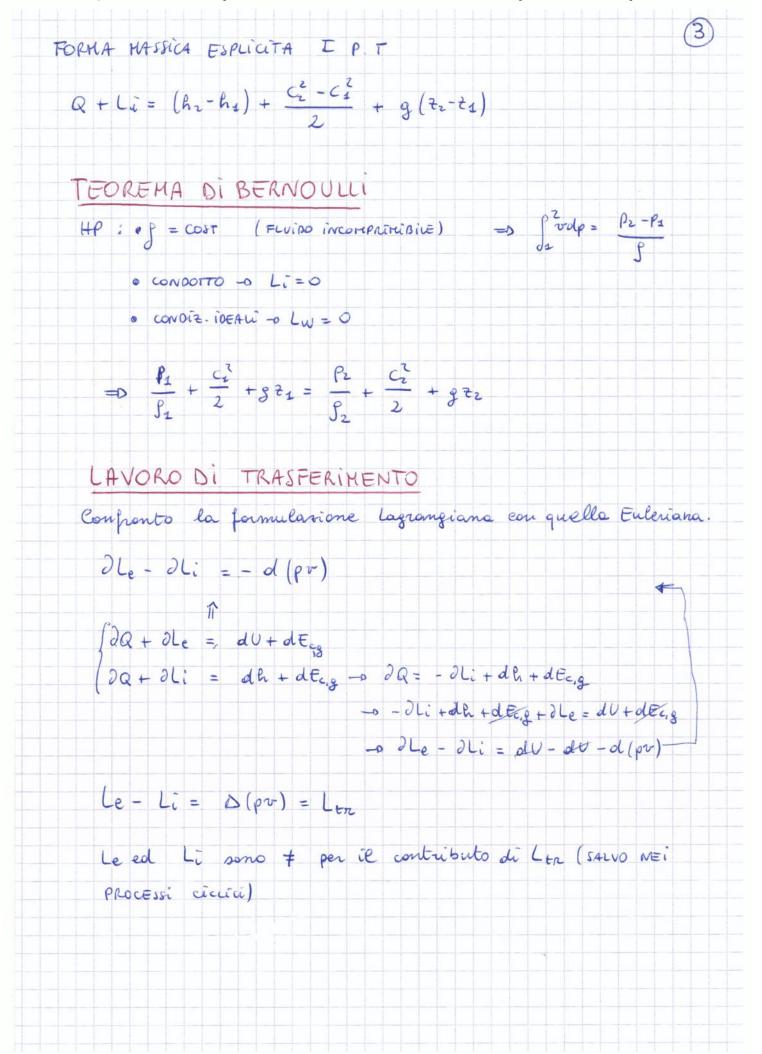


Appunti universitari
Tesi di laurea
Cartoleria e cancelleria
Stampa file e fotocopie
Print on demand
Rilegature

NUMERO: 2099A- ANNO: 2017


APPUNTI

STUDENTE: Marco Corino

MATERIA: Fondamenti di macchine - (Esercizi, temi d'esame, formulario) - Prof. Nuccio

Il presente lavoro nasce dall'impegno dell'autore ed è distribuito in accordo con il Centro Appunti. Tutti i diritti sono riservati. È vietata qualsiasi riproduzione, copia totale o parziale, dei contenuti inseriti nel presente volume, ivi inclusa la memorizzazione, rielaborazione, diffusione o distribuzione dei contenuti stessi mediante qualunque supporto magnetico o cartaceo, piattaforma tecnologica o rete telematica, senza previa autorizzazione scritta dell'autore.

FORMULARIO RICHIAMI DI TERMODINAMICA I PRINCIPIO DELLA TERMODINAMICA SISTEMI CHIUSI "FORTWLATIONE LAGRANGIANA" FORMA DIFFERENTIALE 20 + 2 Le = dE = dU + dEcigica SCENTRIFUGA CINETICA OGRAVITAZIONALE FORMA INTEGRALE (MAIUSCOLO CORSIVO) Q + LE = DU + DEcset FORMA MASSICA (MAIUSCOLO STAMPATEUD) Q + LE = DU + DE ., e, cf Sia Le - Lavoro massico scambiato con l'esterno Le >0 per mochine operatrice The = -pdv + dEc + dEg + DLw La Lavoro delle F viscose, Lavoro ENERGIA Ec = C C - VELOCITA ASSOLUTO to = 92 g - ACC. GRAVITAZIONALE

$\Rightarrow m = \frac{1}{1 - \frac{e_n(T_u/t_1)}{e_n(T_u/\rho_1)}}$ $= \frac{1}{1 - \frac{e_n(T_u/t_1)}{e_n(T_u/\rho_1)}}$ $= \frac{1}{1 - \frac{e_n(T_u/t_1)}{e_n(T_u/\rho_1)}}$ TRASFORMAZIONE POLITROPICA pvm = cost $T \rho^{\frac{1-m}{m}} = \cos r$ 2Q+ 2Lw= cdT TVM-1 = COST SpdV = Risolvo struttando pr = cost $m = \frac{cp - C}{cv - C}$ $L_0 = \frac{\rho_1 \, v_1^m}{1-m} \left(v_2^{1-m} - v_1^{1-m} \right)$ $C = C_V \frac{m - K}{m}$ $\int_{1}^{2} v \, d\rho = \frac{m}{m-1} \rho_{1} v_{1} \left[\left(\frac{\rho_{2}}{\rho_{1}} \right)^{\frac{m-1}{m}} - 1 \right]$ TRASFORMAZIONE CHIUSA Le = Li Le = - ppdv + Lw Q+Le=0 Li = prolp + Lw Q+Li=0 O Tobs = Q + Lw from = fpdv = frdp LAVORO - POTENZA Li SO MACCH. OPERATRICE LAVORD INTERNO L. CO MACCH. MOTRICE TO POTENZA INTERNA Pi = m Li m -0 PORTATA IN HASSA m = p.A. ~

4	z Li	
14		
49	> 1/c	
E	n MACCHINE TERRICHE Lis & Li-Lw perchi ho anche FER	VOKENÍ TH.
In	MACCHINE ISRAULICHE Lis = Li - LW (no FENOMENITH)	
Lf	VORO DI RECUPERO	
H6	ACCHINE TH MOTRICI	
L	t = Ltis - Lw + LREC	
U	na parte del lavoro dissipato dalle F di attrito viene recupero	ito
E	cco percive 10 > 1y	
ρ	ENDIM IDRAVICO	
1	y m 1 m-1	
	AVORO DI CONTRORECUPERO	
1	LACCHINE TH OPERATRICI	
	Lavoro che devo spendere in + a causa delle Fatte.	
	Li = Lw + Lis + Le-REC	
	4yc > 9c	

PORTATA m = pAc $\dot{M} = A \frac{Pz}{\sqrt{AT_1}} \sqrt{\frac{2k}{k-1}} \left[\left(\frac{P}{P_2} \right)^{\frac{2k}{2}} - \left(\frac{P}{P_1} \right)^{\frac{k+1}{k}} \right]$ PORTATA CRITICA mor = Ar V PISI . VK [2] K+1 UGELLO SEMPLICEMENTE CONVERGENTE VERIFICO SEMPRE SE CONO IN CONDIZIONI mA DI PROGETTO & IN CONDIZIONI FUORI PROGETTO (non adatate) mar CALCOLO PRESSIONE CRITICA: $\frac{P_{cr}}{P_1} = \left(\frac{2}{K+1}\right) \frac{K}{K-1}$ CALCOLO PORTATA • 1° CASO $\rho_2 \ge \rho_{cr}$ CONDIZ. 40 ATTATE • 2° CASO $\rho_2 \le \rho_{2cr}$ Exoni program $\dot{m} = A_r \frac{\rho_1}{\sqrt{\rho_1 v_2}} \sqrt{2} \frac{\kappa}{\kappa-1} \left[\frac{\rho_2}{\rho_1} \right]^{\frac{2}{3}\kappa} - \left(\frac{\rho_2}{\rho_1} \right]^{\frac{k+1}{\kappa}} \qquad \dot{m}_{cr} = A_r \frac{\rho_1}{\sqrt{\rho_1 v_2}} \sqrt{\kappa} \left(\frac{2}{\kappa+1} \right)^{\frac{k+1}{\kappa-1}}$

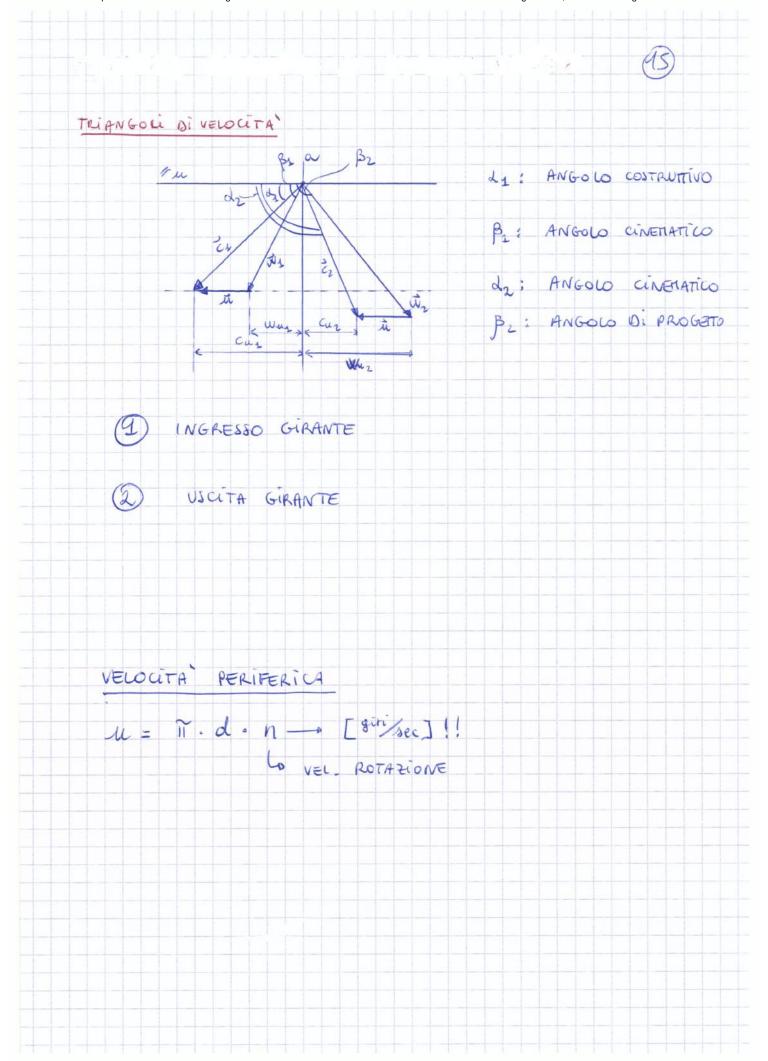
CALLOLO PRESSIONE LIMITE: 2 HOB::	99
1 le solut. fisicamente accettabili sarahno par e $A_r \sqrt{\kappa} \left(\frac{2}{\kappa+1}\right)^{\frac{K+1}{K-2}} = A_z \sqrt{\frac{2\kappa}{\kappa-1}} \left[\left(\frac{\beta_z}{\beta_z}\right)^{\frac{2}{3}} \frac{k}{\kappa} - \left(\frac{\beta_z}{\beta_z}\right)^{\frac{K+1}{K}} \right]$	
(va bene per troware peim me per trovare pad i	paco precisa)
$\frac{\left(\frac{r_{1}}{r_{2}}\right)^{2}}{\left(\frac{r_{1}}{r_{1}}\right)^{2}} + \left(\frac{r_{1}}{r_{2}}\right)^{2} = 1 \text{ple solutioni son}}{\left(\frac{r_{1}}{r_{1}}\right)^{2}} + \left(\frac{r_{1}}{r_{2}}\right)^{2} + \frac{r_{2}}{r_{2}} + \frac{r_{2}}{r_{2$	
$C = \sqrt{2 c_{p} \left(T_{1}-T\right)} = \sqrt{\frac{2 k}{k-1}} R T_{2} \left(1-\frac{T_{2}}{T_{2}}\right)$ $C = \sqrt{\frac{2 k}{k-1}} R T_{1} \left[1-\left(\frac{\rho}{\rho_{2}}\right)^{\frac{m-1}{m}}\right] \qquad \frac{T}{T_{1}} = \left(\frac{\rho}{\rho_{1}}\right)^{\frac{m-1}{m}}$	1
COEFFICIENTE DI PERDITA di ridurione della \vec{v} $ \begin{cases} $	

INTERPOLAZIONE

occhio alle unità di misura della Temperatura! su MouiER sono in °C!

se voglio trovare una densità (ad esempio):

$$\frac{S-SA}{T-TA} = \frac{SB-SA}{TB-TA} = D S = SA + \frac{SB-Sa}{TB-TA} (T-TA)$$


Dove: . 'g' è la mia incognita

- o'T' è la Temperatura data dal testo del problema compresa nell'intervallo TALTCTB
- · 'TA' e (TB' sono i 2 valori di Temperatura presenti
- 'SA' e 'SB' sono i 2 valori di deusità elle corrisson dono alle temperature TA e TB sulle tabelle.

ESEMPIO :

voglio trovare la deurità del vapore surviscaldato a 30 bar e alla T = 503° C. Alvado su tabelle e preudo la tabelle relativa a 30 bar; ② cerco 503° C, che non c'è; allora prendo i 2 valori + vicini a 503° C che sono, in questo caso, 500° C e 510° C; ③ leggo le relative g e g ; TA To

4 sostituisco i valori nella formula scritta sopra.

RENDIMENTO Leid _ Leid _ Leid Ciig Ciig CiigRENDIMENTO MASSIMO Ciig Ciig

- € GRADO DI PARZIALIZZAZIONE -0 tiene conto della parte non alimentata dagli ugelli
- · d DIAMETRO MEDIO
- · LI LUNGHERTA PALETTATURA

TURBINA SEMPLICE AD AZIONE ASSIALE

CASO REALE

Qui considero le pendite nel distributore e nella girante:

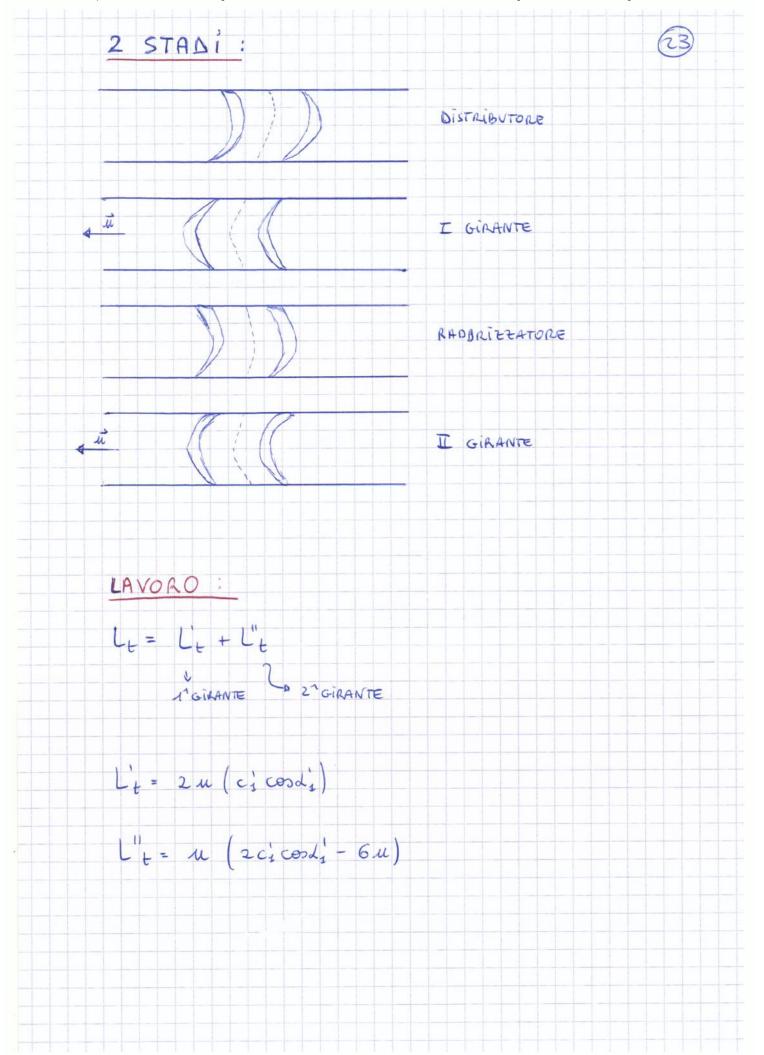
NEL DISTRIBUTORE:

$$f = \frac{c_1}{\epsilon_{1ip}} < 1$$

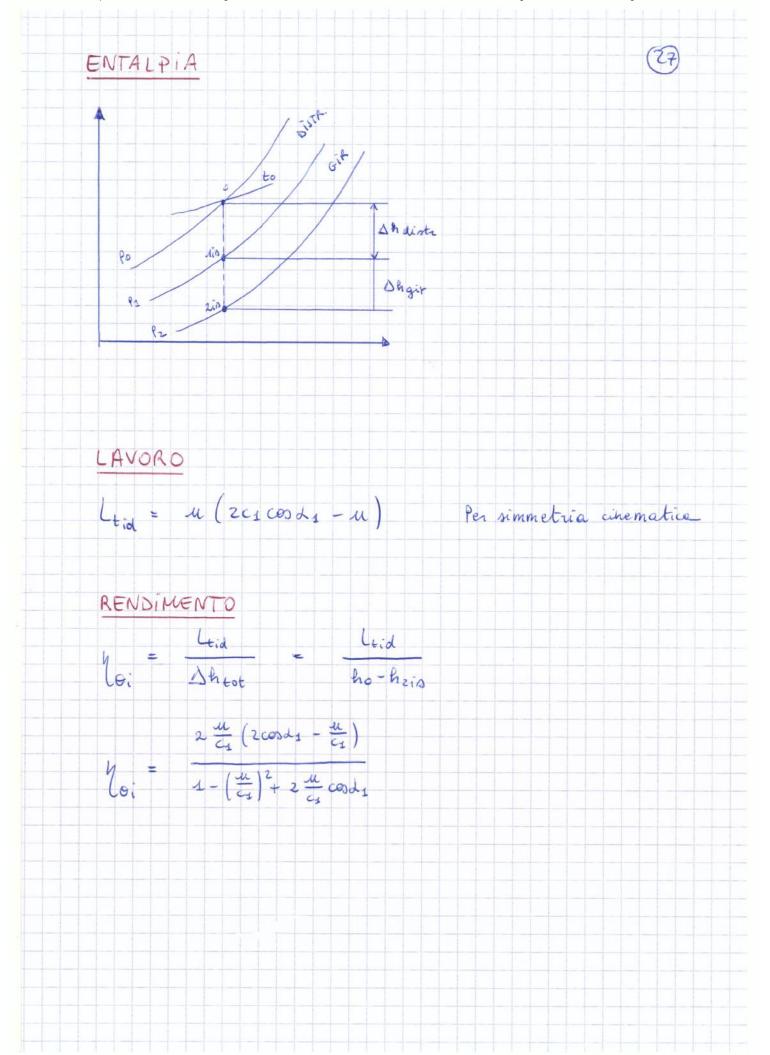
NELLA GIRANTE

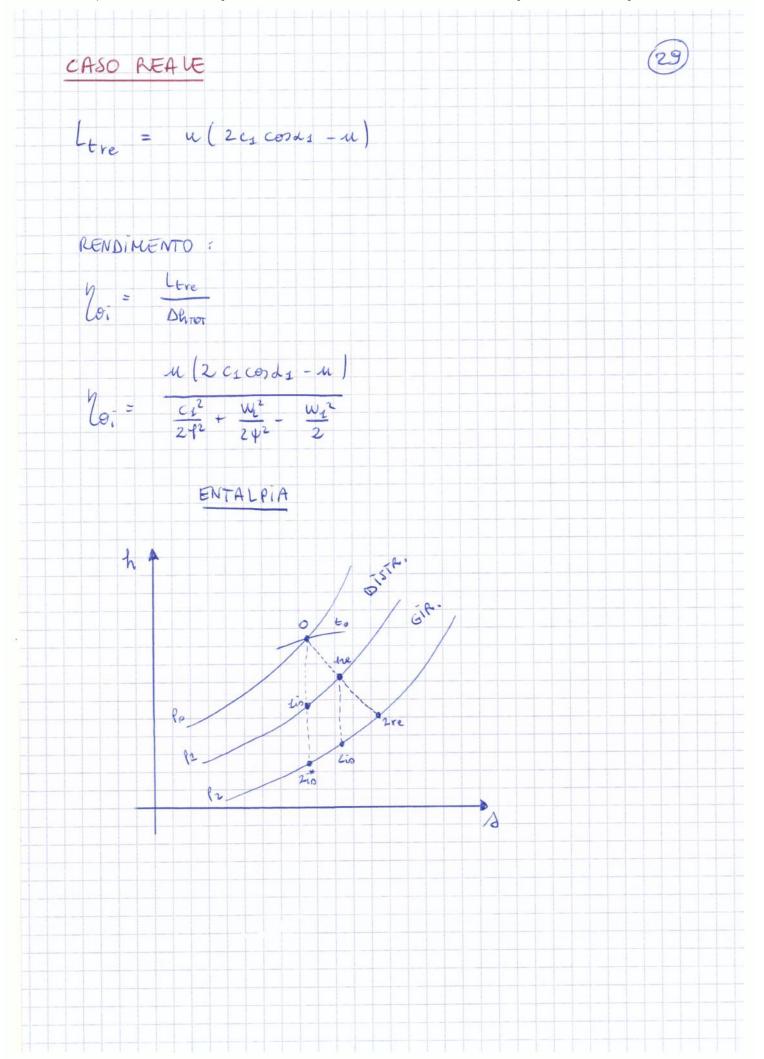
$$\psi = \frac{W_2}{W_1}$$

ENTALPIA


$$h_1 = h_0 - \frac{c_1^2}{2} - s$$

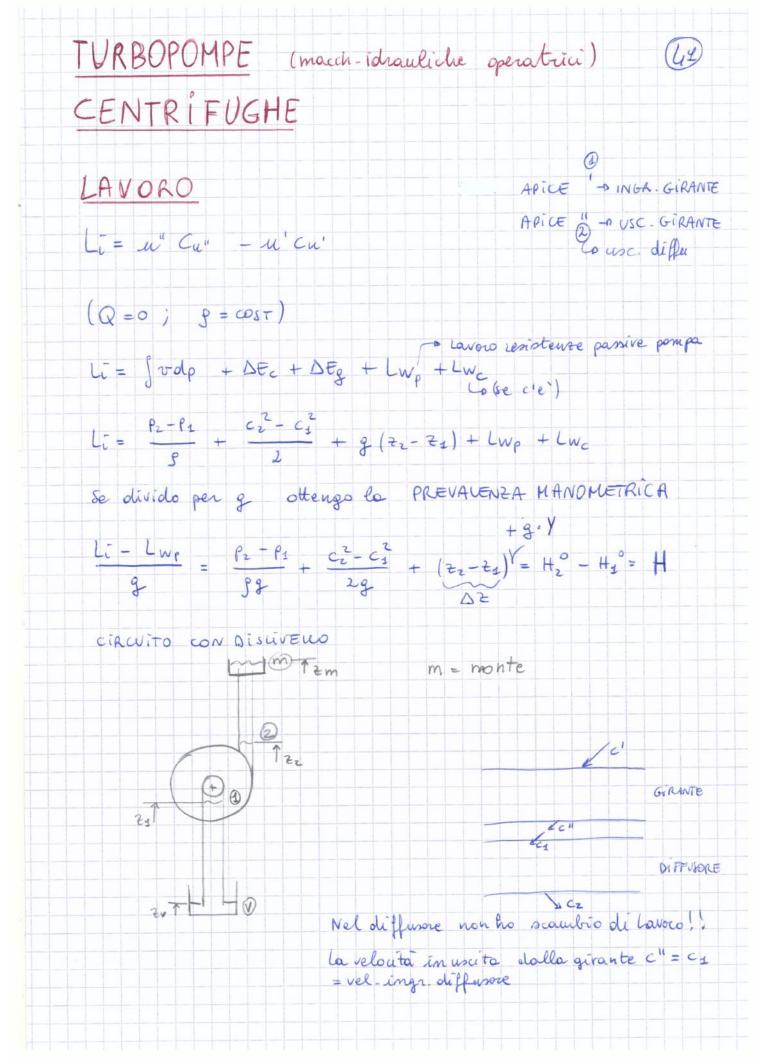
$$h_1 = h_0 - \frac{c_1^2}{2}$$
 -s mi permette di calcalarmi la portata; se ho p_1 o $t_1 = det p_1$
 $c_{1is} = \sqrt{2(h_0 - h_{1is})}$ -s $c_1 = f_{cis}$


TRIANGOLI DI VELOCITA

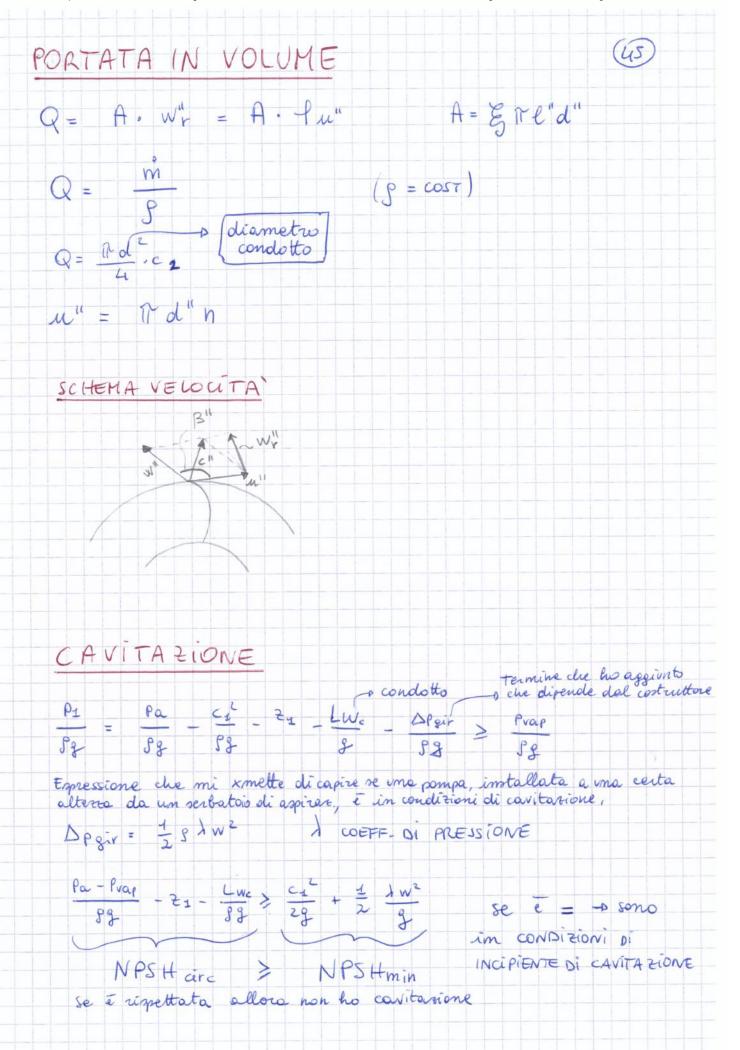

Car > Car

Se tengo	conto dell'ene	igia cinetica di oconico: (21)
lo:	$\frac{C_2^2}{2^{1/2}} = \frac{C_2^2}{2}$	Cz la determino dai △ di velocità.
SE TURB	INA A VAPORE	
Ho altre	e perdite (oltr	e a quelle di matura Fluidodinam Le 4)
· ATTRITO	su disco :	$P_{W_1} = K_1 u^3 g d^2$
		P DENSITA VAPORE
		• Ky COSTANTE EMPIRICA
		· II VELOCITA PERIFERICA
		a d DIAHLETRO MEDIO
o PER EFF	ETTO VENTILANTE:	Pwz = Kz E d ly u3p
		· Kz COST. EMPIRICA
		· E GRAPO DI PARZIALIZZAZ.
		· LI LUNGH . PALETTA
le turbi	ne a vapore ver	igono portializzate, quelle a gas no.
		bine a vapore perche pronte = Pralle
∆h ₃₋₄	Pwa + Pwa	

17 max = cos 2 1	25
HO hmax per the Cosdi Loi Perdite. Nel caso reale ho 17 perdite.	
CASO REAVE	
$h^{\max} = f^2(1+4) \frac{\cos^2 d_4}{2}$	


) se cono.	co 2 loti	e um	anageo	NON	COMPRESO	TNA
			ov region			10
Essi pro	ocedo cost:					
		1 . 1 . 1	(0)			
ad esen	npio comesco	a, c	2 3			
1) 05		F= (?				
1) orpplico	TEOR dei St	en i :		2		
<u>e</u>	= a sens	=D sen	8=	enp		
senB	sens			C		
		Sem B1				
=0 8:	= arcsen (a	2				
2) calco	lo per differ	eura it	2° ang	colo.		
3) con	T. di Carnot	trovo	poi i 3°	lato.		
4) Conosco	tulti e 3	i dati				
-					2 12 1	
-	lico formul	a inve	rsa Tea	o di 1	Cainot	
=0 Appl	lico formul a²+c²-b²	a inve	rsa Tec	odi 1	Cainot	
-	lico formul a²+c²-b²	a inve	rsa Tec	, di	Cainot	
=D Appl cond =	lico formul a² + c² - b² 2ac	a inve	rsa Tec	s di	Earnot	
=D Appl cond =	lico formul a² + c² - b² 2ac	a inve	rsa Tec	s di	Cainot	
=D Appl cond =	lico formul a²+c²-b²	a inve	rsa Tec	s di	Cainot	
=D Appl cond =	lico formul a² + c² - b² 2ac	a inve	rsa Tec	s di	Carnot	
=D Appl cond =	lico formul a² + c² - b² 2ac	a inve	rsa Tec	o di	Carnot	
=D Appl cond =	lico formul a² + c² - b² 2ac	a inve	rsa Tec	o di	Carnot	
=D Appl cond =	lico formul a² + c² - b² 2ac	a inve	rsa Tec	o di	Carnot	
=D Appl cond =	lico formul a² + c² - b² 2ac	a inve	rsa Tec	o di	Carnot	
=D Appl cond =	lico formul a² + c² - b² 2ac	a inve	rsa Tec	o di	Carnot	
=D Appl cond =	lico formul a² + c² - b² 2ac	a inve	rsa Tec	o di	Carnot	
=D Appl cond =	lico formul a² + c² - b² 2ac	a inve	zsa Tec	o di	Cainot	

TURBOMACCHINE OPERATRICI Q = 0 DEc = 0 (tra ingresso e uscita LAVORO: macchina) 1 - 11 TRASFORMAZIONE ISENTROPICA: Lius = K RT1 (Tuis -1) = cp (Tu-Ti) Lian = K-1 RT2 (BK-1) 1 INGRESSO GIRANTE VSCITA GIRANTE AMB. OF HANDATA CASO REALE Qe + Li = K RT1 (TU -1) (Tu>Tuin) Qe + Li = K RTI (Bm-1) (m > K) $\beta = \frac{\rho_n}{\rho_1}$ $L_{i} = \frac{m}{m-1} R_{12} \left(\frac{3m-1}{m} - 1 \right) + Lw$ Li= Lis + Lw + Lcrec GIRANTE LAVORO ISOTERMO DIFFUSORE Liver = RT1 ln (Pu) Lisson < Lis => Ecco perché si usa la compressione interrefrigerata Li = m Pi -o Pass = Pi


TURBOCOMPRESSORI CENTRIFUGHI Flusso è radiale da raggio minore a raggio maggiore Se palettature in uscita sono RADIALI => B= 1/2 D cote Bz= 0 CONDIZIONI INGRESSO/USUITA GIRANTE: SISTEMA OF RIF. INERTIALE Li= hr - h + - c2 - c1 - sistema oi Rif. Non interziate (solidale alla girante) Li = Ci - Ci - Vi + ui - ui; 2 2 2 2 GRADO DI REAZIONE $\chi = \frac{\Delta h gir}{\Delta h gir} \qquad \text{se} \quad \chi \uparrow = D \quad \uparrow \uparrow$ $\chi = 1 - \frac{c_z^2}{2L_1} = 1 - \frac{c_z^2}{2u_z cu_z} = 1 - \frac{1}{2u_z cu_z} = 1 - \frac{1}{2} \frac{c_{uz}}{u_z} = \frac{f^2}{2} \frac{u_z}{c_{uz}} = \chi$ $Sostituinco \quad \chi = 1 - \frac{f^2}{4} \frac{u_z}{\psi}$ LAVORO: Li = Uz Cuz - Uz Cuz = 0 (non ho compohente in questa dires.) Li = Lin Li= uz (uz + Wrz cotg Bz) WE COMPONENTE di PORTATA Lo smaltisce portato in uscita dalla girante.

COE	EFFICIENTI ADIMENSIONALI	33
1	COEFFICIENTE di PORTATA P = Wr2 Uz	
2	COEFFICIENTE di PRESSIONE 4 = Li 12 2	
(3)	COEFFICIENTE di PERDITA S = Lw PERDITE CONTINUE: Si = wi Sui connali del compressore PERDITE x infexco: Sz = wi S = Si + Sz COEFFICIENTE TERHOMETRICO -cp Ti -cp Ti -cp Ti -cp Ti	
	$u_2 = i d_2 h$ $= i - Lw = \frac{m}{m-1} RT_2 \left(\frac{m-1}{m} - 1 \right) + D \psi - S = \frac{7}{2} \frac{S}{2}$	K-1. (L)
	M-1	

TURBOCOMPRESSORE ASSIALE MULTISTADIO D di v Do angolo di deflessione nel diffusore 21 e B2 ANGOLI COSTRUTTÍVI Ca COMPONENTE di 1-B2 LAVORO $_{i} = u u + ca (cotg \beta_{2} - cotg L_{1})$ $\frac{L_1}{u_2^2} = \Psi = 2\left[1 + \left(\cot_g \beta_2 - \cot_g \lambda_4\right)\right]$

POTENZE		(43)
Pi = Li. (m+	$\Delta \dot{m}$) \dot{m}	PORTATA PERSA PER FUGHE PORTATA ALL' UTILIZZATORE
Pi = 1 gH. (m+	(m+	DM) PORTATA TOTALE ELABOR DAL FLUIDO.
$P_{outs} = \frac{P_i}{2m} =$	3 Q g H	1 KW = 1,36 CV
Pan = 9 Q.g. Ht		
RENDIMENTI	Li-Lwp	g H U _ 9
· IDRAULICO:	2y =	$\frac{gH}{Li} = \frac{\psi - \xi}{\psi}$
· volumentico:	$\frac{\dot{m}}{2v} = \frac{\dot{m}}{\dot{m} + \Delta \dot{m}} = \rho \sigma$	rtata persa per Fughe.
• MECCANICO:	y = Pi (m Pan	
o TOTALE DELLA P	(p Ly	2 v 2m
• DEME CONDO	77 E: 2 = H-Y	
· GLOBALE:	2g = 2p 2c	

CARATTERISTICA ESTERNA	47
$Hest = \Delta z + KQ^2$	
procedo per punti e traccio Hest qualitativamente	me grafico
l'intersezione con h sarà il punto di funzionomento	della macchi
na. Da quel punto leggo i valori di NPSH. ch	re sara il mio
NPSHmin, 2p, Qe H veoli esercizio 5.3.	

COEFFICIENTE DI RIEMPIMENTO

$$\lambda_{V} = \frac{m_{m}}{S_{1}V}$$
 per ciclo ideale

$$\lambda_{\text{vid}} = \frac{V_{\text{B}} - V_{\text{A}}}{V}$$

essendo
$$V_B = (1 + \mu) V$$

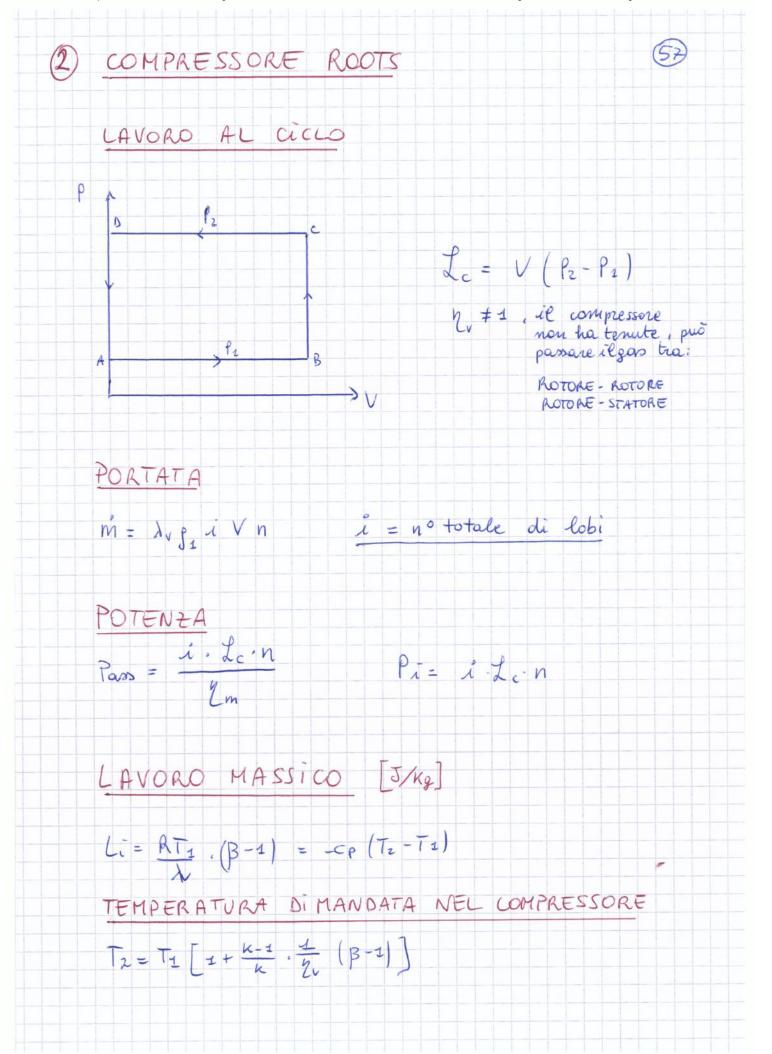
$$V_A = \mu \cdot V_B \cdot \mu$$

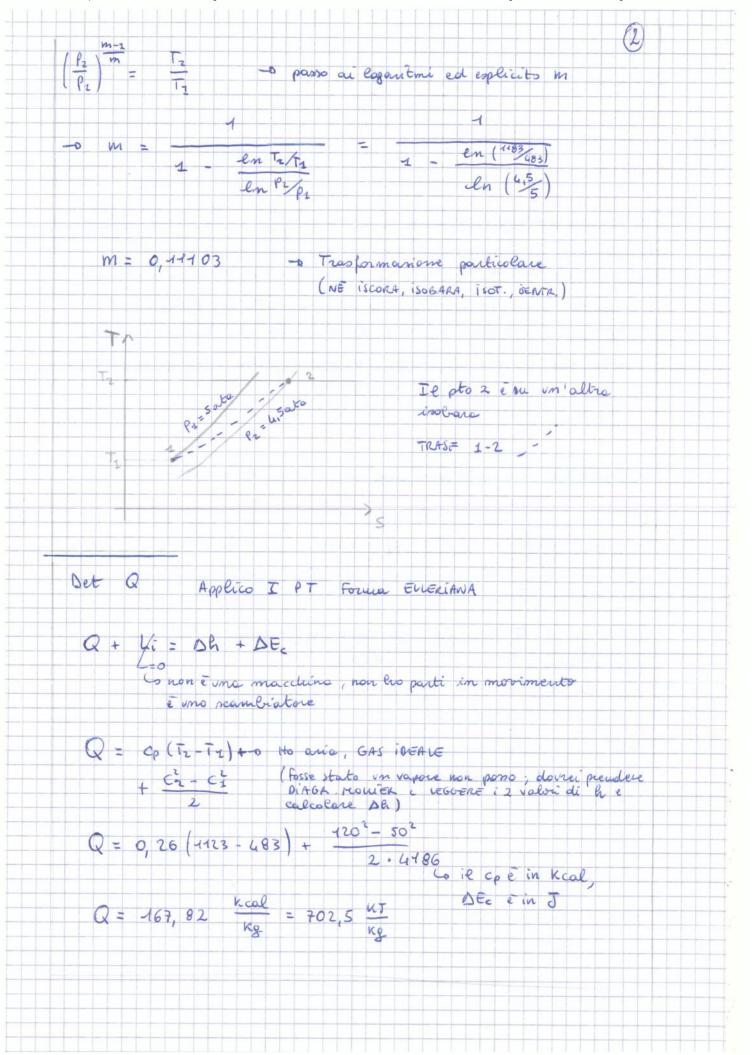
PORTATA:

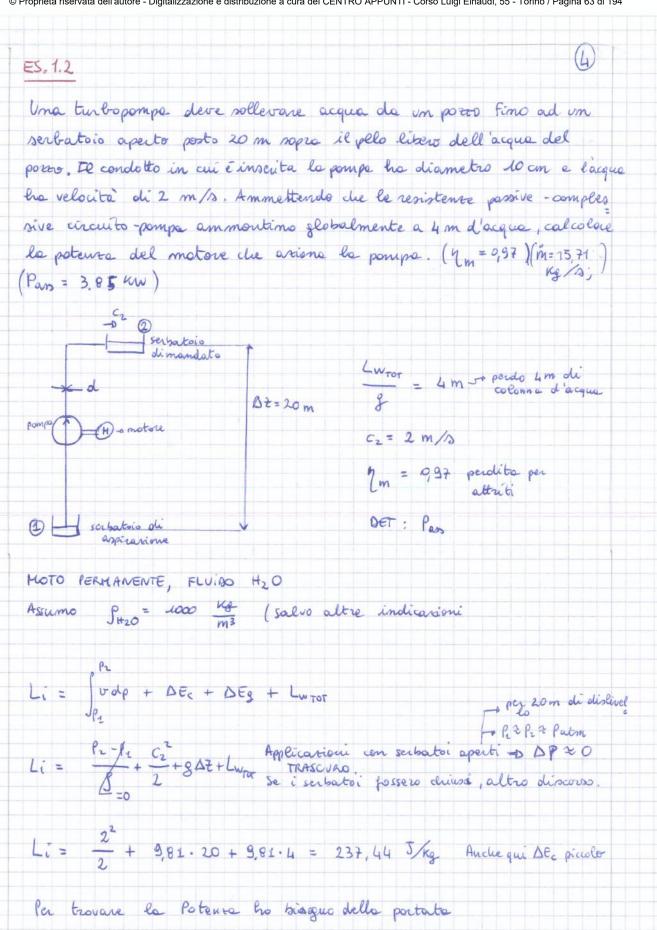
LAVORO AL CICLO [Jailo]

LAVORO AL ciclo Le = m -1 1 18 (B m -1) - m -1 P2 VA (B m -1) $V_{B} = V + V_{SH} = V \left(1 + \mu \right)$ dove P1 = (1-01) P1 VA = VDBINM P2'= (1+01)P2 m' exponente politropica di exans. VD = VSM = MV " compressione m - Pz amb-dimandata pv = cost Pr amb di aspirazione PMI AAPR. COMPR. MANONETRICO B= P2

PORTATA IN MASSA




RENDIMENTO VOLUMETRICO


PRESSIONE LIMITE

$$\beta_{lim} = \frac{\rho_{2} lim}{\rho_{1}} = g^{m} = \left(\frac{V_{B}}{V_{O}}\right)^{m}$$

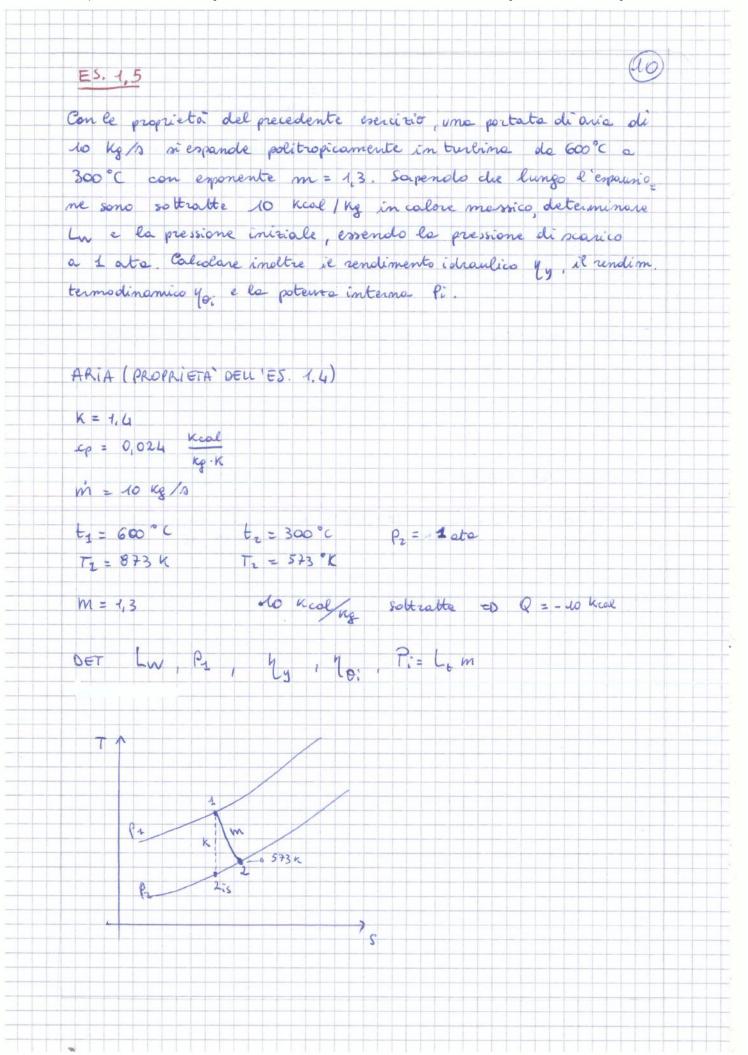
COMPRESSORI VOLUMETRICI ROTATIVI 2 A PALETTE λ_V ≈ 1 Vsm = 0 21 = 1 Bmax 6 QMAX = qualche m3/s CICLO DI LAVORO compressione per réfluxo (isocoRA) B = P2 RAPP. COMPR. P1 MANOM P2 V1 RAPP. COMPR. VOLUMETRICA $\int_{S} = \rho_{1} \sqrt{\frac{m}{m-1} (g^{m-1}) + \frac{\beta - g^{m}}{\rho}}$ $\mathcal{L}_{c} = \frac{m}{m-1} P_{z} V \left[g^{m-1} - 1 \right] + \frac{V}{\rho} \cdot P_{z} \left(\frac{P_{z}}{P_{z}} - \frac{P_{i}}{P_{z}} \right) \frac{P_{i}}{P_{z}} = \frac{V_{z}}{V_{z}} \frac{m}{m} = g^{m}$

6 ES. 1.3 Um ventilatore aspira aria (R* = 0,069 Keal) a 1 ate e 18°C e la mando a 1,02 ata alla velocità media di 50 m/s. Sapendo che le resistence passive ammontano al 15%, del lavoro massico congriuto valutare la potenza del motore, accettando l'ipotesi di "Fleviolo incompressibile", nota l'area della serione di mandate 240 cm² e noto y = 0,97. (pan= 4,98 KW) aria C120 Az = 240 cm2 P1 = 1ato Pz= 1,02 ate ty= 18°C T1 = 29 & K R = 0,063 Kcal Kg K c2 = 50 m/s g & cost = p p 2 p2 1m = 0,37 Te ventilatore é una macch. a fluido « a comprenore (come funcionam) ma l'objettivo è di T la velocità dell'aria (l'T dip è Gasso perché l'energia date all'aria non è sottoforme di"h" me "E" | "non aum le previone Lw = 15 % Li => Lw = 0,15 Li DET Pass = Pi = Li · m Li >0 => MACCHINA OPERATRICE Devo travare il Lavoro interno e la portata in marsa La devistà posso considerarla CostANTE per piccoli incrementi de pressione.

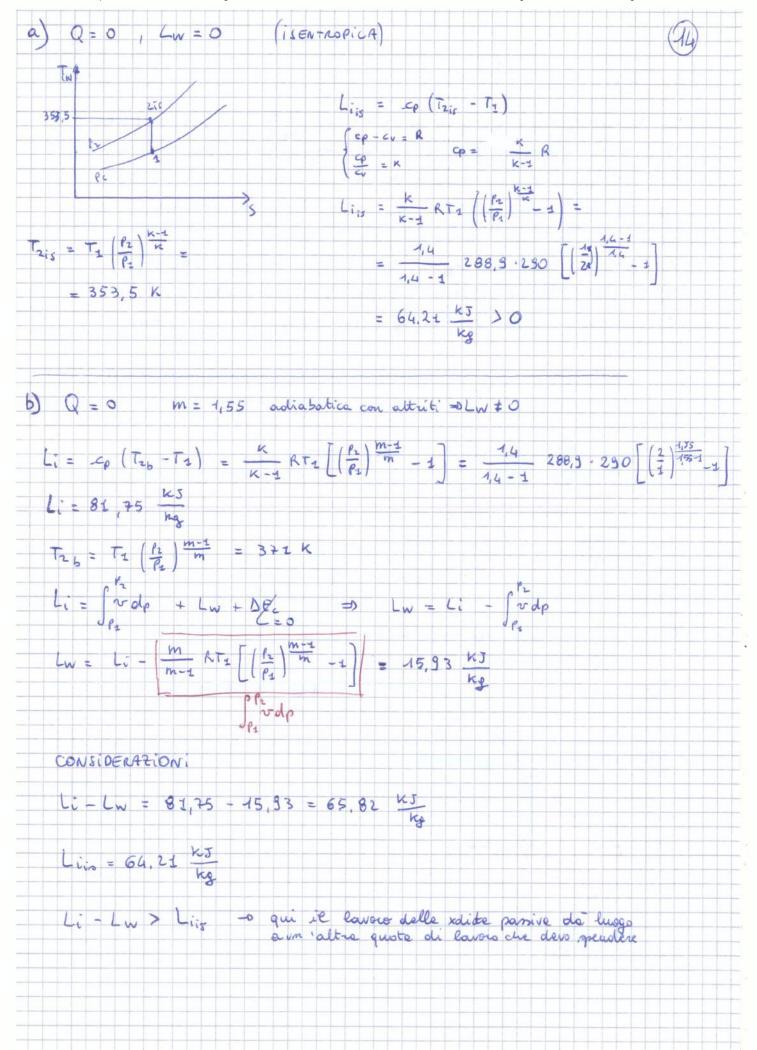
ES 1.4

Uma portata d'aria (cp = 9,24 Kcol , K = 14) è compressa politropicamente con m = 1,45, da 1 ata e 15°C fino a 450°C. Sapendo che Lw = 25 Kcal /kg, trovare Qe e la pressione di mandata.

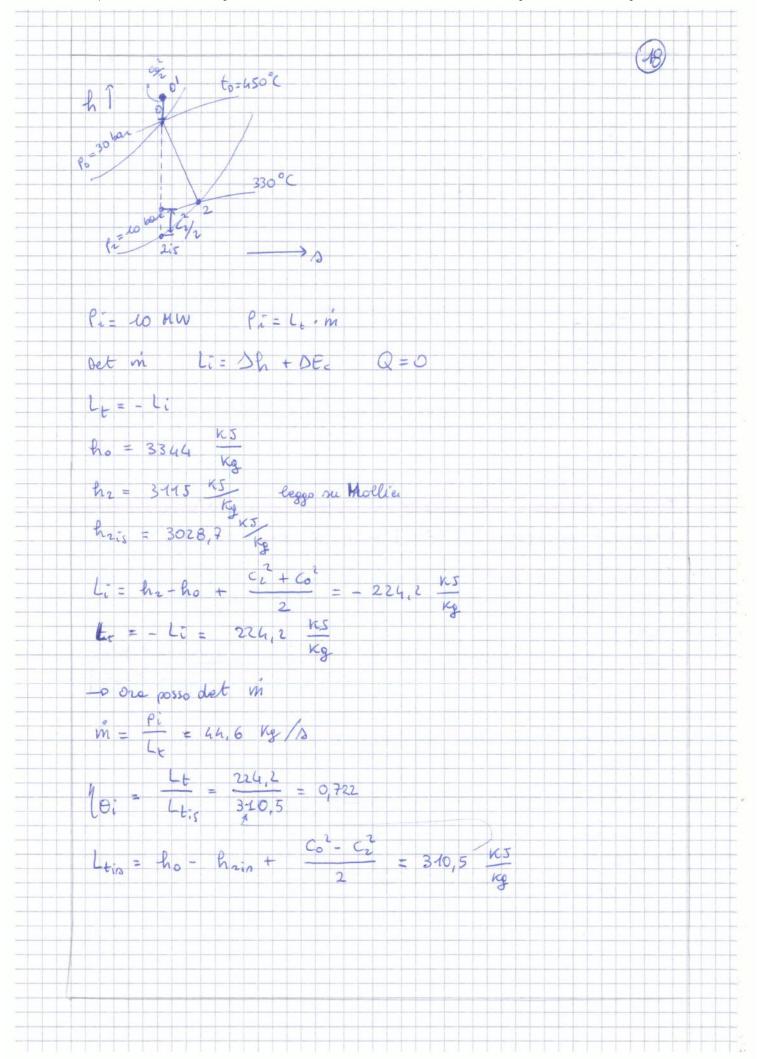
$$M = 4,45$$
 $K = \frac{69}{64} = 4,4$ $M > K$

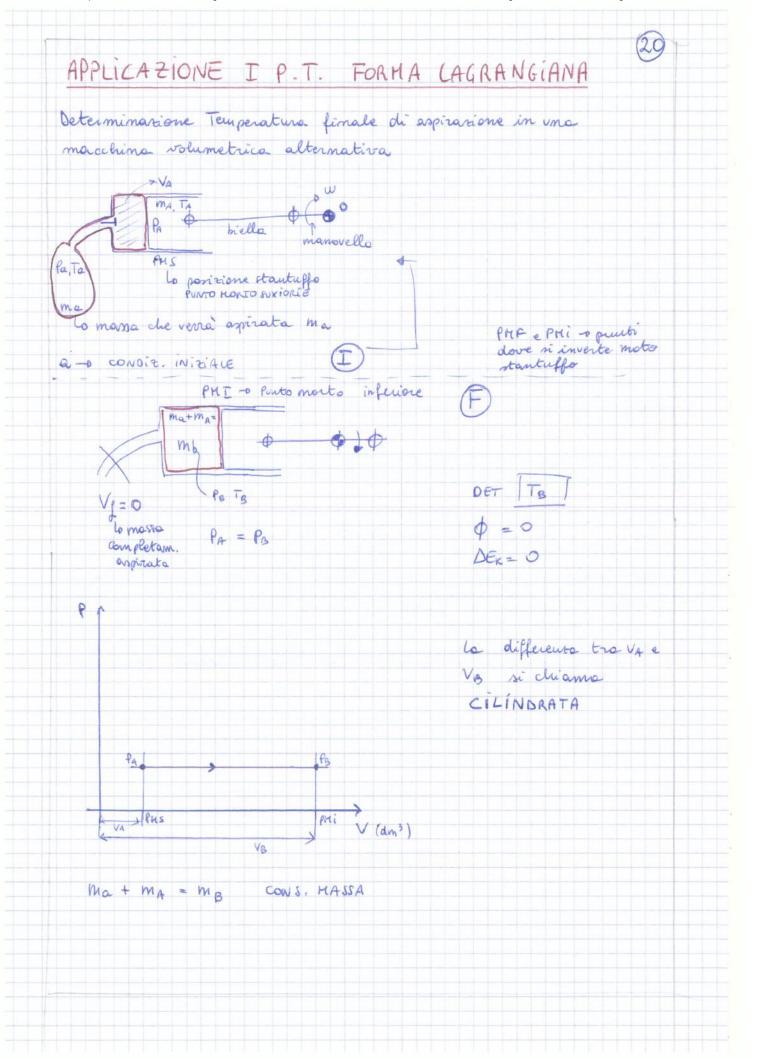

DET !

$$\rho_2 = \rho_1 \left(\frac{T_2}{T_1}\right) \frac{m}{m-1}$$
 - expressione de lege ρ e T per la politropira

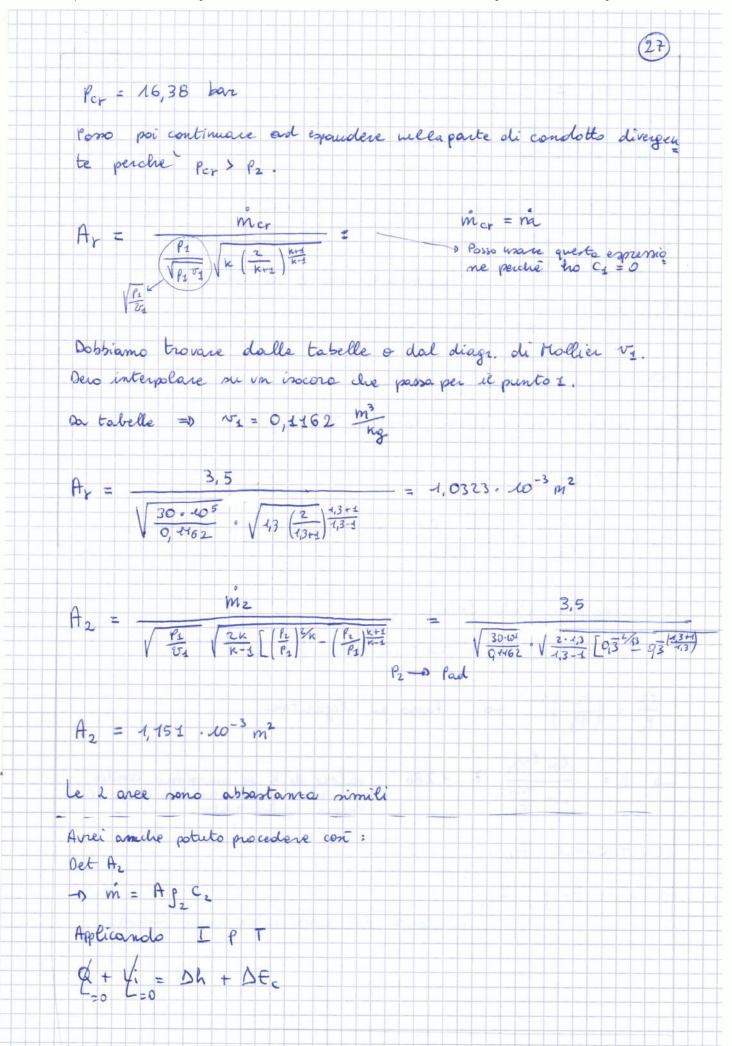

$$\rho_2 = 1 \left(\frac{723}{288} \right)^{\frac{745}{145-1}} = 19,39 \text{ ate } 19,02 \text{ bar}$$

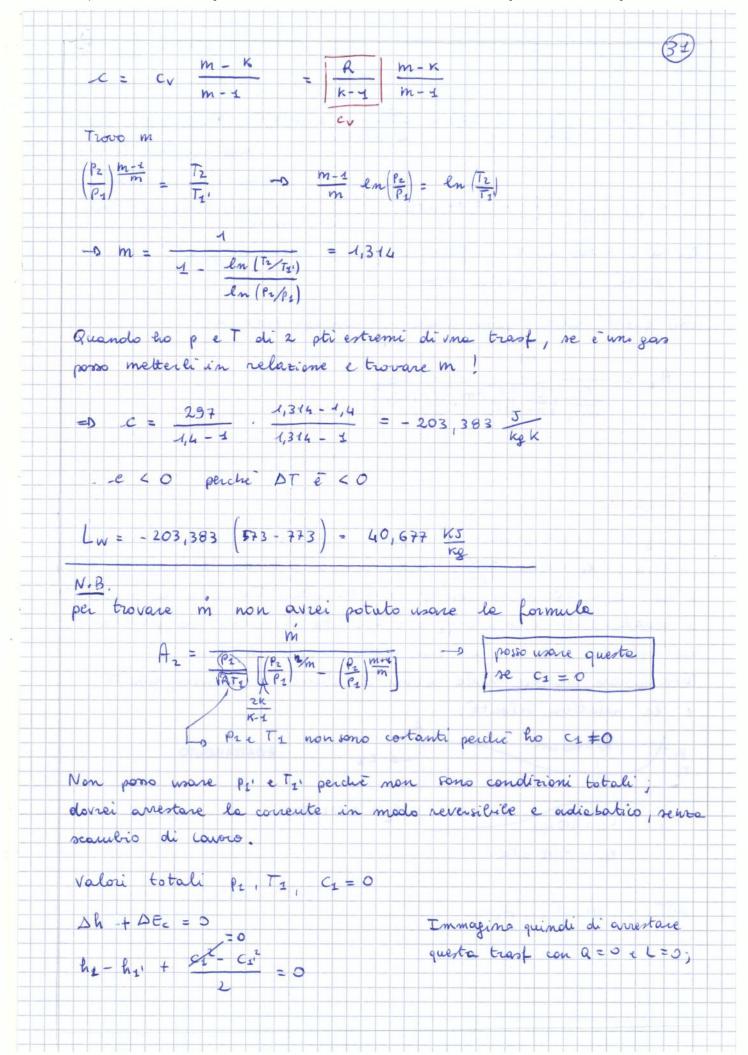
$$C = C_V = \frac{m - K}{m - 1}$$
 $C_V = \frac{c_P}{K} = \frac{0.024}{1.4} = 0.1714 \text{ Keal}$

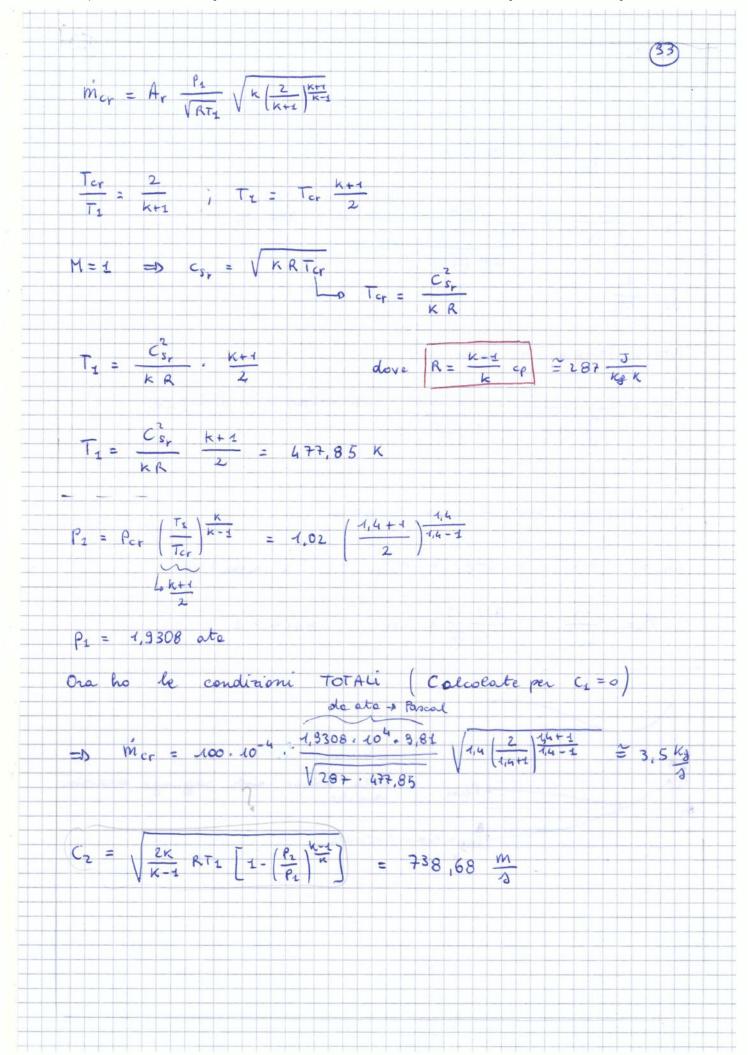

D compressione refrigerate

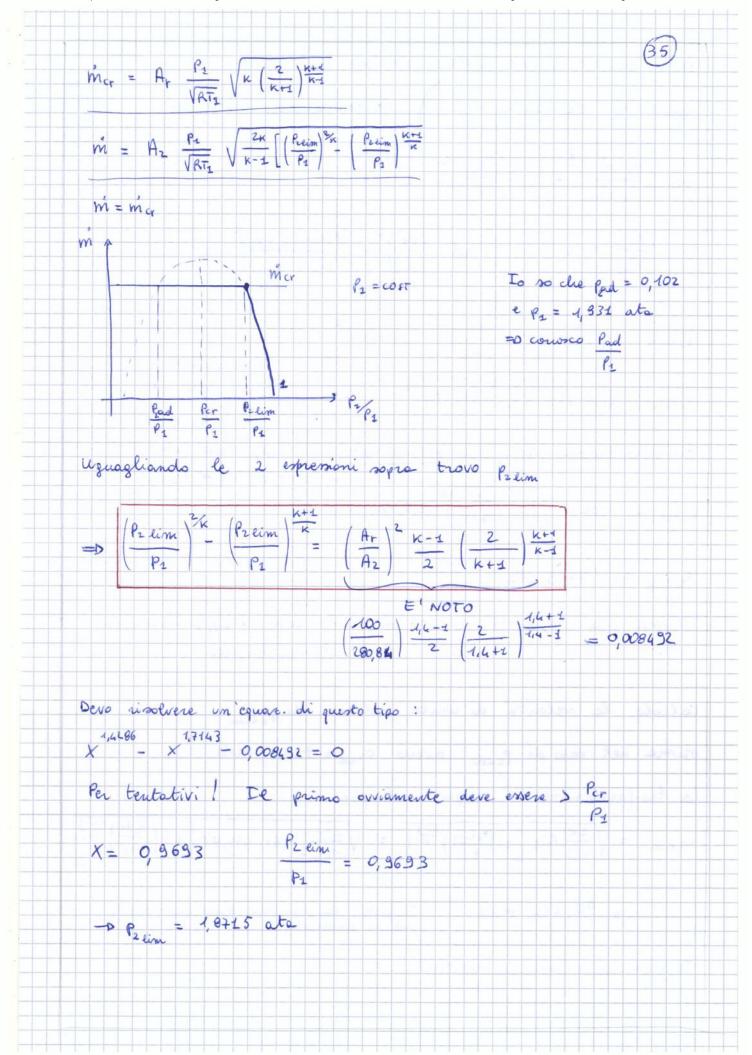


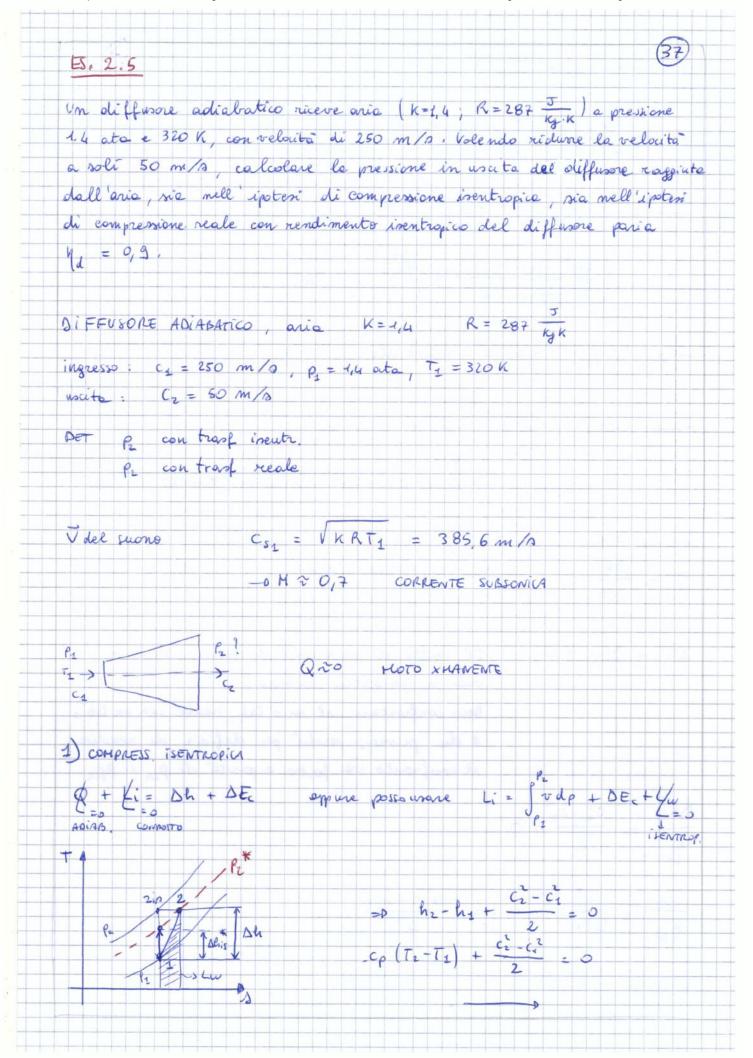
Le = - Li = 259,5 Ks Pi = m Lt = 10 . 259,5 = 2595,3 KW = 2,6 MW Si vede già una peculiarità delle turbamachine; ho una potenza molto elevata per un motore alternativo 7,6 MW 2 3500 cavalli di poteure Richiedono potente 1 ma ponono anche smaltire potente ELEVATE y = 62 + 27,14 Lo sommo al lavoro otteneto, quello perso a causa delle resistence parsive. N.B. Vme parte di Lw lo recupero = D Lis + Li + Lw Lis = $-c\rho \left(\overline{1}_{2is} - \overline{1}_{2}\right) = c\rho \overline{1}_{2} \left(\frac{\overline{1}_{2is}}{\overline{\Gamma}_{2}} - 1\right) = c\rho \overline{1}_{2} \left(\frac{\rho_{2}}{\rho_{2}}\right)^{\frac{1}{\kappa}} - 1$ (Q=0, Lw=0) (esp. K) Lics = 0, 24 - 873 [(1/6,2) 1/4 - 2] = - 85, 12 Kg Ltis = 85, 12 \$ 62 85.12 = 0,728 10: > 1 = D L + L w > L tis es una parte del lavors delle resistence parsive viene recuperato

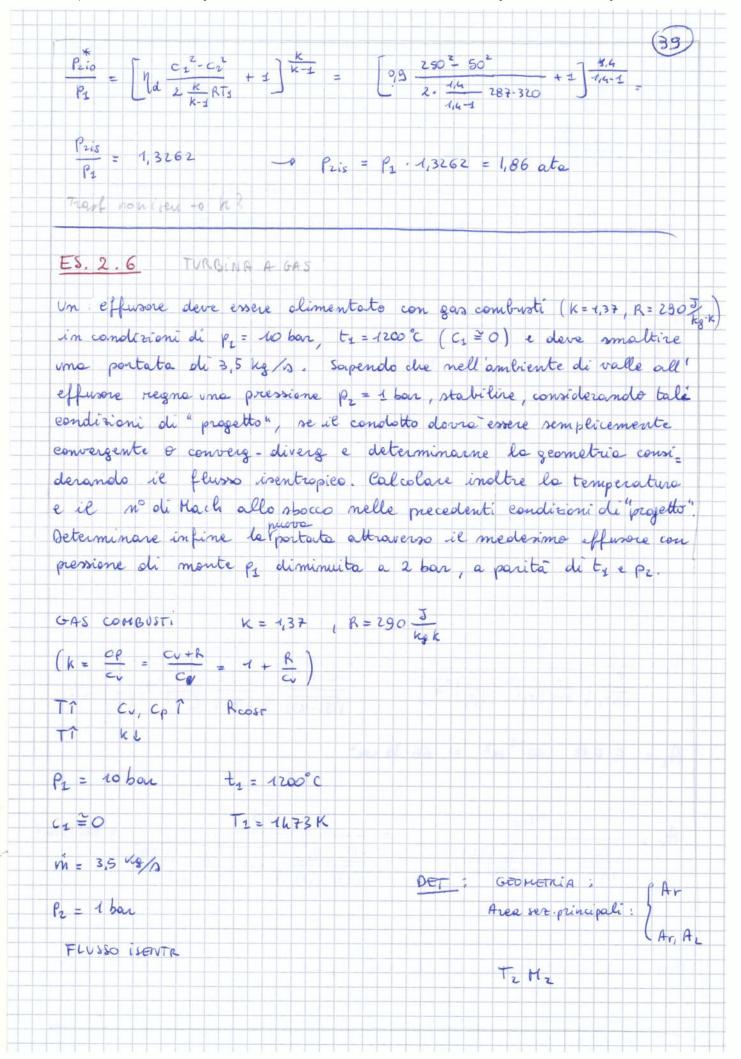





la necente a	elaniara uma	Lapado ato as to	2 a diabatica
		ware me per 17	ovare Tfinale adiabatica
che per trova	le le masso.		
			mosppo
APPLICATIONE	IPT torus	- CAGRANGIANA	quando MOTO
NON E' STAZI	ONARIO		
No esercisi	digsto timo	nell'esame _	


	25)
Cs = VKRTcr = V1.4.287.352,625 = 376,41 m/s	
$P_{cr} = P_1 \left(\frac{2}{k+1}\right)^{\frac{K}{K-1}} = 2,64 \text{ ata} > P_2$	e non e richierta nett
) DET m°, nuove condizioni:	
$\rho_1' = 40$ ata , $\Gamma_1' = 573$ K	
$\rho_2' = 4$ ata $\frac{\rho_2'}{\rho_2'} = 0,4$	
Sezione di uscita cutica:	
la muova portata	
$M_{cr} = A_r \frac{P_2}{\sqrt{RT_2'}} \sqrt{k \left(\frac{2}{N+2}\right) \frac{k+1}{N-2}}$	
Potevo anche calcolarmi Ar;	
Vguaglio le espressioni	
$\dot{M}_{cr} = \dot{M} \frac{\rho_{d}}{\rho_{1}} \sqrt{\frac{T_{3}}{T_{2}!}} = 3 \frac{10}{5} \sqrt{\frac{423}{573}} = 5.755 \text{ Mg/o}$	
	.9
	4 4
	37




TESTO ES, 2,1 In un ugello convergente - divergente del distributore di una turbina a vapore si fanno espandere 3,5 kg/s di vapore d'acqua a 30 bar e 500°C (cin = 0) fino a 10 bar. Ammettendo isentropica l'expansione, calcolare la serione finale del condotto e valutare l'area della serione ristretta (assumere per il vapore surriscaldato K = 4,3) ES 2.3 Ad un ugello adiabatico, ma con resistence passive, perviene acoto (n=1,4, H=28) a 7 ata e 500°C (c1 = 100 m/s). Sapendo che la sezione di stocco i pari a 2 cm² e che le condizioni di adattamen to si verificano per pressione di abocco di 2 ata e 300°C, trovare la portate, la velouta di stocco e il valore di Lu. (Lw # 0; Q = 0) Az = 2 cm 2 P2 = 2 ate COND. DI ADATTAM t2 = 300 °C Pi = 7 ata t, = 500°C DET: m, C2 C, = 100 m/0 K=, 44 PM = 28 8/mol FLUIDO : AZOTO

