdot 1.97 = 1.87 \ g / cm^3$$

Per un contenuto d'acqua ottimale pari a:

$$w_{ott} = 5,8\%$$

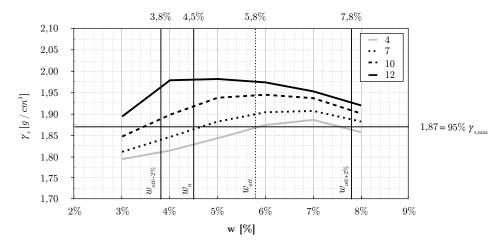
si calcola l'intervallo di accettazione del contenuto d'acqua:

$$\begin{split} & w_{ott-2\%} < w < w_{ott+2\%} \\ & w_{ott-2\%} = 5,8-2 = 3,8\% \\ & w_{ott-2\%} = 5,8+2 = 7,8\% \end{split}$$

Bisogna però tener conto anche del contenuto naturale w_n del terreno in quanto diventa esso il contenuto minimo, al di sotto del quale non si può scendere. Supposto che valga:

$$w_{n} = 4.5\%$$

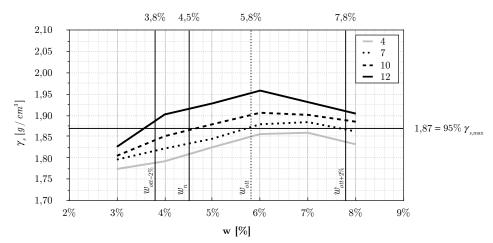
l'intervallo di accettazione del contenuto d'acqua diventa:


$$\left[w_{\scriptscriptstyle n}; w_{\scriptscriptstyle ott+2\%} \right] \quad \Longleftrightarrow \quad \left[4.5\% \; ; 7.8\% \right]$$

Qualora il contenuto d'acqua dovesse risultare non interno all'intervallo d'accettazione bisogna:

- (a) se $w_{_{n}} > w_{_{out+2\%}}$ \Rightarrow togliere umidità dal terreno
- (b) se $w_{\scriptscriptstyle n} < w_{\scriptscriptstyle ott-2\%} \quad \Rightarrow \quad umidificare \ il \ terreno$

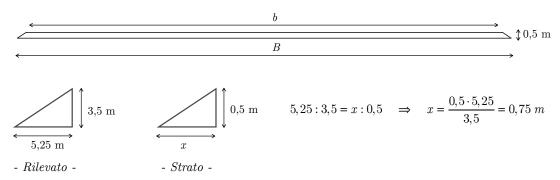
(3) Rullo tipo B - spessore strato $30\ cm$


		$\gamma_{ m s} \ [{ m g/cm^3}]$									
Passate	3%	4%	5%	6%	7%	8%					
4	1,794	1,814	1,843	1,874	1,886	1,857					
7	1,811	1,846	1,882	1,904	1,907	1,882					
10	1,847	1,898	1,938	1,945	1,937	1,901					
12	1,894	1,979	1,982	1,974	1,953	1,920					

Il numero di passate ottimale che permette di raggiungere i livelli prestazionali richiesti è 10.

(4) Rullo tipo B - spessore strato $50\ cm$

,		$\gamma_{ m s} \ [{ m g/cm^3}]$								
Passate	3%	4%	5%	6%	7%	8%				
4	1,774	1,792	1,825	1,856	1,859	1,832				
7	1,796	1,822	1,845	1,879	1,884	1,862				
10	1,805	1,851	1,879	1,906	1,901	1,885				
12	1,826	1,902	1,928	1,958	1,931	1,904				



Il numero di passate ottimale che permette di raggiungere i livelli prestazionali richiesti è 12.

(b) Compattazione strati da 50 cm

Si suddivide l'altezza del rilevato h=3,5 m in strati da 50 cm. Il numero di strati ottenuti da questa suddivisione risultano essere 7. Il numero di strisciate si ricava da considerazioni geometriche fatte su ogni striscia:

Dunque la base minore b di ogni strato risulta essere:

$$b = B - 2 \cdot x = B - 2 \cdot 0,75$$

Strato	\mathbf{B}	\mathbf{b}	\mathbf{N}	$N_{\rm strisciate}$
1	33,5	32,0	16,8	17
2	32,0	30,5	16,0	16
3	30,5	29,0	15,3	16
4	29,0	27,5	14,5	15
5	27,5	26,0	13,8	14
6	26,0	24,5	13,0	13
7	24,5	23	12,3	13
				104

104

Il numero totale di strisciate per strati aventi spessore da 30 cm è $N_{strisciate}$ =104.

 \tilde{E} necessario adesso individuare la combinazione ottimale: Noto il numero totale di strisciate $N_{strisciate}$, il numero di passate $N_{passate}$, ed il costo al metro lineare di passata C_m , è possibile scegliere la modalità di compattazione ottimale secondo il criterio dell'economicità:

$$C_{\text{tot}} = N_{\text{strisciate}} \cdot N_{\text{passate}} \cdot C_{\text{m}}$$

Rullo	\mathbf{h}	$N_{\rm passate}$	$\mathbf{N}_{\mathrm{strisciate}}$	$\mathbf{C}_{\mathbf{m}}$	$\mathbf{C}_{ ext{tot}}$
A	$30~\mathrm{cm}$	7	177	100	123900
\mathbf{A}	$50~\mathrm{cm}$	10	104	100	104000
\mathbf{B}	$30~\mathrm{cm}$	10	177	82	145140
В	$50~\mathrm{cm}$	12	104	82	102336

Quindi il minimo costo si ha utilizzando un rullo tipo B (di larghezza efficace 2 m ed avente un costo al metro lineare pari a 82 unità), con una suddivisione in strati da 50 cm. Dunque per la modalità di compattazione ottimale scelta, il costo totale stimato è pari a 102366 unità.

· La sua produzione oraria è pari a:

$$P_{o,dozer} = \frac{1}{\overline{t_c}} \cdot Q_e \cdot \eta$$
 $[m^3 / h]$

$$con \quad Q_e = Q \cdot FF$$

Q = capacità nominale, quantità media di materiale spostata per ciclo $[m^3]$ misurata allo stato sciolto FF = fill factor, fattore di riempimento della lama [-]

 $Q_{\circ}=capacità$ effettiva, si riferisce a un carico di lama effettivo $[m^3]$

 $\overline{t}_{c} = tempo \ medio \ di \ ogni \ ciclo \ [h]$

 $\eta = efficienza \ o \ rendimento [-]$

Per determinare la capacità nominale Q si considera la tabella presa dall'Handbook per il modello di dozer a disposizione:

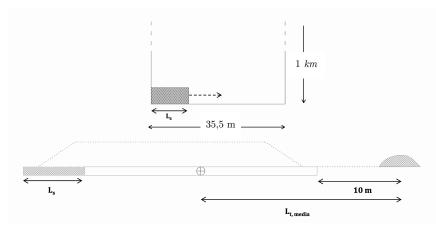
			D7R S	eries 2		
MODEL	7.	A	7:	S	(78	SU)
Type	Ang	ling	Stra	ight	Semi U	niversal
Blade Capacities*	3.89 m ³	5.08 yd3	5.16 m ³	6.75 yd³	6.86 m ³	8.98 yd3
Weight, Shipping** (Dozer)	3527 kg	7750 lb	3500 kg	7716 lb	3593 kg	7904 lb
Tractor and Dozer Dimensions:						
A Length (Blade Straight)	6.10 m	20'0"	5.81 m	19'1"	6.03 m	19'9"
Length (Blade Angled)	6.98 m 22'11"		_	-	-	-
Width (Blade Angled)	4.12 m 13'6"		_	_		-
Width (with C-Frame only)	3.09 m 10'1"		_		_	
Blade Dimensions:						
B Width (including std. end bits)	4.50 m	14'9"	3.90 m	12'10"	3.69 m	12'1"
C Height	1111 mm	3'7.7"	1363 mm	4'5.7"	1524 mm	5'0"
D Max. Digging Depth	669 mm	2'2.3"	527 mm	1'8.7"	527 mm	1'8.7"
E Ground Clearance @ Full Lift	1115 mm	3'7.9"	1145 mm	3'9.1"	1145 mm	3'9.1"
F ManualTilt	466 mm	18.3"	_	-	-	_
G Max. Pitch Adjustment	-	-	+3.1° t	o 3.9°	+3.1° 1	to 3.9°
Blade Angle (either side)	2!	5°	_	-	_	-
H Max. Hydraulic Tilt	627 mm	2'0.7"◀	845 mm	2'9.3"	799 mm	2'7.4"
J HydraulicTilt						
(Manual Brace Centered)	-	-	501 mm	1'7.7"	474 mm	18.6"
K Push Arm Trunnion Width						
(to Ball Centers)	2.87 m	9'5"	2.87 m	9'5"	2.87 m	9'5"

$$Q = 6,86 m^3$$

In base al tipo di terreno su cui stiamo lavorando, la capacità nominale può variare. Per tener conto di ciò la moltiplichiamo per un coefficiente di riempimento (fill factor) che varia in base alla tipologia del terreno.

Tipologia terreno	FF	
Granulare omogeneo asciutto	$0.8 \div 0.9$	
Terre - Ciottoli - Humus vegetale	$0,9 \div 1$)
Granulare misto bagnato	1 ÷ 1,1	
Argilla satura compatta	$1,1 \div 1,2$	

(quando si ha un intervallo di valori prendo sempre il valore centrale dell'intervallo)


 $fill\ factor:$

$$FF = 0.95$$

si ricava poi la capacità effettiva:

$$Q_{e} = Q \cdot FF = 6,86 \cdot 0,95 = 6,517 \text{ m}^{3}$$

 \cdot Per il calcolo della lunghezza di trasporto (media) L_t si considera il seguente schema e la seguente formula:

$$L_{t,media} = \frac{L_{tot} - L_s}{2} + 10 \ m = \frac{35, 5 - 7, 38}{2} + 10 = 24,06 \ m$$

I 10 m aggiunti, derivano dal fatto che il terreno vegetale scoticato potrà essere utilizzato successivamente per l'inerbimento delle scarpate. A questa distanza verranno depositati i cumuli di terreno vegetale, inoltre, con tale distanza è garantito il transito dei mezzi da cantiere.

· Dall'Handbook si trovano le velocità V₁ V₂ e V₃:

POWER SHIFT MODEL	D7G S	eries 2	D7	7R (D7R Series 2		
FORWARD	km/h	mph	km/h	mph	km/h	mph	
1	3.9	2.4	3.52	2.19	3.5	2.2	
(2)	6.9	4.3	6.10	3.79	6.2	3.8	
3	9.9	6.1	10.54	6.55	10.7	6.7	
REVERSE							
1	4.5	2.8	4.54	2.82	4.6	2.9	
2	8.4	5.2	7.85	4.88	8.0	5.0	
3	12.7	7.9	13.58	8.44	13.8	8.6	

Ma tali velocità tabulate, sono delle velocità massime, dunque non tengono conto del tipo di superficie su cui la macchina opera. Pertanto bisogna calcolare le velocità operative che risultano essere inferiori:

$$\begin{array}{lll} V_{_{1}} = 0,75 \cdot V_{_{\max,1^{\circ}marcia}} = 0,75 \cdot 3,5 = 2,63 \; km \; / \; h & \longrightarrow & per \; lo \; scavo \\ V_{_{2}} = 0,75 \cdot V_{_{\max,2^{\circ}marcia}} = 0,85 \cdot 6,2 = 5,27 \; km \; / \; h & \longrightarrow & per \; il \; trasporto \\ V_{_{3}} = 0,75 \cdot V_{_{\max,2^{\circ}retromarcia}} = 0,85 \cdot 8 = 6,8 \; km \; / \; h & \longrightarrow & per \; il \; ritorno \\ \end{array}$$

 \cdot Per le stime di T_o , T_m , T_p , si tiene conto di quanto detto prima (si prendono i valori centrali dell'intervallo):

$$T_o = 1.5 s$$

$$T_m = 4.5 s$$

$$T_n = 1 s$$

 \cdot Infine si calcola il tempo totale per eseguire l'attività di scoticamento T_{1a}

$$T_{1a} = \frac{V_{s,scotico}}{P_{o,dozer}} = \frac{21655}{324,4} = 66,75 \ h$$

poichè una giornata di lavoro dura 8 h ed è suddivisa in due turni da 4 h si esprime T_{1a} in giorni lavorativi, approssimando alla mezza giornata (discriminante 0,25):

$$T_{1a} = \frac{66,75}{8} = 8,34 \ gg \approx 8,5 \ gg$$

dunque necessitano (per eseguire l'attività di scoticamento) 8 giorni e una mezza giornata lavorativa.

(b) Regolarizzazione e costipamento

Per la regolarizzazione e il costipamento del fondo scavo, il mezzo a disposizione è un rullo metallico tipo ${\rm CS54B}.$

· La sua produzione oraria è pari a:

$$P_{o,rullo} = \frac{L \cdot V \cdot H}{P} \cdot \eta \qquad [m^3 / h]$$

L = largezza reale (non quella effettiva) di compattazione [m]

V = velocità operativa di compattazione [km/h]

H = spessore dello strato compattato [mm]

P = numero di passate (4 da testo)

 η = rendimento che tiene conto anche di una parziale sovrapposizione delle passate (10-15 cm) normalmente si considera un valore indicativo di 0,75

N.B. inserendo nella formula le dimensioni sopra scritte, risulta una $P_{a \, rullo}$ in $[m^3 \, / \, h]$

$$P_{\scriptscriptstyle o,rullo} = \frac{L \cdot V \cdot H}{P} \cdot \eta = \frac{2,13 \cdot 5,8 \cdot 300}{4} \cdot 0,75 = 694,9 \ m^3 \ / \ s$$

Si consideri uno spessore dello strato rimaneggiato dallo scotico di H=30 cm. I valori di L, V sono stati ricavati dalla tabella presente sull'Handbook.

(c) Controlli in corso d'opera

Tempo totale per eseguire l'attività: $T_{1c}=1$ gg

6.2 Formazione del rilevato

(a) Trasporto del terreno per la formazione di ogni strato dal luogo di stoccaggio al luogo di stesa

La lavorazione prevede l'utilizzo combinato di due mezzi:

- (1) una pala gommata tipo 988H con benna 33-0931 (General Purpose Bucket)
- (2) n dumper tipo 770

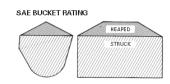
(la pala sarà il mezzo più vincolante in quanto non può rimanere ferma altrimenti ne deriverebbe un calo della produzione)

(a.1) Caricamento del terreno sul trasportatore

· La produzione oraria della pala è:

$$P_{o,pala} = rac{1}{\overline{t_c}} \cdot Q_e \cdot \eta \qquad \quad \left[m^3 \ / \ h
ight]$$

$$con \quad Q_{e} = Q \cdot BFF$$


 $Q = capacità nominale [m^3] dell benna nelle condizioni di colmo - raso (SAE)$

 $Q_{\circ} = capacità effettiva [m^3]$

 $BFF = bucket \ fill \ factor, \ fattore \ di \ riempimento \ della \ benna [-]$

 $\overline{t_c} = tempo \ medio \ di \ ogni \ ciclo \ [h]$

 $\eta = efficienza \ o \ rendimento[-]$

Per calcolare il bucket fill factor dobbiamo prendere in considerazione le caratteristiche del terreno:

Loose Material (aggregati)	BFF
Mixed moist aggregates	$95 \div 100\%$
Uniform aggregates up to $3~\mathrm{mm}$	$95 \div 100\%$
3 mm to 9 mm	$90 \div 95\%$
12 mm to 20 mm	$85 \div 90\%$
24 mm and over	$85 \div 90\%$

Blasted rock	BFF
Well blasted	$80 \div 95\%$
Average	$75 \div 90\%$
Poor	$60 \div 75\%$

	Other	DIT
	Rock dirt mixtures	100 ÷ 120%
	Moist loam	100 ÷ 110%
(Soil, boulders, roots	80 ÷ 100%
	Cemented materials	$85 \div 95\%$

Other

BFF

BFF = 90%

Dall'Handbook si ricava il valore del carico statico di ribaltamento:

Bucket Type			4.25 Meter Linkage — Tires: 35/65 R33 XLDD1 — SLR: 955 m General Purpose					
bucket type			Bolt-on	Bolt-on	Teeth &	Teeth &	Teeth &	Teeth &
Ground Engaging Tools			Edges	Edges	Segments	Segments	Segments	Segment
Cutting Edge Type			Straight	Straight	Spade	Spade	Spade	Spade
Bucket Part No. (Group Level)	ı		(333-0931)	333-0921	329-1611	333-0891	333-0911	333-0950
Struck capacity - ISO		m³	5.6	6.3	6.4	5.6	5.1	5.1
or dex capacity 100		yd³	7.3	8.2	8.4	7.3	6.7	6.7
Heaped capacity - ISO		m ³	6.9	7.6	7.7	6.9	6.4	6.4
ricaped capacity 100		yd³	9.0	10.0	10.0	9.0	8.3	8.3
Overall height		mm	8048	8152	8121	8018	7943	7944
Overall height		ft/in	26'5"	26'9"	26'8"	26'4"	26'1"	26'1"
Dump clearance at full lift	With teeth	mm	_		3650	3728	3784	3758
and 45° discharge	With tooth	ft/in	_	_	12'0"	12'3"	12'5"	12'4"
and to alcohologo	Bare	mm	4143	4059	3842	3920	3977	3926
	Dairo	ft/in	13'7"	13'4"	12'7"	12'10"	13'1"	12'11"
Reach at full lift and	With teeth	mm	-	-	2329	2251	2194	2198
45° discharge	With tooth	ft/in	_	_	7'8"	7'5"	7'2"	7'3"
	Bare	mm	1852	1929	2145	2067	2011	2040
	Dairo	ft/in	6'1"	6'4"	7'0"	6'9"	6'7"	6'8"
Reach level boom and	With teeth	mm	-	_	4862	4752	4672	4693
level bucket	With tooth	ft/in	_	_	15'11"	15'7"	15'4"	15'5"
10 to 1 Daditot	Bare	mm	4176	4290	4596	4486	4406	4462
	Date	ft/in	13'8"	14'1"	15'1"	14'9"	14'5"	14'8"
Digging depth		mm	258	263	264	264	264	279
Digging depth		in	10	10	10	10	10	11
Overall length		mm	12 270	12 387	12 960	12 850	12 770	12 800
bucket level ground		ft/in	40'3"	40'8"	42'6"	42'2"	41'11"	42'0"
Turning radius — teeth		mm	8870	8904	8983	8953	8931	8945
corner SAE carry		ft/in	29'1"	29'3"	29'6"	29'4"	29'4"	29'4"
Reach at 45° dump and	With teeth	mm	23 1	233	3432	3387	3353	3346
2.13 m (7'0") height	with teeth	ft/in	_	_	11'3"	11'1"	11'0"	11'0"
2.10 m (7 0 7 noight	Bare	mm	3132	3184	3248	3203	3169	3188
	Date	ft/in	10'3"	10'5"	10'8"	10'6"	10'5"	10'5"
Full dump at maximum lift		degrees	-48.5	-48.5	-48.5	-48.5	-48.5	-48.5
Static tipping load*,		kg	30 879	30 558	29 764	30 071	30 292	29 202
straight		lb	68.076	67.368	65,619	66,296	66.783	64,380
Static tipping load*,		kg	26 422	26 099	25 325	25 633	25 855	24 765
35° turn		lb	58,251	57,539	55,831	56,512	56,999	54,598
Static tipping load*		kg	(24 432	24 110	23 344	23 651	23 873	22 785
full 43° turn		lb	53,864	53,153	51,465	52,142	52,631	50,231
Static tipping load**,		ka	32 262	31 951	31 143	31 441	31 654	30 559
straight		lb	71,126	70,440	68,659	69,316	69,785	67,371
Static tipping load**,		kg	28 741	28 435	27 641	27 933	28 143	27 045
35° turn		lb	63,363	62,688	60,938	61,582	62,045	59,624
Static tipping load**,		ka	27 031	26 728	25 941	26 230	26 438	25 339
full 43° turn		lb	59,593	58,925	57,190	57,827	58,286	55,863
Breakout force —		kg	52 971	49 652	42 469	44 873	46 770	44 969
SAE rated		lb	116.780	109,465	93,628	98,928	103,110	99,139
Operating weight		kg	50 626	50 863	51 388	51 172	51 014	52 121
		lb	111,612	112,134	113,292	112,815	112,467	114,908
Weight distribution	Front	kg	25 652	26 093	27 145	26 736	26 438	28 473
at SAE carry		lb	56,522	57,524	59,844	58,943	58,286	62,772
2. 2/1E 00117	Rear	kg	24 975	24 771	24 243	24 436	24 576	23 648
	11001	lb	55,060	54,610	53,447	53,872	54,181	52,135

$$P_{ribaltamento} = 24432 \ kg$$

ightarrow carico statico di ribaltamento

$$P_{\rm lim} = Q_{\rm e} \cdot \gamma_{\rm s} = 6,21 \cdot 1352,5 = 8399 \; kg \qquad \qquad \rightarrow \quad carico \; all'interno \; della \; benna$$

$$dove \quad \gamma_s = \frac{\gamma_b}{1+f_r} = \frac{1650}{1+0,22} = 1352,5 \; kg \; / \; m^3$$

 $\gamma_s = densità sciolta$

 $\gamma_{_b} = densità in banco$

Quindi:

$$\frac{P_{\text{lim}}}{P_{\text{ribaltamento}}} = \frac{8399}{24432} = 0,34 < 0,5 \qquad \Rightarrow \quad \textit{Verifica al ribaltamento soddisfatta}$$

Assumendo un'organizzazione generale del cantiere buona:

$$\eta_{cl} \cdot \eta_{c} = 85\%$$

Dunque si ha:

$$\eta = \eta_h \cdot \eta_{cl} \cdot \eta_c = \frac{50}{60} \cdot 0.85 = 0.708 = 70.8\%$$

· Adesso si calcola la produzione oraria della pala:

$$P_{o,pala} = \frac{1}{\overline{t}} \cdot Q_e \cdot \eta$$

poichè \overline{t} , è in secondi e la produzione oraria è in m^3 / h bisogna moltiplicare per 3600 :

$$P_{o,pala} = \frac{1}{t_o} \cdot Q_e \cdot \eta \cdot 3600 = \frac{1}{26,4} \cdot 6,21 \cdot 0,708 \cdot 3600 = 599,5 \ m^3 \ / \ h$$

· Infine per procedere col calcolo del tempo necessario per caricare il materiale utile alla formazione di ogni singolo strato, si deve procedere al calcolo preliminare del volume di ogni i-esimo strato con cui verrà realizzato il rilevato. Si tratta di un volume banco costipato (la produzione oraria è stata calcolata in termini di materiale sciolto):

$$V_{s,i-strato} = V_{c,i-strato} \cdot (1+c) \qquad con \quad c = \frac{\gamma_c}{\gamma_s} - 1 \; \; ; \quad \gamma_c = 95\% \; \gamma_{s,\max}$$

 V_{\circ} = volume sciolto

 $V_c = volume compattato$

c =fattore di compattazione

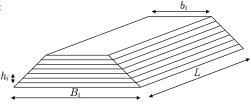
 $\gamma_c = {\rm densit} \dot{\rm a}$ del materiale compattato

 $\gamma_s = {\rm densit} {\rm a}$ del materiale sciolto

 $\gamma_{s,max}$ = densità secca ricavata con la prova Proctor

$$\gamma_{s,\text{max}} = 1,97 \ g \ / \ cm^3 = 1,97 \cdot \frac{10^{-3}}{10^{-6}} \frac{kg}{m^3} = 1970 \frac{kg}{m^3}$$

$$\gamma_c = 95\% \ \gamma_{s,max} = 0.95 \cdot 1970 = 1871.5 \ kg \ / \ m^3$$


$$c = \frac{\gamma_c}{\gamma_s} - 1 = \frac{1871.5}{1352.5} - 1 = 0.38$$

Si calcolano adesso i volumi compattati degli strati:

$$V_{c,i-esimo} = \frac{(B_i + b_i) \cdot h_i}{2} \cdot L$$

E il tempo necessario a caricare il materiale utile alla formazione di ogni singolo strato:

$$t_{2a.1,i} = \frac{V_{s,i-strato}}{P_{a nala}}$$

		4.25 Meter Linkage — Tires: 35/65 R33 XLDD1 — SLR: 955 mm					
Bucket Type		General Purpose			Rock		
		Bolt-on	Bolt-on	Teeth &	Teeth &	Teeth &	Teeth &
Ground Engaging Tools		Edges	Edges	Segments	Segments	Segments	Segments
Cutting Edge Type		Straight	Straight	Spade	Spade	Spade	Spade
Bucket Part No. (Group Level)		333-0931	333-0921	329-1611	333-0891	333-0911	333-0950
Struck capacity – ISO	m³	5.6	6.3	6.4	5.6	5.1	5.1
	yd³	7.3	8.2	8.4	7.3	6.7	6.7
Heaped capacity - ISO	m³	6.9	7.6	7.7	6.9	6.4	6.4
	yd³	9.0	10.0	10.0	9.0	8.3	8.3
Overall height	mm	8048	8152	8121	8018	7943	7944
	ft/in	26'5"	26'9"	26'8"	26'4"	26'1"	26'1"
Dump clearance at full lift With to	eeth mm	_	_	3650	3728	3784	3758
and 45° discharge	ft/in		_	12'0"	12'3"	12'5"	12'4"
Bare	mm	4143	4059	3842	3920	3977	3926
	ft/in	13'7"	13'4"	12'7"	12'10"	13'1"	12'11"
Reach at full lift and With to	eeth mm	_	_	2329	2251	2194	2198
45° discharge	ft/in	_	_	7'8"	7'5"	7'2"	7'3"
Bare	mm	1852	1929	2145	2067	2011	2040
	ft/in	6'1"	6'4"	7'0"	6'9"	6'7"	6'8"

 $A=4143\;mm$

 $B = 3120 \ mm$

 $Si\ suppone\ che\ mediamente\ la\ larghezza$ di un dumper di questo tipo sia :

 $C=3500\;mm$

 $dunque\ si\ verifica\ che:$

$$A > B + \frac{C \cdot \tan(30^\circ)}{2}$$

$$4143 > 3120 + \frac{3500 \cdot \tan(30^\circ)}{2}$$

4143 > 4130, 4

La verifica risulta essere soddisfatta.

MODEL	770		
Body Type	Medium Impact Steel Flat Floor		
Gross Machine Weight	71 214 kg	157,000 lb	
Chassis Weight*	24 613 kg	54,262 lb	
Body Weight	10 029 kg	22,110 lb	
Payload Without Liner	36 572 kg	80,628 lb	
Standard Liner Weight		-	
Target Payload**	36 572 kg	80,628 lb	
Capacity:			
Struck (SAE)	16.4 m³	21.5 yd3	
Heaped (2:1) (SAE)	25.1 m³	32.8 yd³	
Distribution Empty:			
Front	48	%	
Rear	52	%	
Distribution Loaded:			
Front	33	%	
Rear	67	%	
Engine Model	C15 ACERT		
Number of Cylinders	6		
Bore	137 mm	5.4"	
Stroke	171 mm	6.7"	
Displacement	15 L	928 in ³	
Net Power	355 kW	476 hp	
Gross Power	381 kW	511 hp	
StandardTires	18.00R33 (E4)		
Machine Clearance Turning Circle	20.2 m	66'3"	
Fuel Tank Refill Capacity	529 L	140 U.S. gal	
Top Speed (Loaded)	74.8 km/h	46.5 mph	
GENERAL DIMENSIONS (Empty):			
Height to Canopy Rock Guard Rail	4.14 m	13'7"	
Wheelbase	3.96 m	13'0"	
Overall Length (Operating)	8.74 m	28'9"	
Overall Length (Shipping)	8.74 m	28'9"	
(Loading Height (Empty)	3.12 m	10'3"	
Height at Full Dump	8.28 m	27'2"	
Body Length (Target Length)	5.55 m	18'3"	
Width (Operating)	4.75 m 15'8"		
Width (Shipping)***	3.96 m	13'0"	
FrontTireTread	3.11 m	10'3"	

Il terreno del rilevato viene prelevato presso un'area di cantiere all'interno del sedime stradale distante ad 1,5 km dalla zona di realizzazione dell'opera. Tale terreno è stoccato in cumuli.

Dunque il tempo variabile calcolato come:

$$t_{\textit{variabile}} = \sum \frac{\text{distanza del percorso } i\text{-esimo}}{\text{velocità media del dumper su } i}$$

La velocità viene valutata mediante l'utilizzo di nomogrammi. Nel nomogramma E indica quando il dumper è scarico (empty), mentre L indica il dumper carico (loaded). Il percorso deve essere valutato due volte: in andata (L) e in ritorno (E). Poichè la zona di scarico varia di volta in volta si assume che la posizione dello scarico sia individuata univocamente a metà del tratto di lunghezza 1 km che si sta costruendo, dunque il tratto E avrà lunghezza di 500 m. La distanza complessiva che il dumper deve compiere dalla zona di carico alla zona di scarico, dunque, sarà complessivamente di 2 km.

▶ Andata (zona di carico —> zona di scarico)

(tratto A)

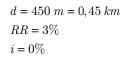
$$d = 300 \ m = 0,3 \ km$$

$$RR = 5\%$$

$$i = +4\%$$

Resistenza totale:

$$R = RR + i = 5 + 4 = 9\%$$

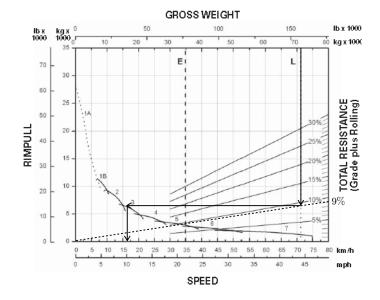

 $Dal\ nomogramma\ si\ ottiene$

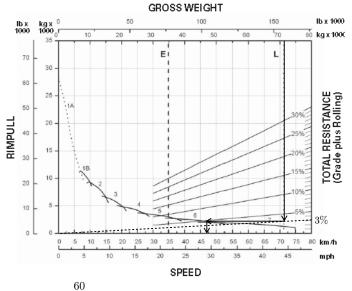
$$V_m = 16 \ km / h$$

 $il\ tempo\ variabile\ risulta$

$$t_{\text{var},A} = \frac{d}{V_m} = \frac{0.3}{16} = 0.019 \ h$$

Resistenza totale:


$$R = RR + i = 3\%$$


 $Dal\ nomogramma\ si\ ottiene$

$$V_{m} = 47 \text{ km} / h$$

il tempo variabile risulta

$$t_{\text{var},A} = \frac{d}{V_{\scriptscriptstyle m}} = \frac{0,45}{47} = 0,0096~h$$

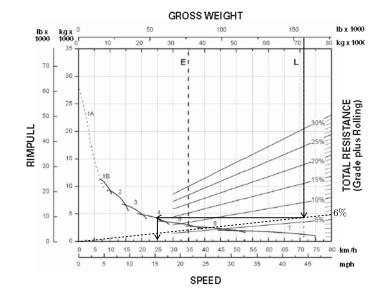
(tratto E)

$$d = 500 \ m = 0.5 \ km$$

$$RR = 6\%$$

$$i = 0\%$$

Resistenza totale:


$$R = RR + i = 6\%$$

 $Dal\ nomogramma\ si\ ottiene$

 $V_{\scriptscriptstyle m} = 25~km \, / \, h$

 $il\ tempo\ variabile\ risulta$

$$t_{{\rm var},{\cal A}} = \frac{d}{V_{\scriptscriptstyle m}} = \frac{0.5}{25} = 0,02~h$$

▷ Ritorno (zona di scarico —> zona di carico)

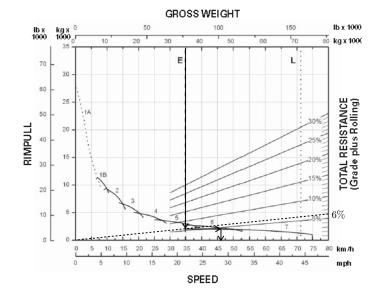
(tratto E)

$$d = 500 \ m = 0,5 \ km$$

$$RR = 6\%$$

$$i = 0\%$$

Resistenza totale:


$$R = RR + i = 6\%$$

 $Dal\ nomogramma\ si\ ottiene$

$$V_{\scriptscriptstyle m}$$
 = 46 km / h

 $il\ tempo\ variabile\ risulta$

$$t_{\text{var},E} = \frac{d}{V_{m}} = \frac{0.5}{46} = 0,0011 \ h$$

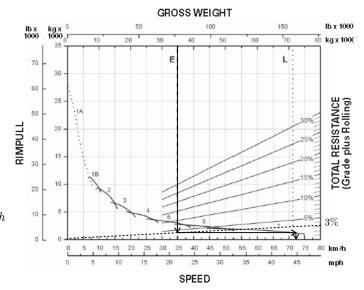
(tratto B)

$$d=450~m=0,45~km$$

$$RR=3\%$$

$$i=0\%$$

Resistenza totale:


$$R = RR + i = 3\%$$

 $Dal\ nomogramma\ si\ ottiene$

$$V_m = 72,5 \ km / h$$

il tempo variabile risulta

$$t_{\text{\tiny var},B} = \frac{d}{V_{\tiny m}} = \frac{0,45}{72,5} = 0,00621 \ \ h$$

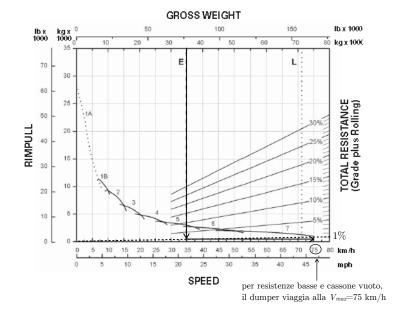
(tratto A)

$$d = 300~m = 0, 3~km$$

$$RR = 5\%$$

$$i = -4\%$$

Resistenza totale:


$$R = RR + i = 5 - 1 = 1\%$$

 $Dal\ nomogramma\ si\ ottiene$

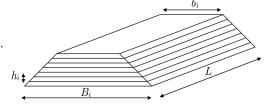
$$V_m = 75 \ km / h$$

il tempo variabile risulta

$$t_{\text{var},A} = \frac{d}{V_m} = \frac{0.3}{75} = 0,004 \ h$$

Dunque il tempo variabile risulta:

$$t_{\textit{variabile}} = \sum \left(t_{\textit{var},i}^{(\textit{andata})} + t_{\textit{var},i}^{(\textit{ritorno})}\right) = 0,095~h$$


Infine si calcola il tempo di ciclo:

$$\overline{t}_c = t_{fisso} + t_{variabile} = 0.049 + 0.095 = 0.144 \ h$$

MODEL	14	OIM
Base Power — Net	136 kW	183 hp
VHP Range — Net	136-155 kW	183-208 hp
VHP Plus Range — Net	136-174 kW	183-233 hp
Operating Weight*	16 197 kg	35,708 lb
Engine Model	C7 ACERT VHP/C9	ACERT VHP (AWD)
Rated Engine RPM	20	00
No. of Cylinders		6
Displacement	7.2 L/8.8 L	439 in ³ /537 in ³
Max. Torque	1079 N·m/1237 N·m	796 lb-ft/912 lb-ft
No. of Speeds Forward/Reverse	8.	/6
Top Speed: Forward	46.6 km/h	29 mph
Reverse	36.8 km/h	22.9 mph
Std. Tires — Front and Rear	14.00 24 (1	0 PR) (G-2)
Front Axle/Steering:		
Oscillation Angle	3:	2°
Wheel Lean Angle	18	.0°
Steering Angle	47	.5°
Articulation Angle	2	0°
Minimum Turning Radius**	7.75 m	25'6"
No. Circle Support Shoes		6
Hydraulics:		
PumpType	Variable	e Piston
Max. Pump Flow	210 L/min	55.7 gpm
Tank Capacity	60 L	15.9 U.S. gal
Implement Pressure: Max.	24 150 kPa	3500 psi
Min.	3100 kPa	450 psi
Interior Sound Level/SAE J919	70 d	B(A)
Electrical:		
System Size	24	ŧV
Std. Battery CCA @ 0° F	88	30
Std. Alternator	8	0
GENERAL DIMENSIONS:		
Height (to top of ROPS)	3293 mm	130"
Overall Length	8713 mm	343"
With Ripper and Pushplate	10 144 mm	399"
Wheelbase	6121 mm	241"
Blade Base	2552 mm	101"
Overal Width (at top of front tires)	2493 mm	98"
Standard Blade: Length	3658 mm	12'0"
Height	610 mm	24"
Thickness	22 mm	0.87"
Lift Above Ground	480 mm	18.9"
Max. Shoulder Reach:***		
Frame Straight — left	1790 mm	70.5"
Frame Straight — right	1978 mm	77.9"
Fuel Tank Capacity	416 L	110 U.S. gal

Per ogni strato, conoscendo la larghezza della lama, si calcolano il numero di strisciate $n_{\rm strisciate}$.

$$n_{\mathit{strisciate},i} = \frac{B_i}{l_{\mathit{lama}}}$$

Sapendo che per ogni strisciata bisogna effettuare 2 spandimenti e 2 rifiniture a diverse velocità, si calcola il tempo necessario per la formazione dello strato i-esimo:

$$\begin{split} t_{2b,i} &= \frac{L}{\eta} \Bigg(\frac{n_{spandimento,i}}{V_{spandimento}} + \frac{n_{rifinitura,i}}{V_{rifinitura}} \Bigg) \\ con &\quad n_{spandimento,i} = n_{strisciate,i} \cdot n_{spand \; necessarie} = n_{strisciate,i} \cdot 2 \\ &\quad n_{rifinirtura,i} = n_{strisciate,i} \cdot n_{rif \; necessarie} = n_{strisciate,i} \cdot 2 \end{split}$$

Infine il tempo totale per eseguire l'attività è:

$$T_{_{2b}}=\sum\nolimits_{_{i=1}}^{^{n}}t_{_{2b,i}}$$

· Il volume da compattare di ogni strato è:

$$V_{b,compattazione,i} \equiv V_{c,i}$$

 $(V_{c,i} \ calcolato \ a \ pag. \ 56)$

 \cdot Il tempo totale per compattare ogni singolo strato è:

$$t_{2c,i} = \frac{V_{b,compattazione,i}}{P_{o,rullo}}$$

 \cdot Il tempo totale per eseguire l'attività è:

$$T_{2c} = \sum_{i=1}^{n} t_{2c,i}$$

Strato	$V_{b,compattazione,i}$	$oldsymbol{P}_{o,rullo}$	$t_{2\mathrm{c},i}$	$t_{2\mathrm{c},i}$
Strato	$[m^3]$	$[m^{3/h}]$	[h]	[gg]
1	16375	386,06	42,42	5,5
2	15625	386,06	$40,\!47$	5
3	14875	386,06	$38,\!53$	5
4	14125	386,06	$36,\!59$	4,5
5	13375	386,06	$34,\!64$	4,5
6	12625	386,06	32,70	4
7	11875	386,06	30,76	4
			256,1	32,5

$$T_{2c} = \sum_{i=1}^{n} t_{2c,i} = 256,1 \ h$$

poichè una giornata di lavoro dura 8 h ed è suddivisa in due turni da 4 h si esprime T_{2c} in giorni lavorativi, approssimando alla mezza giornata (discriminante 0,25):

 $T_{2c} = 32,5~gg \approx 32~giorni~e~una~mezza~giornata~lavorativa$

(d) Controlli in corso d'opera (per ogni strato)

Per ogni strato, necessita 1 giorno di tempo per eseguire l'attività di controllo, dunque:

$$T_{_{2d}}=n_{_{strati}}\cdot 1~gg=7~gg$$

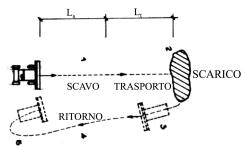
Per determinare la capacità nominale Q si considera la tabella presa dall'Handbook per il modello di dozer a disposizione:

			D7R S	eries 2			
MODEL	7	Α	7:	S	(78	U)	
Туре	Ang	ling	Stra	ight	Semi Universal		
Blade Capacities*	3.89 m ³	5.08 yd3	5.16 m ³	6.75 yd³	6.86 m ³	8.98 yd3	
Weight, Shipping** (Dozer)	3527 kg	7750 lb	3500 kg	7716 lb	3593 kg	7904 lb	
Tractor and Dozer Dimensions:							
A Length (Blade Straight)	6.10 m	20'0"	5.81 m	19'1"	6.03 m	19'9"	
Length (Blade Angled)	6.98 m	22'11"	-	-	-	-	
Width (Blade Angled)	4.12 m	13'6"	-	-	-	-	
Width (with C-Frame only)	3.09 m	10'1"	-	-	-	-	
Blade Dimensions:							
B Width (including std. end bits)	4.50 m	14'9"	3.90 m	12'10"	3.69 m	12'1"	
C Height	1111 mm	3'7.7"	1363 mm	4'5.7"	1524 mm	5'0"	
D Max. Digging Depth	669 mm	2'2.3"	527 mm	1'8.7"	527 mm	1'8.7"	
E Ground Clearance @ Full Lift	1115 mm	3'7.9"	1145 mm	3'9.1"	1145 mm	3'9.1"	
F ManualTilt	466 mm	18.3"	-	-	-	-	
G Max. Pitch Adjustment	-	-	+3.1° t	o 3.9°	+3.1° 1	to 3.9°	
Blade Angle (either side)	2!	5°	-	-	-	-	
H Max. HydraulicTilt	627 mm	2'0.7"◀	845 mm	2'9.3"	799 mm	2'7.4"	
J HydraulicTilt							
(Manual Brace Centered)	-	-	501 mm	1'7.7"	474 mm	18.6"	
K Push Arm Trunnion Width							
(to Ball Centers)	2.87 m	9'5"	2.87 m	9'5"	2.87 m	9'5"	

In base al tipo di terreno su cui stiamo lavorando, la capacità nominale può variare. Per tener conto di ciò la moltiplichiamo per un coefficiente di riempimento (fill factor) che varia in base alla tipologia del terreno.

Tipologia terreno	FF	
Granulare omogeneo asciutto	$0.8 \div 0.9$	
Terre - Ciottoli - Humus vegetale	$0,9 \div 1$	\supset
Granulare misto bagnato	$1 \div 1, 1$	
Argilla satura compatta	$1,1 \div 1,2$	

(quando si ha un intervallo di valori prendo sempre il valore centrale dell'intervallo)


fill factor:

FF = 0.95

si ricava poi la capacità effettiva:

$$Q_{e} = Q \cdot FF = 6,86 \cdot 0,95 = 6,517 \ m^{3}$$

 \cdot Per determinare il tempo medio di ogni ciclo $\overline{t_c}$ si considera il seguente schema e la seguente formula:

 \cdot Per le stime di T_o , T_m , T_p , si tiene conto di quanto detto prima (si prendono i valori centrali dell'intervallo):

$$T_{o} = 1.5 s$$

$$T_{_{m}} = 4,5 \ s$$

$$T_n = 1 s$$

· Infine si può calcolare il tempo medio di ogni ciclo \overline{t}_i :

$$\overline{t}_{c} = \frac{L_{t}}{V_{2}} + \frac{L_{t}}{V_{3}} + T_{o} + T_{m} + 2 \cdot T_{p} = \frac{10}{5,27 \, / \, 3,6} + \frac{10}{6,8 \, / \, 3,6} + 1,5 + 4,5 + 2 \cdot 1 = 20,13 \; \mathrm{sec}$$

 \cdot Si calcola adesso il rendimento η :

$$\eta = \eta_b \cdot \eta_{cl} \cdot \eta_c$$

dove:

 $\eta_{\scriptscriptstyle h}$ = rendi mento orario (50 min effettivi di lavoro di ogni macchinaper ogni ora)

 $\eta_{cl} = rendimento climatico$

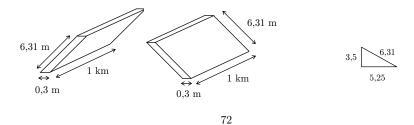
 η_c = rendimento specifico di canitere

Assumendo un'organizzazione generale del cantiere buona:

$$\eta_{cl} \cdot \eta_{c} = 85\%$$

Dunque si ha:

$$\eta = \eta_h \cdot \eta_{cl} \cdot \eta_c = \frac{50}{60} \cdot 0.85 = 0.708 = 70.8\%$$


· Adesso possiamo finalmente calcolare la produzione oraria del dozer:

$$P_{o,dozer} = \frac{1}{\overline{t}_c} \cdot Q_e \cdot \eta$$

poichè \overline{t} , è in secondi e la produzione oraria è in m^3 / h bisogna moltiplicare per 3600 :

$$P_{\tiny o,dozer} = \frac{1}{\overline{t}_{\tiny c}} \cdot Q_{\tiny e} \cdot \eta \cdot 3600 = \frac{1}{20,13} \cdot 6,517 \cdot 0,708 \cdot 3600 = 825,16 \ m^3 \ / \ h$$

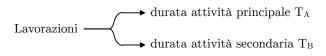
· Si calcola adesso il volume totale di inerbimento da trasportare:

Per ogni scarpata, conoscendo la larghezza della lama, si calcolano il numero di strisciate:

$$n_{strisciate,i} = \frac{6.31}{l_{lorge}} = \frac{6.31}{3.658} = 1,72 \approx 2$$

Sapendo che per ogni strisciata bisogna effettuare 2 rifiniture si calcola il tempo necessario per sagomare entrambe le scarpate:

$$T_{3b} = \frac{L_{tot}}{V \cdot n} \cdot n = \frac{2}{1 \cdot 0.75} \cdot (2 \cdot 2) = 10,67 \ h$$


poichè una giornata di lavoro dura 8 h ed è suddivisa in due turni da 4 h si esprime T_{3b} in giorni lavorativi, approssimando alla mezza giornata (discriminante 0,25):

$$T_{3b} = \frac{10,67}{8} = 1,33~gg \approx 1~gg~e~mezza~giornata$$

6.4 Cronoprogramma dei lavori

Il cronoprogramma delle lavorazioni può essere rappresentato per via grafica mediante opportuni strumenti tra cui il GANTT. Esso è un diagramma costituito da un asse orizzontale dei tempi, ed uno verticale costituito dalle mansioni. E' possibile indicare su di esso le risorse umane e tecniche impiegate giornalmente. Nel caso di opere lineari estese vi possono essere molte lavorazioni che avvengono in parallelo. La costruzione del GANTT è legata a determinati vincoli: tecnici (che generano 'immediate precedenze' e/o 'immediate sequenze' delle lavorazioni), o amministrativi (di carattere burocratici).

Ogni lavorazione è costituita da attività differenti che possono svolgersi in parallelo o ammettere sovrapposizioni. Di ogni lavorazione è necessario individuare l'attività principale (che condiziona lo svolgimento delle altre) e quelle secondarie.

 \cdot se $T_A > T_B = >$ l'attività secondaria non può finire prima di quella principale

 \cdot se $T_A \le T_B =>$ l'attività secondaria non può iniziare prima di quella principale prima di quella principale

Per redigere il diagramma delle lavorazioni (GANTT) è necessario considerare alcuni vincoli tecnici (immediate precedenze e sequenze) sulle attività costituenti le lavorazioni:

1. Preparazione del piano di posa

- l'attività (a) può avere uno slittamento massimo (lancio al più tardi) di 2 giorni;
- l'attività (b) potrà svolgersi in parallelo all'attività (a), ma non potrà iniziare o concludersi prima dell'attività (a), può avere uno slittamento massimo (lancio al più tardi) di 1 giorno;
- l'attività (c) avrà luogo al termine dell'attività (b).

2. Formazione del rilevato

- l'attività (a) potrà iniziare al termine dell'attività (1c), può avere uno slittamento massimo (lancio al più tardi) di 2 giorni;
- l'attività (b) potrà svolgersi in parallelo all'attività (a), ma non potrà iniziare o concludersi prima dell'attività (a), può avere uno slittamento massimo (lancio al più tardi) di 1 giorno;
- l'attività (c) potrà svolgersi in parallelo all'attività (b), ma non potrà iniziare o concludersi prima dell'attività (b), può avere uno slittamento massimo (lancio al più tardi) di 1 giorno;
- l'attività (d) avrà luogo al termine dell'attività (c);
- L'attività (a) dello strato successivo (i+1) potrà iniziare al completamento dell'attività (d) dello strato i-esimo. avrà luogo al termine dell'attività 2C;

3. Sistemazione delle scarpate

- l'attività (a) potrà avviarsi al termine della formazione del rilevato;
- il dozer e il grader possono lavorare in parallelo.

Si ricava infine che utilizzando la metodologia:

- (a) 'lancio al più presto' il tempo per costruire tutta l'opera è di 66 g.
- (b) 'lancio al più tardi' il tempo per costruire tutta l'opera è di 92 g e 4h.

(b) Metodologia 'lancio al più tardi'

Questo tipo di metodologia computa le eventuali traslazioni temporali delle attività.

La densità secca in situ si calcola come:

$$\gamma_{sito} = \frac{m_s}{V}$$

$$m_{s} = \frac{m_{u}}{1 + \frac{w}{100}}$$

$$V = \frac{m_{_{tot}} - m_{_{cono+piastra}}}{\gamma_{_{sabbia}}}$$

Poichè la prova Proctor viene fatta su un materiale selezionato granulometricamente (D<25 mm) bisogna correggere γ_{sito} in quanto si devono confrontare grandezze omologhe:

$${\gamma _{s,corr}} = \frac{{{m_s} - {m_{{25mm}}}}}{{V - {V_{{25mm}}}}} = \frac{{{m_s} - {m_{{25mm}}}}}{{V - \frac{{{m_{{25mm}}}}}{{{\gamma _{{25mm}}}}}}}$$

mentre la prova Proctor aveva dato un risultato di $\gamma_{\text{s.max}} = 1,97~g/cm^3$

	$m_{_{tot}}$	$m_{{\rm cono+piastra}}$	γ_{sabbia}	V	$m_{_{u}}$	w	$m_{_s}$	γ_s	$m_{_{25mm}}$	$\gamma_{_{25mm}}$	$\gamma_{s,corr}$
	[g]	[g]	$[{\rm g/cm^3}]$	$[\mathrm{cm}^3]$	[g]	[%]	[g]	$[\mathrm{g/cm^3}]$	[g]	$[\mathrm{g/cm^3}]$	$[\mathrm{g/cm^3}]$
Rilevato	4565,8	1538,9	1,349	2243,8	4578,9	6,3	4307,5	1,920	882,6	2,758	1,780
Sottofondo	4752,2	1538,9	1,349	2382,0	4892,6	5,8	4624,4	1,941	235,6	2,758	1,911

Si calcola dunque il il grado di addensamento e si confronta col valore normato in Tabella 7.1

$\triangleright Rilevato$

$$Grado\ di\ addenssamento = \frac{\gamma_s}{\gamma_{s,\text{max}}} \cdot 100 = \frac{1{,}78}{1{,}97} \cdot 100 = 90{,}4\ \% \qquad < 92\% \qquad \Rightarrow NO$$

ightharpoonup Sottofondo

$$Grado\ di\ addenssamento = \frac{\gamma_s}{\gamma_{s,\max}} \cdot 100 = \frac{1,91}{1,97} \cdot 100 = 97\ \% \qquad > 95\% \quad \Rightarrow OK$$

(b) Portanza

 $Lettura\ comparatori\ [mm]$

Pressione	$Piano\ d$ 'appoggio			Cor	po del rile	evato	Sotto fondo			
$[\mathrm{kg/cm^2}]$	1	2	3	1	2	3	1	2	3	
0,2	17,25	4,68	19,52	23,78	9,98	14,53	9,77	8,55	12,64	
0,5	$16,\!25$	3,68	18,52	23,25	$9,\!52$	14,11	9,60	8,33	12,44	
1,5	15,02	$2,\!55$	17,32	22,56	8,88	13,49	9,19	7,89	12,05	

- Tabella 7.3 - Risultati prove di portanza in situ (carico si piastra)

8. Mix design di miscele bituminose

Per la determinazione di una miscela ottimale, si utilizza il metodo di Marshall, metodo semplice e rapido che consente di determinare la stabilità di un conglomerato bituminoso. Utilizzando questo metodo, si progetta la miscela di conglomerato bituminoso per lo strato di usura. La procedura di mix design: definisce la composizione della miscela (granulometria e contenuto di legante), determina i parametri per il controllo (volumetria e proprietà meccaniche), e stabilisce le condizioni operative ottimali (temperatura di miscelazione e stesa). Essa si articola nelle seguenti fasi:

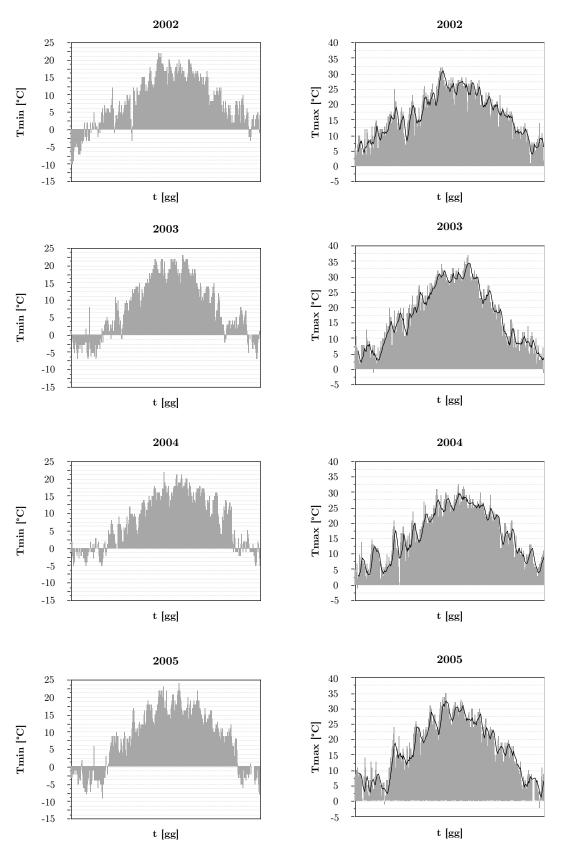
- (a) scelta del legante (in base al PG XX-YY)
- (b) progettazione della curva granulometrica
- (c) determinazione del contenuto di bitume di primo tentativo
- (d) preparazione di miscele aventi contenuti di bitume differenti
- (e) determinazione delle proprietà volumetriche
 - · contenuto dei vuoti
 - · VMA e VFA (anche se non richiesto dal Capitolato CIRS)
- (f) determinazione delle proprietà meccaniche
 - · stabilità
 - · scorrimento
 - \cdot rigidezza
- (g) definizione del contenuto ottimale di bitume (in base ai risultati ottenuti da (e) ed (f))

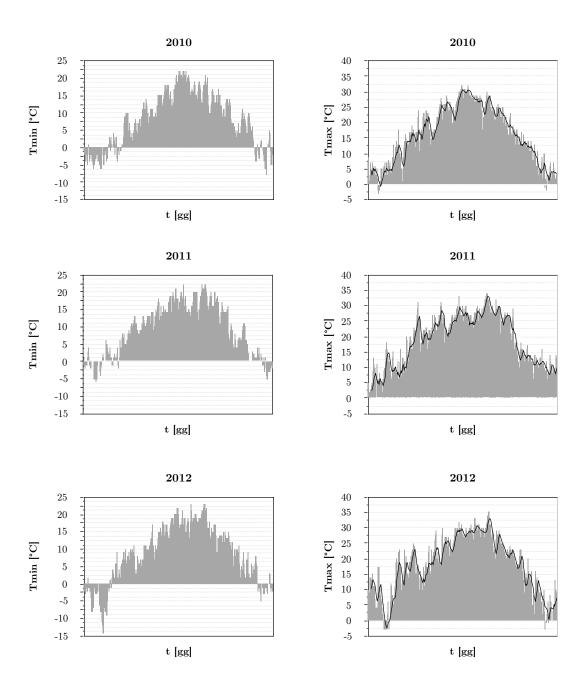
(a) scelta del legante bituminoso

Pur non essendo contemplata nella procedura Marshall, la scelta del legante viene effettuata mediante il procedimento proposto da SUPERPAVE, sistema di classificazione (basato sul clima), attraverso il quale i bitumi vengono distinti in classi prestazionali:

$$PG XX - YY$$

PG = Performance Grade


XX = temperatura massima di progetto della pavimentazione


YY = temperatura minima di progetto della pavimentazione

Sono noti a tal fine, i dati di temperatura massima e minima giornaliera dell'aria registrati nell'area di Torino dal 2002 al 2012. Inoltre è nota la latitudine dell'intervento (45,22°) e l'affidabilità richiesta (98%).

- \cdot Per calcolare la massima temperatura di progetto della pavimentazione $T_{\mathit{max},p}$ si procede con:
 - (1) il calcolo della massima temperatura dell'aria $T_{max,a}$ (media mobile su 7 giorni) Partendo dai dati di temperatura massimi giornalieri $T_{max,g}$, per ogni anno è necessario

calcolare la temperatura massima dell'aria $T_{max,a,i}$ come media mobile su 7 giorni (per gli ultimi giorni dell'anno si utilizzano i giorni seguenti dell'anno successivo).

Infine, dalle temperature minime e massime dell'aria ottenute, si calcolano le temperature massime e minime di progetto:

$$\begin{split} T_{\text{max},p} &= 54,32+0,78 \cdot T_{\text{max},a} - 0,0025 \cdot LA\,T^2 - 15,14 \cdot \log(H+25) + z(9+0,61 \cdot \boldsymbol{\sigma_{\text{max},a}}^2)^{0.5} \\ &= 54,32+0,78 \cdot 32 - 0,0025 \cdot 45,22^2 - 15,14 \cdot \log(20+25) + 2,054(9+0,61 \cdot 1,56^2)^{0.5} = 56^{\circ}C \\ T_{\text{min},p} &= -1,56+0,72 \cdot T_{\text{min},a} - 0,004 \cdot LA\,T^2 + 6,26 \cdot \log(H+25) - z(4,4+0,52 \cdot \boldsymbol{\sigma_{\text{min},a}}^2)^{0.5} \\ &= -1,56+0,72 \cdot (-8) - 0,004 \cdot 45,22^2 + 6,26 \cdot \log(0+25) - 2,054(4,4+0,52 \cdot 2,98^2)^{0.5} = -13^{\circ}C \end{split}$$

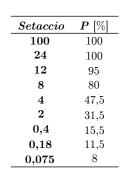
Per ultimo, si sceglie il PG (l'intervallo più piccolo) che racchiude le temperature $T_{max,p}$ e $T_{min,p}$

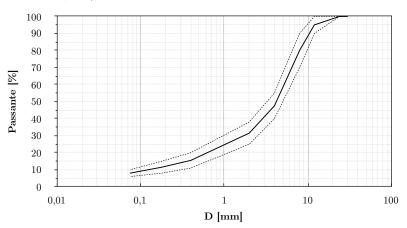
DEDECRIMANCE	F	PG 46	-			P	G 52	۲-				F	PG 58	}-				PG	64-		
PERFORMANCE GRADE	34	40	46	10	16	22	28	34	40	46	16	22	28	34	40	10	16	22	28	34	40
Average 7-day Maximum Pavement Design Temperature, °C ^a		<46					<52						<58					<	64		
Minimum Pavement Design Temperature, °C²	> -34	> -40	> -46	> -10	> -16	> -22	>-28	> -34	> -40	> -46	>-16	> -22	>-28	> -34	>-40	>-10	>-16	> -22	> -28	> -34	> -40

Si definisce dunque un PG 58-16.

(b) progettazione della curva granulometrica

La scelta dello scheletro litico ottimale si articola in due fasi:


(1) scelta della tipologia di aggregato


Le classi granulometriche scelte sono: pietrisco (P), pietrischetto (p1, p2), graniglia (G), sabbia (S1, S2), filler (F). Di ciascuna frazione è disponibile da distribuzione granulometrica (**Tabella 8.1**)

Setaccio	\boldsymbol{P}	p1	p2	\boldsymbol{G}	S1	S2	f
30	100,0	100,0	100,0	100,0	100,0	100,0	100,0
24	78,1	100,0	100,0	100,0	100,0	100,0	100,0
12	19,0	89,2	100,0	100,0	100,0	100,0	100,0
8	10,5	47,5	55,1	100,0	100,0	100,0	100,0
4	2,8	6,9	9,8	40,8	100,0	88,1	100,0
2	1,3	0,4	3,6	8,8	77,0	57,1	100,0
$0,\!4$	0,9	0,2	0,6	1,6	26,8	17,9	100,0
0,18	0,5	0,2	0,2	0,2	16,3	11,3	99,7
0,075	0,2	0,1	0,1	0,1	2,2	9,0	95,5

- Tabella 8.1 -

La curva ideale di progetto è quella curva (rientrante nel fuso A) che si determina come media dei due limiti (centro del fuso di progetto):

Le frazioni a disposizione devono essere dosate per ottenere una curva reale di progetto tanto più prossima a quella ideale di progetto. Per far ciò bisogna minimizzare lo scarto tra le due curve:

$$\sum \Bigl[P_{teor,i} - P_{prog,i}\Bigr]^2 = \min$$

Dunque si ottengono m equazioni in n parametri α_i da determinare (equazioni ai passanti):

$$\left\{ \begin{array}{l} P_1(d_1) \cdot \boldsymbol{\alpha}_1 + P_2(d_1) \cdot \boldsymbol{\alpha}_2 + \ldots + P_n(d_1) \cdot \boldsymbol{\alpha}_n = P_{prog}(d_1) \\ P_1(d_2) \cdot \boldsymbol{\alpha}_1 + P_2(d_2) \cdot \boldsymbol{\alpha}_2 + \ldots + P_n(d_2) \cdot \boldsymbol{\alpha}_n = P_{prog}(d_2) \\ \ldots \\ P_1(d_m) \cdot \boldsymbol{\alpha}_1 + P_2(d_m) \cdot \boldsymbol{\alpha}_2 + \ldots + P_n(d_m) \cdot \boldsymbol{\alpha}_n = P_{prog}(d_m) \end{array} \right.$$

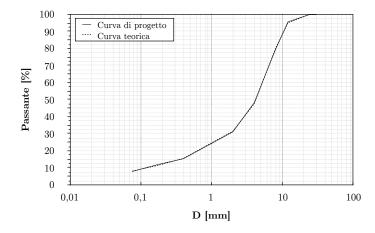
 $che \ devono \ rispettare \ i \ seguenti \ vincoli \ progettuali:$

$$\begin{cases} \boldsymbol{\alpha}_{\!_{1}} + \boldsymbol{\alpha}_{\!_{2}} + \ldots + \boldsymbol{\alpha}_{\!_{n}} = 1 \\ \boldsymbol{\alpha}_{\!_{1}}; \boldsymbol{\alpha}_{\!_{2}}; \ldots; \boldsymbol{\alpha}_{\!_{n}} \geq 0 \\ \% \boldsymbol{B}_{\min} < \% \boldsymbol{B}^{\!_{1}} < \% \boldsymbol{B}_{\max} \end{cases}$$

dove essendo stato scelto il fuso A (da tabella) si ha $\,\%B_{\min} = 4.8\,$ e $\,\%B_{\max} = 5.8\,$

Il problema si presenta in un numero di equazioni superiore al numero delle incognite e dei vincoli. Non esiste un'unica soluzione bensì molteplici che individuano una curva reale di progetto prossima a quella ideale. La soluzione è ottenuta mediante tecniche numeriche.

Setaccio	P	p1	p2	G	S1	S2	f
30	100,0	100,0	100,0	100,0	100,0	100,0	100,0
${\bf 24}$	78,1	100,0	100,0	100,0	100,0	100,0	100,0
12	19,0	89,2	100,0	100,0	100,0	100,0	100,0
8	10,5	47,5	55,1	100,0	100,0	100,0	100,0
4	2,8	6,9	9,8	40,8	100,0	88,1	100,0
2	1,3	0,4	3,6	8,8	77,0	57,1	100,0
0,4	0,9	0,2	0,6	1,6	26,8	17,9	100,0
0,18	0,5	0,2	0,2	0,2	16,3	11,3	99,7
0,075	0,2	0,1	0,1	0,1	2,2	9,0	95,5


Nota la combinazione ottimale utilizzando tutte le classi disponibili, si riduce il numero delle classi. Si individua dunque adesso la combinazione ottimale degli aggregati utilizzando al massimo tre classi ed eventualmente il filler. Dalla **Tabella 8.2** si nota come i valori più elevati di α (che indica quanta quota parte della classe granulometrica viene utilizzata) si hanno per p1, G, S1. Su di esse si riapplica il metodo utilizzato in precedenza, trasformando le equazioni ai passanti (si riduce il numero di elementi di ogni equazione in quanto vengono eliminati $P_{p,i}(d_i) \cdot \alpha_i; P_{p2,i}(d_i) \cdot \alpha_i; P_{s2,i}(d_i) \cdot \alpha_i$).

Setaccio	P	p1	p2	G	S1	S2	f
30	100,0	100,0	100,0	100,0	100,0	100,0	100,0
24	78,1	100,0	100,0	100,0	100,0	100,0	100,0
12	19,0	89,2	100,0	100,0	100,0	100,0	100,0
8	10,5	47,5	55,1	100,0	100,0	100,0	100,0
4	2,8	6,9	9,8	40,8	100,0	88,1	100,0
2	1,3	0,4	3,6	8,8	77,0	57,1	100,0
$0,\!4$	0,9	0,2	0,6	1,6	26,8	17,9	100,0
0,18	0,5	0,2	0,2	0,2	16,3	11,3	99,7
0,075	0,2	0,1	0,1	0,1	2,2	9,0	95,5

$\alpha_{_P}$	$\alpha_{_{p1}}$	$\alpha_{_{p2}}$	$\alpha_{_G}$	$lpha_{_{S1}}$	$\alpha_{_{S2}}$	$\alpha_{_f}$	$\sum \alpha$
0,001	0,391	0,000	0,258	0,275	0,000	0,074	1

Para	ametri
\mathbf{G}	47,5
\mathbf{g}	12,5
\mathbf{A}	22
a	4
\mathbf{f}	14
\sum	6,01
$\%\mathrm{B}$	5,01

Setaccio	$Curva\ di\ progetto$ $P\ [\%]$	$Curva\ teorica \ P\ [\%]$	Scarto
30	99,9	100,0	0,0
24	99,9	100,0	0,0
12	95,7	95,0	0,4
8	79,3	80,0	0,4
4	48,2	47,5	0,5
2	31,1	31,5	0,2
0,4	15,3	15,5	0,0
0,18	12,0	11,5	0,3
0,075	7,8	8,0	0,0
			1,9

