Corso Luigi Einaudi, 55/B - Torino

Appunti universitari Tesi di laurea
Cartoleria e cancelleria
Stampa file e fotocopie
Print on demand Rilegature

NUMERO: 2111A-

A P P U N T I

STUDENTE: Rossi Fabio

MATERIA: Meccanica delle macchine - Prof. Eula

Il presente lavoro nasce dall'impegno dell'autore ed è distribuito in accordo con il Centro Appunti.
Tutti i diritti sono riservati. È vietata qualsiasi riproduzione, copia totale o parziale, dei contenuti inseriti nel presente volume, ivi inclusa la memorizzazione, rielaborazione, diffusione o distribuzione dei contenuti stessi mediante qualunque supporto magnetico o cartaceo, piattaforma tecnologica o rete telematica, senza previa autorizzazione scritta dell'autore.
meccanica delle macchine
Labspatorid obbilgatiorio : $1,30 \mathrm{~h}$
$\left\{\begin{array}{l}\text { Ghro: Ferrarest, RAPAREul," "héc } \\ \text { - Confito sCRITTo: teoria + esercizi }\end{array}\right.$
ORARI:

$$
\text { HERCOLEOI: } 14,30-16 ; 00,16,00-17,30
$$

GloVEDI: $14,30-16,02,16,00-17,30$
VENERDI: $10,00-11,30,11,30-13,00$

- derivara oi un vetode rotante

$$
\left|\frac{d(\mu \vec{\lambda})}{d t}=\omega \vec{k} \bullet x(\mu \vec{\lambda})\right| \quad x=\Delta \rightarrow \text { prootot. } \quad \underset{\text { veHorrate }}{ }
$$

$\omega=$ velocità di rotazione di $\overrightarrow{r \lambda}$ mel piamo.

$$
\left[\begin{array}{l}
\vec{\lambda} \wedge \vec{\mu}=\vec{k} \\
\vec{\mu} \wedge \vec{k}=\vec{\lambda} \\
\vec{k} \wedge \vec{\lambda}=\vec{\mu}
\end{array}\right.
$$

$$
\vec{\lambda} \wedge \vec{K}=-\vec{\mu}
$$

$$
\vec{k} \wedge \vec{\mu}=-\vec{\lambda}
$$

$$
\vec{\mu} \wedge \vec{\lambda}=-\vec{k}
$$

verso autiorario velso orarie
piame:
 $\omega t \rightarrow$ ancolo

2 vettori ortogouaei com moluel \neq e velocità ω per entramb:
le proieziomi del 2° vettore sono le derivete delle proieziom olee prime.

$$
d(r \vec{\lambda}) \quad \sim \rightarrow \rightarrow \vec{l} \rightarrow \overrightarrow{1} \rightarrow \vec{r} \rightarrow \quad r_{1} w_{\text {scalari }}
$$

\qquad
\qquad proprietá terma oh vettor poriniove
e prodotts rettoriale
A) MOTO DI TRASLAZIONE

tutti i puuti hanmo stesse velocitar e accellerazione hineare.
2) MOTO ROTATORIO INTORNO AD UN PUNTO FISSO

le puuto p rosta atormo ad a desicrivelals vua aircoufereuza di reggi op.

$$
P=r=\cos t
$$

e 'tapcpo pué solo cootore intormo ad 0 .

$$
\begin{aligned}
& \overrightarrow{V_{p}}=\frac{d(r \vec{\lambda})}{d t}=\frac{d r}{d t} \lambda^{\prime}+r \frac{d \vec{\lambda}}{d t}=r[\omega \vec{k} \wedge \vec{d}]=\omega \vec{k} \Delta(r \vec{\lambda}) \\
& \text { - (poiche } r=\cos t \text {) } \\
& \text { appreut. olerivata } \\
& \text { d. un vettore rotasite } \\
& \begin{array}{l}
=\left|\omega \vec{k} \wedge(P-0)=\vec{v}_{p}\right| \quad\left(v_{0}=0\right) \rightarrow \vec{\mu} \mid \overrightarrow{d t} \\
=\frac{d(r \omega \vec{\mu})}{d t}=\frac{d r}{d t} \omega \vec{\mu}+\mu \frac{d \vec{\mu}}{d t}
\end{array} \\
& =r \dot{\omega}\left[\vec{k} \wedge \vec{\lambda}^{\vec{\prime}}\right]+\operatorname{re\omega }[\omega \vec{k} \wedge \vec{\mu}]=\dot{\omega} \vec{k} \wedge[r \vec{\lambda}]+r \omega^{2}[-\vec{\lambda}] \\
& =\overrightarrow{w k} \wedge(p-0)-w^{2}[\vec{p} 0]=\vec{a}_{p} \mid \quad a_{0}=0
\end{aligned}
$$

ecceleerazione chivisa in 2 coutributi

a_{M} slipende do w_{1}, anshese questo $e^{\prime \prime}$ costaute, e mom do \dot{w}. tanqeuzide ceutripeta

CENTRO OI ISÍANTANEA ROTAZIDNE O CENTRO DELE DEXSCITA'

$$
\begin{array}{r}
c_{v} \rightarrow \quad v_{c_{v}}=0 \\
a_{c_{v}} \neq 0
\end{array}
$$

a) \vec{v}_{A}, \vec{v}_{B} mom $/ /: \Rightarrow$ suffic. DIREZIONI

$C_{V} \rightarrow$ imecraio dele perpenelicolari deler velocita.

$$
\begin{aligned}
& \overrightarrow{V_{A}}=\vec{V}+V_{V}+V_{A}=w \vec{K} \wedge\left(A-C_{V}\right) \\
& \overrightarrow{V_{B}}=V_{V_{V}}+\overrightarrow{V_{B} / C_{V}}=w \vec{K} \wedge\left(B-C_{V}\right)
\end{aligned}
$$

b) $\vec{V}_{A} / / \vec{V}_{B} \Rightarrow$ devo comoscore MODULO, DIREZIONE e VERSD

3 cos.

Cv intermo alla distanza $\overline{A B}$
(si comosce ie verso ohw)

si he una TRASUAAIONE
\#

$$
c_{v}=\infty
$$

$$
(w=0)
$$

a) CATENA CINEMATICA: e^{\prime} un imsieuve di piv corpi rigidi commessí da
b) CATENA CINEMATICA SEMPLICE: se ogm C.R. he solo 1 e 2 coppie cinematiche (vincoei).

Biella - manovrele.

Scanned by CamScanner

- calcols del gdl di a meccanismo

FORMULA DI GRÜBLER

$$
X=3(\mu-1)-2 C_{1}-C_{2}
$$

$$
x \rightarrow m^{0} G d L
$$

$\mu \longrightarrow m^{\circ}$ di corpi compreso le tetaio
$C_{A} \rightarrow M^{0}$ di vincoli preseuti a 1 Gdl
$C_{2} \rightarrow m^{0}$ al vimcol presenti a $2 G d C$
Esempio (Brello - manovele)

$$
\left\{\begin{array}{l}
\mu=4(A 0, A B, 3, \text { telaio } 4) \\
C_{1}=4(0, A, B, \text { quida orizzontale }) \\
C_{2}=0
\end{array}\right.
$$

Esempio (breccio unens)

- Rullo su un piano

pure rotalemento $\Rightarrow V_{\text {reletive }} 1 / 2=0$
$\& G d L \rightarrow$ rotazome, \nexists strixciamento.
© Proprietà riservata dell'autore - Digitalizzazione e distribuzione a cura del CENTRO APPUNTI - Corso Luigi Einaudi, 55 - Torino / Pagina 11 di 174

BIELLA - MANOVELLA

$$
\begin{aligned}
& \omega_{1}=1500 \text { qiri } / \text { uiuuto } \\
& \dot{w}_{1}=1000 \mathrm{rad} / \mathrm{s}^{2} \\
& O A=0,21 \mathrm{~m} \\
& \dot{g}_{1}=45^{\circ} \\
& A B=0,61 \mathrm{~m} \\
& \alpha_{2}=30^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& A O=\text { uи } \\
& A B=\text { hiellele } a \\
& B=\text { piede di briella }
\end{aligned}
$$

Ie ueccauismo trasforma ie moto aircolore di AO in una traskanome altermata di 3 (o viceversa).
Coecolo des Goll:

$$
\begin{aligned}
& x=3(m-1)-2 C_{1}-C_{2} \\
& m=4(A 0, A B, 3, \text { telaĩo) } \\
& C_{1}=4(0, A, B, L \text { quida asta }) \\
& C_{2}=0
\end{aligned}
$$

AO:

AB:

$$
\begin{align*}
& \overrightarrow{V_{A}}=\vec{Y}_{0}+\vec{V}_{A / 0} \text { I.F.C. } \\
& =\overrightarrow{V_{A / 0}}=w_{1} \vec{k} \wedge\left(\overrightarrow{V_{1}}\right)
\end{align*}
$$

$$
w_{1}=\frac{2 \pi M_{1}}{60}=157,07 \mathrm{rad} / \mathrm{s}
$$

Il punto A ruota rigidemente intormo ool 0.

$$
V_{0}=0 \quad a_{0}=0
$$

$$
\text { HoDvLo: } \quad V_{1}=w_{1} \overline{A O}=32,98 \mathrm{mu} / \mathrm{s}
$$

$$
\text { DIREZIONE: } \perp A O
$$

$$
\text { vERSO: } w_{1}
$$

Q Nan a seme vimcoe fissi. nota eoto in oliceteme. -
cm dirczione

Questo stesso esercizio lo si pue risoevere con ie centro delle velocità i

- Ogmi corpo rigido nee meccouismo he ie suo CV, uno sobo.

$$
C v_{3}=\infty
$$

L) poichi ho una traslaziome
 $A O=\cos t \quad A B=\cos t \rightarrow$ pezzi rigidi definiti are tempo

- Quande si hauno couve componenti de un ueccanismo pezzi rizidi ben definiti mee teupo si ha un HOTO SEHPLICE.

GUIDA DI FAIRBAIN O GLIFO

$\vec{a}_{C_{0}}=$ ACCELLERAZIONE DI CORIOUIS - accellecazave courplemendore.

$$
=2 w_{\text {tras }} \vec{k} \wedge \vec{v}_{\text {ree }} .
$$

Moto di tasciuaureuto: $\quad \overrightarrow{a_{c 0}}=0$ poiche $\overrightarrow{V_{k i}}=0$

- Dentificazione dei moti (in cass ai moto cosuposto):

1) Moto ASSOCuTO \rightarrow ROTAZIONE di P inTornd AD O
2) roto relaño \rightarrow trasuazune di e wngo $\vec{\lambda}= \pm V_{\text {ree }}^{\vec{\lambda}}$
3) MOTO D1 trascinamento \rightarrow Rotazione di 2 intarno $A O_{1}$

Mot̃o ASSOLUTO DI I: camposizane dés $2 \rightarrow$ P Moro camposio

Percho si nuware aeel interms die carcetho.

Ripresa guiba gufo
$\vec{V}_{\rho_{\text {ass }}}=\vec{V}_{p_{\text {ree }}}+\vec{V}_{\rho_{\text {tr }}} \quad \vec{V}_{p_{\text {ree }}}=V_{\rho_{\text {ree }}} \vec{\lambda}$
dati problema
$\begin{aligned} \overrightarrow{V_{p_{c}}} & =\left[\begin{array}{l}\overrightarrow{V_{0}}+w_{1} \vec{k} \wedge\left(P-0_{1}\right) \\ 0\end{array}\right] \\ & \rightarrow w_{\text {thascimamento }}\end{aligned}$
$\overrightarrow{V_{P_{A S S}}} \vec{V}^{\vec{V}_{0}}+\omega \vec{K} \wedge(\vec{p}-0)= \pm V_{f_{\text {ree }} \lambda}+\left[\omega_{A} \vec{K} \wedge\left(\overrightarrow{\rho-O_{A}}\right)\right]$

M	$\omega P O=47,1 \mathrm{~m} / \mathrm{s}$	$?$	$\omega_{1} P D_{1}=?$
D	$\perp P_{0}$	luugo $P_{O_{1}}$	$\perp P D_{1}$
V	$\omega)$	$?$	$?$

GRADI AI LIBERTA
$x=3(\mu-1)-2 C_{1}-c_{2}$
$\mu=3(1,2$, telaio $)$
$C_{1}=2\left(0,0_{1}\right)$
$C_{2}=1(P \rightarrow$ rotazone e traslazane $)$
ANALISI DELLE VELOTATA
Grpe 1
$\overrightarrow{V_{p}}=\vec{y}_{0}+\vec{V}_{p}=\omega \vec{k} \wedge\left(\vec{e}_{0}\right)$
$H{ }^{\circ}{ }^{O}$ WPO $=47,1 \mathrm{~m} / \mathrm{s}$
D $\perp \mathrm{PO}$
V Jw

Scanned by CamScanner
© Proprietà riservata dell'autore - Digitalizzazione e distribuzione a cura del CENTRO APPUNTI - Corso Luigi Einaudi, 55 - Torino / Pagina 17 di 174
corpo 1

$$
\begin{array}{l|l}
& \overrightarrow{a_{P a s s}} \\
M & w^{2} \rho_{0} \\
P & / / P O \\
V & P \rightarrow 0
\end{array}
$$

$$
0 \rightarrow \text { poichè } w=\cos t
$$

corpo 2

Costruisco ie polizons deele ascelebrazoui:

Per i modvé delle accellerazain si dourebbero fave deepe cousiderazulai geometriche suger angei.

$$
\begin{aligned}
& \overrightarrow{a_{\text {pass }}}=\overrightarrow{a_{\text {pree }}}+{\overrightarrow{a_{p_{\text {tr }}}}}+\overrightarrow{a_{c_{0}}} \\
& \omega_{t r} \vec{R} \\
& = \pm a_{\text {ree }} \vec{\lambda}+\left[\vec{a}_{p_{1}^{\prime}}^{\prime}+\dot{w}_{1} \vec{k} \wedge\left(\overrightarrow{p-o_{1}}\right)-w_{1}^{2}\left(p-0_{1}\right)\right]_{t_{r}}+\left[2 w_{1} \vec{k} \wedge \vec{v}_{p_{\text {cre }}}\right]-c_{c_{0}}
\end{aligned}
$$

Triamp>le deese velocità:

$A B=\frac{a}{\sin g}=0,5 \mathrm{~m}$

$$
\begin{aligned}
& V_{A_{t r}}=V_{A_{\text {ass }}} \cdot \sin \alpha=0,5 \mathrm{~m} / \mathrm{s} \\
& V_{A_{\text {rel }}}=V_{A_{\text {ass }}} \cdot \cos Z=0,86 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
w_{1}=\frac{V_{A E r}}{A B}=1 \mathrm{rad} / \mathrm{s}
$$

$$
\vec{V}_{A_{C}}=w_{1} \vec{k} \wedge(\overrightarrow{A-B})
$$

ANALISI DELLE ACCELLERAZIONI:

$$
\text { M| } 2 w_{1} V_{\text {Aree }}=1,73 \mathrm{~m} / \mathrm{s}^{2}
$$

$$
D \quad \perp \vec{V}_{\text {Aree }}
$$

$$
\begin{aligned}
& \overrightarrow{a_{\text {AGSS }}}=\overrightarrow{a_{\text {Aree }}}+\overrightarrow{a_{\text {ATR }}}+\overrightarrow{a_{\text {ACO }}} \\
& \overrightarrow{a_{A c_{0}}}=2 w_{1} \vec{A} \wedge \vec{V}_{A_{\text {RE }}}
\end{aligned}
$$

$$
\begin{aligned}
& \overrightarrow{a_{A_{0}}}=2 w \vec{K} \wedge \overrightarrow{V_{A_{\text {ree }}}}
\end{aligned}
$$

ESERCIZLO 2

$A B=\cos t \rightarrow$ selo moto semplice

$$
\begin{aligned}
& A B=200 \mathrm{mu} \\
& V_{A}=2 \mathrm{~m} / \mathrm{s} \\
& Z=30^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \vec{V}_{A}=\vec{V} / c_{V}+w \vec{k}\left(\overrightarrow{A-C_{V}}\right) \\
& \vec{V}_{B}=\vec{V}_{C_{r}}+w \vec{k}\left(\overrightarrow{B-C_{r}}\right) \\
& \vec{V}_{G}=\vec{V}_{c}+\omega \vec{K} \wedge\left(G-C_{v}\right)
\end{aligned}
$$

$$
\begin{aligned}
& G C_{V}=\sqrt{A G^{2}+A C_{V}^{2}-2(A G)\left(A C_{V}\right) \cos 3}=0,0998 \mathrm{me} \\
& \omega=\frac{V_{A}}{A C_{V}}=11,56 \frac{\mathrm{rad}}{\mathrm{~s}} \\
& V_{B}=\omega\left(B C_{V}\right)=1,156 \mathrm{~m} / \mathrm{s} \\
& V_{G}=\omega\left(G C_{V}\right)=1_{1}, 156 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

\qquad
S. agringe sue gevenico forza \vec{F}, pers cantia pposta da vea deve. stessa intensita doel'aetra parte. \downarrow

Qrimde effelto nuel.
Trovo le risultanti provisorie, trovo H e cosi attereco la \vec{R}.

$$
\vec{R}_{1}=\vec{F}_{1}+\vec{F} \quad \vec{R}_{2}=\vec{F}_{2}-\vec{F}
$$

$$
\vec{R}=\vec{R}_{1}+\vec{R}_{2}=\overrightarrow{F_{1}}+\overrightarrow{7}-\vec{F}+\overrightarrow{F_{2}}
$$

MOMENTS DI UNA FORZA

Monenents di \vec{F} rispeito ad 0 :

$$
\vec{M}_{0}=\vec{r} \wedge \vec{F}=r \sin \alpha F \vec{K}
$$

$d=r \sin \alpha \quad d \perp F \quad d=$ braccio della forza F rispetto ad 0
$\longrightarrow \quad \vec{H}=d F \vec{X} \quad M_{0}=d F$

COPPIA OI FORZE ${ }^{a}$

$$
\begin{aligned}
& M_{0}=-F h+F(d+h) \\
& M=C=\operatorname{cop} a=F d C \\
& \rightarrow \text { VEIORE } \angle B E R O \rightarrow \text { SNL }
\end{aligned}
$$

distamza tra ee 2 parze. $d c^{\prime}=$ braccie alefee coppria c
ROOTARE

$$
C=d F_{C}
$$

REAZIONI VINCOLARI: somo forse a coppie scommite mer vincole, seme rucoguite e mascano retle ohireqioni in wit re rincolob impedisce
a) COPP, A PRISMATICA: $\left(\frac{1}{\text { /IITKI }}\right)$

1) patino \rightarrow solo iratuatione

REAZIONI DEL UNCONO sENZA ATRRITO.

b) cerniera piana

EQUIVALENZA:
$C=F_{1} b$
$\left|\overrightarrow{F_{A}}\right|=\left|\vec{F}_{2}\right|$
Lidentità
3) C.h. sazetto a 3 forze

Proeungo ee retta di azcoue oi $\overrightarrow{I_{1}}$
finché incintra quele si
annto detlo puñ̃o
punto detlo puño Di siellá. Anche la retta d'azoue di $\overrightarrow{F_{3}}$ deve passare per * per éequieibrio
(E)

N éequiebrio
aeed rotaziome

EQUUCIBRLO AUA ROTAZIDNE: $\rightarrow \sum_{i=1}^{N} \vec{M}_{M_{F}}=0$
$\vec{M}_{0}=\vec{r} \wedge \vec{F} \quad M_{0}=b \bar{r} \quad b \perp \vec{F} \quad b$ rispetto ad a
Rispette ad E (paes monerenti).
 \& unelo periché E é sueba retta d'aziome. ai retta d'aziome non be passasse per E mon \&i arcobbe equilimio.
EqUILIBRIO ALLA TRASLAZISNE: $\rightarrow \sum_{i=1}^{M} \vec{F}_{i}=\vec{R}_{F}=0$
ESERCIZ1O

Traccio i ovagrommin

asta scarica

$$
\left|\vec{R}_{A}\right|=\left|\vec{R}_{B}\right|
$$

$$
3 \text { LEGGI DELA DINAMICA (NENTON) } 19 / 3 / 13
$$

1) Une $\vec{R}_{=0}$ articelle resta a ciposo o in moto rettilive suiforme
2) L'acceereraznue di une portizeel e α aebe $\sum_{i=1}^{m} \vec{F}_{\text {est: }}$

$$
\sum_{i=1}^{n} \overrightarrow{\text { est }_{i}}=\mu \vec{a}
$$

$\vec{a}=$ accellerazio ne deep particeeen
$\mu=u$ ussa della particelle $[\mathrm{Ka}]$
inerzia o resistenza deele particelea a caumbare b sua \vec{V}

Nee miano be forze in possomo sperzare in coupmenti:

Questo é a metodo aetermativs al bovors grefico con le risuetauti.

$$
\mu=\text { uassa distribuita }
$$

$\ddot{y}_{i} \rightarrow$ accelleratione aupoßne di G intormo a O
$I_{C}=\frac{\mu u}{12}\left[\phi_{R} \mu^{2}\right] \rightarrow$ moneuto ar inerzia uotevole
$l=$ eurghezza derea leva.
EquILIBRIO ALLA ROTAZIONE:
Comrene prendere cone pobo un pruto di vincob cosi mon si aurauma "coutribuiti delle reaswui vincoeori (paiche' avrebbero braccia unss).

BARICENTRO OI UN C.R. me mamo

1) SISTEMA DISCRETO $\Rightarrow M$ masse

$$
\left\{\begin{array}{l}
x_{G}=\frac{\sum_{i=1}^{m} x_{i} \mu_{i}}{M} \\
y_{G}=\frac{\sum_{i=1}^{m} y_{i} \mu_{i}}{M}
\end{array}\right.
$$

$$
H=\sum_{i=1}^{m} m_{i}
$$

2) sistema continuo:

$$
\begin{aligned}
& \rho=\text { deus } t a ́=\frac{d u}{d V}=\cos t \\
& X_{G}=\frac{\int_{H} x d u}{M}=\frac{\int_{V}(\rho d v) x}{M} \\
& Y_{G}=\frac{\int_{H} y d u}{M}=\frac{\int_{V}(\rho d v) y}{M}
\end{aligned}
$$

- Se esiste un asse de simmetria dee corpo $\Rightarrow e^{i}$ ha G

MOMENTO OI INERZIA

$$
I_{0}=\mu\left(\bar{\rho}_{0}\right)^{2} \rightarrow\left[k_{0}+\mu^{2}\right]
$$

1) Sistena piscreto

0: $\quad I_{0}=\sum_{i=1}^{m} m_{i}\left(\hat{p}_{i}\right)^{2}=\sum_{i=1}^{m} m_{i} r_{i}^{2}$

$$
I_{0}=\int_{M} x^{2} d \mu=\int_{M}\left(x^{2}+y^{2}\right) d u=\int_{M} x^{2} d u+\int_{M} y^{2} d u=I_{x}+I_{y}
$$

Nel prame, per simmetria: $I_{x}=I_{y}$

$$
I_{x}=I_{y}=\frac{I_{0}}{2}=\frac{\left(\frac{M R^{2}}{2}\right)}{2}=\frac{M R^{2}}{4}
$$

LAVOAD DI UNA FORZA

$$
\begin{aligned}
& d L=\vec{F} d \vec{s}=F d s \cos \alpha \quad[j=\text { jovee }] \\
& L=\int_{s_{1}}^{s_{2}} \vec{F} d \vec{s} \\
& =\left[\begin{array}{c}
F_{t} \cos \alpha \\
F_{t}
\end{array}\right] d s=F_{t} d s \rightarrow 0 \text { coucordi }
\end{aligned}
$$

$$
\begin{aligned}
& L=\int_{s_{1}}^{s_{2}} \vec{F} d \vec{s}=\int_{s}^{s_{2}} \bar{F}_{t} d s \\
& L_{c}=\int_{s_{1}}^{s_{2}} M d g
\end{aligned}
$$

POTENZA: $\quad P_{F}=\frac{d L}{d t}=F_{t} \frac{d s}{d t}=F_{t} V \quad[W=$ Watt $]$

$$
\begin{aligned}
& P_{L}=\frac{d L_{c}}{d t}=M \frac{d z}{d t}=M w \\
& P_{\text {for }}=F_{t} v+M w
\end{aligned}
$$

Rendirenio: $\quad \eta=\frac{P_{\mu}}{P_{e}} \leqslant A$ uscente (UTILE)

$\mu:+1 \quad T-\mu \varepsilon-\mu x=0$?
$\left.\mu_{1}: \downarrow \quad T-\mu_{12}+\mu_{1} \dot{x}=0\right\} \rightarrow \dot{x}=q \frac{\left(\mu_{1}-\mu\right)}{\left(\mu_{1}+\mu\right)}=1,4 \mathrm{~m} / \mathrm{\delta}^{2}$,
Se ae posto di μ_{1} venisse applicate une forta \vec{F}, par a mle? $\bar{F}=\mu_{A Z}=1962 \mathrm{~N}$

Applicando la forra F, auche se porit in vebore abe poriza poso, viesco a tirave ea masso m piil velocimente verso elateo. focio da ivertio su questo corpo si pppome al movinuento
pala caricatrice (equilíncio statico)

2) Sparto ad anolizzare e'asta GE:

Dopo uver scamposto ee camponent! delle reatiemi vincoeari der punti $G_{1} F_{1} E$ sclivo ie sisteme:

$$
\begin{array}{ll}
\stackrel{+}{\rightarrow} & -H_{G}+H_{F}+H_{E}=0 \\
+1 & -V_{G}+V_{F}+V_{E}=0 \\
E^{+} & H_{G}(\overline{E G})-H_{F}(\overline{E F})=0
\end{array}
$$

Di musve, per trovere la 4 eq, amalizzo ie cieindso 2:

* Riportande di muevo le shireziome di \bar{T}_{T} sueve usta $b E$ nee punte \bar{r}, scrivo ea 4^{-}eq:

$$
V_{F}=H_{T} \tan \alpha
$$

Risolve e sistema e travo:

$$
H_{F}=52^{\prime} 448 \mathrm{~N} \quad V_{F}=30^{\prime} 280 \mathrm{~N} \quad V_{E}=-15^{\prime} 140 \mathrm{~N} \quad H_{E}=-26^{\prime} 224 \mathrm{~N}
$$

Ciluntro in trazlowe
\downarrow
Le stedo scorre neela camica dee aienudko.
Da $a_{0}{ }^{\frac{1}{2}}$ si puó calcolare ea pressióme $p_{2}^{*} 4$, la sua jerza $p_{2} s_{2}$:

$$
S_{2}=\frac{\pi\left[\phi_{2}^{2}-\phi_{1}^{2}\right]}{4}
$$

$$
T_{F}=P_{2} S_{2}=\sqrt{V_{F}^{2}+H_{F}^{2}}
$$

θ

$$
\begin{gathered}
P_{2}=\frac{T_{F}}{S_{2}}=7139690,74 \mathrm{~Pa}=71,39 \text { bar } \\
\left(1 \text { bar }=10^{5} \mathrm{~Pa}\right)
\end{gathered}
$$

CARRELLO SU PIANO inclanato

$N_{1}, T_{1}, N_{2}, T_{2}$ sano le reazomi deele ruote see tercenc.
$\rightarrow T_{1}$ e T_{2} somo trascurabiè paichi e^{\prime} attrito mon vieme preso in considercazoue.
hoto uniformenente acceverato
$x(t)=x_{0}+V_{0} t+\frac{1}{2} x t^{2}$
$\xrightarrow[x_{A B}=\frac{1}{2} \dot{x} t^{*} \quad \longrightarrow]{\longrightarrow}$ Le befupo di eutraube te
$v(t)=v_{0}+\dot{x} t \rightarrow v_{B}=\ddot{x} t^{*}$
$t=\frac{V_{B}}{x}$
$x_{A B}=\frac{1}{2} \ddot{x}\left[\frac{V_{B}}{\dot{x}}\right]^{2}=\frac{1}{2} \ddot{x} \cdot \frac{V_{B}^{2}}{\dot{x}^{2}}=\frac{1}{2} \frac{V_{B}^{2}}{\ddot{x}} \longrightarrow V_{B}=\sqrt{2 \ddot{x} x_{A B}}$

$$
2 \ddot{x}+\mu_{2} \dot{w}_{2}
$$

Sostituendo neele eq precedenti e^{\prime} :

$$
\begin{aligned}
& \text { + }{ }_{\alpha} T_{D}-\mu_{1} \ddot{x} \cdot \mu_{1} \varepsilon \sin \alpha=0 \\
& 0)^{+} I_{0}\left[\frac{2 x}{r_{2}}\right]+\left(\frac{T_{0}}{2}\right) r_{2}-F_{r_{2}}=0 \\
& \stackrel{\downarrow}{\nabla} \\
& I_{0}=I_{G_{2}}=\frac{\mu_{2} r_{2}^{2}}{2} \\
& \ddot{x}=\frac{2 F-\mu_{1} \varepsilon \sin \alpha}{\mu_{1}+4 \frac{I_{0}}{r_{2}^{2}}}=\frac{2 F-\mu_{1} \varepsilon^{\sin \alpha}}{\mu_{1}+\alpha^{2} \alpha\left[\frac{\mu_{2} r_{2}^{2}}{2}\right] \frac{1}{r^{2}}}=\ddot{x}=4,69 \mu / s^{2} \\
& V_{B}=\sqrt{2 x_{A B} \ddot{x}}=4,33 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

BRACCIO DI SUPPORTO

$$
\begin{aligned}
& \bar{F}=10 \mathrm{kN} \\
& 10,25 \mathrm{~m}=a \\
& P=w_{\varepsilon}=4666 \mathrm{~N} \\
& w_{\text {FAAV }}=98.5=475 \mathrm{Kg}
\end{aligned}
$$

Diaerownina trave

$$
\begin{aligned}
& a=\frac{0,5}{2}=0,25 \mathrm{~m} \\
& b=2,5-0,12=2,38 \mathrm{~m} \\
& c=3,5-0,12=3,38 \mathrm{~m} \\
& d=5-0,12=4,88 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
& E_{P e}=\mu_{c} h \\
& L_{F_{p e s o}}=-\mu_{q} h \quad[\mathcal{I}]
\end{aligned}
$$

$E_{\text {merala ciuetica }}=\frac{1}{2} \mu V_{G}^{2}+\frac{1}{2} I_{G} \omega^{2}$

Principio di conservalione dell energia

$$
\begin{aligned}
& L_{F_{\text {est }}}+L_{F_{\text {int }}}=\Delta E_{\text {cil }}+\Delta E_{p q}+\Delta E_{p_{e l}} \\
& T_{\text {Foxo }}^{N 0} I_{\text {atrito }}
\end{aligned}
$$

\rightarrow poichè vengono prese in consinderrazione ue secando menhbra dele' uquesínaz:

CARRELLO su piano inclinato

$$
\begin{aligned}
& V_{A}=0 \\
& V_{B}=? \\
& A B=2 \mathrm{M}
\end{aligned}
$$

aurcee di ai gira la correble sate.

$$
\begin{aligned}
& h=A B \sin \alpha \\
& E_{P_{A} A}=0(i) \quad E_{P B B}=\mu_{1 g h}(f)
\end{aligned}
$$

$\Delta E_{P_{8}} \rightarrow \begin{aligned} & \text { Veriaquave cuergte } \\ & \text { istaute suizcoee }\end{aligned}$ istance Mizcuee e finale

$$
\sum_{i=1}^{M} F_{e s t_{i}}=\frac{d \vec{Q}}{d t}
$$

- Se in un sisteur isolato si ha:

$$
\left\lvert\, \sum_{i=1}^{\mu} F_{\text {est }} \rightarrow 0 \rightarrow \frac{d \vec{Q}}{d t}=0 \Rightarrow \vec{Q}=\cos t\right.
$$

Momentd della qunntitá di moto

$$
\vec{k}_{p}=\sum_{i=1}^{M} r_{1} \vec{\lambda} \wedge \underbrace{\left(\mu_{i} \dot{r}_{i} \vec{\lambda}\right)}_{\vec{Q}_{i}}
$$

$$
\vec{\lambda} \vec{\mu}=\vec{v}(\mu)
$$

$$
\overrightarrow{K_{p}}=\sum_{i=1}^{n}\left(\mu_{i} \mu_{i}^{2}\right) w \vec{\gamma} \quad(1 \text { piano })
$$

$$
\overrightarrow{K_{p}}=I_{p} w \vec{\gamma} \quad \text { mel piano } P=G \Rightarrow \vec{K}_{G}=I_{G} \omega \vec{V}
$$

$$
\vec{M}_{i x_{G}}=-I_{G} \overrightarrow{\dot{w}}=-\frac{d \vec{k}_{C}}{d t}
$$

EquILIBRIO

$$
\sum_{i=1}^{N} \vec{M}_{\operatorname{st} t_{i}}+\vec{N}_{1 M_{G}}=0 \rightarrow \sum_{i=1}^{N} M_{e s t}=-M_{i N G}=+\frac{d R_{G}}{d t}
$$

$$
\begin{aligned}
& Q_{i}=\mu_{1} V_{1 i} \\
& Q_{f}=\mu_{1} \nabla_{1 j}+\mu_{2} V_{\ell_{f}}
\end{aligned}
$$

Si Jetano e pai i respingoue
t
JRTO ELASTICO TRA I CARRELLI \rightarrow I carrele aetistaMte hinale somo separati
\forall

$$
Q_{j}=Q_{f} \Rightarrow \mu_{1} V_{1 i}=\mu_{1} V_{1 f}+\mu_{2} V_{2 f}
$$

Cio porto area couservazlane di Ecisi

$$
E_{c m_{i}}=E_{\text {cint }} \rightarrow{ }_{2} \mu_{1} V_{1 f}^{2}+\frac{1}{2} \mu_{2} V_{2 f}^{2}=\frac{1}{2} \mu_{1} \mu_{1} V_{1 \lambda}^{2}
$$

Hetteudo a sistema le 2 eg, trovo le inconuite $V_{1 F}$ e V_{2}. Da $a b^{\prime}:$
URTO ELASTICO \Rightarrow CONSERVAZIONE ENERGA (MO dissipaziaue)

- Se uele istaute fimale si ha questa coufiqueazoue:

Dopo e'urto si muNovo culle stessa velecita V_{f}, vuit.

$$
\frac{1}{v}
$$

S ha lo stesso la eonservazione della puntita d moto

$$
\sum_{i=1}^{n} \vec{F}_{\text {esti }}=0 \quad \rightarrow \quad \xrightarrow{\square}=\text { cost }
$$

L sicrea un unove siste wo di uassa $\mu_{1}+\mu_{2}$ cos veloata $\frac{V_{f}}{}$

$$
\Delta E_{u m}=\frac{1}{2}\left(\mu_{1}+\mu_{2}\right) V_{f}^{2}-\frac{1}{2} \mu_{1} v_{1 i}^{2} \rightarrow \text { ENERGIA DISSIRATA } \rightarrow \text { DNUNIO DEI } 2 \text { CARRELI }
$$

$$
\begin{aligned}
& \left.\begin{array}{ll}
Q_{i}=\mu_{1} V_{1-} \\
Q_{1}=\left(\mu_{1}+\mu_{2}\right) v_{y}
\end{array}\right] \quad \begin{array}{l}
\text { URTO ANELASTICO } \\
\\
\\
\text { (dissipazioue di eneréa })
\end{array} \\
& \hbar \\
& \mu_{1} V_{1} i=\left(\mu_{1}+\mu_{2}\right) V_{2}-5 \quad V_{f}=\left(\frac{\mu_{1}}{\mu_{1}+\mu_{2}}\right) v_{i i} \\
& \Delta E_{\operatorname{cin}}=E_{\operatorname{cin} f}-E_{\operatorname{cin} i} \neq 0
\end{aligned}
$$

$$
\mu_{1} V_{1}+\mu \mu_{2} V_{2}-\mu_{3} V_{3}=\left(\mu_{1}+\mu_{2}+\mu_{3}\right) V_{f} \Rightarrow V_{f}=0,0987 \mu_{1} / \mathrm{s}
$$

Dissipuzioure aneresa:

$$
\begin{aligned}
\Delta E_{\text {aw }} & =\frac{1}{2}\left(\mu_{1}+\mu_{2}+\mu_{3}\right) v_{1}^{2}-\frac{1}{2}\left(\mu_{1} v_{1}^{2}+\mu_{2} v_{2}^{2}+\mu_{3} v_{3}^{2}\right) \\
& =16577,65 \mathrm{~J}
\end{aligned}
$$

ESERCIZIO

\vec{V}_{i} ?
V_{f}
$E_{\text {aim }}$ disisipata? $\quad \mu_{1}=60 \mathrm{Kg} \quad \mu_{2}=30 \mathrm{~K}_{g} \quad L=3 \mathrm{me}^{2} \quad g=15^{\circ}$
a) \rightarrow b) URTि ANELASIICo

$$
\begin{aligned}
& Q_{a}=\mu_{2} V_{i} \\
& \left.Q_{b}=\left(\mu_{1}+\mu_{2}\right) V_{y}\right] Q_{i-}=Q_{g} \Rightarrow \sum_{i=1}^{n} \overrightarrow{F e s t i}_{i}=0 \\
& \quad \mu_{1} V_{i}=\left(\mu_{1}+\mu_{2}\right) V_{j} ?
\end{aligned}
$$

b) \rightarrow c) primapio as nosservanane deee enorgía

$$
\begin{aligned}
& L{ }^{L} e_{t}+L_{1} M_{1}=\Delta e_{a n}+\Delta E_{\rho} \\
& \rho^{2} \\
& \frac{1}{2}\left(\mu_{1}+\mu_{2}\right) V_{c}^{2}-\frac{1}{2}\left(\mu_{1}+\mu_{2}\right) v_{1}^{2}=\Delta E_{c i n}
\end{aligned}
$$

a
b)

$$
\Delta E_{P_{g}}=\left(m_{1}+\mu_{2}\right) b^{a}-0
$$

c)
$\begin{array}{lll}\overrightarrow{F_{\operatorname{th}}} & w & w \\ & & \\ & & \omega=0\end{array}$
nosee e'acceleratione ceutripota o mormace

$$
\begin{aligned}
& \overrightarrow{a_{t}}=\overrightarrow{w k} A(\overrightarrow{P-G}) \quad \text { Masce }{ }^{\frac{1}{k}} \quad \text { coutrapposiziove) }
\end{aligned}
$$

forza centripeta \leftrightarrow forza centripuga.

ROTORE \rightarrow si presuppone che ea Messa sia tulta concentiata wee bacicuitro. $\overline{P G} \rightarrow 0$ (zera)

莫
Equilibriumo el cetore ill unodo da avere la mageior parte deeke
massa in G.

$$
\begin{aligned}
& a_{m}=w^{2}(66) \\
& F_{\text {tm }}=F_{\text {th ceutr }}=\mu a_{\mu}=0
\end{aligned}
$$

$[\vec{i}, \vec{\mu}, \vec{v}] \rightarrow$ terma centrale inerziale solidele can ie rotbre \downarrow

1) É ura terna di simmetría
2) E'una teima primajale di inertia.
3) E^{\prime} centeata mee barice utro $\Rightarrow e^{\prime}$ auche TERNA CENTRACE DI INERZIA.
le fatto che \vec{W} sua iutormo a \vec{K}, preduca una $\overrightarrow{M_{m g}}=$ coppá di imeraia percher $\vec{R} / \vec{V} \longrightarrow \vec{V}$ asse dee rotore.

$$
\begin{aligned}
& \vec{H}_{\operatorname{mn}_{G}}=-\frac{d \vec{K}_{f}}{d k} \\
& \vec{K}_{f}=I_{\lambda p} \vec{\lambda}+I_{d q \cdot} \vec{\mu}+\Gamma_{v} x \vec{v}
\end{aligned}
$$

Scanned by CamScanner

Quindw ora posso derivare $\overrightarrow{K_{G}} e$ trovare cos e'espressione oh $H_{M G}^{\rightarrow}$:

$$
\begin{aligned}
\frac{d \overrightarrow{k_{G}}}{d t} & =\left[I_{\lambda} w \sin \alpha\right][w \cos \alpha] \vec{\mu}+\left[I_{r} \cos \alpha\right][-\sin \alpha w] \vec{\mu} \\
& =\left[I_{\lambda} w^{2} \sin \alpha \cos \alpha\right] \vec{\mu}-\left[I_{V} w^{2} \sin \alpha \cos \alpha\right] \vec{\mu}
\end{aligned}
$$

$$
I_{V}=\text { monuento ali inerzia ussicle }=\frac{\mu e^{2}}{2}=3,1 K_{q} \mu^{2}
$$

$$
I_{\mu}=I_{\lambda}=\text { mou. } \underline{\text { HANETRALE }}=\frac{\mu}{4}\left[H^{2}+\frac{p^{2}}{3}\right]=73 K_{0} \mu^{2}
$$

$$
\vec{H}_{\mu_{G}}=-\frac{d \vec{k}_{G}}{d t}=-1808 \vec{\mu}[\mathrm{Nm}]
$$

Il peso s searica eguoemente soi support: A e B.

Propric per questo motivo, He sieme uela rotazioue, wei support uascomo le reazioin R_{A} e R_{B}
pes o - SOLLEATAZIONI SIATICHE mourento \leftarrow SOLLECTIAZIONI DNAMICHE ruerzia

$$
\begin{aligned}
& R_{V}=\frac{M_{\text {inG }}}{e}=3014 \mathrm{~N} \\
& \text { EQULIBRIO VERTICALE: } \rightarrow+\rightarrow A:-R_{V}+\frac{N G Q}{L}=R_{A}=-1662 \mathrm{~N} \\
& B=R_{y}+\frac{a g}{2}-R_{B}=4.366 N \\
& l=A B
\end{aligned}
$$

ISo applico una ferea di trasioue

18 berrena reagisce con vana farza in madeb vecale a R, stesse reike d'azione una verse epposto

La verticcuen per a mam pasia nios per G.
$T=$ couponente tayeuziale oh attrito a adereuta $(V=0)$ e' una forsa reativa opposta ceso porsingiee diceriane al mato.

AIRITO \rightarrow opposito alle direziome do uau é eineare
$A=$ reacione dee terremo eegata ad N e a T
N e \dagger sano qui legate dolla eegge dell'atrito di adereuza. ($v * s$)
Ts faN $\quad f_{a}=$ coeff. ai attrito di adereuza.
\rightarrow dipeude dalea uatura dei carri a coutatto e datle stato deles super ficic.

$$
\phi_{A}=\hat{N ; R}=\text { ANGOLO DI AAERENZA }
$$

$$
\left.\begin{array}{l}
\ln A B C \rightarrow T_{i} t_{g} \phi_{A} N \\
\text { e poiche } T_{\text {IuA }} f_{a} N
\end{array}\right\} \rightarrow t_{E} \phi_{A}=f_{a} \quad \begin{aligned}
& \phi_{A}=\operatorname{arcte} f_{A}
\end{aligned}
$$

aunentando T si rofecivere Teim

$$
\uparrow S \Rightarrow \uparrow T, \quad \uparrow T \Rightarrow T_{0}
$$

${ }_{T}^{\text {avinumum }}$

- $V \neq 0$ (SIRISCARENTO) $\rightarrow \quad v \neq \cos t$

Si deve bevere couto dolla FORZA D'inERziA.
$T=P N \quad I=\operatorname{ba} \phi \rightarrow$ vafeane aleo stesso medo.
$\delta^{\prime} \Rightarrow$ azove wotrice f da 1) \rightarrow AHONE RESUSTENTE

- L'azione unotrice atraverso e'attríto praduce sempee dissipazione dI enerola satte forma di CALORE.
ruota condoita o trascinata

b) $2 G d L$ se $\dot{x}=w(\ddot{x} e \dot{w})$ maipende uti.
no pugno rotolamento
ssRisciamient?

$$
\text { Iputes: }\left\{\begin{array}{l}
A \equiv C_{v} \rightarrow \text { puro rotoeameuto } \\
\dot{x}=r \omega ; \ddot{x}=r e \dot{\omega} \text { iu } G \\
\frac{T \leq \rho_{a} N}{\frac{T}{\square}} \rightarrow \text { coNDIzione di ADERENZA }
\end{array}\right.
$$

Si deve verificare e vedere se è valida quesia releziome

$$
T>f a N \Rightarrow \ddot{x} \neq \operatorname{se} \dot{w}, \quad \dot{x} \neq \operatorname{se} w
$$

\rightarrow NO PURO ROİOLARENSO
L AITRITO DI SIRISCAMENTO $\rightarrow 2 G d L$

$$
\left.\frac{1}{T=f N} \quad 4\right)^{*}
$$

Quindi en 4° equaroue dipende dae sistema in à è troviouso.

1) VELOCITA :

$$
\begin{array}{rlrl}
\overrightarrow{V_{G}}=\vec{V}_{C_{V}} & \vec{k} \wedge\left(\overrightarrow{G-C_{V}}\right) & \left|V_{G}\right| & \left.=w\left(\overrightarrow{G C_{V}}\right)=w\right) \\
\vec{V}_{B}=\vec{V}_{V_{V}}+w \vec{K} \wedge\left(\overrightarrow{B-C_{V}}\right) & \left|V_{B}\right| & =w\left(\overrightarrow{B C_{V}}\right)=w\left(2 G C_{V}\right)=w(2 \mu) \\
& =2 V_{G}
\end{array}
$$

2) ACCELLERAZION1:

$$
\begin{aligned}
\overrightarrow{a_{\sigma}}= & \vec{a}_{c}+\dot{w} \wedge\left(\overrightarrow{G-c_{v}}\right)-w^{2}\left(G c_{v}\right) \\
& \overrightarrow{a_{c v}}=w^{2}\left(\overrightarrow{G-c_{v}}\right)
\end{aligned}
$$

1)
2)
3)

- \vec{Q}^{\prime} e cenzowe rincoecne suea cermien e segue e'aitrito ae perma - L'aitito ar pecmo man spesta do d ue peso ue imerzia.

ESEMP:O

SISTEMA BIELLA MANOVELLA (cou attrito in Ae in 3)

$$
\begin{aligned}
& \text { corpo 1: } \\
& \overrightarrow{R_{A}} \| \overrightarrow{R_{0}} \\
& \vec{R}_{n} \text { el opposta a } C_{N}
\end{aligned}
$$

Scanned by CamScanner

Comoscendo le dísezade di RA cantice ie diggramule di OA:

$$
\begin{aligned}
& \overbrace{2}^{a_{4}} \\
& \text { 0) } C_{M}-R_{A} a=0
\end{aligned}
$$

$\overline{B D: ~}$

$$
\begin{aligned}
& \overrightarrow{R_{3}} / / \overrightarrow{R_{p}} \\
& \left|\vec{P}_{B}\right| /\left|\vec{B}_{p}\right| \\
& B_{0}^{j} c_{\beta}-R_{B} b=0
\end{aligned}
$$

ESERCIZI ATRTO
slitta su plano inclinato

$$
\begin{array}{ll}
& \operatorname{tg} \alpha=\frac{30}{100} \rightarrow \alpha=16,690 \\
\mu=\operatorname{seo} K_{e} & A \\
\alpha=30 \% & K_{\text {Hin }} ? \\
1=0,2 & \beta ?
\end{array}
$$

$$
f=0,2
$$

1)
2)

$$
\begin{align*}
& K_{\text {MTN }} \Rightarrow G(\beta)_{\text {MAX }} \\
& \frac{d G(\beta)}{d \beta}=-\sin \beta+f \cos \beta=0 \\
& \Rightarrow \operatorname{te} \beta=f=\operatorname{ta} \phi \Rightarrow \beta=\phi=\operatorname{arcte} f=11,31^{\circ} \\
& \frac{d^{2} G(\beta)}{d \beta^{2}}<0 \quad \beta=0 / 90^{\circ}
\end{align*}
$$

Usaudo elog. 4) si trava e volore uniuinuo di R :

$$
\operatorname{Kamax}_{\arg }(\beta)=2,3 \mathrm{KN}
$$

$f_{i}=$ racie di imetria dee ruete

$$
\begin{aligned}
& {\left[I_{6}=\mu p_{i}^{2}=4 k_{c} \mathrm{mu}^{2} \quad \rightarrow 2\right. \text { 有mule che portans acte stesso rissetato }} \\
& I_{6}=\frac{\mu r^{2}}{2} \\
& \text { Dipenda dai dati che ho, ea decisiane al } \\
& \text { quale formula ssare. }
\end{aligned}
$$

$V=\cos t \longrightarrow$ no umerile．
ω in senso oracio $\rightarrow R$ rueso preme di piö so 3 ，mentre tende a staccers

－Equaziome di equieibrio：
$\overrightarrow{P_{t}}+\vec{R}_{A}+\vec{R}_{B}=0$
$\sum_{i=1}^{m} \vec{E}_{\text {est }}=0$

Spicqa*isue promula calces Kcal/a:

$$
W=\frac{\Phi}{S}=\left[\frac{c a l}{4,186}\right] \frac{1}{\delta}=\left[\frac{c a l}{4,186}\right] \cdot\left[\frac{3600}{h}\right]=\left[\frac{c u l}{9,186}\right]\left[\frac{3600}{h}\right] \cdot \frac{1}{1000} \Rightarrow \frac{\mathrm{kcol}}{h}
$$

- Si suppare che man à sia el gosza motrice, la velocità quindi** deceelera e uasce cosi un'accelleraziave mettendo an gioco e'imerza:
$6)^{5+} I_{G} \dot{\omega}+\left(T_{A}+T_{B}\right) \frac{d}{2}=0$

$$
\dot{\omega}=-\frac{\left(T_{A}+T_{B}\right) d / 2}{I_{G}}=(\text { decel },<0)=-\ldots \frac{\mathrm{rod}}{\delta^{2}}
$$

Altro possibile dicagrammea di corpa eibero:

- Calcieo del tempo di arresto nella muora confieuratioue:

$$
\begin{array}{ll}
w(t)=w_{0}+\dot{w} t \\
d & \\
0=w_{0}+\dot{w} t & w_{0}=\frac{2 \pi h}{60} \\
t=-\frac{w_{0}}{\dot{w}}=6 \mathrm{~s}
\end{array}
$$

(∞

Quiudi pericaccolo con $\alpha=45^{\circ}$:

$$
\begin{aligned}
& T=f N \\
& \dot{g}=\dot{w}=3,0 s \mathrm{red} / \mathrm{s}^{2} \\
& \ddot{x}=\frac{\text { wesin } 2-T}{m}=5,89 \mathrm{~m} / \mathrm{s}^{2} \\
& T=f N=(0,15)(69367,17 \mathrm{~N})
\end{aligned}
$$

- Tempo trascorso per compiere uno spososments di 200 un?

$$
\begin{aligned}
& x(t)=x_{0}+\dot{x}_{0} t+\frac{1}{2} \ddot{x} t \\
& \underbrace{200}_{s^{*}} \mu=\frac{1}{2} \ddot{x} t^{2 *} \\
& t^{*}=\sqrt{\frac{25^{*}}{x}} \longrightarrow \rho^{10^{\circ}} \Rightarrow t=21,3 \mathrm{~s} \\
& g(t)=\frac{1}{2} \dot{\sigma} t^{2} \Rightarrow \delta_{10^{\circ}}, \sigma_{45^{\circ}} a t^{*}, \gamma, \sigma=10^{\circ} \Rightarrow \frac{\partial_{10^{\circ}}^{*}}{2 \pi}=63,68 \text { 8ri } \\
& \alpha=45^{\circ} \Rightarrow \frac{8_{45^{\circ}}^{*}}{2 \pi}=16,48 \text { giri. } \\
& \text { CARRELLO } \\
& 12 / 4 / 13
\end{aligned}
$$

$\psi \vec{\omega}$

$$
\begin{aligned}
& \mu_{1}=20 K_{z} \\
& \mu_{2}=5 K_{c} \\
& \overline{O A}=\mu=0,4 \mathrm{~m} \\
& w=4 \frac{\mathrm{red}}{\mathrm{~s}} \\
& v=0,6 \mathrm{~m} / \mathrm{s} \quad\left(g=0^{\circ}\right)
\end{aligned}
$$

$$
? r^{\prime} a \quad \alpha=60^{\circ}
$$

(i)

Scanned by CamScanner

MACCHINA IN PARTENZA

$$
C_{H_{\text {maxx }}} \text { ? } \dot{x}_{\text {max }} \text { ? } R_{A} \text { ? } R_{B} \text { ? }
$$

$$
I_{G}=f_{i}^{2} q=a_{4} \alpha_{Q} u^{2} \quad(r o t a)
$$

$$
\begin{aligned}
& M_{\text {tot }}=1360 \mathrm{Na} \\
& P=M_{\text {tor }} Q=13341,6 \mathrm{~N} \\
& \rho=2,3 \mathrm{~m} \\
& t=0,325 \mathrm{~m} \\
& X_{6}=1,30 \mathrm{~m} \\
& Z_{6}=0,72 \mathrm{~m} \\
& f=0,2 \quad f a=0, \mathrm{ss} \\
& \mu_{t}=9=10 \mathrm{~K} \\
& f_{1}=0,2 \mathrm{~m}
\end{aligned}
$$

Saun motriá soltanto es roote posterisci \rightarrow Co coppia uotrice sorà solo su gueste
1
Le ruote anteriorí somo semplicemente trascinate.

- Diopre umír dé corpo ripido delle cuote:

I valori peeudous in cousideraziome eutrambe ea roste auteriori - poskecueri.

Riporte ivalari trovati sue diagremma defe'anto. *t
Sule fizura compesta mom vempome ciportate ea copsia motrice e aftre craudezze.
\rightarrow di importanza sobp, momenh ds imereiA e ba reazum im at o Scanned by CamScanner

PROFILL FILETATJRA
偪

CONTATI ESTESI

Pressione uniforme
Ipotesi usura (If. REyE)
Ipotesi deef usURA: le volume di materiae asportato neel unità di tempo per attrito é proporziomale al eovoro fatto dolle forza á atrita wella stessa unita di teupo.
costante proportiomalifa'

$$
\delta d A=K\left[d T \cdot \frac{d s}{d t}\right] \rightarrow \delta d^{\prime} A=K\left[(f f d A) V_{\text {reee }}\right]
$$

$$
d T=f d N=f(\rho d A), \quad p=\text { pressione di contatto. }
$$

Corpo 1:

R ed R_{0} formamo une coppia uavale ed apposte a c : $C=R d \quad R=\frac{T}{\sin \phi}=\frac{N}{\cos \phi} \quad|R|=\left|R_{0}\right|$
$N x_{0}=\int_{a}^{a+b}(P d x) x=N=\int_{A} \rho d A \rightarrow N_{x_{0}}=\int_{A}(\rho d A) x=\int_{a}^{a+b}\left(\rho \cdot x_{d A}\right) x$

Si forme une coppie in mado spautarie $\rightarrow R$ inchimata oh ϕ.

1: mastro
3: leva
2 pattimo

Scepliamo di unu usare éipotes deef' usure, whe e^{+}ipotesi che NeT sians applicate iu E (asse orizzontale tambiro) e tougente al tomitano Due punto dh Stella (*) ricavo IU iRIANGOLO DELLE TORZE:

$\vec{F}+\vec{R}_{A}+\vec{R}_{0}=0$
$0)_{+} \quad M-R d=0 \quad \rightarrow R$
A) $\quad F a-R b=0 \rightarrow F$
(5) (ACCOSTANETO RIGIDO)

$$
\frac{d A=}{\text { forze ou }}
$$

forze ol atrito the portirlia e disco.

$$
\begin{aligned}
& \delta \\
& \frac{1}{2}
\end{aligned}=\cos t
$$

Spessore di Mererace asportato.

Ipotess defe usura:

costante istante per istante.
$p=\frac{K^{\prime}}{K} \rightarrow$ incelode tutte ce coitanti

$$
\begin{aligned}
& \begin{array}{lr}
t_{i} \leq r e r_{e} & k^{\prime}=\frac{\delta}{k g w} \\
\rho_{\max } r_{i} &
\end{array} \\
& \rho_{\text {ran }} \text { a } k_{e} \\
& \left.F \equiv N=\int_{A} p d A=\int_{\mu_{i}}^{\mu_{e}} \int_{g_{1}}^{\phi_{2}}\left[\frac{k^{\prime}}{\mu^{\prime}}\right]\left[x^{\prime} d s d \mu\right]=K^{\prime}\left(\mu_{e}-\mu_{1}\right)\left(\phi_{2}-\phi_{1}\right)\right]
\end{aligned}
$$

FRIZIONI PIANE MULTIPLE

$$
C_{\text {fritione }}=m \rho F \frac{\left(e_{e}+x_{1}\right)}{2}
$$

$M=m^{0}$ superfiá di contatto

FRIZIONE CONICA

Fpotesi usura:

$$
p=\frac{\kappa}{e}
$$ (e quindi une potenze)

$$
\begin{gathered}
\left.C_{\text {fizone }}=\frac{f}{\sin \alpha} F \frac{\left(\mu e+\mu_{1}\right)}{2} \right\rvert\, \\
b \\
y^{\prime}>f \\
{ }^{\downarrow} \\
\text { perche } \sin \alpha \text { ae neax }
\end{gathered}
$$ mazerove rispetto aebe Erizione div prime

ESERCIZ1
SISTEMA VITE-MADREVITE

1-vite
2-miadrevite

$$
\begin{aligned}
& M=100 K_{7} \\
& d=30 \mathrm{um} \\
& \alpha=3 \\
& f=0,1 \\
& \phi=5,7^{\circ}
\end{aligned}
$$

$? c \quad \quad \quad \dot{V} \quad C^{\prime}=s N_{m}>C$

AUTOCARRO IN FREMATA

$$
\begin{aligned}
& \mu=3^{\prime} 600 \kappa_{q} \\
& \mu_{c}=400 k_{8} \\
& f=925 \\
& d=0,8 \mathrm{~m} \\
& D=60 \mathrm{cmi}
\end{aligned}
$$

$$
\begin{aligned}
& \ddot{\mathrm{X}}=-3 \mathrm{~m} / \mathrm{s}^{2} \text { (cost) } \\
& V_{0}=50 \mathrm{Km} / \mathrm{h} \\
& =13,88 \mathrm{~m} / \mathrm{s} \\
& ? t^{*}, s^{*} \\
& \text { ? fa min? } \\
& \text { ? } \bar{F}
\end{aligned}
$$

- freni a tamburo ad acositamento rigido a ceppi imterm
- No Iptesi usura

$$
\begin{aligned}
& V(t)=V_{0}+\ddot{x} t \quad \longrightarrow \quad 0=V_{0}+\ddot{x} t^{*} \rightarrow \text { tempo di frencte } \\
& \int_{0}^{x(t)=x_{0}+v_{0} t+\frac{1}{2} \ddot{x} t^{2}} \quad \frac{1}{v} \quad t^{*}=-\frac{v_{0}}{4}=4,629 \mathrm{~s} \\
& x\left(t^{*}\right)=S^{*}=V_{0} t^{*}+\frac{1}{2} \ddot{x} t^{* 2} \rightarrow S^{*}=32,15 \mathrm{~m}
\end{aligned}
$$

Diegrammara corpo eibero della cassa:
 Diogramuli corpo elbeco ceppo:

$$
\begin{array}{ll}
M_{f}=2400 N_{m}=\left(T_{S}+T_{D}\right) r \\
K)^{+} F(2 a)-N_{S} a+T_{S} r=0 & T_{S}=f N_{S} \\
k I^{+}-F(2 a)+T_{D} r+N_{D} a=0 & T_{D}=f N_{D} \\
T_{S}=F \cdot \frac{2 a f}{a-k f} \quad D=M_{f} \cdot \frac{a^{2}-\mu^{2} f^{2}}{4 a^{2} f r} \\
T_{D}=F \cdot \frac{2 a f}{k f+a}
\end{array}
$$

FRENO A CEPPI A TAMBURD Forza di serrazeio dei fremi.

$$
\begin{aligned}
& P=98,1 \mathrm{~N} \\
& f=0,4 \\
& f_{a}=0,6 \\
& a=15 \mathrm{~cm} \\
& b=30 \mathrm{~cm} \\
& d=22 \mathrm{~cm} \\
& h=5 \mathrm{~cm} \\
& w=00 \mathrm{~s} \mathrm{~m}
\end{aligned}
$$

$C_{H} ? \quad R_{0}, R_{A}, R_{B} ? \quad \quad$ EEPOO \rightarrow on trasame re peso

$$
C_{R}=R_{E} \rho_{t}=13,71 \quad N_{m}
$$

Per trovare R_{A} :

$$
\begin{array}{lll}
+\uparrow & R_{B} \cos \varepsilon-R_{A y}-P=0 \\
\rightarrow & R_{B} \operatorname{sim} \varepsilon-R_{A x}=0
\end{array} \quad \rightarrow \quad R_{A}=\sqrt{R_{A x}^{2}+R_{A y}^{2}}=240,88 \mathrm{~N}
$$

FRENO A DISCO AD ACCOSTAMENTO RIGIDO

$$
\begin{aligned}
& \text { Ipotesi deee'usura: }
\end{aligned}
$$

$$
\begin{aligned}
& p=\frac{N^{\prime}}{\kappa} \\
& 4 \\
& H_{f_{r}}=f \cdot F \frac{\left(r_{e}+r_{1}\right)}{2}=-I \dot{w} \\
& \text { I = momento di imestia dee } \\
& d_{i s c o}=g K{ }^{K} \mu^{2}=M \rho_{j}{ }^{2} \\
& \omega_{0}=\frac{2 \pi m}{60}=157,07 \frac{\mathrm{rod}}{\mathrm{~s}} \\
& t^{*}=10 \mathrm{~s} \text { tempo greuste. } \\
& \dot{\omega}=-\frac{\omega_{0}}{t^{*}}=-15,7 \frac{\mathrm{rod}}{s^{2}} \\
& d a: \omega_{0}^{c}(t)=\omega_{0}+\dot{\omega} t^{*} \\
& H_{f e}=141,37 \mathrm{~N} \text { M } \\
& \rightarrow F=2^{\prime} 692,79 \mathrm{~N}
\end{aligned}
$$

FRENO A NASTRO

1 - tamburs
2 - mastro \rightarrow ferms
3 - eeva

DIAGRAMML CORPO LIBERO:

