

Appunti universitari
Tesi di laurea
Cartoleria e cancelleria
Stampa file e fotocopie
Print on demand
Rilegature

NUMERO: 1956A - ANNO: 2016

APPUNTI

STUDENTE: Navaretti Silvio

MATERIA: Radiating Electromagnetic System - prof. Matekovits

Il presente lavoro nasce dall'impegno dell'autore ed è distribuito in accordo con il Centro Appunti. Tutti i diritti sono riservati. È vietata qualsiasi riproduzione, copia totale o parziale, dei contenuti inseriti nel presente volume, ivi inclusa la memorizzazione, rielaborazione, diffusione o distribuzione dei contenuti stessi mediante qualunque supporto magnetico o cartaceo, piattaforma tecnologica o rete telematica, senza previa autorizzazione scritta dell'autore.

RIFLETIORI PARABOLICI

H

F

$$\begin{array}{c}
D \\
\hline
D
\end{array}$$

F

 $\begin{array}{c}
D \\
\hline
D
\end{array}$
 $\begin{array}{c}
F \\
\hline
D
\end{array}$
 $\begin{array}{c}
T \\
\hline
T
\end{array}$

Funco

$$\frac{F}{D} = \frac{1}{4 + (0/2)}$$

$$F = \frac{D^2}{16H}$$

Applichiame aprossimationi ottiche, suponendo che il riflettore sia nolto più largo " della lenghora d'onda (D>>1)

Assumianno che il materiale del riflettore ia un conduttore perfetto

I raggi sono collinisti nel fuoco, siecome la parabola The TOP E UT riflette perfetts essends us perfetts conduttore

Amento di D: il guadagne PRESCE F parametro libers, $F \simeq 0,3 = 1$, $F = \frac{1}{4 t_2(\theta_0/2)}$

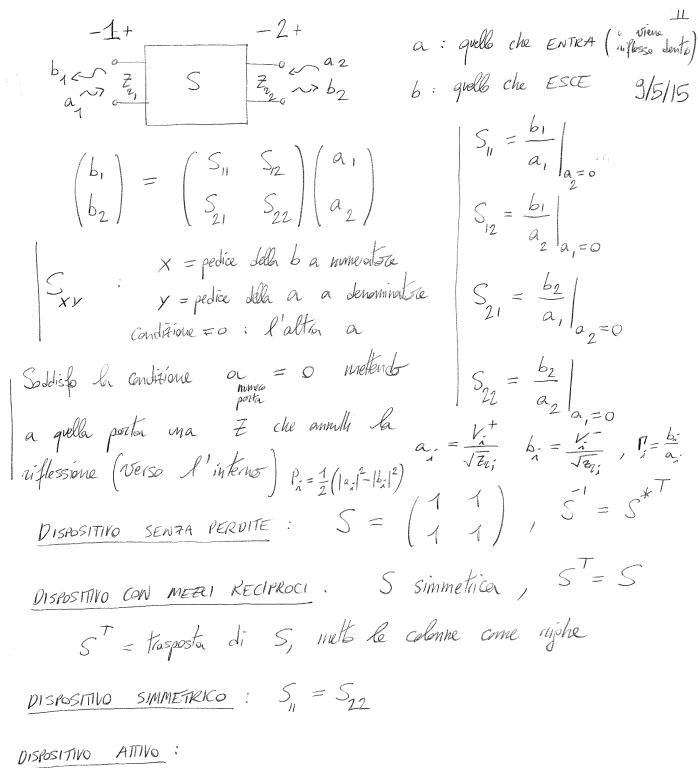
 $G_{\text{niax}} = \varepsilon \frac{4\pi t}{12} A = \varepsilon \frac{(\pi D)^2}{12}$ Surface error (scattered di segnali ad alta freq, sulle imperfette muccouniche)

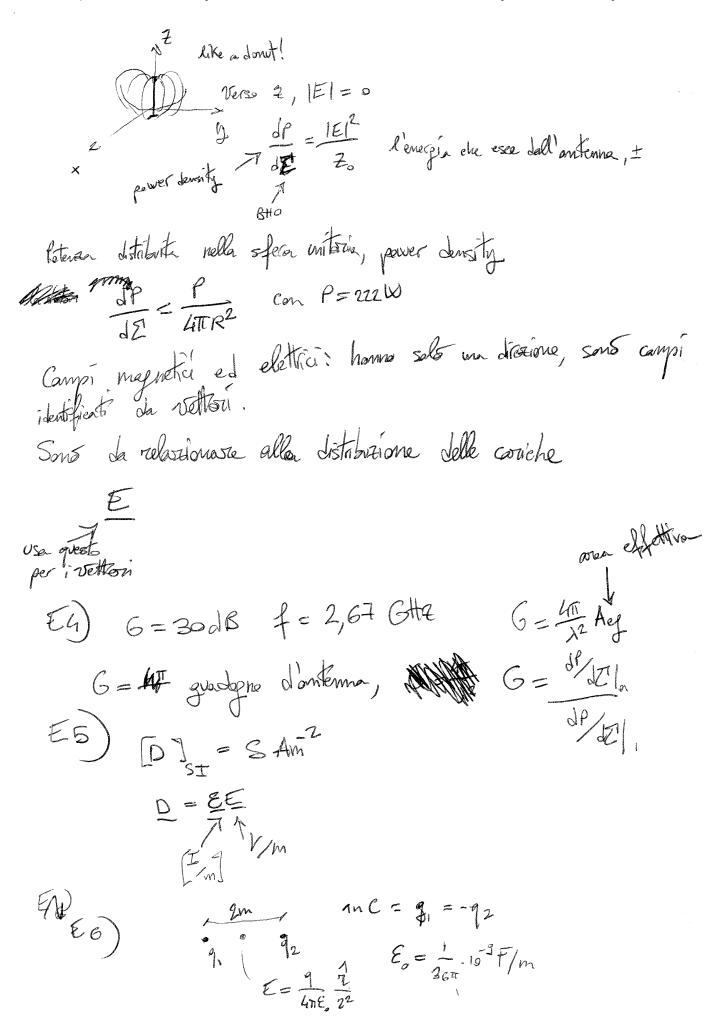
Cross planiation, Apertire blockage (strutura del freed)

Non-ideal feed plase center

En Perdite Uhmiche, trasculabile (generalmente)

 $\mathcal{E}_n \rightarrow 1$


 $E = E_{7} E_{AT} E_{5} E_{0}$ | Spillover, quanta parte dell'energia totale del feed via effettivamente sula parabola, e non al di furi ($\theta > \theta_{0}$)


E Perdite ulmiche, $E_{AT} E_{5} E_{0}$ | Spillover, quanta parabola, e non al di furi ($\theta > \theta_{0}$)

E misura quante uniforme $E_{AT} E_{5} E_{0}$ | Parabolica dell'autenna; in

il campo E lugo l'apertura dell'autenna; in generale il qualogné sara prassimo can un campo E uniforme in ampiona e fase. Conversebbe sumentore E, tellavia de la problemi di Spillover (E)

Region storements on legs to line, such to line a grander to 1 I Region storement on solar terpora, sognit e sepreti america gys/15 corner
$$C = 3 \cdot 10^3 \text{ m/s}$$
 paralle $C = 3 \cdot 10^3 \text{ m/s}$ paralle $C = 3 \cdot 10^3 \text$

En)

1) A.B |A'B| = |A('B| · Gs(=) = 1.2 · 13 = 13

RIPASSARE

- Line di trasm, Smith Suo POF - Cose fisiche, E, H MIEI RIASSUNTI

- Coordinate speiche

- Rileggere le antenne

Cortision coordination system
$$E = x\hat{x} + y\hat{y} + z\hat{z}$$

[2] $= \sqrt{x^2 + y^2 + z^2}$ $\forall z = \frac{2}{3}\hat{x} + \frac{3}{3}\hat{y} + \frac{2}{3}\hat{z}$
 $|z| = \sqrt{x^2 + y^2 + z^2}$ $\forall z = \frac{2}{3}\hat{x} + \frac{3}{3}\hat{y} + \frac{2}{3}\hat{z}$
 $|z| = \frac{2}{3}\hat{x} \sqrt{x^2 + y^2 + z^2}$ $|z| = \frac{2}{3}\hat{x} + \frac{2}{3}\hat{y} + \frac{2}{3}\hat{z}$
 $|z| = \frac{2}{3}\hat{x} \sqrt{x^2 + y^2 + z^2}$ $|z| = \frac{2}{3}\hat{x} + \frac{2}{3}\hat{y} + \frac{2}{3}\hat{z}$
 $|z| = \frac{2}{3}\hat{x} \sqrt{x^2 + y^2 + z^2}$ $|z| + \frac{2}{3}\hat{z}$
 $|z| = \frac{2}{3}\hat{x} + \frac{3}{3}\hat{y} + \frac{2}{3}\hat{z}$
 $|z| = \frac{2}{3}\hat{x} + \frac{2}{3}\hat{y} + \frac{2}{3}\hat{z}$
 $|z| = \frac{2}{3}\hat{x} + \frac{2}{3}\hat{x} + \frac{2}{3}\hat{x} + \frac{2}{3}\hat{z}$
 $|z| = \frac{2}{3}\hat{x} + \frac{2}{3}\hat{x} + \frac{2}{3}\hat{x} + \frac{2}{3}\hat{x} + \frac{2}{3}\hat{x}$
 $|z| = \frac{2}{3}\hat{x} + \frac{2}{3}\hat{x} + \frac{2}{3}\hat{x} + \frac{2}{3}\hat{x}$
 $|z| = \frac{2}{3}\hat{x} + \frac{2}{3}\hat{x} + \frac{2}{3}\hat{x} + \frac{2}{3}\hat{x} + \frac{2}{3}\hat{x}$
 $|z| = \frac{2}{3}\hat{x} + \frac{2}{3}\hat{$

Proprieta moneras deliratore - Distributiva con e de CENTRO APPUNTI- Coro Lugi Emandi, co. Tomo i Progres to di 252

$$\frac{B}{B}(\rho,t) = f_{g}(E(\rho,t), H(\rho,t))$$
 Cartity the rubblems.

 $\frac{D}{D}(\rho,t) = f_{g}(E(\rho,t), H(\rho,t))$ Cartity in rubblems.

 $\frac{D}{D}(\rho,t) = f_{g}(E(\rho,t), H(\rho,t))$ Si tessen

 $\frac{D}{D}(\rho,t) = f_{g}(E(\rho,t), H(\rho,t))$ Cartity in rubble in rubblems.

 $\frac{D}{D}(\rho,t) = f_{g}(E(\rho,t), H(\rho,t))$ Cartity in rubblems.

 $\frac{D}{D}(\rho,t) = f_{g}(E(\rho,t), H(\rho,t)$ Car

 $\nabla D(p,t) = -pv(p,t)$

 $\nabla \varepsilon(\rho,t) = -\frac{g_{\nu}(\rho,t)}{\varepsilon} (4)$

$$G = \left(\underbrace{I} + \frac{VV}{K^{2}} \right) \phi \qquad \phi = \underbrace{\frac{e^{y \cdot x \cdot v}}{4\pi x}} \qquad \begin{array}{c} 11/3/15 \\ 11/$$

ELEMENTARY ELECTRIC SOURCE

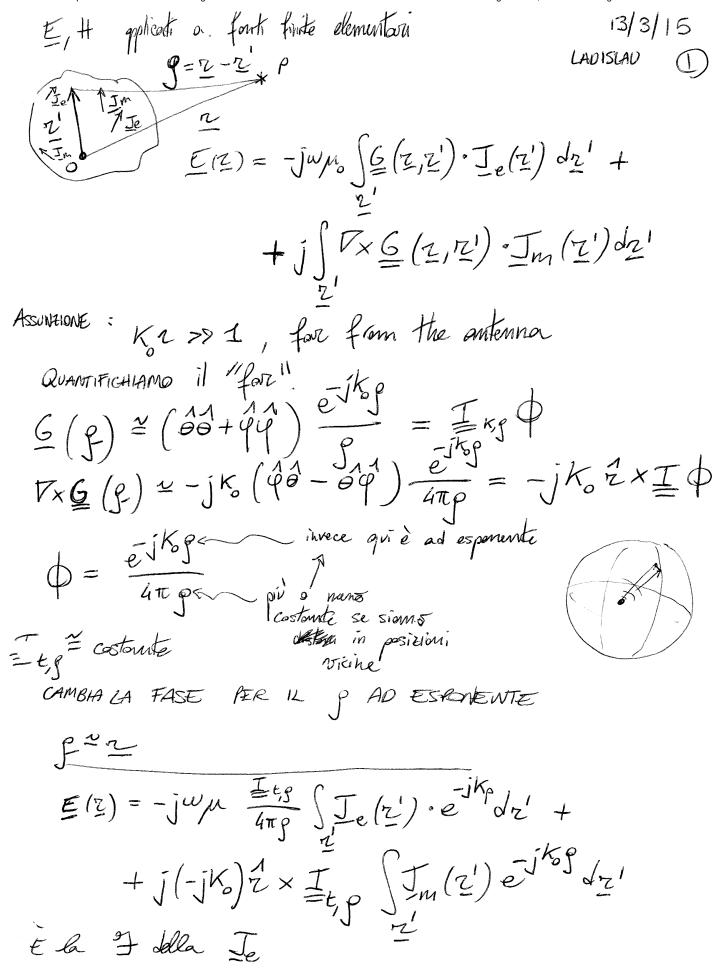
$$ELEMENTARY ELECTRIC SOURCE$$

$$e[N]_{e} \rightarrow A = \begin{cases} 1 \\ 1 \\ 2 \end{cases} = \begin{cases} 1 \\ 1 \\ 2 \end{cases} = \begin{cases} 1 \end{cases} = \begin{cases} 1 \\ 2 \end{cases} = \begin{cases} 1 \\ 2 \end{cases} = \begin{cases} 1 \end{cases} = \begin{cases} 1 \\ 2 \end{cases} = \begin{cases} 1 \\ 2 \end{cases} = \begin{cases} 1 \end{cases} = \begin{cases} 1 \\ 2 \end{cases} = \begin{cases} 1 \end{cases} = \begin{cases} 1 \\ 2 \end{cases} = \begin{cases} 1 \end{cases} = \begin{cases} 1 \\ 2 \end{cases} = \begin{cases} 1 \end{cases} = \begin{cases} 1 \\ 2 \end{cases} = \begin{cases} 1 \end{cases} = \begin{cases} 1 \end{cases} = \begin{cases} 1 \\ 2 \end{cases} = \begin{cases} 1 \end{cases} = \begin{cases} 1 \\ 2 \end{cases} = \begin{cases} 1 \end{cases} =$$

A = A' + j A"

• linear:
$$-A' / A''$$

• $-A' = 0$; $A'' = 0$


• circular: $|A'| = |A''|$

• ellitticla: $|A''| = |A''|$

• ell

© Proprietà riservata dell'autore - Digitalizzazione e distribuzione a cura del CENTRO APPUNTI - Corso Luigi Einaudi, 55 - Torino / Pagina 25 di 262
K = K + jK'' Se l'ampiersta e la fese sons $K = K + jK''$ Su monni estable ellore è
K = K + jK'' Se l'ampiersta e la fese sons Su piemi poralleli allora è m'enda emogenea
m onda omogenea
Qual è la redoctione per le sogent!
Se abbiamos un campos, esso obbedisce alle equationi se
Se abbiamos un compos, esso obsedisce alle equortioni se siamos in for field (plane works)
ONDE STERICHE!
QUAL É IL CAMPO GENERATO DALLA SORGENTE?
(TXE = -jwmt
$(\nabla \times H = i\omega \xi E + J_c)$
Faccionno front le Servotire con la tosspormater di torrier
4 \$1(b) 3 \$(5 f(b) e j w K-2 bz = F(K)
Dallo sporio allo spetto. Lo sporio ha 3 dimensioni, sono
Dallo sportio allo spetto. Lo sportio ha 3 dimensioni, sono 3 integrali, $SSF(z)e^{j\omega Kz}dz = F(K)$
I { F(K)} = 1 SSS F(K) ej Kr. dK
Ma che vool die?
La v indica che siomo nel dominio spettale

$$I = \frac{1}{\rho \pi^{3}} \iint_{K^{2} - K^{2}}^{K^{2}} \left(\vec{I} + \frac{TV}{K^{2}} \right) e^{ijkn} \int_{K^{2} - K^{2}}^{K^{2}} \int_{K^{2} - K^{2}}^{K^{2}} \left(\vec{I} + \frac{TV}{K^{2}} \right) e^{ijkn} \int_{K^{2} - K^{2}}^{K^{2}} \int_{K^{2} - K^{2}}^{K^{2}} \left(\vec{I} + \frac{TV}{K^{2}} \right) e^{ijkn} \int_{K^{2} - K^{2}}^{K^{2}} \int_{K^{2} - K^{2}}^{K^{2}} \left(\vec{I} + \frac{TV}{K^{2}} \right) e^{ijkn} \int_{K^{2} - K^{2}}^{K^{2}} \int_{K^{2} - K^{2}}^{K^{2}} \left(\vec{I} + \frac{TV}{K^{2}} \right) e^{ijkn} \int_{K^{2} - K^{2}}^{K^{2}} \left(\vec{I} + \frac{TV}{K^{2}} \right) e^{ijkn} \int_{K^{2} - K^{2}}^{K^{2}} \left(\vec{I} + \frac{TV}{K^{2}} \right) e^{ijkn} \int_{K^{2} - K^{2}}^{K^{2}} \left(\vec{I} + \frac{TV}{K^{2}} \right) e^{ijkn} \int_{K^{2} - K^{2}}^{K^{2}} e^{ijkn}$$

Je _> E		LADISLAU	16/2/15
Im #			
In for field:	field -> plane was	e, potentia in direction	ne
1 2	E(z) ~ Pe(z)		
EE)		
Singala antenna": qual Lato un certo tolume	di caratteristiche ha il dell'antenna?	Campo hel fer fiel	٩,
Antenna _ 10 wave a	1		
2D orperture Arroney		dell'antenna e illa	diastione,
Opri: come covatterizzone v perametri generali.			,
Antenna: trasforma guid	ed whire nells spot	The of viewers	
curent -> electric field	TRASMISSIONE		
curent -> electric field	> power current/signal	RICEZIONE	
" recipocità ta le du	funzioni		

Le relazioni di potenza sono descritte dal matching, che dev'esserei su tutte le f della banda.

16/3/15 (

Supponiamo che vi sia risonanza, X = 0

antenna

Rnad

Termine per l'efficienza: $\eta = 0$ hmic efficiency adimensionale

 $P_d = |I_a|^2 Z_a = |I_a| (R_L + R_{rad})$

Prod = |Ia|2Rrad

 $P_L = \frac{R_{rad}}{R_L + R_{rad}}$

questo sempre

for for MHz, ne low, perché l'impedenta d'ingresso dell'antenna è reattiva (antenna carte, per fortan) per cui verra irradiata poca potention. Mon posso avere antenne lughe Km

> Per lingherron autenia ~ 1, 2 1

- les frequence motte alte, perdite nei metalli e nei dielettici,

Me Cala 1 1/2

171	16/3/ 15
17/: - 10dB accettabile	•
-20 dB neglio	LADISLAU (3)
Il montching à importante.	
RICEZIONE	/
In genere sions far. Pricezione 2 nW	
Se l'antenna riflette Toppa potenta, perdianno il Conta	to.
Link budget", quale autenna, quale modeling	
Circuito equivalente, in Misonomiza	
Rrad >>	
vicino all'antenna l'antono onde ande sferiche, pionne, enegia reattiva lower DENSTRY che riceviormó	
vicino all'antenna lantono onde ande sferiche, pione,	
enegia reativa lower DENSITY che ricenomo	
Ci Accoppiame con m'antenna in ricetione al	POWER DENSITY
Sogente ISTROPICA,	
GAIN: rapports tra due POWER DENSITY Coordinale schriche, NON DEFINITO NEL M. SOLO NEL FAR FIEL	
Coordinate sterche,	
WON DEFINITO NEL M	
	גן.
G(0, q) = Power density generals do ma sorpente isotropica JEFINITIONE IN TORMISSIONE	
G(0, q) = Power density generals dP/1	
do ma soperate delistr.	
DEFINITIONE IN	
TRASMISSIONE	

$$G(\theta, \varphi) = \frac{\sigma \eta_{dZ}}{\left(\frac{\rho}{4\pi R^2}\right)} = \frac{\sigma \eta_{dZ}}{\left(\frac{\rho}{4\pi}\right)}$$

16/3/15

Integriomo il Guadagno su tetta la superficie della sefera.

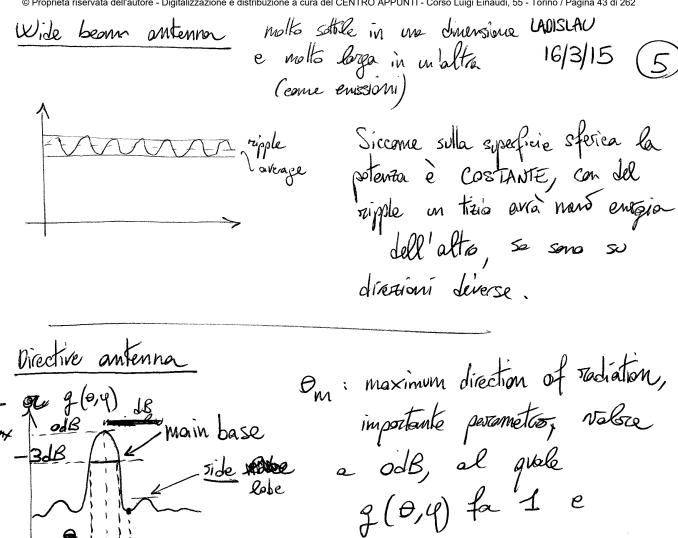
$$\int_{0}^{\infty} \frac{df}{4\pi R^{2}} df = \int_{0}^{\infty} \frac{df}{df} df$$

$$\frac{P}{4\pi R^2} \int G d\xi = P$$

$$\frac{P}{4\pi} \cdot \int G d\Omega = P$$

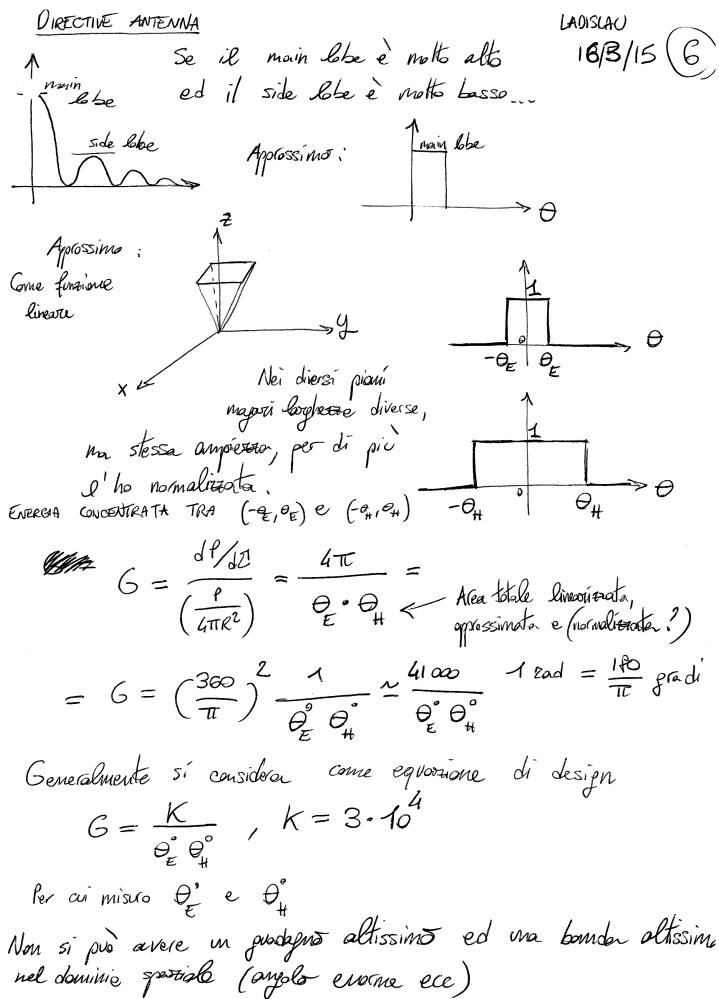
l'integale della détabacione di potente su una superficie è esstante

$$G(\theta, Y) = W$$


$$G(\theta, \varphi) = \frac{1}{2} G_0 G(\theta, \varphi)$$
 Radiation apattern maximum govin, $G = \max_{\theta, \varphi} (\theta, \varphi)$

È un numero ... con cui mi vendono l'antenna

$$G = \frac{4\pi}{\int_{-2}^{2} (\theta, \varphi) d \cdot 2}$$


Ropprésente la distributione nelle sportée.

Vogliant allinearce le antenne RX-TX per avere g/0,4)=1 e quindi 6

quindi G = G. 1

3dB -> HPBW: Half power beam width On: first will libe SLL: side Rear level MAKIMUM Om DIRECTION

Tobella	per	differen	th valou	di	\propto	<i>j</i>	η = 1	LAOISLA	1 <i>U</i>	(F)
\propto	·G	GIB	G(03/3)				$G = \frac{3 \cdot 10}{9 \cdot 9}$	16	/3/15	(7)
1	6		4,8.104				O O			
2	10		4,2.10							
4	18	12,6	4-104							
10	42	16,2	3,7.10) ~	constan	t				
20	82	19,1	3,7 · 104							
Tabella per different valori di \propto , $\eta = 1$ $\propto G G_{dB} G(\Theta_{3JS})$ $1 G G_{3JS}$ $G = \frac{3 \cdot 10^4}{\Theta_{e}^2 G_{1}^2}$ $G = 3 \cdot 10^4$										
•		(05 (0))	lo	20 Cos	(θ_{i})	(868) = -3	3		-
$\frac{10 \cos^{2}(\theta_{3dB}) = -3}{3dB} = \arccos(10^{-3} \text{L})$ $\frac{1}{3dB} = \arccos(10^{-3} \text{L})$ $\frac{1}{3dB} = \arccos(10^{-3} \text{L})$										
Se condiderianno annolve dei side labes										
مند			2.7.00	~ -						

© Proprietà riservata dell'autore - Digitalizzazione e distribuzione a cura del CENTRO APPUNTI - Corso Luigi Einaudi, 55 - Torino / Pagina 49 di 262
Effective area teff / m /
Connette Eine allo rappor circuitale, me parle di potentino $P = A_{eff} \cdot \frac{dP}{dZ}$ salvre $\int_{Scalare}^{A} Scalare$, sava $\int_{M^2}^{M} Scalare$
Rx antenna: Ra, scrivianno Pavailable in due modi
$\frac{P_{\text{available}}}{4R_{\text{a}}} = \frac{ V ^2}{4R_{\text{a}}}$
$P_{\text{available}} = A_{\text{eff}} \frac{dP}{dE}$
$\frac{ V ^2}{4R_a} = A_{eff} \frac{dP}{dE'}$
Supponionno che vi sion match di poloristazione, quindi pinc o pa = 1,
V = [Einc] . hefe] . 1
$\frac{ E^{inc} \cdot h_{off} ^2}{4 R_{a}} = A_{eff} \frac{dP}{dZ}$
Essendo nel for field,
1 Eine ? I hoff! 2 A eff I Eine ? face space in pedance,

Z = 120 TO D = 377 D

$$G = \frac{4\pi}{J^2} A_{eff}, \quad J = \frac{C}{f},$$

$$A_{eff} = \frac{Z_0}{4R_0} \left| \frac{h_{eff}}{h_{eff}} \right|^2, \quad Z_0 = 120\pi L$$

Example

CIRWAR APERTURE

Vi sono relogioni ta

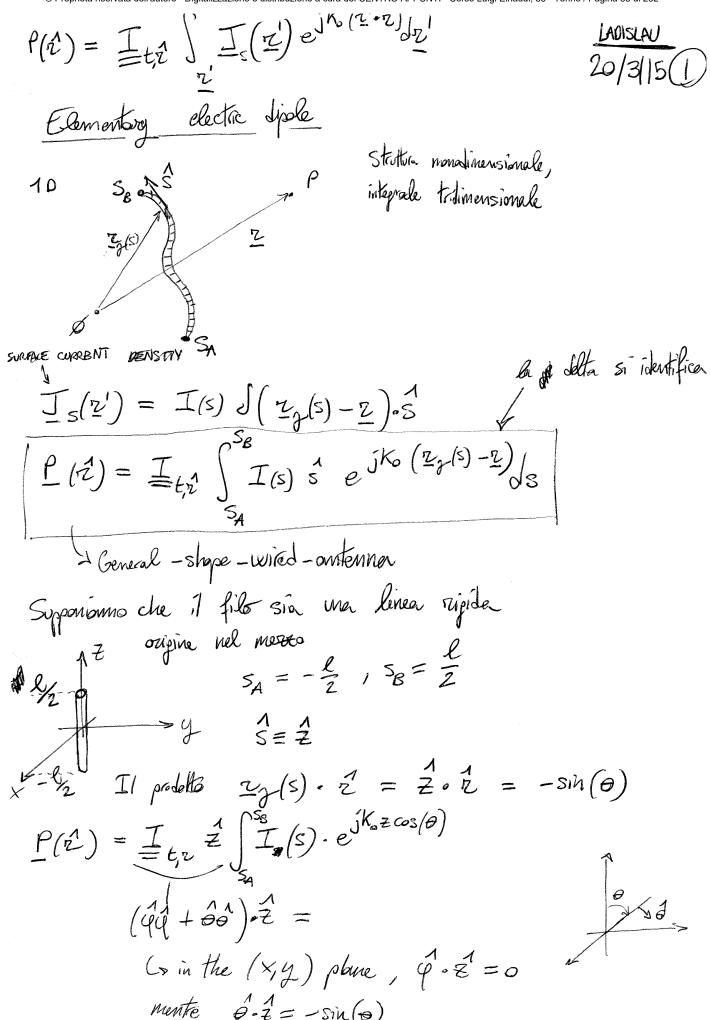
Aream. e Aeff

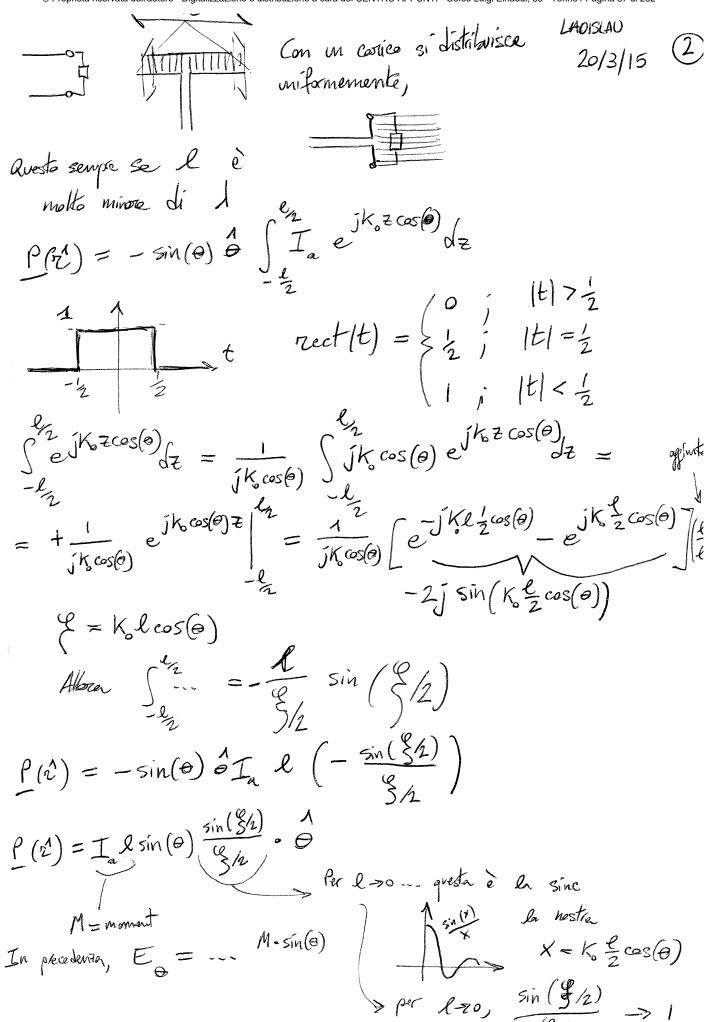
Methomoci en fattore che le Rephi, ARRIVERE ETTICIENCE

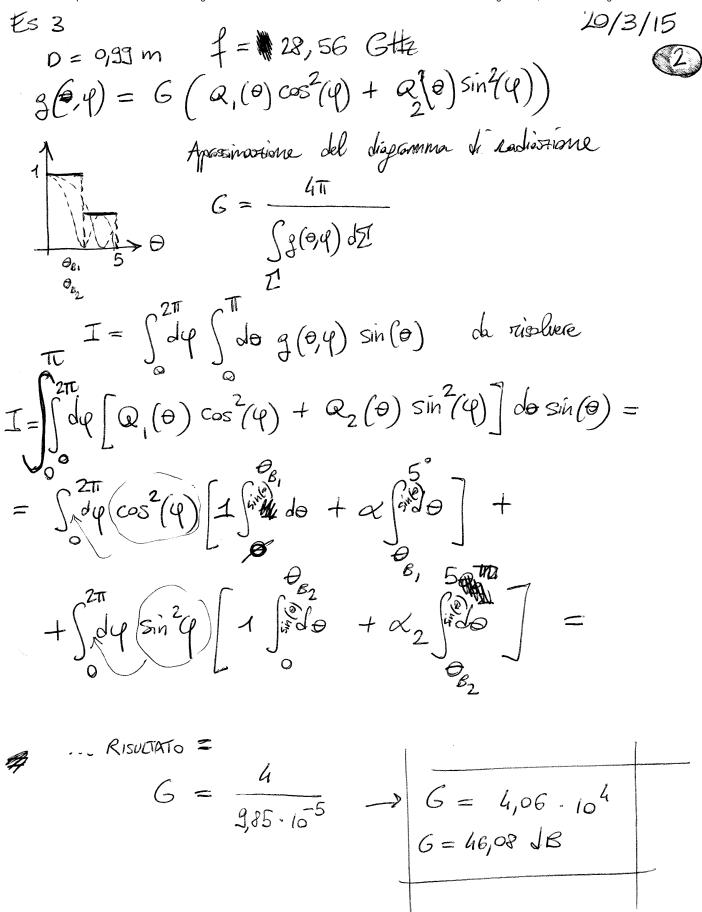
Ageometrica = TER2

Ageom = > Agff

0 < D < 1 oviennente


D dipende del camps superficiale dell'autenno. dimensions e peometère del compos


 $G = \frac{4\pi}{12} A_{\text{eff}} = \frac{4\pi}{12} \mathcal{D} A_{\text{geom}}$


NORMALIZED : Usando Agean = TER,

ottengo $G = \left(\frac{4\pi R}{I}\right)^2 / \sqrt{R}$

Pulivered = (1 - T) Pavailable datasm.
Conscibble FT Rd Polivered = Poussibble (1-17/2) delivered = Poussibble (1-17/2) ricer. dal riceritae
Coefficiente d' riflessione 1: lé tiene in conto pli SCATIBRING
Se non c'é month di poloriere arione perdianne potource (heff)
$P_{2} = P_{T} \frac{G_{R}G_{T}}{(4\pi R)^{2}} \left(1 - \Gamma_{R} ^{2}\right) \left(1 - \Gamma_{T} ^{2}\right) \circ \left \vec{P}_{Z} \cdot \vec{P}_{T}\right ^{2}$ perdite per la perdite al perdit al perdite per canu
freq. e la ricevitore traspretitore sono escrentation distantian $0 < T_R ^2 = 1$, $0 < T_T ^2 < 1$
Combiondo il sistema di riferimento, bisogni mette il confesso conignts Pir Pi za z va nella parte

Politecnico di Torino

MS-level of the Bologna process in Electronic Engineering – Torino (01NVEOQ)
MS-level of the Bologna process in Telecommunication Engineering – Torino (01NVEOT)

Radiating electromagnetic systems

a.y. 2014-2015

Problem Set No. 2

Issued: March 23, 2015 Due: March 30, 2015

The assignment should be handled in BEFORE the class on the due date.

Problem 2.1

Let's consider an antenna that radiates a field described as follows:

$$\underline{E}(r,\theta,\varphi) = \begin{cases} \frac{V_0}{r} e^{-jkr} \cos^4 \theta \left[(\hat{p} + j\hat{q}) \cos \frac{\theta}{2} + (\hat{p} - j\hat{q}) \sin \frac{\theta}{2} \right] & \text{for } 0 \le \theta \le \frac{\pi}{2} \\ 0 & \text{for } \theta > \frac{\pi}{2} \end{cases}$$

with $\hat{p} = \cos \varphi \cdot \hat{\varphi} + \sin \varphi \cdot \hat{\theta}$ an $\hat{q} = \sin \varphi \cdot \hat{\varphi} - \cos \varphi \cdot \hat{\theta}$ respectively.

- 1. Study the polarization of the antenna, i.e., specify if there exists any direction (θ, ϕ) for which the polarization is circular o linear. In case, indicate them;
- 2. assuming an ohmic efficiency $\eta_L=1$, determine the maximum gain of the antenna.

Problem 2.2

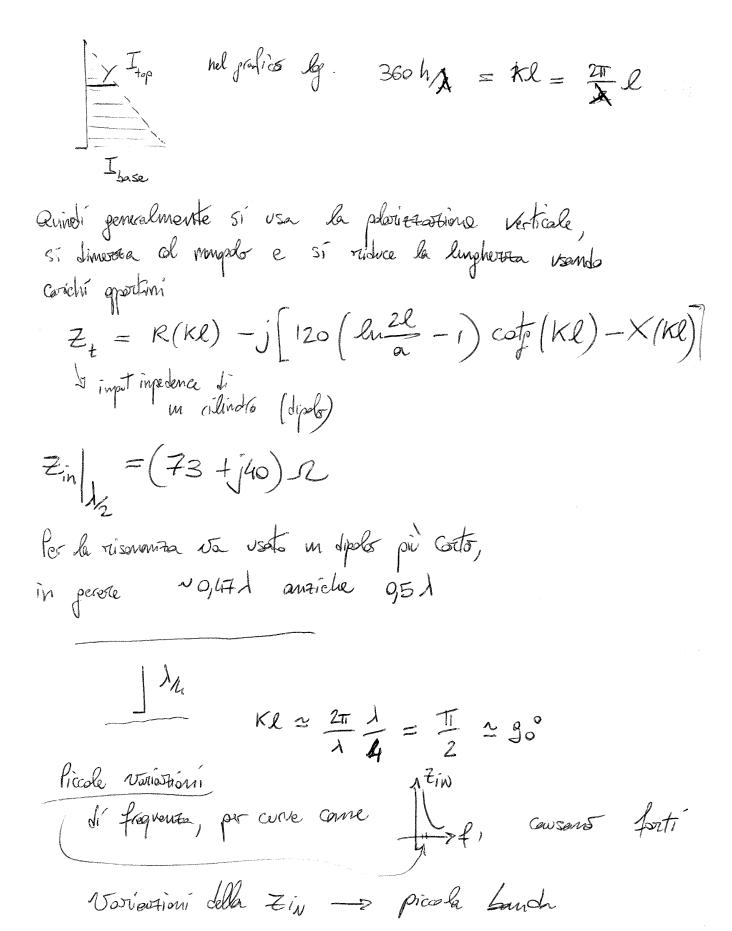
A satellite TV system working at a frequency of f=11.7 GHz is characterized by an EIRP=3.5 dBW. Determinate the available power at the clamps of a circular antenna of diameter D=3.66 m and efficiency v=0.5, matched in polarization. The distance between the satellite and the receiving unit is R=40000 km.

Problem 2.3

Let's consider a circular antenna with an aperture of diameter D=0.99 m working at a frequency of f=28.56 GHz. The radiation pattern can be approximated by:

$$g(\theta, \varphi) = G(Q_1(\theta) \cdot \cos^2 \varphi + Q_2(\theta) \sin^2 \varphi)$$

where


$$Q_{i}(\theta) = \begin{cases} 1, & 0 \le \theta < \theta_{B_{i}} \\ \alpha_{i,} & \theta_{B_{i}} \le \theta < 5^{\circ} \\ 0, & \theta > 5^{\circ} \end{cases}$$

with $\theta_{B_1} = 0.302^\circ$, $\alpha_1 = -28.5 \,\mathrm{dB}$ and $\theta_{B_2} = 0.278^\circ$, $\alpha_2 = -17.5 \,\mathrm{dB}$.

Determine the antenna efficiency v.

Note: Substitute numerical values at the end of the calculation, and use 6 significant digits (in linear units).

Il dipolo è una STRUTTURA BILAN	KIAA, il monopoles No
COASSIBLE V=0	
Con l'additionale linea a 1/2 abbiours	SMITH IN 1/2 (Smin) Vanis Vanis Vision de caassiale
Anziehe 50 Km usiamo 25/	
Se invece of $<,$	tagliands:
For Zoo open Zw=Zz=-jZoo cote (KS) Cioè topliamo un perso di antenna ma col corries reattivo monteniamo la forma oripinale No reattivo: Teattivo:	Methomo un corico reattivo che simuli la lungherera della livea

$$E(2,0,q) = \frac{30/3/15}{\hat{q} = \cos(q) + \sin(q) + \sin(q) + \sin(q) + \cos(q) + \cos(q) + \sin(q) + \cos(q) +$$

POLARIZEMEIONE CIRCOLARE:

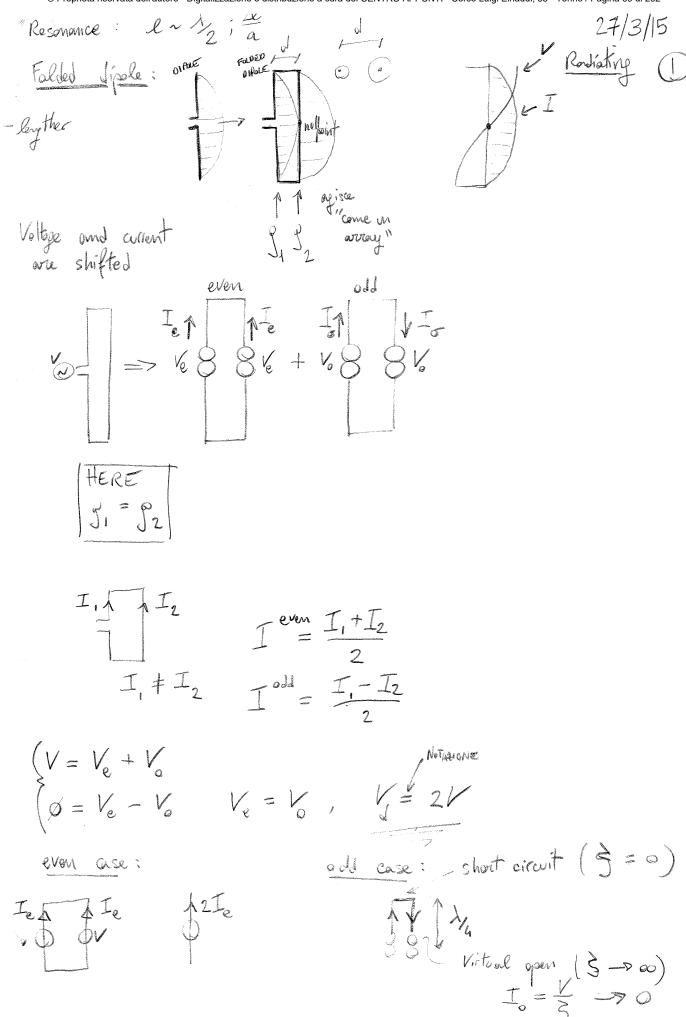
$$|E_p| = |E_q|$$
 e devono essere in quadratura.
Nell'es 1 $\cos^4(\theta)$ non andora considerato per la polonizzazione

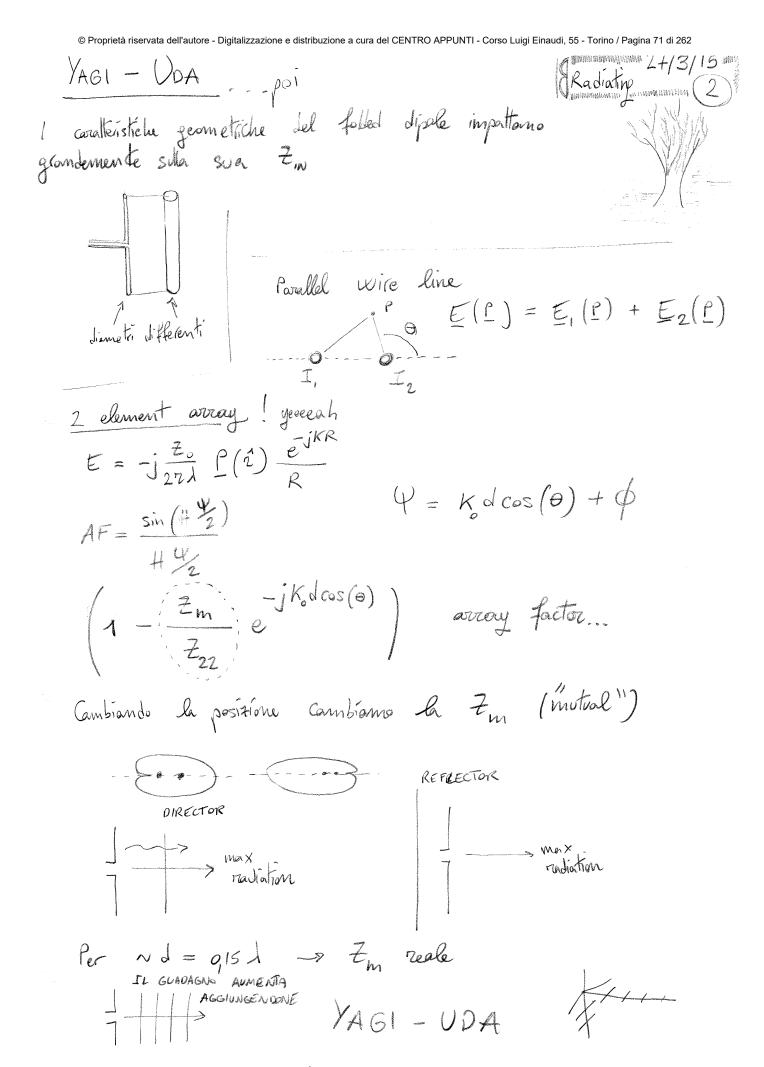
$$G_{0} = \frac{4\pi}{\int_{Q}(\Theta, \Psi) dZ}$$

$$\frac{2!}{\int_{Q}(\Theta, \Psi) dZ} = \frac{|E|^{2}}{|E|^{2}}$$

$$E = V_{0} = \frac{V_{0} + V_{0}}{|V_{0}|^{2}} = \frac{|E|^{2}}{|V_{0}|^{2}}$$

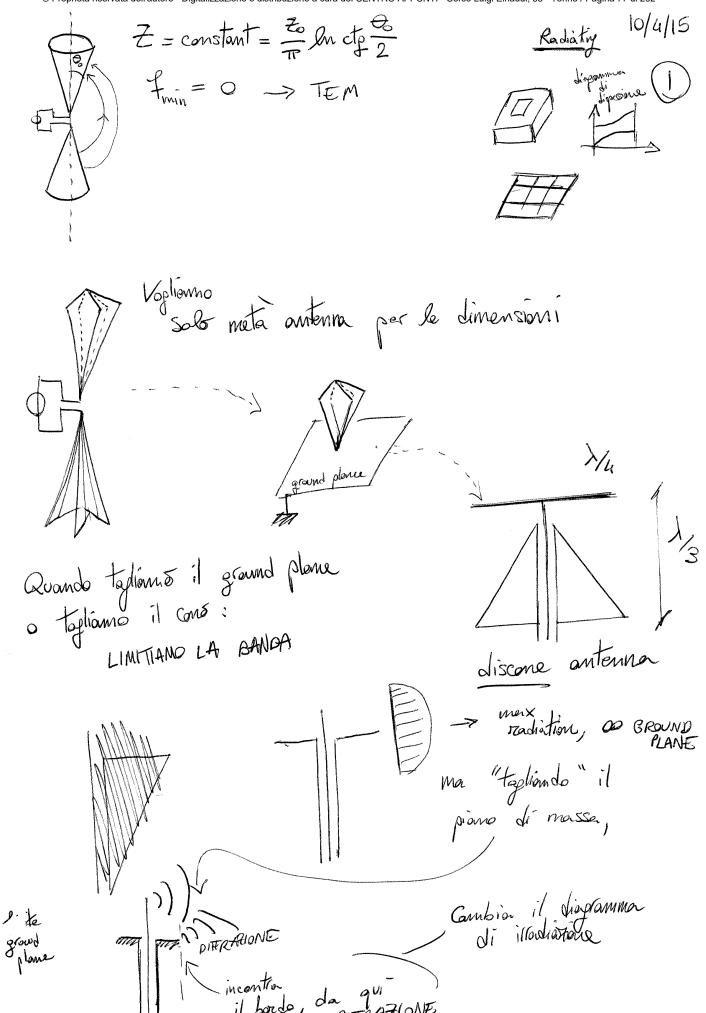
$$\frac{1}{\int_{Q}(\Theta, \Psi) dZ} = \frac{|E|^{2}}{|V_{0}|^{2}} = \frac{|E|^{2}}{|V_{0}|^{2}}$$

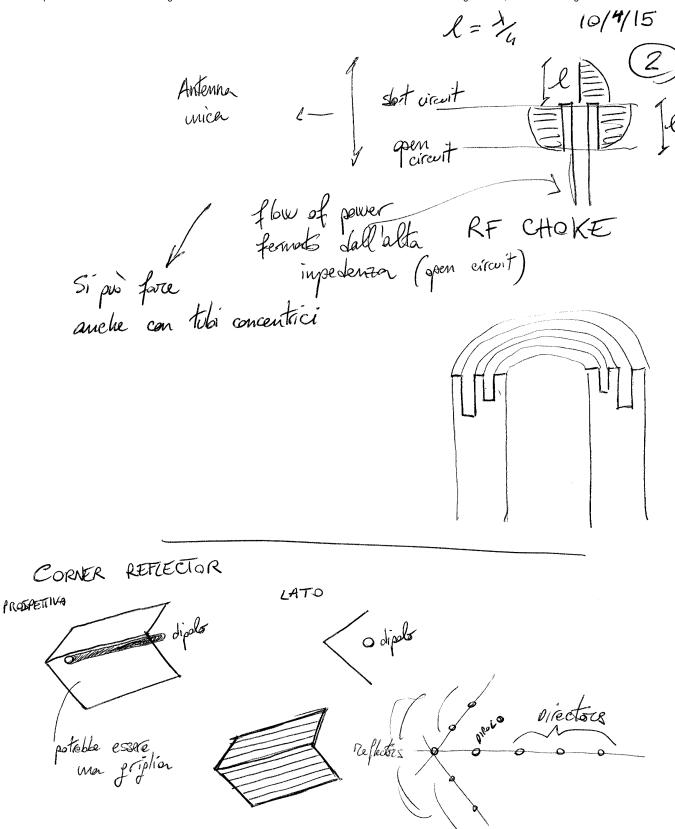

$$\frac{1}{\int_{Q}(\Theta, \Psi) dZ} = \frac{|E|^{2}}{|V_{0}|^{2}} = \frac{|E|^{2}}{|V_{0}|^{2}}$$

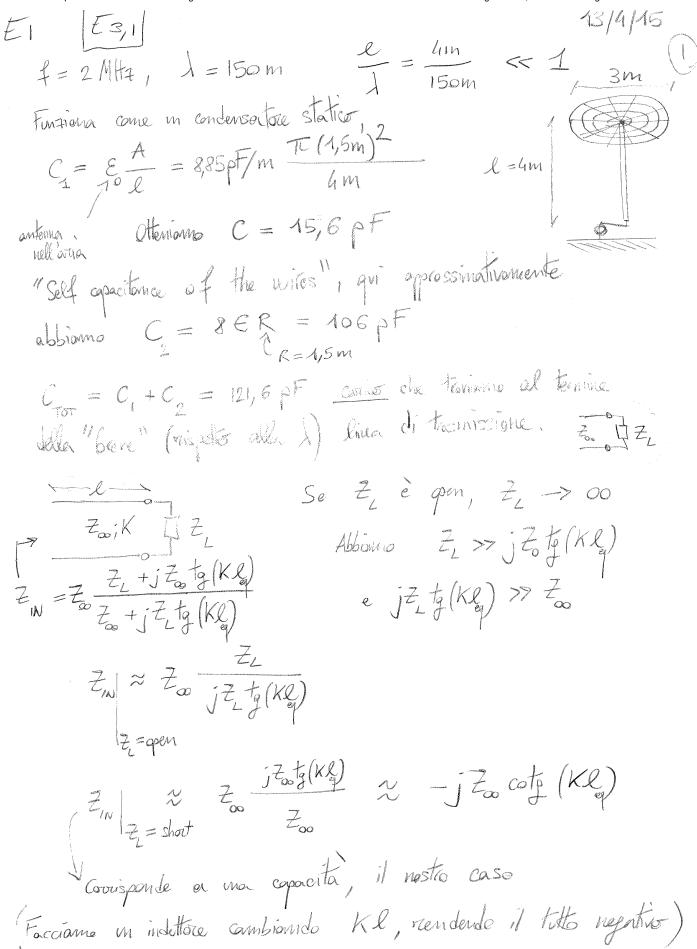

$$\frac{1}{\int_{Q}(\Theta, \Psi) dZ} = \frac{|E|^{2}}{|V_{0}|^{2}} = \frac{|V_{0}|^{2}}{|V_{0}|^{2}} = \frac{|V_{0}|^{2}}{|V$$

$$|E| = \left| \frac{V_0}{\tau} F(\theta, q) \right| \quad \text{absigne} \quad \left| \frac{1}{\rho} (\theta, q) \right| = 1$$

$$G = 2 \left(2\alpha + 1 \right) \quad \text{our case :} \quad \left| \frac{|E|}{\alpha = 4} = \cos^{\alpha}(\theta) \right|$$

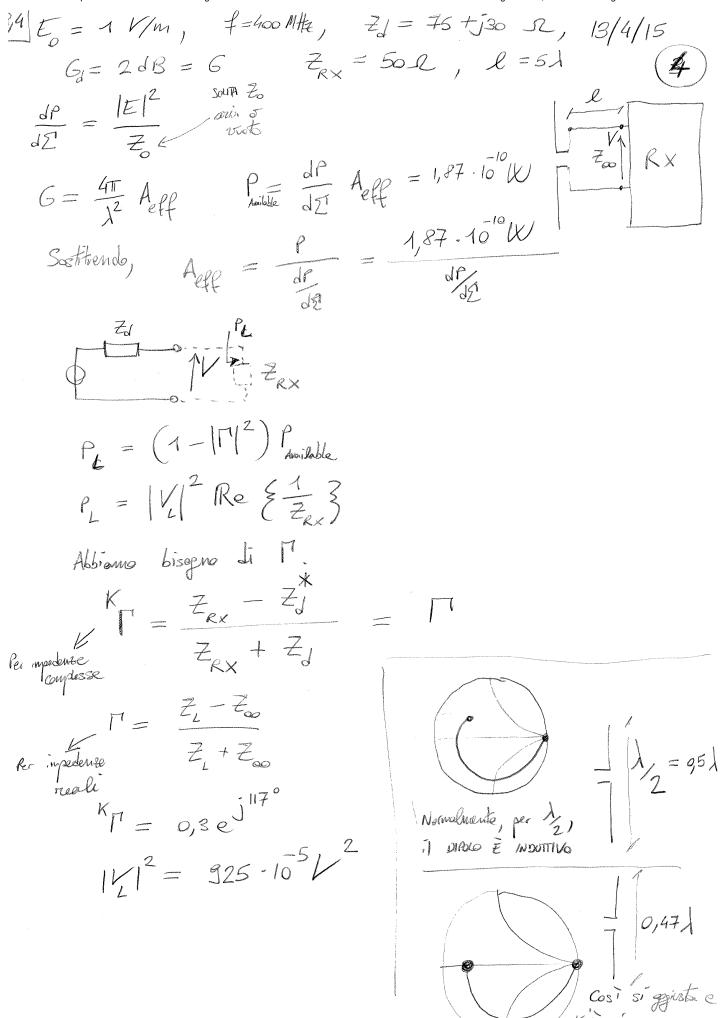

$$Quindi \quad G = 2(\beta + 1) = 1\beta$$



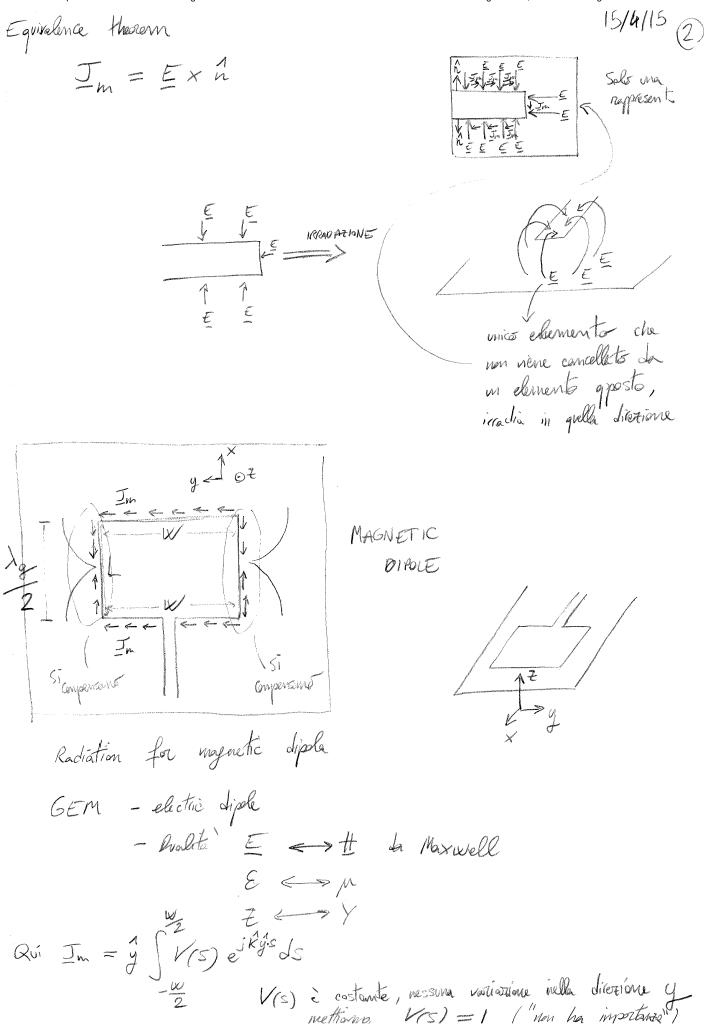

(22) 2 constant, faccionno Mariare

© Proprietà riservata dell'autore - Digitalizzazione e distribuzione a cura del CENTRO APPUNTI - Corso Luigi Eina	udi, 55 - Torino / Pagina 75 di 262
HELIX ANTENNA	
L= lugherra d' m giro 9 L= Lugherra d' m giro 9 C=TD / L	
Può illadiava in due modi: [1] corto: [normal!] [normal!] $TD = \sqrt{2h}$	vertial planization
[2] assiale: TD 1. 2	1 circular polarization
Axial ratio a AR a 2n+1 (fractione de compi nulle due diccioni principali circelore	= vumero V ghi elltrea
AXMI RATIO = 1 (non possibile) funentando le spire la polorizzatione	ALTO AXIAL RATIO 1911 esagerat)
	BASSO

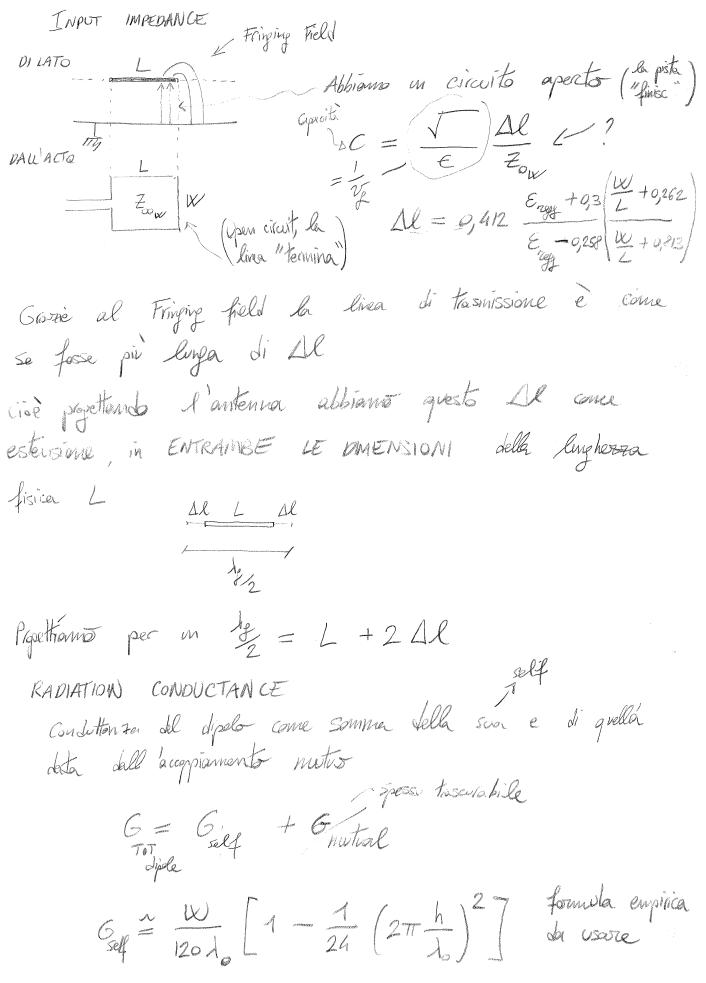
Mantendando d estante,			10/	4/15
Mantendendo d'estomte, callargando a avid	ino le	ino Fei an	Ra	diating 3
	[] disto	inzer Jelle	projetioni:	1
	,	in fluenza	- 11 puno	lof no
	Q	11 distrovm	mer or mis	noney blovo
TURNSTYLE dipole,	4 dipol	l'a c60 non necess		- 0 1/
TURNSTYLE dipole,	Bracci	non necess	soumente	linghi
Noy -	Tribill		× 1	_
$\bigcirc Q_{X} \longrightarrow X$	D_{x}	E	$= q t_c$	P
$\begin{array}{c} \rho_{X} \\ \hline \\ \bullet \\ \end{array} \rightarrow X$	E	$=-\frac{\dot{U}}{27}$	MZ)-jkr	cos (4)
		7 27		
Dy E= YEY	_ (K7)			
$D_{3}: \frac{E}{E} = \oint E_{9} E_{9}$ $E_{9} = -j \frac{E_{9}M_{y}}{2\pi J}$	e co	os (φ)		
_		,		
Se $M_{\chi} = M_{\chi}$	**2 3	ko.		
$\underline{E}_{TOTAL} = \underline{E}^{OX} + \underline{E}^{OY} = -$	j to	e M	$(\cos(q)$	+ sin (4))
E ~ constant	// moox	vre or le	, 11 255	
TE CONSIGNA	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	an internal water are considered and an extensive angles are considered and an extensive and a extensive and an extensive and an extensive and an extensive and		
	Ma	avesta mon	n è	
4	la (questa non ionfiguration	e tipica	
	ruc \	-, 9	•	



© Proprietà riservata dell'autore - Digitalizzazione e distribuzione a cura del CENTRO APPUNTI - Corso Luigi Einaudi, 55 - Torino	/ Pagina 85 di 262
Il tasfermente di ptente :	13/4/15
Il trasfermento di patenta: Massimo in risonanton dobbianno Compensare la parte immaginaria, inscrendo Z ^L	(2)
immaginaria, inscrendo Z	
Z = + 1449,25 of Woothere (portra e reality)	
+ 1 469 25 1	35,7 MH
Cost vi sava	
L=35	5,7 mH
min and the second seco	


frain = 150 MHz, frax = 300 MHz, Gain = 10 JB LOG PERIODIC Non possionno usare il singalos elemento, tinax > 1 decade

Finin
Usionno i grafici delle curre di grandogno in funzione di « e Sceptiamo $[\Upsilon=0,35]$ Sceptiamo $[\Upsilon=0,35]$ Sceptiamo $[\Upsilon=0,35]$ Sceptiamo $[\Lambda=0,35]$ Cambiando de di poco la voviazzione Jel gradogno è alta. $\sigma = \frac{1}{4}(1-2)\cot(4)$, $\sigma = 0.0614$ $\lambda_{\text{max}} = \frac{C}{f_{\text{min}}} = 2m$, $\lambda_{\text{min}} = \frac{C}{f_{\text{max}}} = 1m$ Coouction factor B per il primo elemento (frax), B preso da un grafico $\chi - \chi - \xi$. Otteniamo (leggianio) B ~ 1,2


© Proprietà riservata dell'autore - Digitalizzazione e distribuzione a cura del CENTRO APPUNTI - Corso Luigi Einaudi, 55 - 1	Γorino / Pagina 87 di 262
Vooremmo ma ip impedenta COSTANTE.	13/4/1
ℓ_i armenta con $i=1,\ldots, H$, combine anche	7; (3)
Pensionno al diametro dei fili	,
Pensiamo a Z- 2 costo	inte,
Zo Z, TZ TH imponendato il raggio del	fili cambion Rman = 6 mm
Si supperisce di usare $\frac{2l}{rggiight} = costante,$	Kmrw 15 mm
798 fili = 67	Kmax 15 mm
$E_{\rm od} = E_{\rm M} = 120 \left[\ln \left(\frac{2k}{D} \right) - 2,25 \right] - k$	Caff
Scepliendo 21 = 67 -7 Z, N 234,	56 L
Sceptien do agrifili	
	······································
l'é un gafico che covela o ella ZIN	TOTALE
$\frac{Z_{od}}{Z_{wolnto}} = \frac{234,56 \Omega}{50 \Omega} = 4,7$ $\frac{g_{con}}{g_{con}} = \frac{4}{5000}$ $\frac{Z_{wolnto}}{g_{con}} = \frac{4}{5000}$	R = 0,65 Z = 0,65
$Z_0 = \frac{R_0}{9.65} \sim 77.\Omega$	

Le = 0 TEM (due condultati,) GROUND PLANE E MICROSTRISCIA
Potremmo avere lingherere comperciabili alle
GROUND PLANE $J = \frac{C}{f_{clock}}$
La Zo cambia a seconda di W
Per il design an una particulare Zao si lavore su th
Pioni W_h e $\mathcal{E}_{r,eff}$, $\mathcal{E}_{\infty}(\Omega)$ e \mathcal{E}_h (gradici) $\mathcal{E}_{\infty}(\Omega)$ Bassa \mathcal{E}_h : "indultori"
Combin 1 Ereff Alta W : "Ember Entori"
10 10 10
STRUTIONA BILAVICIATA, le microstisse sono s'bilanciate.
Guardonsto dall'alto: PATCH ET WETRIP UNE
And the state of t

$$\begin{split} & \underbrace{f_{m}(z)} = \underbrace{\exists_{t}z \cdot \exists_{m}} = \underbrace{\exists_{m} - (z \cdot \exists_{m}) \cdot z}^{15/4/15} \\ & \underbrace{\exists_{t}z \cdot \exists_{m}} = \underbrace{\exists_{-2}z}^{1} \\ & \underbrace{\exists_{-2}z \cdot \exists_{m}} = \underbrace{\exists_{-2}z}^{1} \\ & \underbrace{\exists_{-2}z \cdot \exists_{-2}z}^{1} \\ & \underbrace{\exists_{-2}z$$

med per acoppione l'inpedenta Basa irradiavione, perché le Jn si canallano or vicender. TRAVEOFF Con le BANDA Due conditioni: - line close to the grandplace. ridue l'irradiazione spirier - Banda che avmenta con l'armenter del volume to il patch (piste) e il grand plane Viene fuou dalla teoria generale dei risonotori Avende in volume, la frq. di risonemiter $f_2 \cong \text{costante} \cdot \left(\left(\frac{n}{\alpha} \right)^2 + \left(\frac{n}{b} \right)^2 + \left(\frac{\ell}{c} \right)^2 \right)$ Con un volume più basso simuo a frequenze di vismantan più basse e sell'ampiosera assoluta minore Con un fattore di menito Q notto alto il campo rimane ull'interior. Con & alte il campo rimono all'interio. Quindi finziona male con la alti e E alte!

© Proprietà riservata dell'autore - Digitalizzazione e distribuzione a cura del CENTRO APPUNTI - Corso Luigi Einaudi, 55 - Torino / Pagina 103 di 262
$E4,11$ L=2cm W=2,2 cm $E_2 = 2,55$ h=3mm $20/4/15$
$t_{2} = \frac{c}{2\sqrt{\mathcal{E}_{eff}}} \frac{1}{L+2\Delta L} \qquad figure 2 \qquad figure 2 \qquad figure 3 $
1'=1+21 = 1 AL L On Signone d' résonante a
$\lambda_{g} = \frac{1}{4} = \frac{2}{\sqrt{\epsilon_{g}}} \cdot \frac{1}{4} , \lambda_{g} = \frac{c}{\sqrt{\epsilon_{g}}}$
Se $L = A \rightarrow f_{Z_1}$
Se $L = B \rightarrow f_{2}$
Se $A = B \rightarrow f_2 = f_{22}$ possibilità di polaristatione circolate
$\mathcal{E}_{\text{reff}} = \mathcal{E}_{\text{eff}} = \frac{\mathcal{E}_{2} + 1}{2} + \frac{\mathcal{E}_{2} - 1}{2} \left(1 + 12 \frac{h}{W}\right)^{\left(-\frac{1}{2}\right)} \Delta L L \Delta L$
$\frac{\Delta L}{h} = 0,412 \frac{\mathcal{E}_{eff} + 0,3}{\mathcal{E}_{eff} - 0,212} + \frac{1}{h} + 9,262$
$\mathcal{E}_{\text{eff}} = 2,26 \qquad \mathcal{E}_{\text{eff}} = 2,27$ $W = A \qquad \qquad W = B$
$W = A$: $\frac{\Delta L_A}{h} = 0,487 \longrightarrow \Delta L_A = 1,461 \text{ mm}$
$f_{z_A} = 4,34,647$
W=B: ALB = 0,4902 -> ALB = 1,47 mm
f ₂ = 3,99 GHz

Supposition theorem construction and continuous a case of CHINGA APUNITY. Core large instant, 16 a now
$$L_{\rm pot} = 243$$
 $L = 0.807 \text{ mm}$
 $L = 1.000 \text{ mm}$
 L

$$y = y + y' = \frac{g_L + jf(kx_0)}{1 + jg_L f(kx_0)} + \frac{g_L - jf(kx_0)}{1 - jg_L f(x_0)} \xrightarrow{\text{Radiship}}$$

$$y = \frac{(y_L + jx_0)(1 - jx_0 + y_1)}{1 - jx_0 + y_1} + \frac{(y_L - jx_0)(1 + jy_1x_0)}{1 + y_1^2x_0^2}$$

$$y = \dots = \frac{2g_L + 2g_Lx_0^2}{1 + y_1^2x_0^2} = \frac{2g_L (1 + x_0^2)}{1 + y_0^2x_0^2}$$

$$y + y + y + y_1^2x_0^2 = 2g_L + 2g_Lx_0^2$$

$$x^2 + y_1 + y_1^2x_0^2 = 2g_L - y_1$$

$$x^2 + y_1 + y_1^2x_0^2 = 2g_L - y_1$$

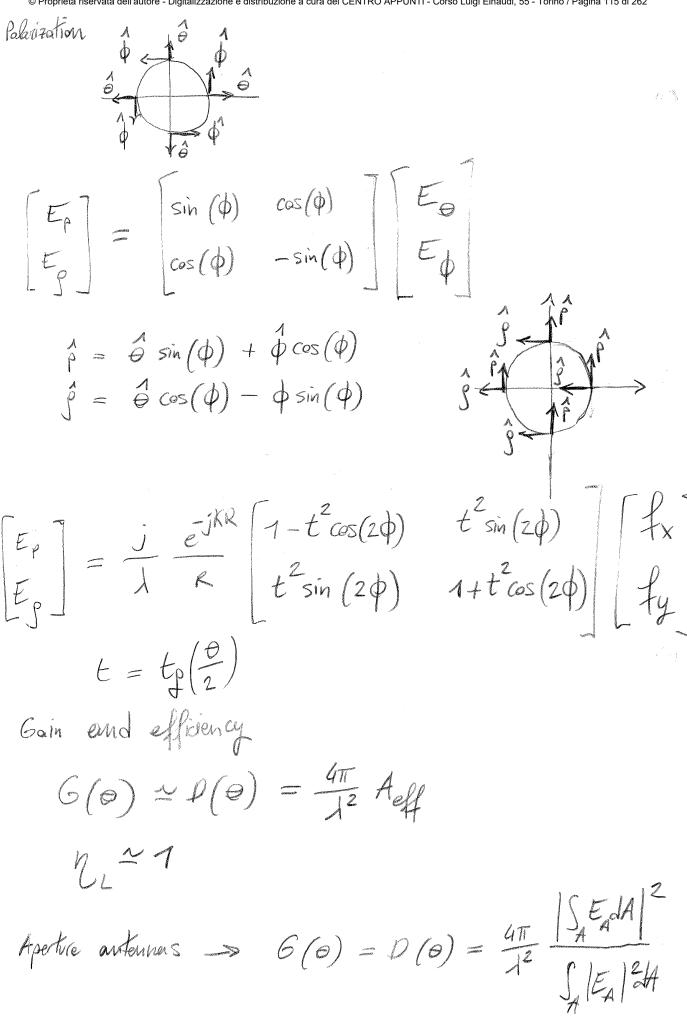
$$x^2 + y_1 + y_1^2x_0^2 = 2g_L - y_1$$

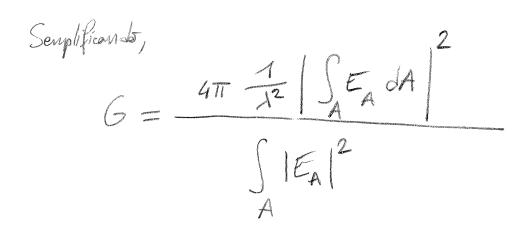
$$x^2 + y_1 + y_1^2x_0^2 = 2g_L - y_1$$

$$x^2 + y_1 + y_1^2x_0^2 = 2g_L - y_1$$

$$x^2 + y_1 + y_1^2x_0^2 = 2g_L - y_1$$

$$x^2 + y_1 + y_1^2x_0^2 = 2g_L - y_1$$


$$y = x^2 + x^2 + y_1^2x_0^2 = x^2 + x$$


y è notte siè piccala di 1

mente G ~ mS, Sul 103

Va toto othiniserate

patch,

God in position give alabato,
$$\int_{-\frac{L}{2}}^{\frac{L}{2}} \frac{\int_{-\frac{L}{2}}^{\frac{L}{2}} \frac{\int_{-\frac{L}{2}}^{$$

FRIMO STEP
$$\left(\frac{-a}{2}, \frac{a}{2}\right) \rightarrow \left(-1, 1\right)$$
 $X = \frac{2x'}{a} \quad |x'| < \frac{a}{2}$
 $X' = \frac{a}{2} \quad |x'| < \frac{a}{2$

Effects of the findance error

$$F(M) = ct. \int f(X) e^{jMX} dX$$

$$\phi(X) = -\beta x^{2}$$

$$F(M) = ct. \int f(X) e^{jMX} - \beta x^{2} dX$$

$$F(M) = ct. \int f(X) e^{jMX} - j\beta x^{2} dX$$

$$F(M) = ct. \int f(X) e^{jMX} dX = j \int f(X) e^{jMX} x^{2M} dX$$

$$\int f(X) e^{jMX} dX = j \int f(X) e^{jMX} dX$$

$$\int f(X) e^{jMX} dX = j \int f(X) e^{jMX} dX$$

$$\int f(X) e^{jMX} dX = j \int f(X) e^{jMX} dX$$

$$\int f(X) e^{jMX} dX = j \int f(X) e^{jMX} dX$$

$$\int f(X) e^{jMX} dX = j \int f(X) e^{jMX} dX$$

$$\int f(X) e^{jMX} dX = j \int f(X) e^{jMX} dX$$

$$\int f(X) e^{jMX} dX = j \int f(X) e^{jMX} dX$$

$$\int f(X) e^{jMX} dX = j \int f(X) e^{jMX} dX$$

$$\int f(X) e^{jMX} dX = j \int f(X) e^{jMX} dX$$

$$\int f(X) e^{jMX} dX = j \int f(X) e^{jMX} dX$$

$$\int f(X) e^{jMX} dX$$

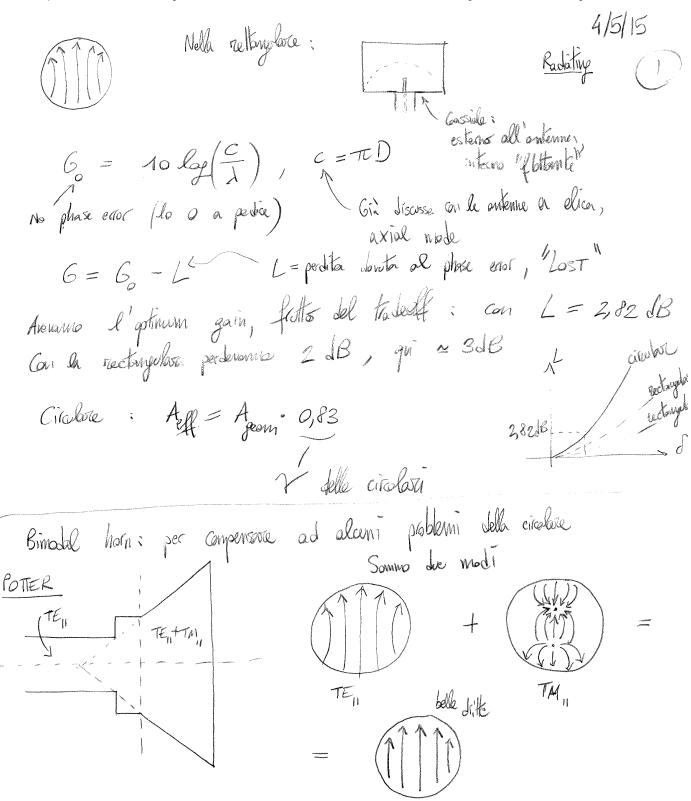
$$\int$$

$$F(n) = \frac{a}{2} \left[\int e^{jn\omega X} e^{j\alpha X} dx - \int e^{jnX} e^{-j\alpha X} dx \right] \frac{274415}{274415}$$

$$e^{j(n+\alpha X)} = \frac{a}{2} \left[\int e^{j(n+\alpha X)} dx - \int e^{j(n-\alpha X)} dx \right] \frac{274415}{27}$$

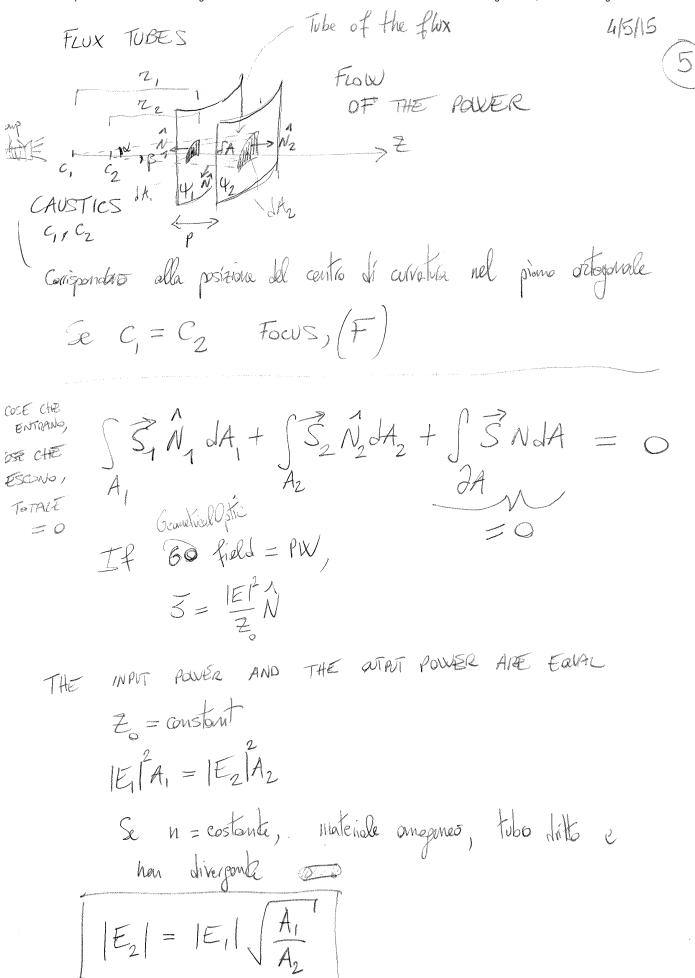
$$e^{j(n+\alpha X)} = \frac{a}{2} \left[\int e^{j(n+\alpha X)} dx \right] \frac{a}{27} \left[\int e^{j(n+\alpha X)} dx \right] \frac{a}{27} \left[\int e^{j(n+\alpha X)} dx \right] \frac{a}{27} \frac{a}{27} \left[\int e^{j(n+\alpha X)} dx \right] \frac{a}{27} \frac{a}{2$$

I (M) inizia da O, mostando en comportamente 27/4/15 generale simile alle rettarpolori coi lue seni. Ma con J, (m) i side lobes sono più bassi. Deve va l'energia? Fin'ora abbiamo pensats a 2 assi ottogonali, messi poi assienne con fuzioni di seni e coseni Nell'apetria retargalara i side lobes sono concentrati supli assi ortgonali, en la circolore i side lotes non si concentiano, borsi si spalmano unformente! Quindi "di picco", se visti su and un piomos, sono più lassi Distributioni con simultia di rotartionex (independent of) $f(z, \phi) = f(z) = (1 - \frac{2}{2})^{p}$ $F(\Theta, \Phi) = 2\pi a^2 \int_{-\pi}^{\pi} (1-\tau^2)^p \int_{0}^{\pi} (M\tau)^{2} d\tau = \pi a^2 \frac{2^p \rho! \int_{P+1}^{\pi} (M\tau)^{2} d\tau}{M^{p+1}}$ $\rho = 0$ \longrightarrow uniform distribution \longrightarrow $TCa^2\left(2\frac{J_{\bullet}(m)}{m}\right)$ $f(z) = a + a_1 \left(1 - z^2\right) + a_2 \left(1 - z^2\right)^2 + \dots = \sum_{i=0}^{\infty} a_i \left(1 - z^2\right)^i$ $F(\Theta, \Phi) = \pi a^2 \sum_{i=1}^{2} a_i \frac{2^{i+1} i' J_{i+1}(M)}{M^2}$, $M = Kasin(\Theta) M$


$$\frac{1}{\lambda} = \frac{1}{\cos(\Theta)} - 1 = \frac{1}{2\pi}$$

$$\frac{1}{\lambda} = \frac{1}{\cos(\Theta)} - 1 = \frac{1}{2\pi}$$
Apposition of the distribution in good of the distributions; deli grandistic error travision
$$\frac{1}{\lambda} = \frac{1}{\pi \Theta} \frac{1}{\pi}$$
Abbrauco de distributions; del grandistic error travision
$$x = \frac{1}{\xi} \left(\frac{\beta \xi'(n)}{\xi(n)} \right)$$
Mellende $\Theta = 0$, $\alpha = \frac{1}{\xi} \left(\frac{\beta \xi'(n)}{\xi(n)} \right) = question de de de $\theta = 0$, $\alpha = \frac{1}{\xi} \left(\frac{\beta \xi'(n)}{\xi(n)} \right) = question de de $\theta = 0$, $\alpha = \frac{1}{\xi} \left(\frac{\beta \xi'(n)}{\xi(n)} \right) = question de de $\theta = 0$, $\alpha = \frac{1}{\xi} \left(\frac{\beta \xi'(n)}{\xi(n)} \right) = question de de $\theta = 0$, $\alpha = \frac{1}{\xi} \left(\frac{\beta \xi'(n)}{\xi(n)} \right) = question de de $\theta = 0$, $\alpha = \frac{1}{\xi} \left(\frac{\beta \xi'(n)}{\xi(n)} \right) = question de de $\theta = 0$, $\alpha = \frac{1}{\xi} \left(\frac{\beta \xi'(n)}{\xi(n)} \right) = question de de $\theta = 0$, $\alpha = \frac{1}{\xi} \left(\frac{\beta \xi'(n)}{\xi(n)} \right) = question de de $\theta = 0$, $\alpha = \frac{1}{\xi} \left(\frac{\beta \xi'(n)}{\xi(n)} \right) = question de de $\theta = 0$, $\alpha = \frac{1}{\xi} \left(\frac{\beta \xi'(n)}{\xi(n)} \right) = question de de $\theta = 0$, $\alpha = \frac{1}{\xi} \left(\frac{\beta \xi'(n)}{\xi(n)} \right) = question de de $\theta = 0$, $\alpha = \frac{1}{\xi} \left(\frac{\beta \xi'(n)}{\xi(n)} \right) = question de de $\theta = 0$, $\alpha = \frac{1}{\xi} \left(\frac{\beta \xi'(n)}{\xi(n)} \right) = question de de $\theta = 0$, $\alpha = \frac{1}{\xi} \left(\frac{\beta \xi'(n)}{\xi(n)} \right) = question de de $\theta = 0$, $\alpha = \frac{1}{\xi} \left(\frac{\beta \xi'(n)}{\xi(n)} \right) = question de de $\theta = 0$, $\alpha = \frac{1}{\xi} \left(\frac{\beta \xi'(n)}{\xi(n)} \right) = question de de $\theta = 0$, $\alpha = \frac{1}{\xi} \left(\frac{\beta \xi'(n)}{\xi(n)} \right) = question de de $\theta = 0$, $\alpha = \frac{1}{\xi} \left(\frac{\beta \xi'(n)}{\xi(n)} \right) = question de de $\theta = 0$, $\alpha = \frac{1}{\xi} \left(\frac{\beta \xi'(n)}{\xi(n)} \right) = question de de $\theta = 0$, $\alpha = \frac{1}{\xi} \left(\frac{\beta \xi'(n)}{\xi(n)} \right) = question de de $\theta = 0$, $\alpha = \frac{1}{\xi} \left(\frac{\beta \xi'(n)}{\xi(n)} \right) = question de de $\theta = 0$, $\alpha = \frac{1}{\xi} \left(\frac{\beta \xi'(n)}{\xi(n)} \right) = question de de $\theta = 0$, $\alpha = \frac{1}{\xi} \left(\frac{\beta \xi'(n)}{\xi(n)} \right) = question de de $\theta = 0$, $\alpha = \frac{1}{\xi} \left(\frac{\beta \xi'(n)}{\xi(n)} \right) = question de de $\theta = 0$, $\alpha = \frac{1}{\xi} \left(\frac{\beta \xi'(n)}{\xi(n)} \right) = question de de $\theta = 0$, $\alpha = \frac{1}{\xi} \left(\frac{\beta \xi'(n)}{\xi(n)} \right) = question de de $\theta = 0$, $\alpha = \frac{1}{\xi} \left(\frac{\beta \xi'(n)}{\xi(n)} \right) = question de de $\theta = 0$, $\alpha = \frac{1}{\xi} \left(\frac{\beta \xi'(n)}{\xi(n)} \right) = question d$$$$$$$$$$$$$$$$$$$$$$$$$$$$

Aprendo in entrambe le dimensioni pyramidal hem 27/4/15
leto fronte
a b B
$E_{\alpha} = E_{\alpha} e^{j\phi(x,y)}$ phase effor
$E_{\alpha} = E_{\alpha \alpha} e^{-\sqrt{(x/4)}}$ phase effor
Come si distorce la fase! L'écrire di nibedo nell'avouiro" del compo
i KL d'appende del punts de asservations
L'errole è d, ed e RUADRATICO
i voir f, s'vouia avadration MENTE rispets alla posizione X
Tispels alla positione \times $L \longrightarrow L + \delta$ $L^2 + \chi^2 = (L + \delta)^2 = L^2 + 2L\delta + \delta$ $K\delta = 2\pi \times 2$ $V \longrightarrow L + \delta$ $L^2 + \chi^2 = (L + \delta)^2 = L^2 + 2L\delta + \delta$ $V \longrightarrow L + \delta$ $L \longrightarrow L \rightarrow $
$KS = \frac{2\pi}{1} \frac{\chi^2}{RL} \rightarrow \int_{\text{max}} \frac{1}{1} \frac{1}{1$
L'errole d'fose è più ribevante in me dei due piani di irrodizzione,
or seconde d'anne faccionne l'antenna. Ecces peche i proti voti del diagramme di madiossione si riempiono.


Con dei phase error:
-Il Guadagno decrésee
- Il "beam" si allarga An e i null tendoro a
scomparile.
G = 6/10 - Le - Lh phase effor Plant e ed h di an mostar dei grafici
Come possionno AVMENTARE il gradyno? Tenendo L costrute dobbionno per foren avmentare l'oren AB
"strando" I Pantenna il guadagno aumenta MA aumenta pue il
phase errors. Questi valori sono in dipendenta quadratica. Nota che aumentavie il phase error fen CALARE Il guardagno. TRADE OFF (Orefice Antennas 2013 Lig 2.21
formmet (a s,t in ascissa
t rispetts and the service of the se

Nell B $\frac{17}{2} = \frac{172}{2} = 2.4$ levon suffa cura promo promo $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$
B/A = 2,4 = 1,5 In questo aso, senso, phase error A/A = 1,6 General rule: B/A = 4/3 per ottenere un Symmetric bearn Melto importante! Usorie i profici pur l'es i Jell'assignment
Come e perche voylions il symmetric beson? Per la polonitatione.
$\begin{bmatrix} E_{\varphi} \end{bmatrix} = \begin{pmatrix} -\sin(\theta) & \cos(\theta) \end{pmatrix} \begin{bmatrix} E_{\varphi} \end{bmatrix}$ $\begin{bmatrix} E_{\varphi} \end{bmatrix} = \begin{pmatrix} \cos(\theta) & \sin(\theta) \end{pmatrix} \begin{bmatrix} E_{\varphi} \end{bmatrix}$ $\begin{bmatrix} \cos(\theta) & \sin(\theta) \end{pmatrix} \begin{bmatrix} \cos(\theta) & \cos(\theta) & \cos(\theta) \end{bmatrix}$ $\begin{bmatrix} \cos(\theta) & \cos(\theta) & \cos(\theta) & \cos(\theta) & \cos(\theta) \end{bmatrix}$ $\begin{bmatrix} \cos(\theta) & \cos(\theta) & \cos(\theta) & \cos(\theta) & \cos(\theta) & \cos(\theta) & \cos(\theta) \end{bmatrix}$
Il cross ple sevice o nel centro, avendo il symmetric pattern UdB Voptionno una x pel più bassa possibile -20dB

	Quant le m range di frequenze, qual è quelle contale?	1/5/15
	La Vouenimo ma resa "flat" ta le frequence.	2
	La Vouennemo ma resa "flat" to le frequence. Il segnale dei telefonini è stetto di Lombe, loya	
ma	volend recipirate in inpulso II -> ~	Married Marrie
	1 - Set Storing ("Slat" dell'amterma)	
	Con a WRgo, $f = 6,56$ GHz, non vscenno	mai
	una quida soto 3 6HE perchi le variationi dei parametr	
	Con la WR30, $f = 6,56$ 6tte, non escennio una quida sotto 3 6tte perchi le variazioni dei parametri davabbero (sotto 8 6tte) nigoste tapo seo uniformi	
	Vari modi per connettere l'antenna tetti regolati da parametri. Tutti	
	Teth regulate de paramete: 1011)	
	homno vantage e svantage	
	honno vanteger e svanteger Altersone alla complessità meccamica	

Proposed invariant supplications a care of IENTRO APPINTI- Corporting invariants of the second
$$V(E) = V(E) = V(E$$

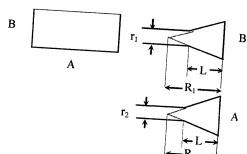
Politecnico di Torino

MS-level of the Bologna process in Electronic Engineering - Torino (01NVEOQ) MS-level of the Bologna process in Telecommunication Engineering – Torino (01NVEOT)

Radiating electromagnetic systems

a.y. 2014-2015

Problem Set No. 5 (page 1/2)


Issued: April 28, 2015

May 6, 2015

The assignment should be handled in BEFORE the class on the due date.

Problem 5.1

Design a horn antenna of dimensions $A \times B$ (A>B) and length L=8 cm, fed by a rectangular waveguide working in the fundamental mode TE_{10} at the frequency of f=22 GHz. The -10 dB angles in the two principal planes $E(\varphi = 90^{\circ})$ and $H(\varphi = 0^{\circ})$, θ_{0E} and θ_{0H} respectively should be equal, and have a value of $\theta_{0E} = \theta_{0E} = \theta_0 = 55^\circ$ (symmetric radiation pattern).

- 1. design the dimensions A and B of the aperture;
- 2. determine the gain of the antenna;
- 3. determine the distance r from the aperture, for which the magnetic field has an amplitude of $|H| \le 2 \cdot 10^{-3}$ A/m, when the feeding power is equal to $P_{feed} = 50$ mW.

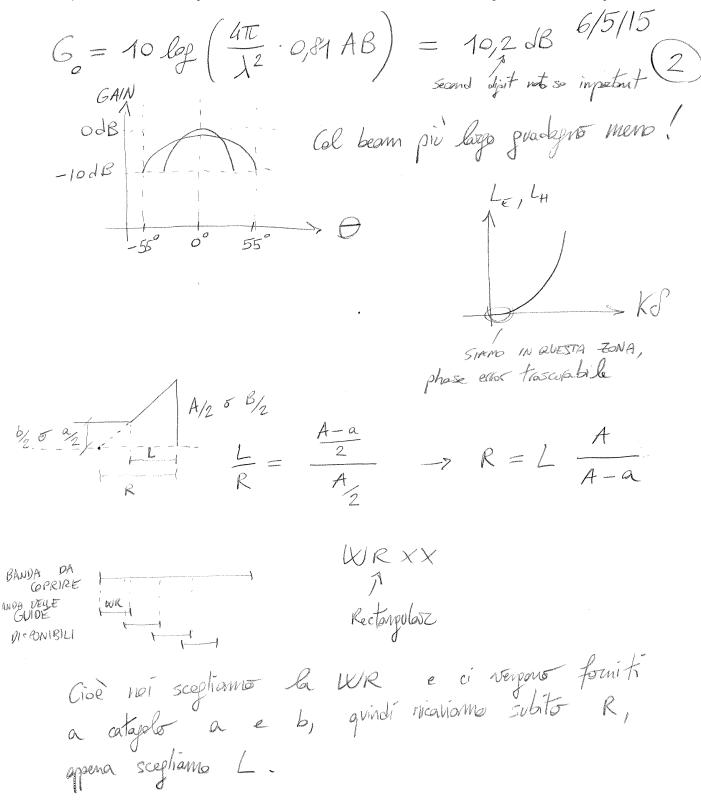
The far field radiated by a rectangular aperture fed by TE_{10} mode (with phase error) has the

$$\underline{E} = \frac{jZ_0}{2r\lambda_0} e^{-jkr} \underline{P}_e(\theta, \varphi)$$

with
$$\underline{P}_{e}(\theta, \varphi) = -2H_{0}AB\frac{2}{\pi}[\hat{\varphi}\cos\varphi + \hat{\theta}\sin\varphi]\cos^{2}\frac{\theta}{2} \cdot \widetilde{F}_{H}\left(\frac{A}{\lambda}\sin\theta\cos\varphi\right) \cdot \widetilde{F}_{E}\left(\frac{B}{\lambda}\sin\theta\sin\varphi\right)$$

Problem 5.2

Problem 5.2


Design an optimum rectangular horn antenna with symmetric radiation pattern (referring to the two principal planes) with an angle of -15 dB at $\theta_0 = 30^{\circ}$. Study the feasibility and determine the position of the phase center in the two principal planes.

Problem 5.3

Let's consider a circular horn of length L=12 cm and diameter D=6 cm working at the

- 1. determine the -3 dB angle in the two principal planes;
- 2. evaluate the gain of the antenna;
- 3. determine the antenna efficiency of the antenna.

Let's consider a corrugated horn antenna working in the frequency range f=[7,10] GHz. Indicate the dimensions of the aperture (diameter and length) and the number of tooth that will guarantee a decay of the radiation pattern of 15 dB (with respect to the broadside

© Proprietà riservata dell'autore - Digitalizzazione e distribuzione a cura del CENTRO APPUNTI - Corso Luigi Einaudi, 55 - Torno / Pagina 159 di 282

$$G = \frac{dP/dZ}{dP/dJ} = \frac{|E|^2}{Z_0}$$

$$ARREZ = \frac{6/5/15}{4\pi n^2}$$

$$E = \frac{2}{Z_0} + \frac{1}{Z_0}$$

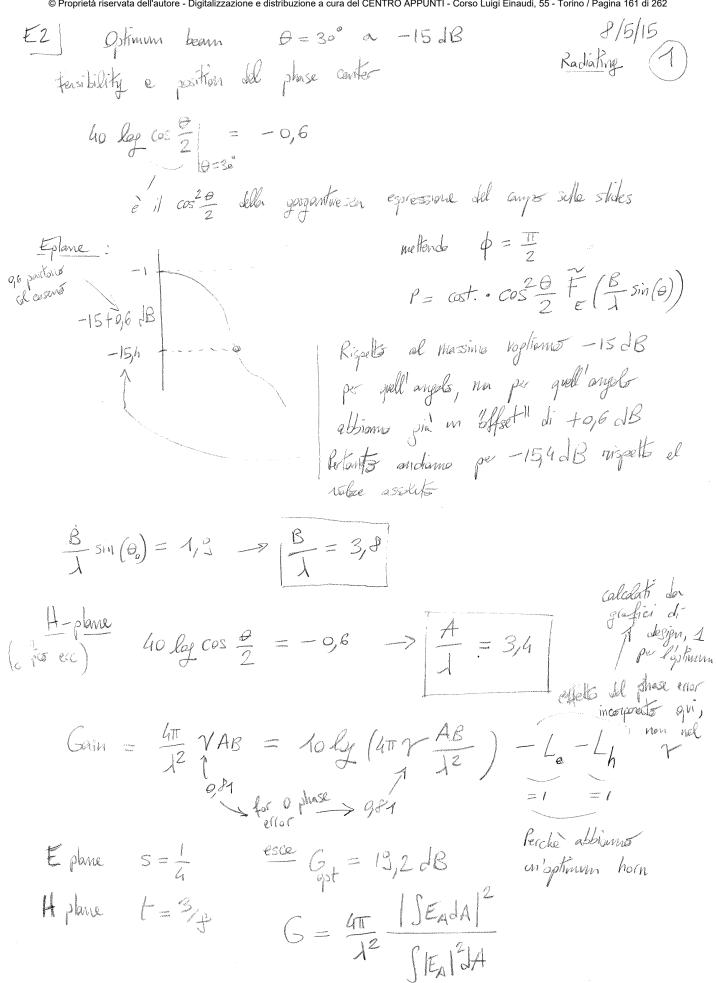
$$E = \frac{1}{Z_0} + \frac{1}{Z_0} + \frac{1}{Z_0}$$

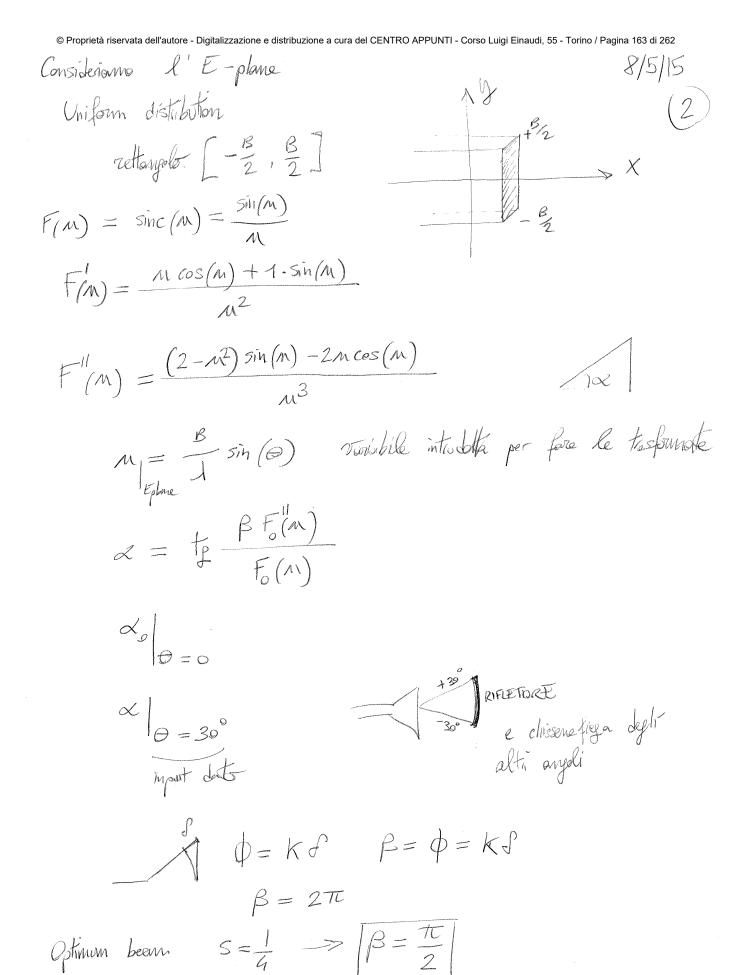
$$E = \frac{1}{Z_0} + \frac{1}{Z_0} +$$

5,2 ASCISSA TROMBA CONICA

$$M = \frac{TD}{J} \sin (\Theta)$$

ON THE E-plane
$$\max = -0,6 \text{ JC}$$


$$-3 \text{ JB} \longrightarrow -3,6 \text{ JB} \text{ on the } 5 = 0,25 \text{ corve}$$


$$\left[TP \sin(\Theta)\right] = 1,7 \longrightarrow \sin(\Theta) = \frac{1,7}{TD} \text{ J}$$

$$-3 \text{ JB}$$

$$\Theta = 7,77$$

$$Nell' H-plane \Theta_{1} = 9,25° \text{ pr} M = 2,022$$

portaboloide 8/5/15
Pobbiamo mettere il fuoco fuoco l'ingresso IF perthe
La fixe ravior $di/\alpha = 8,85^{\circ}$ e $d= -27,6^{\circ}$
Bensi la methama a $\frac{d}{1} = -0.74$
$\frac{\text{H-plane}}{\text{H-plane}} F(m) = \frac{\cos(m)}{1 - (\frac{2m}{11})^2}$
I nel promo t ripetiama totto ottenendo $\frac{d}{d} = -0,69$
Eplane: $\chi = -0.74$
H plane: = -9,69
Non possionne soddisfavre entembe le conditioni
L> Valore intermedio? Come lo calcolo? MEOIA GEOMETRICA non tica

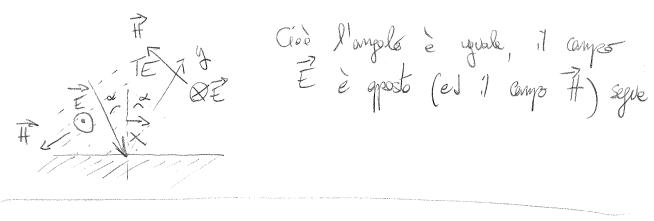
É nomale, me Le g? Le piende parallèle alle
directione principali "della superficie. "====================================
Center of curvative, C, definits salo per delle linee, opin linea ha il suo C e le linee le prendo come réglio
Ci sara un minimo e un mossimo di C, per il dato punto P con la sun nomale n'
R ₂ = max (R) R ₂ = min (R) per 1 cerchio C ₁ e il certho, per l'ellissi per l'ellissi
Conoscendolí posso approssivrate la per l'ellissi $\frac{1}{2}$ diverso $\frac{1}{2}$ $\frac{1}{2$
We most know: elenco di 65e
C ₂

$$E_{2} = \frac{Z_{0}}{4\pi} \sqrt{\frac{R_{0}G_{1}}{R_{0}}}$$

$$E_{1} = \frac{Z_{0}}{4\pi} \sqrt{\frac{R_{0}G_{1}}{R_{0}}}$$

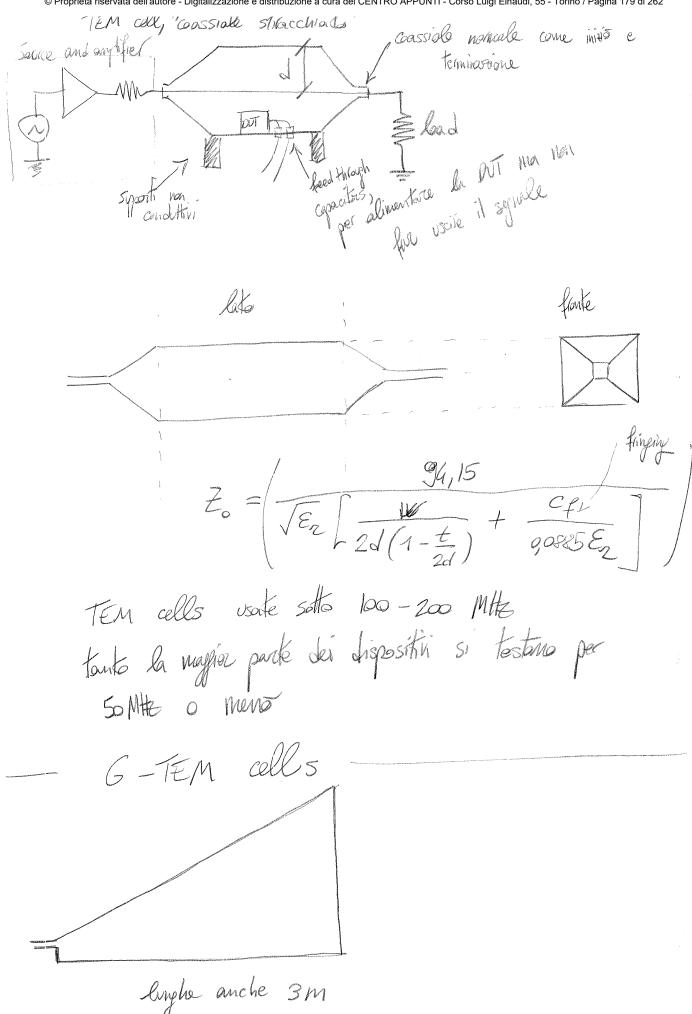
$$E_{2} = \frac{Z_{0}}{4\pi} \sqrt{\frac{R_{0}G_{1}}{R_{0}}}$$

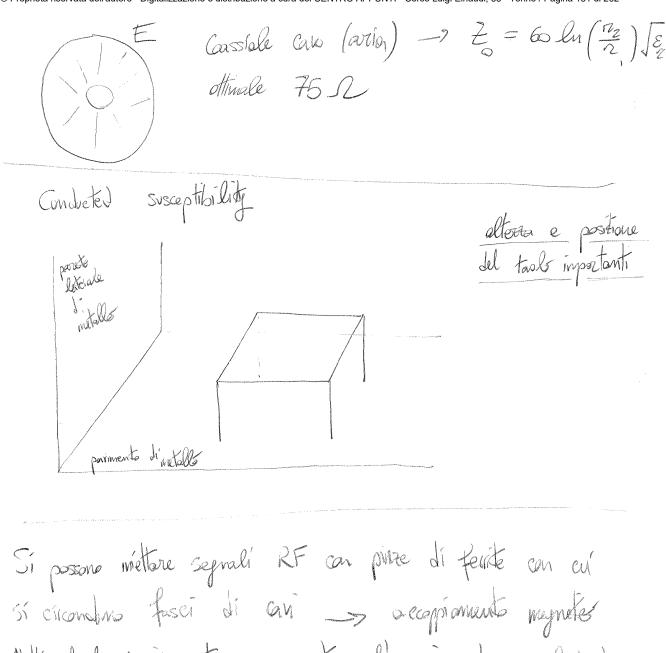
$$E_{3} = \frac{Z_{0}}{4\pi} \sqrt{\frac{R_{0}G_{1}}{R_{0}}}$$


$$E_{4} = \frac{Z_{0}}{4\pi} \sqrt{\frac{R_{0}G_{1}}{R_{0}}}$$

$$E_{5} = \frac{Z_{0}}{4\pi} \sqrt{\frac{R_{0}G_{1}}{R_{0}}}$$

$$E_{6} = \frac{Z_{0}}{4\pi} \sqrt{\frac{R_{0}G_{1}}{R_{0}}}$$


$$E_{7} = \frac{Z_{0}G_{1}}{R_{0}} \sqrt{\frac{R_{0}G_{1}}{R_{0}}}$$


$$E_{7} = \frac{$$

VSPILL = formula simile else dipende de stri
Il feed dell'antenna pessiano forlo coma vapliano
-> Pensonde paro el blo principale () così -> El in generale a dei bassi side lobes
-> Et in grande a dei bassi side lobes
Riflettoi paraldici da 1 6Hz > 100 6Hz
ARECIBO: Spherical reflector
Beam simuetro del feed, se la paralla del riflettore è simuetron
la forna verticale della griplia parabolica ci fa pescare solo la polorii-recorione VERTICALE
Attentione alle giglie, a mesh o meno, ecc.

Voltage Standing WaveRonto : la régliano bassa
Antenia 20-200 11th cancel typole, me ha
m'alto VSWR first a 100 MHZ (quidi m 6000
Antenia 20-200 MHz Cancal dipole, ma ha in alto VSWR for a 100 MHz (quidi in basso quadagno) -> note difficile per l'amplificatione
Non esistemo in Europa delle amere amereiche da
10-12 m di late
la 200 Mte a 16tte Lop periodic antenna, "depria" Basso VSWR, facile da accoppiara ad m amplificatione
Je 50 VSIXIR facile de
Basso VSWR, facile de Al acceptiate ad un amplificatione
Guodagno QUASI costante, vorior di ± 1 dB in gito
tra 100 e 300 MHz
El congrama in retroatione con dei sensori,
sul campo
Da 1 a 40 GHz Con i togli
Da 1 a 40 GHZ Horn antenna The limited index
in boarda
(Jesign anni 40)

Si possono mettore segnali RF can pure di ferrite can cui si circonobrio fasci di cavi _ o ecoppiomento magnetes

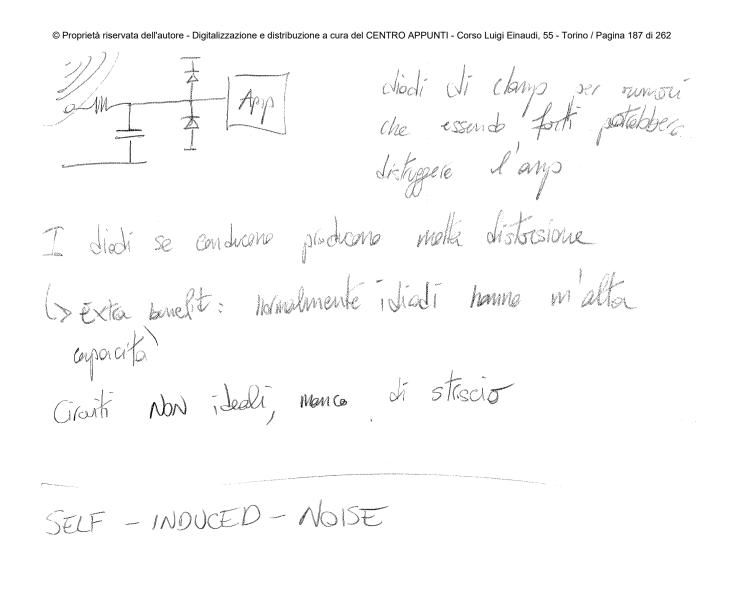
Molto facile inserire topper conserte, l'acoppiamento è forte!

Power AMPLIFIER

Les - 1000 W

Very low distortion, abile a lavorera ad alti Volure

ben raffeddato!


SKIN	EFFEC	
OVIV	The same of the sa	

Non sossionno metrose scheami troppo spessi attorno ori cani, però sotto quelche MHz l'effetto pelle può reggingere anche il mm

MAGNETIC SHIELDING Materiali magnetici come il fesso virescono a confinate le linee di compo megnetico paleggendos le Eddy currents schemens, me Sono suportionall alla freguentor A bersa frequenta nan Surionans Magnetic shielding: DEVE circondure

MAGNETIC FIELD PROBLEMS Riscalda le battère ed i matériali metallici Occhir ai peacemaker ANCHE QUELLI SUI CONNETTICE! PICCOLI 13 Vanno da qualche MHZ Nuclear Electromagnetic Pulse NEMP dt 2 50 KV/ns QUASI IMROSSIBILE
PROTEGOERSI Campi che vozione in hs, Con tENSIDNI ACTISSIME I connettri filtrati tengono 20-50 V Anche ; folmini fomno ~ KV La protestione non viene dois connettors, ma la Protestions ATTIVE come VARISTORI, Zener, Longarde al NEEN

VARISTORI, Zener, Longarde al NEEN Supli autoplani russi usavano valude per proteggersi

Politecnico di Torino

MS-level of the Bologna process in Electronic Engineering – Torino (01NVEOO) MS-level of the Bologna process in Telecommunication Engineering – Torino (01NVEOT)

Radiating electromagnetic systems

a.y. 2014-2015

Problem Set No. 6

Issued: May 13, 2015 Due: May 20, 2015

Problem 6.1

A satellite communication system with the distance between the satellite and ground station of R=36000 km is working at the frequency of f=18 GHz. The receiver on the board is equipped with an antenna having a gain of G_r =25 dB, which is matched (to the receiver) and presents the same polarization as the antenna at the ground station which is fed by a power of $P_f=10 \text{ kW}.$

Design the ground plane parabolic antenna, that fulfills the following specifications:

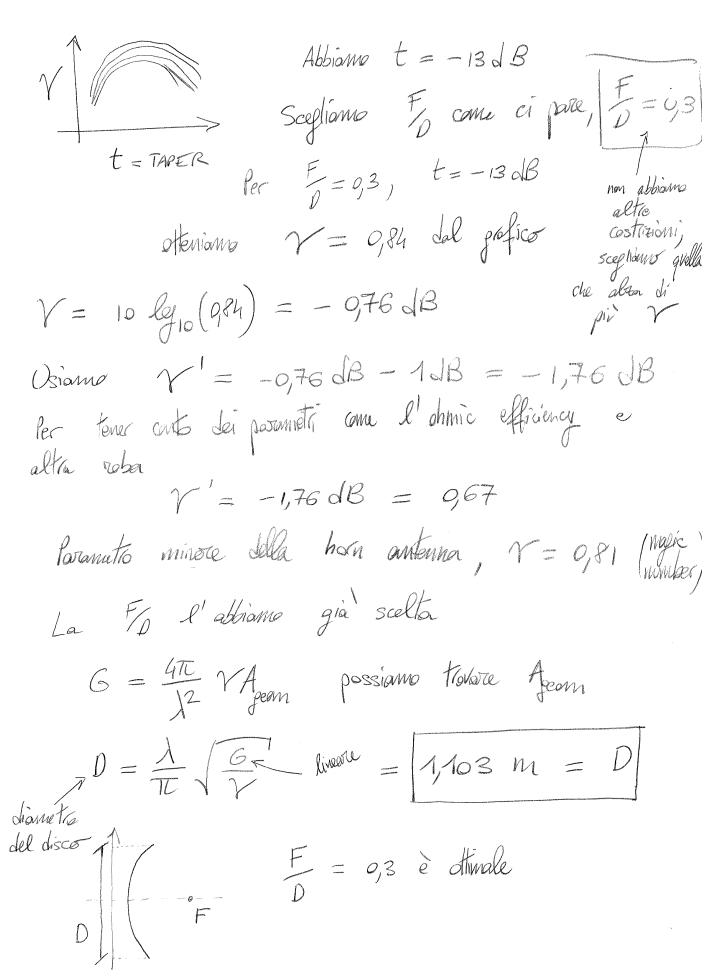
- 1. the receiver input power $P_0 \ge 70$ dBm;
- 2. Starting with the first side-lobe, the side-lobe levels are below the envelope $g_{SLOL(\theta)}$, i.e. $g(\theta) \le g_{SLL(\theta)}$ specified by

$$g_{SLL(\theta)}/G\Big|_{dB} = \begin{cases} -22, & \theta_{1L} < \theta < 4.5^{\circ} \\ -33, & \theta > 4.5^{\circ} \end{cases}$$
where G is the maxim gain of the (parabolic) antenna and θ_{1L} indicates the position of the

first null. One can assume $\theta_{1L} \approx 1.5$ HPBW.

The design should indicate the (i) optimum values of the diameter (D) and (ii) focal ratio (f/D), which should be in the interval from 0.3 to 0.4. To incorporate all unquantified effects (i.e. blocking), it is indicated to consider an additional reduction of the aperture efficiency of 1 dB with respect to the graphs (in the written notes).

A parabolic antenna with f/D = 0.4 working at the frequency of f = 2.54 GHz is fed by a power of P_{fed} =55W. It is required that at a distance of R=15 km the electric field intensity to be $|E| \le 150$ mV/m, and for $\theta_{1L} < \theta < 20^{\circ}$ the side-lobes to be below the envelope described by:


$$g_{SLL}(\theta)/G|_{dB} = (-20.6 - 1.2 \cdot \theta^{\circ}) dB$$

Consider a further reduction of 1 dB of the aperture efficiency and spill-over with respect to the values in the graphs that will incorporate non quantified effects (in the graphs). Design the reflector and compute the relative field intensity (with respect to the maximum) of the radiated field by the feeding (e.g. horn antenna) toward the rim of the reflector.

Problem 6.3 (extra exercise)

Let's consider a parabolic reflector with D=1m and f/D=0.4, working at a frequency of f=10GHz fed by a rectangular horn antenna with A/ λ = 1.35 and B/ λ =0.9 respectively and with no phase error. Determine the field distribution on the aperture in at least three different points in the principal planes and verify with appropriate approximation the beam width at -3 dB. Hint: Consider $x=1-r^2$, and the points x=0 (rim), x=0.5 and x=1 (center). You may use numerical code (e.g. Matlab) to compute the involved Bessel functions with a higher accuracy with respect of the reading of the graphs in Fig. 2.8 (Aperture antennas, page 32).

gsel/G -> "maschera"
se abbiomo side lobes alti riceviormo "rumore" degli, alti satellita
A terra. Normative "dal prime sidelabe, on!"
9,767 OPPH al cente (sul massimo del primo lobo)
$G = \frac{3.10^4}{(HPBW_{E}^{\circ})(HPBW_{H}^{\circ})}$ $Q_{12} = 1,5 HPBW$
Radiated Power is symmetric HPBW Selimita meta HPBW Selimita meta HPBW Selimita meta della potenza del primo le bo
Studiando le horn volevamo un symmetric beann come quello che stigma considerando
HPBOX = $\sqrt{\frac{3.10^{h}}{G_{\tau}}}$ × 1,14° l'angolo dove portette secisamente per l'avitenna per illadiore il satellite cel primo lobo è con meta della petenza motto strotto, in totale 1,14°. Forte decadimiente nuovondo entre perentamente per illadiore il satellite cel primo lobo è della petenza motto strotto, in totale 1,14°. Forte decadimiente nuovondo

$$D = \frac{1}{7\pi} \sqrt{\frac{G}{r}}$$
Quali somo $G \in \mathcal{T}$?

$$G = ?$$
Siamo nel fur field, $G = \frac{dP/J\Omega}{(Ptod/RR^2)}$

$$\frac{df}{d\Omega} = \frac{|E|^2}{Z_0} essendo nel fur field

Abbiano Pfeel = 55 W, $G = \frac{|E|^2}{Z_0} \frac{4\pi}{feed}$

$$G \stackrel{\vee}{=} 35 \text{ JB}$$

$$HPBIW = \sqrt{\frac{3.10^4}{G}} = 3.07$$

$$\Theta_{1L} = 15 \text{ HPBIW} = 4.6^{\circ} \text{ Ascussia SSL/People}$$

$$g(e)/G = -20.6 - 1.2 \cdot 4.6 = -26.12 \text{ JB}$$
Orenwith SSL/People

Second point $\Rightarrow \Theta = 20$

fusione limite, anomo
$$\int decay sceptend$$

$$\int decay sce$$$$

Topica notivala deli addo - Digitalizzazione e distribuzione a dala dei GENTINO / 1 / ONTI - Gorso Edigi Enidadi, 60 - Totino / 1 agina 15/ di 202
Con una bassa & la varimenta, moi aumentom do en è più difficile projettare
ma aumentom do en è pir difficile projetterce
il feed.
Albertanando il feed (E alto) avmenta l'attennation
Allontanando il feed (E alto) avmenta l'attennosione sparifiche l'a il disco e il feed
$t = \alpha_s + \alpha_t$
attenuation
$ \mathcal{L}_{S} = 40 \log \left[GS\left(\frac{\theta_{M}}{2}\right) \right] = -2,86 \text{ JB} $
$-\alpha_{t} = t - \alpha_{s} = -13 dB - (-2,86 dB) = -10,14 dB$
Connessione tra il riflettore e la horn: «
Design Jeller horn: tenere il prima loba Sotto & F, con un angolo on
$a : P = \{1 : k : k = 1 = k \neq 0 \neq 1\}$
X = relative field intensity richiesta dal Testo
X = relative field intensity raichiesta del tests dell'esercition, (relatione ton il compo E del primo lobe e quello del secondo)
prime 1650 e quello Jel Secondo)