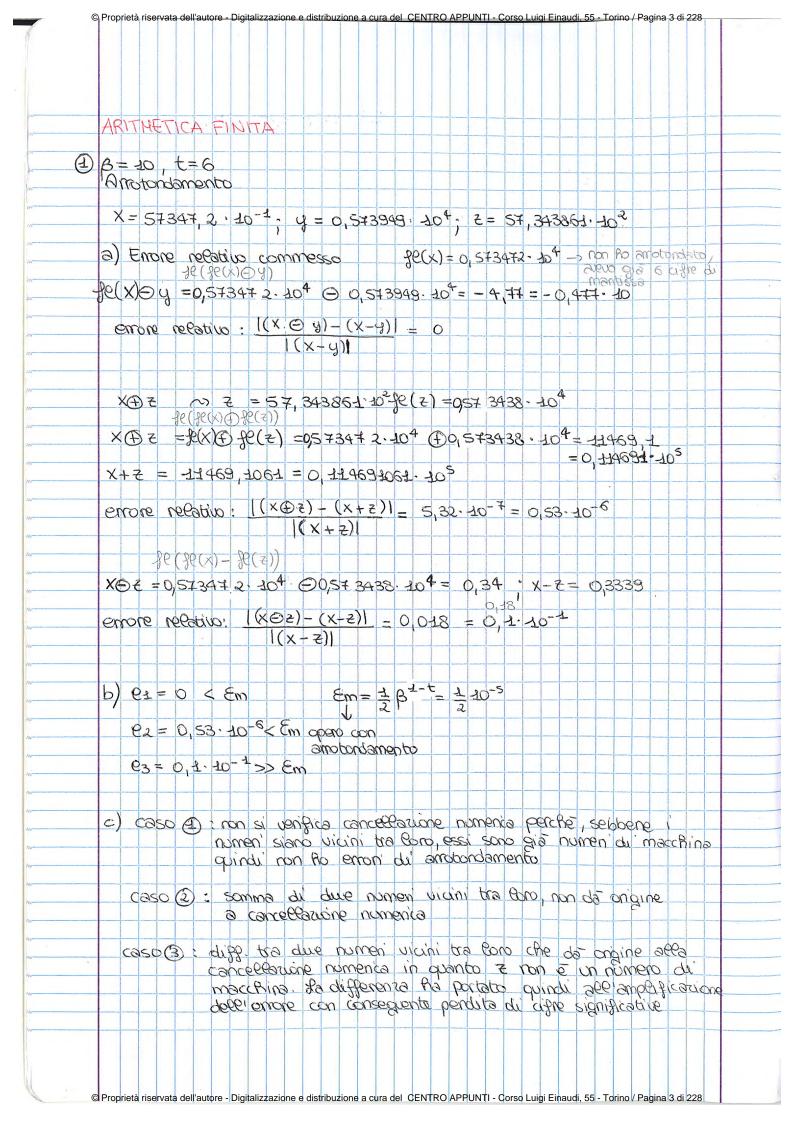
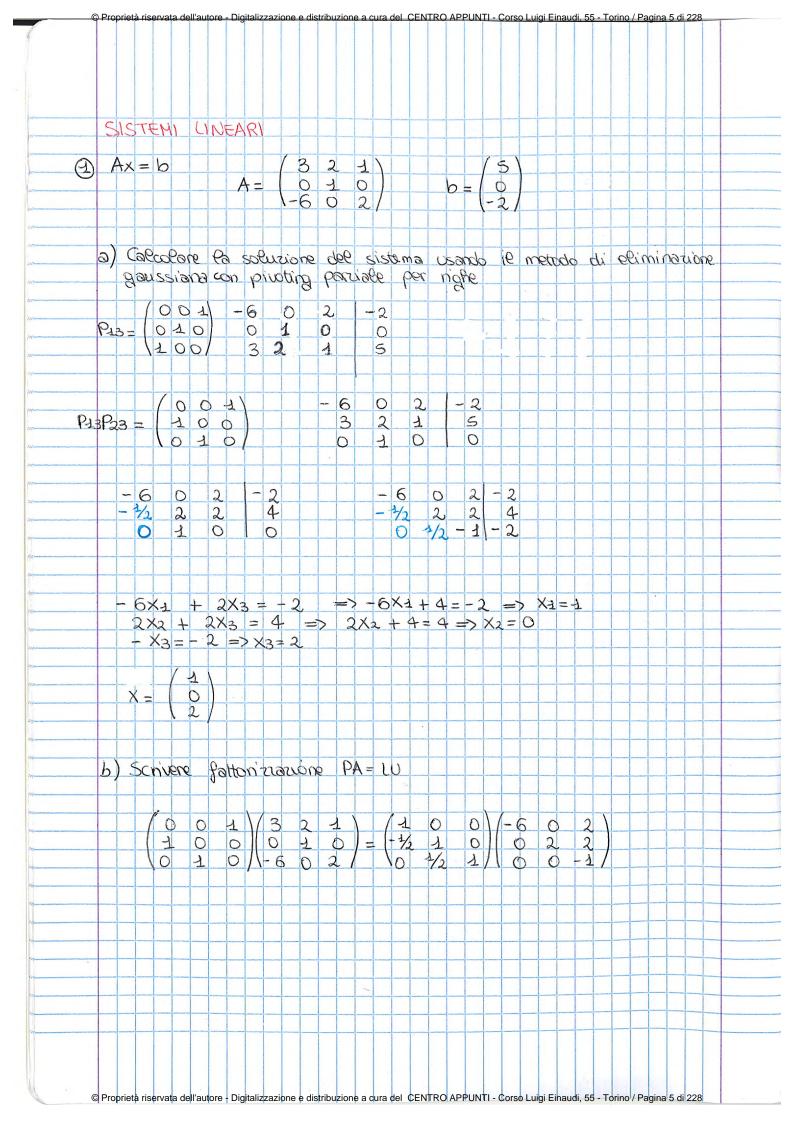
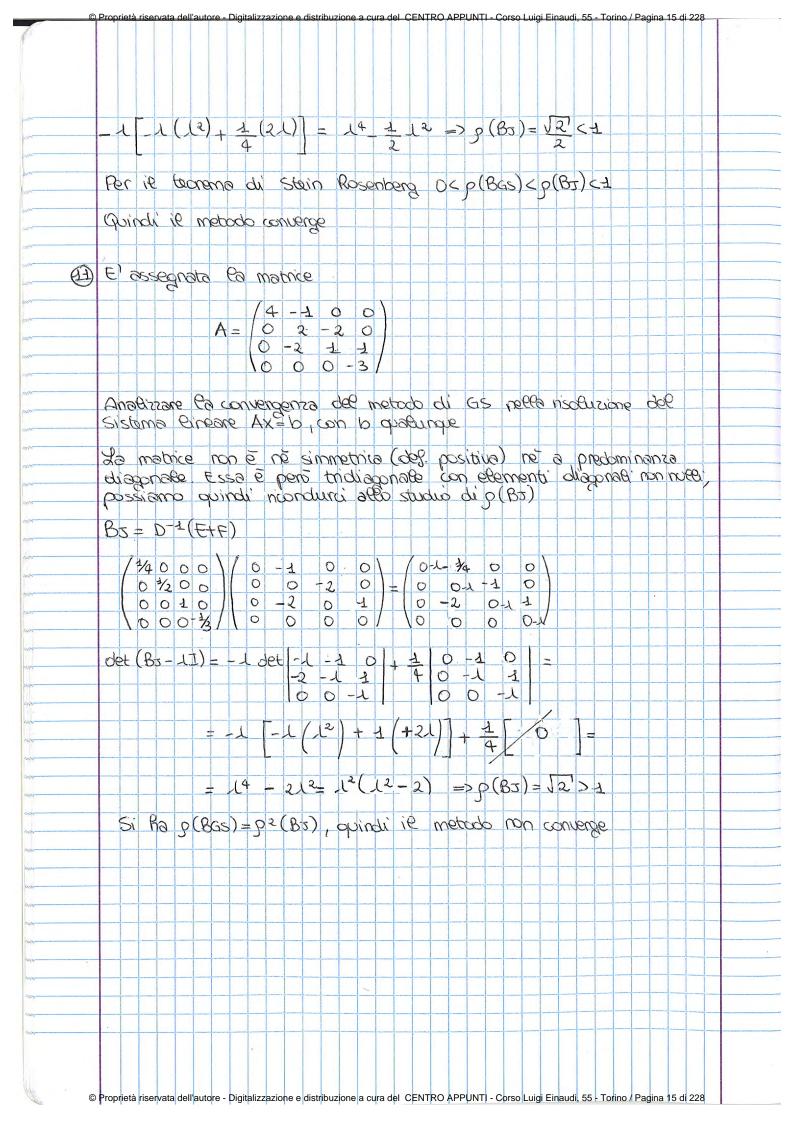
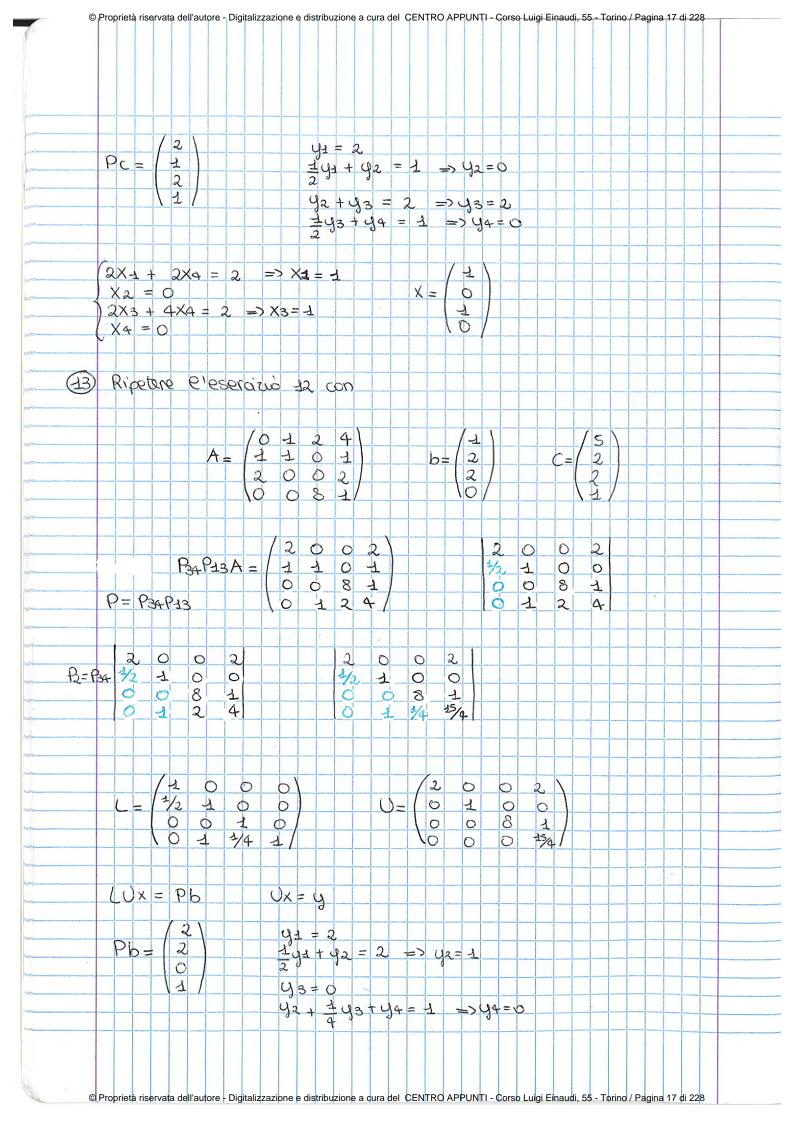


Appunti universitari
Tesi di laurea
Cartoleria e cancelleria
Stampa file e fotocopie
Print on demand
Rilegature


NUMERO: 1690A - ANNO: 2015


APPUNTI


STUDENTE: Contadin


MATERIA: Medodi Numerici e Calcolo Scientifico + Eserc + Temi. Prof. Pieraccini

Il presente lavoro nasce dall'impegno dell'autore ed è distribuito in accordo con il Centro Appunti. Tutti i diritti sono riservati. È vietata qualsiasi riproduzione, copia totale o parziale, dei contenuti inseriti nel presente volume, ivi inclusa la memorizzazione, rielaborazione, diffusione o distribuzione dei contenuti stessi mediante qualunque supporto magnetico o cartaceo, piattaforma tecnologica o rete telematica, senza previa autorizzazione scritta dell'autore.

© Proprietà riservata dell'autore - Digitalizzazione e distribuzione a cura del CENTRO APPUNTI - Corso Luigi Einaudi, 55 - Torino / Pagina 19 di 228

Proprietà riservata dell'autore - Digitalizzazione e distribuzione a cura del CENTRO APPUNTI - Corso Luigi Einaudi, 55 - Torino / Pagina 19 di 228

© Proprietà riservata dell'autore - Digitalizzazione e distribuzione a cura del CENTRO APPUNTI - Corso Luigi Einaudi, 55 - Torino / Pagina 29 di 228

										~																									
(72)	51	•	K	oto.		u'n		Pa		506	200		d,		-	4.4		2	-6	20	ic	th.	~~	Pa	1		40		(.	د	2) .			
12	(0	1)	;	(-	A , é	2)	e		a	1	Jey	iva	sta	310	20	3	3	2	16	11	166	61	62	in	5W	0	d	ì	386	J'S	sa	X	= -	
																															L			-	
	Sa	(x)	1	-	}	3	2	()	() :		Wo	+	Do	Χ -	+ (ΧQ				X	E	-	-	11	0-								H	
	Są			1			S.	2(-)	()	()	Ŧ	Q	1+	6	47	(4	C	LX	ع		X	€	(0	7										
		+	+	-				-	-	+	+	+	-	-	-	+	-		-	-				-	-						-	-	-	-	
	5	(c	(0)	ر داند)	1.)	=		a	0	-	bo	+	(Ó	=	2																			
	\$: \$ \$	(0) (0)	=		a	0_	=	1					-	L																	_	
	- 1				- 1						1						-	-	-												-			-	
	5: 51:	2 (0	(1	0)	=	Sa	(1)(6)		=>		a	0	_	a	7 =																	
	51	2(0) ((0)) =	= (521	(귀)	((د	=	>		6	0_	=	b.	1	=	2															
	SI	2 (:	1)	())	-		5		-	20	1	_	•			1	, .		2	7_1													-	
		~	1		- 1			U	1		~(Ī					7-		41	3		-												
		-	- -	20	1	+ (4	= ;	2_	=	>	C	1=	_	1	_			-																
	J		_)	+	(\				>_	G	_	2	-			_																
m.w.			-					3	X2	+	- 2	×.	+ 1	-		-	-																		
·		5	2 (X	/=			- ×	2	+	2>	×.	1			+	-		-												-			-	
			1								Ĭ	Ĺ																							
		-	+	+		_	_	-		-	-	-	-	-	-	-	-																		
			+	+							-	\vdash	\vdash	-		+	-	-	-																
		+	+	+			_	-		-	-	-	-		_	-	-																		
		t	+									-	-		-																				
			1																																
	-	+	+	+				-	_	-	-	-	-	-		-	-																		
		+	+																																
040			1	-																															
		+	+	+	-		_	-	-		-	-	-			-	-																		
			+			T ç						,																							
			-							-	-	-																							
			+	-		-				-	-	-				-					٠.													-	
			T				a ana ima											-																	
		-	+																																
			+	+	+							-		_																					
		-		_	4											_								-											
		-	+		-				_	-		-				-	H	-						_											

60+W1+W2=4	=> 00=	- W2 - W3	1+4=8	19
2001 + 3002 = 8	=> 201=	8-3002	= 8 =>	W1=84
4W1+9W2=64			3	83
3				
2 (8-302)+90	2 = 64			
	3			

- $16 6\omega^2 + 9\omega^2 \frac{64}{3} = 3\omega^2 = \frac{16}{3} = 3\omega^2 = \frac{16}{3}$
- (3) Nece eservició (1) i punti xo = 1 e x2=3 sono simmetrici poi che hanno pesi uguali. Si tratta di una formula di Newton-Cotos costruita su 3 nodi.

 Nece eservició (2) la formula non comisponde a nessura di quelle studiata
- (1) Ricavare i pesi della formula dei trapeu.

$$n=2 \qquad \int_{a}^{b} g(x) = \omega_{2} g(a) + \omega_{2} g(b)$$

$$f(x) = 1$$
 $\omega_1 + \omega_2 = \int_{b} 1 \, dx = b - \omega$

$$f(x) = 1 \qquad \omega_1 + \omega_2 = \int_0^b 1 \, dx = b - \omega$$

$$f(x) = x \qquad a\omega_1 + b\omega_2 = \int_0^b 1 \, dx = b - \omega$$

$$\begin{pmatrix} 1 & 1 \\ 0 & b \end{pmatrix}\begin{pmatrix} \omega_1 \\ \omega_2 \end{pmatrix} = \begin{pmatrix} b - \alpha \\ (b - \alpha^2) \\ 2 \end{pmatrix}$$

$$\frac{1}{2}$$
 $\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}$

$$\omega_1 + \omega_2 = b - \omega = b - \alpha$$

$$(b-a)\omega_2 = (b-a)(b+a) - a(b-a)$$

$$(b-a)\omega_2 = b^2-a^2-2ab+2a^2$$

$$(b-a)\omega_2 = b^2 + ob - ob - o^2 - ob + o^2$$

$$(b-a)\omega_2 = b^2 - o^2 - 2ob + 2o^2$$

$$(b-a)\omega_2 = (b-a)^2 = o\omega_2 = b-a$$

P) nag, sseue 16	metado du	si biseriore	Dec 9000	ssiman	ea radio	e con
un errore non	superiore a	O.t. moti	rando per	che siet	certi di	guerre
errore superio		1 7				

$$\frac{2}{2}\frac{1}{k+1}$$
 < E => $\frac{3-2}{2}$ < 0,1

$$K+1 > \log_2\left(\frac{bo-ao}{\epsilon}\right)$$

$$K + 1 > \log_2\left(\frac{1}{0,1}\right) = 3,32$$
 $K > \log_2\left(\frac{1}{0,1}\right) - 1 = 2,32$

$$x_1 = \frac{3+2}{2} = \frac{5}{2}$$
 $f(\alpha)f(x_1) = (-1)(\frac{17}{8}) < 0$

$$X_2 = \frac{2+5/2}{2} = \frac{9}{4}$$
 $f(a) f(x_2) = (-1)(\frac{1+}{64}) < 0$

$$x_3 = \frac{2+9/4}{2} = \frac{17}{8}$$
 $f(a)f(x_3) = (-1)(\frac{223}{512}) > 0$

$$Q_3 = X_3$$
; $b_3 = b_2$

$$X4 = \frac{178 + 94}{2} = \frac{35}{16}$$

$$f(x) = X^3 + 5x - \sin(\pi x) + 3$$

a) Si dimostri che la funzione ha un unica radice reale e la si localiza in un intervalla di ampiezza
$$\pm$$
.

 $f'(x) = 3x^2 + 5 - \pi \cos(\pi x)$

$$f'(x) = 3x^2 + 5 - \pi \cos(\pi x)$$

La funzine è continua e va da
$$-\infty$$
 a $+\infty$ (prevalle X^3) e la sua derivata prima è sempre positiva $->$ funzione crescente $->$ un unica soluzione realle

	Proprietà riservata dell'autore - Digitalizzazione e distribuzione a cura del CENTRO APPUNTI - Corso Luigi Einaudi, 55 - Torino / Pagina 47 di 228
	c) Analizzare il comportamento della successione originata tramite il
	metado di Newton a partire da Xo=0
	$x_4 = x_0 + 3(x_0) = 0$ 3 = 4
	$X_1 = X_0 - \frac{3}{3}(X_0) = 0 - \frac{3}{3} = 1$
	$X_2 = X_{\frac{1}{2}} - \frac{g(X_{\frac{1}{2}})}{g(X_{\frac{1}{2}})} = 1 - \frac{1}{2} - \frac{1}{2} = 3$ ie metodo si forma
	$\beta_{i}(\chi_{\overline{i}})$
	d) Determinant X + 200 cm Pa succession prairies travita in ant 1 11
	d) Determinare xo tale che la successione originata tramite il metodo di' Newton (in aritmetica infinita) a partire da xo contenga il valore o.
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	$X_{\underline{1}} = X_{0} - \frac{f(X_{0})}{f'(X_{0})} \Rightarrow 0 = X_{0} - \frac{f(X_{0})}{f'(X_{0})}$
	g'(x0) g'(x0)
	$X_0 = \frac{P(X_0)}{P(X_0)} \implies X_0 = \frac{X_0^3 - 3X_0 + 3}{3X_0^2 - 3}$
	7(0) 30-5
	X_0 $X_0^3 - 3X_0 + 3 = 0$ $X_0(3X_0^2 - 3) - X_0^3 + 3X_0 - 3 = 0$
	$x_0 x_{03} - 3x_{04} = 0 = x_{03} x_{03} - x_{03} + 3x_{0} - 3 = 0$ $3x_{03} - 3 3x_{03} - 3 = 0$
	$3 \times 0^{3} - 3 \times 0 - \times 0^{3} + 3 \times 0 - 3 = 0$ $3 \times 0^{2} - 3$
	3Xo2-3
	2 × 3 2 2 2 2 3 2 2 3 2
	$\frac{2 \times 0^{3} - 3}{3 \times 0^{2} - 3} = 0 \implies 2 \times 0^{3} = 3 \implies \times 0 = 3 \pmod{3}$
	e) Perché nel testo del punto precedente é necessario specificare "in
	antmetica infinita"?
	Perchet nelle aritmetica finita, a causa degli amo tondamenti difficilmento si trova X-1 esattamente uguale a zero.
	autharment si dova 1-1 esallamente apase a tero.
· · · · · · · · · · · · · · · · · · ·	
	╂┈╎┈╎┈╎┈╎┈╎┈╎┈╎┈╎┈╎┈╎┈╎┈
	╂┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼

Be rad	n, 69 cou	reudeuse	obotem 9et	di Neo	ntou be	r approssiman
4) {(2)	8(3)<0					
2) gr($() = 3x^2 - 4$	-X > 0	¥ x ∈ [2	3] (b	astano o	vesta se g(xo)
	x) = 6x >			6	B" (XO)	sono concondi
3,(<u>)</u> < b-		4			
1 30	o) < b-,		8 63			
P'($\frac{0}{b}$ $< b-6$		15			
Te metod	o di Newt	zon conve	Se 9 X* ,	d xo ∈ [2,3] e	e'ordine
	deusa é b:					
	e un passo			coton		
X=2	=> X4 = X	8,(X	2)	- 6		
	X1 = 2	-7				
		4	4			
X2 =	X 1 - 3(X)	L) _ 437 L) _ 198				
	u on pass	m 996 a	spap gelle	secanti		
d) Applica		= X ₂ _	3(X2) 3(X2)-3()	(0)		
X ₀ = 2	=> X ₂ :			10/		
	=> X ₂ :		X1-X0			
X ₀ = 2		_ 2	4(3)	= 3 _		= 3 - 8 -
X ₀ = 2	X2 -	= 3 _	X3-X0		8 8+1 1	= 3 - 8 =
Xo = 2		- 3 _	₹(3) ₹(3) ₹(3)- ₹(2)		8+1	= 3 <u>8</u> =
Xo = 2	X2 -	- 3 -	₹(3) ₹(3) ₹(3)- ₹(2)		8+1	= 3 <u>8</u> =
Xo = 2	X2 -	- 3 -	₹(3) ₹(3) ₹(3)- ₹(2)		8+1	= 3 <u>8</u> =
Xo = 2	X2 -	- 3 -	₹(3) ₹(3) ₹(3)- ₹(2)		8+1	= 3 - 8 =

Per ciasumo dei seguenti probbemi di Cauchy, si stabilisca se ha senso cercare un passo h per un un qualche metodo numerico sia assolutamento stabile; in caso affermativo si esegua un passo di integrazione con i metodi 3a, 3c, 3e, 3f, scepliendo un passo h che soddisfi la condizione di assoluta stabilità.

$$y^{(1)} = y^{(0)} + hg(t^{(0)}, y^{(0)}) = y_{K+1} = 1 + \frac{1}{20}(-10) = \frac{1}{20}$$

	y	(1)	=	-	1 +	-	10	- (14 14 14	+		34	f	(t	D 4	3	ĥ	, -	1_	1	15))											
	y	(1	=	-	1	-	10	-(4	_	+	3	31	t	0+	3	R	,	1	1 3	-)))											
	y	(4) ;		1	-	1	-(1		-	2	3	(-	1	2/)	-			//	İ											
	y	(1) =		2	+	1		(=	1	ļ.	5	7	=	3	7	I	-		-													
	3						11	5	\	۲_ 		2	/		4	0		-				-			<u> </u>								+
	b	\	()	=	40	300			y	(0)	\ <u>=</u>	4				-	-																
								1							ارد	\t																	
									ette		1																						
		G	m	+	1(100	Ξ	40	۵	^	2	n	ari On	6	95	sir	Bi	dica tar	me	ont	9	st	abi	Ce Ce	C	pir	di		nes	so,	nr	ne'	to
	-							-						-																		1	7
	c	(y	11	+ 5	sy	+	6	8=	0						2	1=	y					-											
	(C)		10	O))	ر - 7										Z	2 =	y	-															
		{ =						1					-	-				-							_						-		-
											_	77	(1		-																	1	7
) 5	7(0)	=	7	2	C	(t)		.5	Q	C)																			1
										1												1	73	(t)(+	-
		21	(t) =		A :	£ (·	t)	+		9	+)				_	-	2(-)	=	+	72	(t))					-		+	-
	-	9	(t)_	1	C	1											-	-	or other Designations	/c	Name and Address of the Owner, where	7-	-							1	1	
		J		-	1	0	1												/\ -		-	6	- 9	5/)- ·						1	1	1
	16	ma	96	77	0	Q ⁽	a.	9	ita	N:	180	N.	d	Ľ	A	P	e(1	eni	Zic	ar	6	c	he	ie) · .	sis	ع	n3	5	61		-
***************************************	9	Si	υp	ot	ice	w	60	te	Ç	sta	de	18	2			-		-														_	+
		Jet	- (Δ		7	\		-1	-		1				ار -	1	_	_ 1	7	1			_			12		_		7	1	1
		JE (/=		-6		- 5	ار-د												27		+	۷,	+	0			+	
															(2	+ :	51	+	6	=)									1	+
											-				(ル -	+ 3)(٨	†2) =	: C)		1	=	- \$ - 1	2 ع	-	+	+	+	-
	R	6	1.					0	Sir	1	to	C >-	~~	o.t															1			1	1
			41				,		110	100	N.	CO.	116	111	N	SI	01	אונ	8											1	1	1	
															,			-7				>,								1			-
									-																						1	1	T

$$\frac{9}{2} R^{2} - 3R = 0 = 7 R \left(\frac{3}{2} R - 3 \right) = 0 R = 0$$

$$R < \frac{2}{3} - p Sceego R = \frac{1}{2}$$

$$\frac{2}{2} (K+1) = \frac{2}{2} (K) + \frac{1}{2} \left(\frac{9}{2} (t^{(K)}, 2^{(K)}) + \frac{9}{2} (t^{(K+1)}, 2^{(K)} + \frac{1}{2} \frac{1}{2} (t^{(K)}, 2^{(K)}) \right)$$

$$\frac{2}{2} (4) = \frac{2}{2} (5) + \frac{1}{2} \left(\frac{9}{2} (t^{(K)}, 2^{(K)}) + \frac{9}{2} (t^{(K)}, 2^{(K)} + \frac{1}{2} \frac{1}{2} (t^{(K)}, 2^{(K)}) \right)$$

$$\frac{2}{2} (4) = \left(\frac{1}{4} \right) + \frac{1}{4} \left(\left(-\frac{1}{6} \cdot 1 - 5 \cdot 1 \right) + \left(\frac{1}{4} \right) + \frac{1}{2} \left(-\frac{1}{6} \cdot 1 - 5 \cdot \frac{1}{2} \right) \right)$$

$$\frac{2}{2} (4) = \left(\frac{1}{4} \right) + \frac{1}{4} \left(\left(-\frac{1}{2} \right) + \frac{1}{4} \left(-\frac{1}{2} \right) \right)$$

$$\frac{2}{2} (4) = \left(\frac{1}{4} \right) + \frac{1}{4} \left(-\frac{1}{2} \right) + \frac{1}{2} \left(-\frac{1}{2} \right) + \frac{1}{2} \left(-\frac{1}{2} \right) \right)$$

$$\frac{2}{2} (4) = \frac{2}{2} (K) + \frac{1}{2} \left(\frac{1}{2} (K) + \frac{1}{2} \cdot \frac{1}{2} (K) + \frac{1}{2} \cdot \frac{1}{2} (K) + \frac{1}{2} \cdot \frac{1}{2} (K) \right)$$

$$\frac{2}{2} (4) = \frac{1}{2} \left(\frac{1}{4} \right) + \frac{1}{2} \cdot \frac{1}{2} \left(\frac{1}{4} \left(-\frac{1}{2} \right) + \frac{1}{2} \cdot \frac{1}{2} \left(\frac{1}{4} \right) + \frac{$$

(9) Assegnato il problema di Cauchy:

$$\begin{cases} U''(t) = 3U^{2}(t) - 6U(t) + 4(U'(t))^{2} - \sin(\pi t) \\ U(0) = 1 \\ U'(0) = 2 \end{cases}$$

effettuare un passo con il metodo di Eulero esperuito con $\Delta t = \frac{1}{4}$

$$(z_{1}(t) = z_{2}(t)$$

 $(z_{1}(t) = 3 \cdot z_{1}(t) - 6 \cdot z_{1}(t) + 4 \cdot z_{2}(t)^{2} - sin(\pi t)$
 $(z_{1}(0) = 1$
 $(z_{2}(0) = 2$

$$A = \begin{pmatrix} 0 & 1 \\ 3-6 & 4 \end{pmatrix} \qquad g = \begin{pmatrix} 0 \\ -\sin(\pi t) \end{pmatrix}$$

Eulero esplicito:
$$R = \frac{1}{4} = \Delta t$$

 $Z^{(4)} = Z^{(0)} + RP(t^{(0)}, Z^{(0)})$

$$\frac{2(1)}{2} = \left(\frac{1}{2}\right) + \frac{1}{4} \left[\left(\frac{2}{3 \cdot 1 - 6 \cdot 1 + 4 \cdot 4}\right) + \left(-\sin(0)\right) \right]$$

$$z^{(1)} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \frac{1}{4} \begin{pmatrix} 2 \\ 13 \end{pmatrix} = z^{(1)} = \begin{pmatrix} 3/2 \\ 2^{1}/4 \end{pmatrix}$$

(13) Assegnato ie problema di Cauchy.

$$\begin{cases} o'(t) = o3(t) + bg(o2(t) + 1) + t^2 - 2t \\ o(1) = 4 \end{cases}$$

effettuare un passo con il metodo di Eulero esplicito con At = 1

Eulero esplición:
$$\Delta t = \frac{1}{4} = \beta$$

$$g(4) = 4 + \frac{1}{4} (4^3 + \log (4^2 + 1) + 1 - 2)$$

$$y^{(4)} = 4 + \frac{1}{4} \left(64 + \log (17) - 1 \right)$$

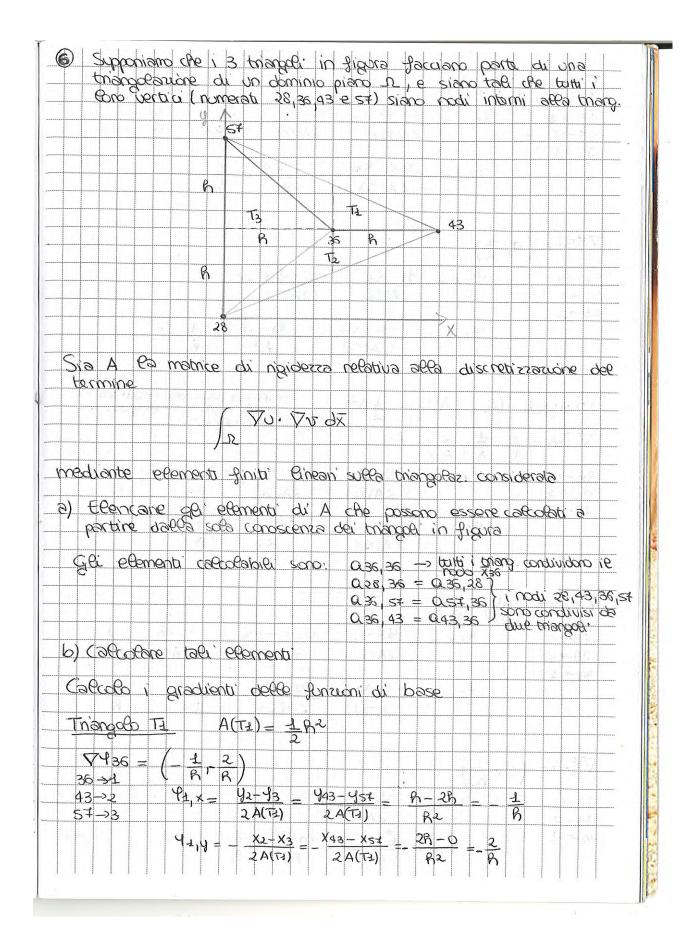
$$y^{(4)} = 4 + \frac{63}{4} + \frac{\log (17)}{4} = \frac{79}{4} + \frac{1}{4} \log (17)$$

	ÆRC\ Z	7	'DE										ļ								
6	bipgo	a																			19
2	Consi	deniam	$i \sigma$	5 6	alon	en	a 9	99	818	0	e83	stic	o								
	(_	9	() g	0)=	- 9		in (0,1	_)												
		0(0)=																			
					C	5	S	2	X	L	/2										
G	On) = H	Ju (x) =	1	3		56	x>	L	/2,										
77	0-1-	Q.		~	N	Ai's						- 'B		0 0	` .		1 +	د	,,,	~d.	
	Posto																				
	di or $J = [$	a Sux	xJ	Sch	neve 6 q	6	3, C	LUX II	765	t ti	200	NOV.	ang Jac	ruic Junio	109 168	je Just	90	iscn	et 9	96	<u></u>
			-01				- 1														
	Hoctipa Spost	ro osi	nbo	im	dme	00	399£	10	pa	vic	ne ne	di	He	ueu	213	99	pe	ns	00	ant.	X
	suee'ii	ntarva	099	0,1		nce			C1.13	N. C.	7.10	1110		7	1.00			170		3110	
	- (- 0	- (y	90	_\v	gx		r	32	-0	×										
	lo																				
	Integr		E 2 4							4											
	Jus	IV B	10+		nd	U X	dx dx	dx			L 8	3	gx	10							
								-/-						u.\							
	ontinu	ona e	9 6	ssa s		1	669 109				isu.	6W.	U.C.	v (0)	x1 = υ	-(1	1) =	0		
(Ottenia				8 2																
	July 1	9x 9.	x dx	= [L gr	tè	×														
											·*									- %	
	100															1					

1	an,											В.	72	2			ΩQ.									20		
	hj =				1			1		-			27.7 3.77	1 0			3			C-				25	(1) (1)			
	1/2	_	Χ'n	1		00	И	+	(V	2	1)		nc)(M	enc	<u>, '</u>	Up	w	(N+	ユ	Pi	<i>3</i> D	b	7	PP)	1
	Si	B	9	che		Γ_{j}	¢	Lo), 1	12	3	se		` \	. Н	6				100	7	43	4,15				Ţ.	,
						Γ	C	[[/2	, L	Js	6		>	М													1
					Ju	j-	1/2	+)	ر هر	+ 1/	2		Se	2	K=	j	. 7. 7.										1 2 1
	a.	jĸ	=	<u> </u>	- 4	И.) j- 4	/2		O	K	=	1-	1				7.	250	3783	7		i) e	1363		(3.)		
				$\Big \Big $	-	M	11 -	1/2		5€)	c =	· ;	1-1				27			19		ý.			3/		
					C		jħ	1		Pt	1			SIL	41		<i>y</i> 1				17	5.3	27.			J.		
	No	.0					C					ļ			ſ	٩		P	ĺ,	e: h								
<u></u>	IVE	26	10	OSI	30		Co	150		1) -	3/	2		(\$ 3	5	se e)	>4		2			1			
		1.7	1877		259	9	i			М	5+	1/2	1=	{	S	S	9	>	Н	21		5.0		200	N.			
			9			_	10	7	se	-		1			-				18.									
	aj	<i>j</i> =	-	1 R	J	-	3		se			j	-1	1					1	dia	Sp	naf	e					
				,		E	S		se					A	9	K	\									8	7	
				4	<u></u>	-\$		S	e		1	4	5 <	1	1			<	0	200	li'a		78	9		a)	
	4)	1 34	-2	<u>1</u> B	(2)	St	6		М	5) <	, !	V-	- 1			1			Ġ.		10		31		
				اد		5		Se.		2	4		1 1					(ot	bod	u'aç	00	38					
	Q,	1)		취		5 3		se se		И	S)	S	N								1						
															211							2						
																						17.7	1800					

Odong 996 inagni9	discretiz eme	n sóuses	rediante	eleme	sop. A	iora,
$ \begin{pmatrix} -\Delta 0 + 50 = 8 \\ 0 = 0 \end{cases} $ $ \frac{\partial 0}{\partial n} = 0 $	n n					28 21 2
	SU TO				<i>J.</i> 2	
90 = 0						
su una triangera		200	stata	avi sott	6	
50 0118 01161916					4 1 2	
	st	45				
	53	(R) (3)	y ₃₃ /	4		
		2/10/		2		
		39/23/	.	27, 72		
		35 T ₁			1	15 -17
Doe visering doi	3 (26)	12				
a) 14 0 12 C Th						
Per absourb dei a) 12 U 12 C TN b) 13 C Tb, T2 C c) T1 U T2 C Tb	L'N	14 1				
		1				
si etendino de e	196 dele	g cowe	o ente	k = 1	ice di	ngidess
si elenchino qe' e presenti nelea nga A. per ciasuro c contributo ≠ o ae	li essi, s	i indichi	i pa	iangoli.	che	no oringt
(c) $(aso b)$, $nec u$	erbice 34	sia imp	osta ea	cord	rove	di F
15 (a20 0) 156 a						
Dinchet.		1_1_	4-1 70	4 138	T36	
Dincreet.	TIF	T18, T31,	132, 13	1) 1991		1 1 1
a) 045,46 046,45	T3-	1.T32	(32, 13			
Dinicreet. 2) 0.45,46 0.45,45 0.46,54	T3-3 T3-1 T34	1, T32 2, T34 1, T35	132, 13			
Dinicreet. a) 0.45,46 0.46,45 0.46,51 0.46,53 0.46,47	T3-3 T3-1 T34	1, T32 2, T34 1, T35	(32, 13			
Dinicreet. a) 0.45,46 0.45,45 0.46,51 0.46,53 0.46,35 0.46,35	T3: T3: T34 T35 T36	1, T32 2, T34 1, T35 1, T36 1, T36 1, T47	(33, (3			
Dinicreet. a) 0.45,46 0.46,45 0.46,51 0.46,53 0.46,47	T3: T3: T34 T35 T36	1, T32 2, T34 1, T35 1, T36 5, T37	(33, (3			

52→1 → 4	(10) (h) 1x - y2-y3	y 72 - 4 76	_ h-c	0 <u>1</u> R		
72-2	$\begin{array}{c c} A(x) & & & & \\ & & & & \\ & & & & \\ & & & & $	B2	B2	R		
76-73	$A(T) = \frac{1}{2}h$	2				
9.	1, y = _ X2- X3 2A(T)					
V472 = ((0, 4)					
72→ 2 76→ 3		9 <u>1</u> = 0				
52-> -1	92, y = _ X	3 - X1 - 10 -				
		A(T) R	2 B			
Thangoto	T ₂					
V152=	(0,-4)					
53→ 1			31- 972 =	0		
31->2 P2→3		2A(T)	R2			-
	94,4=	X2-X-L = - 2 A(T)	n-0 -	1 B	,	
V472 =	(青10)			_ O-B		
72-73 52-7-1)3,x =	91-42 _ 2A(T)	952-931 2A(T)	= 10-11 Ph2	- 1 - 1	
34->2	J3 ₁ -y=-	X1 - X2	X52-X31	=0	<u> </u>	-
		2 A(T)	g 2			-
						1


ДТ = =	1 ()	1,4	+ 2,3	2) + - - - - - - - - - - - - - - - - - - -))(3 5)=)))= _44 _10	= 3	F,	,		
Burghe 27	3 -4	4 = R	1 1 P	$0 = \frac{3}{2}$	8 h						
avent in	comi	e grand	segme	scom	722C 3-4	, ed 8	gress Gre	sottot a h .	mangot	7.	
gi anda		scun .h=			080	e pa	on a				
2 area					1 , 1	3 (2. 2	= 3	B2=	A(\tau)	
Calcolia	i					4		2	R 2 = 1		
∇41 = 91, x =	1 3h	2 3h 43 (T)	2h- 3h	<u>ਨ</u> - ਹ	1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					
42,4=	_ X2	-X3 =	<u>.</u> h	+ h 3 h ²	, man	2 38			- 7/8		
√42 = 42, x =	(-1 (3h) (3-) 2A(3h)	R-c		1 3h						
92,y=	_ X3	T) -X1 -X1 -X1	3h ² 0- 3h			1 38					

	SI D	1	1			- 1	1	3	1	1	1	1	1	1			1					-			-	-		
			∪ U	() =	0 7	υ,	<u> </u>	1			In SU	0	7	-		-	-		-	-								
	na		μ	=)	(x	, 9)=	- {	+ 100	3		se		3<	L	/2				-		-			-	-		
))	60	p	9U 7I	∞	527	100	10	000	DI.	go.	ca o	16 L	di	sik 2	Tru	C	ou 66	6 5W	en	i set	St.	nit	00	o E	ea.	0	SC	Pa 2
_5	occ Ver	623	vic	5	81	gu) (F	6	200	UZ	2	pa	SS	2	C	sti	ant	0	P=		L	1	(3	DC	di		
Si	S	p	000	19	N	d	14	91	7	10	a	XX	0	CP	6	Si	0	apk	eic.		32	0 =	1		æ	2	m=	NHI
9)	Si	S	cn	Va	61	80	100	الم	206	2 6	18	zek	200	6	S	d	dis	SP5	olto		10	α	Oi	2	ck	2	999	2
	6,	90	30	201	ior	000	(5	N.	Si	16	0	not	56	ıòr	9	0	di	36	ai	di,	a.	UE S	2	10	19	in	dic	9U6
								1	1							1		1	1		-							
b)	US No	319 30	S 9	6.2	A A	(d	501	(a)	96	5	12k	OO Me	10	95	600	br		X	nu	3	13	U	ot	nc	6 0	r		
-		1									-				C													
- 4-							/	Z	/	/	Z	1	Z	ļ	-											3		
				\pm		-	/	/	/	/	/	1	/	-	9		1											*******
	-			-			4	4	/	/	/	/	1		3													
			-					Z,	Z	/	/	/				á												
		2		-		-			/	/	/	/								17								
3)	Per	(21/	ba	esi Qui	S) 1	V	(dis	spi	on,),	u	ē	(205	(ar	ta	<u>i</u>	7 (<i>2</i> 61)Ţ	tr	90	20	30	
	00	ssi asc	m gw	0	<i>Lia</i>	udi ugn	280	OS -	CU)	161	201	9	5	96 90	ja	c	u i	n'o	ide	277	9	là	af	7	di			
			_	+	-	C						Vυ					-13				71	i i						
								Т		U		V U) N														
6	p	OI,	a	100	tipe	316	196	2	20		φ,	\	30	00))	11	١.	\ \	3		13	cr.	10	I	0,3	~	ρQ	
	1				1-,									۱۱۰			ノ	۸	<u></u>		-XC	<u> </u>	41)		110	7,5	טע)
																	*									-		
			-													***********				*******			***********					

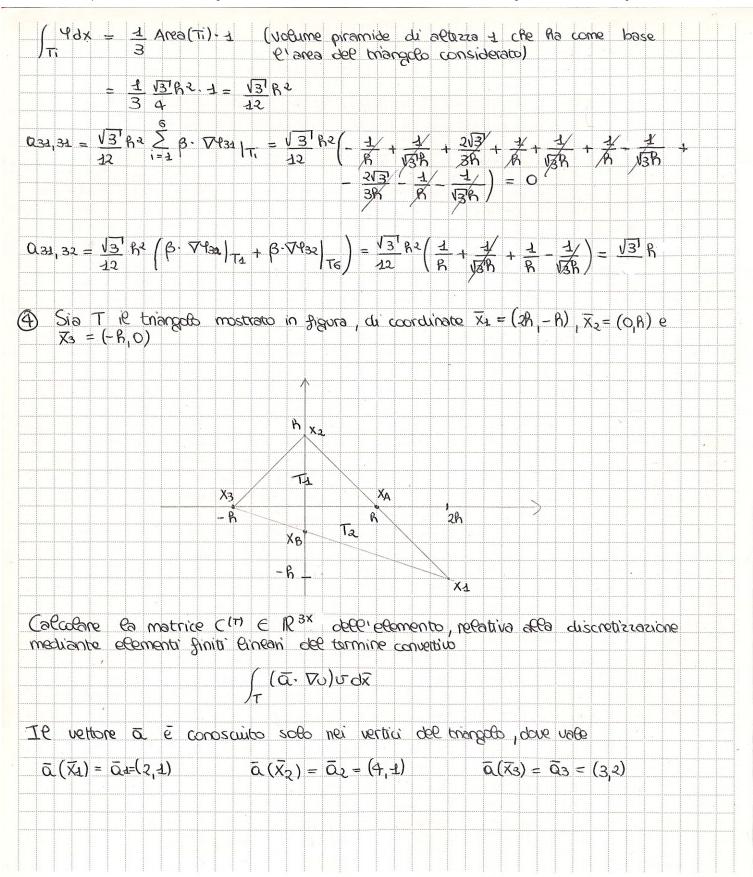
Thiangoch VP= /	() <u>1</u>)						
P3, x =	12-73 = 0 2A(T1))					
P2, 4 =	_ X2-X3 _ 2A(T")	R-0 =	4				
√12 =	(R) (O)						
42, x =	93-92 _ 2A(T")	R-0 =	<u>न</u> प्र				
92, y =	X3-X1 - 2A(T'')	0 - 0 B2	= 0				
V93=	(A 1 A) (R 1 R)	O-B _				-	
43, x =	2 A(T")	B2 1	Part I I I I I I I I I I I I I I I I I I I				
43 ₁ y =	X1-X2 2A(T1)	= 0-R =	+ + + + + + + + + + + + + + + + + + + +				
C960061	amo ora gei	eement V1. V1. A(T)	0,6669 w	atrice	A (T)	be 18 7	u perche
044 = (V91, V94 d	7 1 1 p2 1	2 2			ciasuln t	nangoto
O73 = \\ O75 = \\	79. 793 dx	2	= 0 4)	1			
022 = (T	V12° V12 0x	2 (= -1 R 2 -	$\begin{pmatrix} 1 \\ R^2 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$	2		• /	
023=		$\overline{x} = \frac{1}{2} h^2 \left(-\frac{1}{2} \right)$	-1 R2) =	7 (2)			
Q33= \	V93 V93 J	$\overline{X} = \frac{1}{2}R^2$	1 1 R2 R2)= 1			

u-	7 (L	<	N-	HON	1	JI H	ì	the	nde	ø.	sta	ann	96	di	sc	otto	96	66	9 6	g'ne	9	
					-													+	+-			
	- 3	Ne	m-:	L -	3	Je-	i _i m	+-	120	e,m	_ 5	3 Ue.	1, 1	n -	3 U	e, m	+1	+	31	xe,	ym)	82
Se	ω	>	N+3		it	n'an	206	, , s	tan	00	seps	a 6	9 6	29.UK	U	= 1	<u></u>	Si	Ra	901	odi.	
					+					1			1					1	1	1 - 1	2	
	- S																					
we Se	uzie w:	<u>+</u>	tric	enie.	90	n'ar Ta	pol Ts	TS	T, E	T, 5	3	sone otto	20	obts	-6	9 6	3,06	6	y=	<u>U</u>		
1 1	- 30	1	1		1											1	- 1		1	1	1	
	ie 1									1 1						-	- 1		1 1		1	
COLL	racco.	100	100	MC	DON	10	166	NUCK	5 5	y K	yod)	di	K	boc	200	600	ch	510	nn	2005 129UC	gr922	
viel	RIT	MO	osta	1 6	9	Ca	STI.	aor	96	du	Dir	nche	2t	-					-			
0) (नेडड	nei	ס ו	966	9	mot	20	one	*	30	S	SC	30	indi	ce			ļ	-			
	1 1	1	+j.	+n		10	ICO O	11/2	7.	00	100	N95	.1.			1	1	1	1 1	1	1	
	10	1	1	†		, 1	ot a	ruc	ne	EF	a	has	WII)	ى _ رد ا	U (ges	sta	UC	000	1	Ê	
) j-	1		<u> </u>	+1										-		2			1		
				N													2.7			5		
Se	3 1	Ω <	<u> </u>	2	-			-					-	11								
-	+ 3	زي،	- N	- 3	ÿ-3	+	7-50	; }	39°+	1-	30)-	N	_ 2	9; B	૨							
Se	y n	2 >	N-	1-1								-			-	-	-			-		
-			2	,							-											
	- S	၂) –	. W =	Su	3-1	+_	90 C	5 -	SU	+1-	- Su	1+1) =	3; 8	12	-						
Se	n) =	N	1+1			,				-											
- ;	3)-1	1	-		1	161)·. +	40	الدا	-<		N -	٩	RR		-		-				
		1	1 1							1	0		0.					_				
D_	1 €	1 5 D	< V)	A)	6	qui mn	ndi	una	n	oca	32	di	0	di	16	N	2	()	. 4	e m	≤N	
La ->	1	a)Si	3	+	1	del	260	di	2	PU	Cip	266 205	6	du	6 6	Re	. d	ust	one.	し い り と い り と	N	
χa -> a ς	usta		1 1	San'	20	2	1	-		V	'											
9 c	69	n'ac	5 6L	II V	hon	,					-			-	2			1		-		

	αυ Σ ξ	= U	7 7 70	×#× €	31	66	pp	nd ne	o nd	9	77,	, S	N.C.	50 504	01	ubc	e ₁	0	<i>SS</i> 1	nd Dm	יבני פח	ou.	d	n 60	Di	a ncf	let co	Slov	Ø	ene
Y	9 200	1	10	tor	DI		2GF	0	Di	an	00	कर	10	ne.	1	155	6	9	11	De	TI	2 0	500	n	100	nc	6	96	Pin	ita
NU	osi la me	27°	150 130	מ'נים	60	96	2d	10s	\$0.	B	(7)	S) :	œ) i	(a)	an	90f	0	ē	Ωí	dij	per	de	JE		Jac	69		
				В	(7)	=}	τA(τ)		1/6 1/1 1/13	2	1/2 1/6 1/3	2	1/1	2)			n	99	2	051	mo	ث	<i>35</i> (D .	27	= :	1		
ક	9	d	ξen	.ea	nti.		liê	80	pa	1	96	69		w	stn'	ce	8	5	501	0	q	מנט	dı,		tel	<u>.</u>	da			
					o))		7		5	7(j)	69	7))			7							3.5					
m	ent	26		96	λ <u>.</u>	e	ger	1 00	ti	Γ,	100	LES	di	950	2006	£.						7								
				١	၀)	ĸ	-	75	T	ε.	a (j)	697	(Y	(۲)											Ú					
þ	44	=		1 6		(1	22	+	R	3.4	8:	2+	25	2	+ 6	\ \2 <u>:</u>	+ B	2)	=	13	3	R2	1				= 3			
Ь	42	=		<u>す</u> 12	(2	R ?	U	+ 6) ²	=		1	B	2	=	ŀ	524												
k	213		-	12			2 _B	2 .	+	h2) =		1	Rã	J	-	b	3-1												
Ь	14	=		12 1	- (D	Ξ	C)	=		4-																	
k	023	3.	=		12	(2	તેર	. 6	2)	=	1	- f	42	=	b:	32													
I X	o22			1	(21	32.	+3	R=	+	B	2 .	+ :	ZR-	+	28	2	- 4	Ra) =	=	13	3	32						
1	024	-		12	- (4	<u>۾</u>	+	28	52) /	=	1 . 0	2	82	7	<u> </u>	7	2												
		-					-					-										-								

V436 =	(+ 1)	o)	33 24 -					
36→1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	63 X =	42-43	J57-428 =	28-0_	1		
ST → 2			2 A(T3)	2A(T3)	282	B		
28`-> 3		92, y =	X2-X3	- 0				
		414	2 A(T3)					
7457 E	1/1	1 28						
57->2	(2h		()2 ()	()-5 ()-5				
28→3		121X =	93-94 - 2A(T3)	2A(T3)	= 0-P		1 2h	
36->1					211		<u> </u>	
		42,4 =	X3-X4	_ X28 _ X36	= 0-1		4	
			2A(T3)	2A(T3)	2 h2		2h	
V458=	1	1 2h						
28->3	1 28	25/						
36 -> 4		43 X =	= 41-42 2A(T3)	= 436-451 2A(T3)	1 2h2	2 = -	1 B	
57->2							<i>x</i> 1	
	-	93,y=	= X1-X2			-0	; <u>1</u>	
	A		2A(T3)	ZA(T	3) 2	p2	28	
		c6669 W						
Q36,36 =	Ta	136. V136	i dx 1 T2	7436 A32 9X	+ / T3	6. V9	36 9X=	
	7111		/12					
W=1 ;	- 1P	2 (1 +	42)+ 2R2(1/R	2+4)+ B2	1 - 5, Ri 2	5 +	1 = 6	
	2	1 / K2 F	14/ 2 (h	2 h2/1	R1 2	2		
a 28,36 =		128 V 136	dx (\tag{vq}	28. V136dx =				
	1/2		T3					
	182	(2 \	R2/ -	1 \ ,				
	2	(Pa)		2 = -1	$\frac{1}{2} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$			
				/				
236,57=	JT1 V	136. V151		7936 7957 di	C =	-		****
		421	R2 / 13		3	W-V/V		
		(R2)	(2g2/	+++++++	$\left(\begin{array}{c} 3\\2 \end{array}\right)$			
236,43=	V136.	7943dx+	T4 36. 794	$3dx = \frac{1}{2}h^2 \left(-\frac{3}{2} \right)$	1 2 2)+ 3	1 R2/ 1	2-2)=	=
	1		a	I multic and	n~ n/	2 (12	2 R2/	

<u></u>				C		_						-					110	~;O	0	2	1	2H	~	(~		
	J =	ok J	on'v	2/6	1 4	opti	00	0,	tol	96	P	6	V	(0)	}=	0	3	DIC)	2	2		011	J	0	X.)		
<u> </u>	Si	dtie	276	6	9	for	na	207	áu	97	Ü	an	56	امر	Jel	96					2)			À			
	ω			1	1	"						1			-	1.						1					
		1	1.	1			1	1		3	1			1	7		125	. 1.		2	25	0.0		15		M	
(74	q×	_	9×	_ (0)	1	3 	W	(3)	U (1)	=		5	ρO	20	O)		4	6/	CO	177	O		V	
Ī	utu	odu	cer	90	0	101	29	c	vis	_ N	tùz	20	N.	Sne		SC	96) j	Uf	N2	166	0	(١,٠	7)		
	ne dis	stri	igi	90	000	Via	6	30	otto	sp	ont	Ó	V.	en 6	de	36). '	Sp	200	ist.	370	ita	290	a J	mi	ie	o)
	1					10		17	0	(1)	4	111		17.17		-01		ie	71	S-1.3			1.90			21	
	1)P) E		2 -					3-								70								4		
	1)	1 h	900	<u>১</u>	90	R C	X	+	3.0	<u>۸</u> ه	(4)	VA	14	.) _	:		,1	الما	የኒሇ	nc	×		per	2 0	80	ivi	A (
	h =																										
		1					J						1		8 3					U	(O	1-	U)			
- 61	seuc	100	200	00	7	j	11>	×j-	11	Χĵ	1	=	h	IJ		1)	١.									de	
<i>b</i>)		Or _C	200		Ο,	00	000	mt		4	(22)	ÇII.	~	to		Λ	0	R		00				Α,			
-9/	Cal	nn	6	ie	bu	000	<i>EW</i>	9	gi	SCI	640		<i>U</i> 6	66	1 9	βr	Wg	, ,	AGE OF	6	<i>5U</i>	3	A	SU	=	LB	w
							1					1															7
	WP WP	+	Ke:	2	NK.	9K	5	(iod	chi		0	X=	0	P	0	Œ	M	υí	ina	2 (ik	Di	n°C	Bec	t	
NEW J)tte	90		≥ 0	DK/	(1)	10	111	0	۲,' ۲	97	(+	3	,9K	(1	١५(j (3))	=	人:	\ \{\frac{2}{8}	> (Ůκ		1	eny	5
					- 1		3	X		/\								./						\ /	ย		
(λjκ	= {	14	9	1	dy dx	1 0	X	+	3	PKI	7)	٩j (7)	10.		15	jì	KS	1	ل	90		93	96		P.
																1	7	OE T	118	10	_Sc		50	18	mb	clac	الماريقو
70	Ur 39k	(A)								2 ≥ 200	3W	o ent	X	61	- 68 - 4		fu ent	1-1	00	NN	o _	16	Ţ	2r	WI	ne	
			-			-							-								7				7		
		***									J.							2)	7.6	L)	(بد	
							-		3									ę.		1							


3	Cap		sic		<i>9</i>	9	molol	ser.	00	<i>a</i> i	U		ń	in	216	90	6	as	2 1	000	do			
	(3r (9r)		1	U X2	- (1	1		- 1	- 1		1 1	1									
)		t) =	0	,	J(-	1/+)=	0	7	P	50	(>	0							-			
C	$\frac{1}{2}$		0)								1)		1											
) Sc	1	1	/	1	1	1	1		1 1	V	90	9ZU	30E	θe.	de	99	Pe	aba	e m	19			
	Mot Spos	tip(nen	odio	m	α	i nis	me sik	oile	on'	de	66 66	in	a Su	o Co	ne Su	ee'	ffe in	per.	1961 1315	Ce 30	(°) ¹ .7))
8,185		1 1	.v	1	1 1	۵	(1)	1) \	1 1	1		1	1	U	- 1		1		1	-	1 1	1	. 9
						I	ntag	7	pe		7 <i>O</i> C	p.												
		SU DXZ	U	10 14	+)	1	SXC	1	JV XI	d	ζ													
	v	V	00 00 00	g,	งกข	ά	ne.	6	up,	กบล		> (den	yak	9910	9	<u></u>	ret	2,	00	n 9	rock rock	NO.	æ.
	CON	ם, טו	9	9	ta	be	_Cr	9	75	(0)) =	V	(-1)	= C) 23.								1.1	
1	Otto	(E)	€ 50)	4	ら	(1 (1	90 00	9	VT.	dx	16	(d	33 3X	νο	1×+	6	٦ ٢)٧٠	Э×	= k	(1	fv	дх	
	ber	0	Sur.			ļ																		
	V=	- Com	nim v	-	-	tin	3 8	6	to	e Be	ch	љ ли	v(œ (0)=	- N	(7 3piq)=)=	6 {0		ne.	1	XX) (sen
																								-

	Aa	+	Z	p	id	90				2		٦-	1																
	Ap	1		2 1	1																			- 2				7	
	A	S.‡			7	h t	wc F	น่อ	2		<u> </u>		2 1	1						70.0					× 14				
	A	_ +	n'c	n'a	9	(-	d B			- β 2	4	70F	1)	-117/	(2	2	+	0	+	28)	-					
						1		2			β 2	5	8	B	1										7				
	B:	-Rev	idi	æ	F	7	\]	P 2		<u>-</u>]	2			5 /	<u>'</u>]														
C) D	isc	ret	22	918 P	0 h	v.	s tor	upc (me me	dig M	orne	16) \ \	net	ba	0	d)	90	e Du	en O	5	im	Bc i>	cit	o bu	CC	Ð
X urs/	'n	SOB	78U		3 0	_C	S u	1	ρē	SS	Ò	ter	nρ	61c	ge			X											
	Ab	pi'ar	ro	o't	<u>w</u>	nβ)	9	Sis	to	u9	:				+ A =			7	7	t	0)	2.6		7	5 <u>1</u>		
	U١	= 1	E (c	ı,t)=	_	8	4	Αυ	+	B	13	}(t)						1		48	79.	2					
	٥K		100	1	3	-		1		1	a B			2				X.f	í,x	15					84				
	UK	-																-	1)				И			73		A	
	ی ۳		٠)	- P)	+ 1.1	317							
		olt				b6 ρ	A	В		o.	N/	1	21			a .+1		n/P		· af	,cc	Pa	rp	0	3	ma	tri	0	
		yers)	O.		11.1	1.3.			<u> </u>		S. 1			y .		Ī		1.						
	U	K+3		B -	!	St	Α.		<u> </u>	O.K	+	1		g (-		1.1			<≥		2~	 O v				2			~(
*****	C	=	B	1	1t	Α	=		6	1	Ŋŧ	(-	2 B	- 6 - 7	B 2	+	7F 6)		£ .	27 3	********	+	Δt		20 B	+		σf
								R	-	-1	Δt	(-	0	2		3	40 40 6 A	8h					Δ	75	77				
				-					-	1		-						2	<i>L</i> <u></u>							-	-		

		6	6,10				-	10	1 1		,							11	
						B	=	1	-	-	1	7.3			-		10		
				-		-		1+1		3	0		_		:				
$\hat{B}^{-1}A = b\hat{0}$	d'30	10	6	101		1.	10.	3	1	1	1	6.3	20	12	1		10	3	2.
- U /+ = U)	onay		7	10	10	5	1	8-	10	1	1	B			78	3	7		2
								1		V.			.\		-	1	100	7,0	
10 (1	1 . 18	ž +	82	1	{ }	-	10(2 - 1	1	Ø +	2	か	ユ		1	/-	10	+	26
						1			1			5	0/			1	7		
6.40/	2 1	- ge	5	2:	8.1			6_	10/		10	北	0	& &		0	1		
8 \	70	1		3	8·1 10 5	/ -	1	3		-	10	-		8	2	10			
				-	2														
$\beta^{-1}A = 0$	ndia	1	32		S	1:		19	2	2		19	0	\$7		13			
		9	5	_	c	5 /		2			-	2	/	5		5			
Cerchi					cen	pw			32	6	Y	~		S	4	-		2	
Cerchi		1, (69		CEN	UO	1,1		5			98	110	10101	5	18			9
Cerchi	C	2->(8		cer	tro	ir	,	2	e	16	gc	110	1	9				
	107	Mar	uc6	6	SI	w	uea	100	1	SU	0.10	ME	OU	acon	S	OIL	, 1	691	1
Poiche e quind dat di	2			-	1				int di	200	996 1272	ico.	out hi	iton Ger can	1 S 1 S 2 C	go 'as	se nn	7	200
e quind	2			-	1				int di	Su Su Su Su Su Su Su Su Su Su Su Su Su S	on 10 1996 Perse	abu n c	ju ju	con Ger	1 S 1 S cl 2 P	ork Go Vas	se vo	7	200
Interva	98 .	Ça,	<u>څ</u> و) =		15,	18		int	Sin Sin	on		in Pr	can Ger	1 S Sch	ork Yas	26 VU	77	200
	98 .	Ça,	<u>څ</u> و) =			18		t di	Social So	966 966		ju	aton Ger	i S Scl 	ork Pool	yo se	77	200
Interval	66. i	Ĉŧ,	Ĉ.) = 28		3,	18 5 41	3		<i>y</i>						2.6	7.4		200
Interva	66. i	Ĉŧ,	Ĉ.) = 28		3,	18 5 41	3		<i>y</i>						2.6	7.4		200
Interval Interval	66. i	Ĉŧ,	Ĉ.) = 28		15, 3, 50.	18 5 41	3		<i>y</i>						2.6	7.4		208
Interval Interval	mia 5	Ĉ1,	Ĉ e	8		15, 3, 50.	18 5 41	3		<i>y</i>		ter				2.6	7.4		8
Interval Interval	mia 5	Ĉ1,	ĉo auto	8		15, 3, 50.	18 5 41	3		<i>y</i>	imi	ter				2.6	7.4		3. / 1. / 1. / 1. / 1. / 1. / 1. / 1. / 1
Interval Interval	mia 5	Ĉ1,	ĉo auto	8		15, 3, 50.	18 5 41	3		<i>y</i>	imi	ter				2.6	7.4		200
Interval Interval	mia 5	Ĉ1,	ĉo auto	8		15, 3, 50.	18 5 41	3		<i>y</i>	imi	ter				2.6	7.4		200
Interval Interval	mia 5	Ĉ1,	ĉo auto	8		15, 3, 50.	18 5 41	3		<i>y</i>	imi	ter				2.6	7.4		
Interval Interval	mia 5	Ĉ1,	ĉo auto	8		15, 3, 50.	18 5 41	3		<i>y</i>	imi	ter				2.6	7.4		
Interval Interval	mia 5	Ĉ1,	ĉo auto	8		15, 3, 50.	18 5 41	3		<i>y</i>	imi	ter				2.6	7.4		
Interval Interval	mia 5	Ĉ1,	ĉo auto	8		15, 3, 50.	18 5 41	3		<i>y</i>	imi	ter				2.6	7.4		

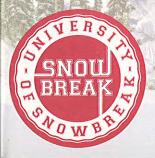
	Sc	die	ant	0	91		No	h	d	,	90	1	3	79		(rar	NC+	N	ice	25	00)	CO	0	0	386	0	-
	cos Sis	je u	19	(0	Reg	66	nice	2	C	20	7	= 0	10+	7	CP	6	Si.	de	16	UE	S.	ver	6	34	5	lan	p	tr	14-9
•) +				8	, -	t	, C)																			
		(0)									-(7					1.0											
22					- 1	- 1	- 1	0	-		-	- 1								. 3 1							77.1	100	
(U	K+-1																						- ,					
			=	0	K	4	Δ 2	t	(- 1	NK	+	30	FK)		O	R+	4	80	tk	1)		1.7		1			
	. , .		=	(jκ	_	1)t	À	UΚ	+	1) /	3	-Fk)	. 4	St.	A	Kt	7		2	3	(t	K+	1)		
1		1,				1																					1		
	JK+4	(- +	_ 4	2	Α/) = A		L			2	A	ان	+		2	= (7	(t	(,)	4	7	CT	1)	03	
	C :	1	I		Δ.	t	A	-		1	51	200	2	St 2		-	1		10 R2	Dt		Se	1	ς=	j			7	
				•	2	,		· ·	-	28	2	æ jt	- }	K= Se) †	ナ '= i	4	20)	40	0				=			A ¹	
		1	4											enti) 1								ń				
																												- \	۸,
		oire Sue	9	1923 5	30	C	tu ,æ	ss.	<i>C9</i>	86 1	ω	: :	in.	CE	20 19	2	128 200	5U 71 S	na var	e vic	σ	pre	02	50 D10	6 7(9	φ	2B6 121	Dec	<i>X</i> 10
[4rw	1	Jon		5	UE	206	255	91 10:	ò	1	ωί) (16	U	20	C	200	dì	w	æ	d	i.	Sta	yb.	e,t	2			
		asi Ora	UK UK	itc	ca	S	æ	0	260	50	t	JC.	90	súl	6	At	200	be.	ichi	3	16	m	et	od	S	dı.			
													O																
													1	(n				(×				_							
													L	=															
	n L									-3-3		- 77	-						1.7	6)	T)			100			n.	35	<u> </u>
		+																											
			1	1			1 5	- 1		1	1		1								أجرا							L	
																in.	i y	i o	10										

32-> 2	432 ₁ x=	43-41 <u>-</u>	494-431	_ 135_	V3B		1	
44-> 3 31-> 1	1 1 1 1 1 1 1	2A(G)	2. 13 82	V	31 R 2		h H	
	با ووا	X44 - X31 X3-X-1	32h - 1	ξ	2 1_			-
	432,4=	2A(T1)	V3'h	2	V3'P			
			2					
Triangelo Te				<u> </u>				
5 : A 6 5 97 A B B B					75:	3		
V931 = (0	1- 2131)							
1-81	Ψ34, X =	42-43 =		= O	22 27	7	8	
2~344 3~343		2A(T2)	2A(T2)				1 8	-
37/43	934, y-	X2-X3	_ 3/2h-	1/2 B		213		
	1979	2A(T2)		182		38	7	9 97
			2					-
Inangoto T3								
V432 = 1								
V 432 = (1 R	-, - 1)							
-1->34			N3 B 13					_
3->30	734, X =	943-930 =	13/25) = <u>1</u>	<u> </u>			
3 130			2					
2/.3	434,4=	_ X43-X30	= 2月-0		1			
		2 A(T3)	131 g	2	V3°R			-
Thangolo Ta						57.		33
V931 = (111				<u> </u>		9 4 =	-
	RI WEB	7	1370					
31-)-1	¥34, ×	2A(T4)	- 3A-C	2	1 1 B			-
30 -> 2 48 -> 3		2A(14)	13' R		1			1,5
	P31, y	X ₃₀ - X	18 - 0-	1/21 -	+ -	B		
		RACT	4) 13	RZ	V3	B		5 5
			I I A					

READY FOR THE XTREME?

1 Consideriamo la legge di conservatione $\frac{\partial U}{\partial t} + 4 \frac{\partial U}{\partial x} = 0, \quad x \in \mathbb{R}, t > 0$ Suddividiamo IR in celle $[x_{j+1/2}, x_{j+1/2}]$ di ampierra $\Delta x = \pm 0^{-1}$, e indichiamo con $\{u_j^c\}$ be medie di cella al generico tempo tri generate dal metodo di dax - Friédrichs. a) Posto II = 10-2, esperiutare la formula che genera le medie di cella al tempo tonti in funzione di cielle al tempo ton. Calcolare il numero di courant cour e dine se e soddisfatta la condizione (FL $20x - Finedrichs: 0_{j}^{n+1} = \frac{1}{2}(0_{j+1}^{n} - 0_{j-1}^{n}) - \frac{1}{2} \text{ at } (0_{j+1}^{n} - 0_{j-1}^{n})$ $Coor = \Delta t$ $|a| = \frac{10^{-2}}{40^{-4}}$, $4 = \frac{2}{5} < 1 \rightarrow e_0$ conditione CFL e hispethata b) Supponiants di sapere che $v_j^n = v_j^{n+2} = \{0 \text{ se } j \le 45\}$ Calcolare le medie di cella U36, U27, U37 e U37 $v_{j}^{0+1} = \frac{4}{2}(v_{j+1} - v_{j}^{-1}) + \frac{4}{2}(v_{j+1}^{2} - v_{j+1}^{2}) = \frac{3}{40}(v_{j+1}^{2} + v_{j+1}^{2})$ 0 + 10 = 0 = 3 0 + 7 0 + 4 = 0 $\frac{10}{7}(1-\frac{3}{10})=1=0$

VOLA AL SITO CON IL QR CODE!

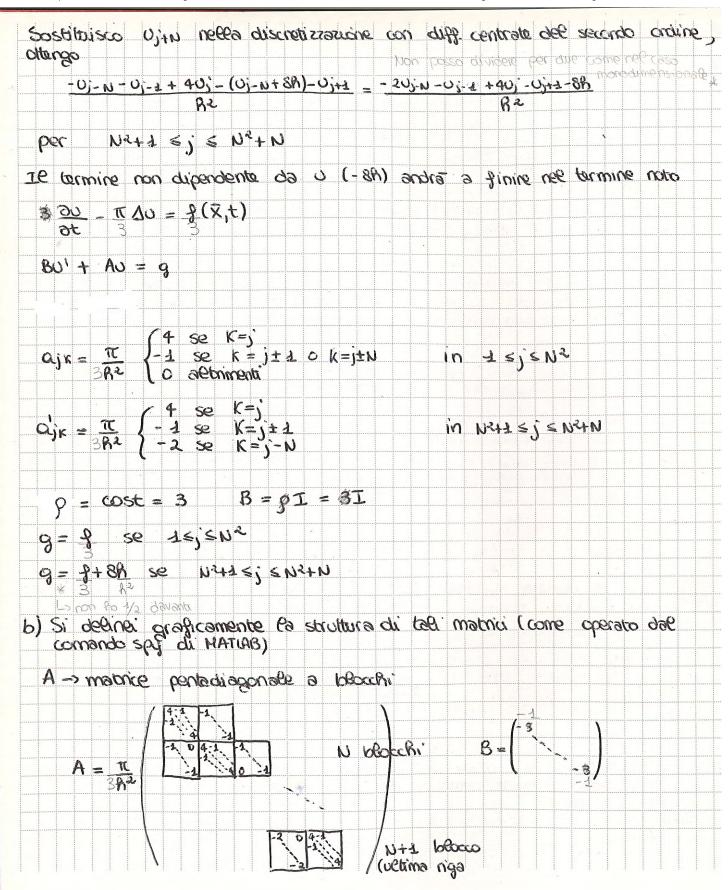


https://www.freefutool.it/airbnb

Valido entro il 31/01/2014

b) Si scettle un passo temporate At consequente a CFC =
$$\frac{3}{4}$$
 = $\frac{1}{100}$ At = $\frac{3}{100}$ At = $\frac{3}$

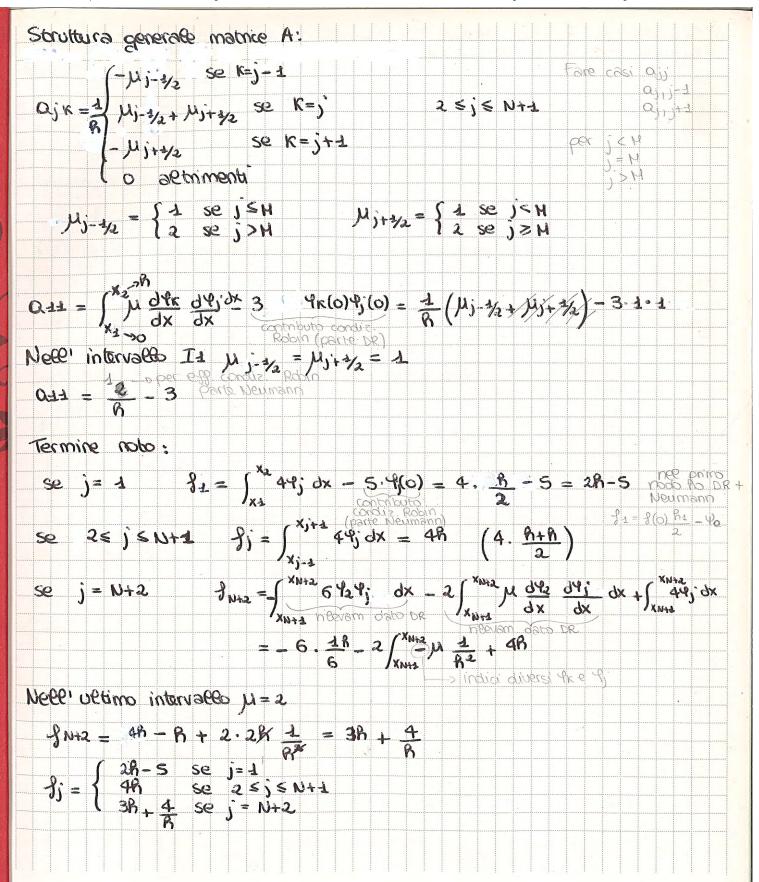
LE LEZIONI CHE AVETE


SCOPRI COSA E' SUCCESSO DURANTE L'ULTIMA EDIZIONE DEL PIU' GRANDE EVENTO SULLA NEVE SUI NOSTRI CANALI

🛂 Snowbreakchannel 📑 Snowbreak Official Page 🕒 @snowbreak_it 🕍 #snowbreak#USBK

BANCA CARIGE ITALIA

www.gruppocarige.it



www.gruppocarige.it

STACCA IL COUPON IN FONDO AL QUADERNO E RITIRALA IN FILIALE

Un'unica Business School, un programma unico

MASTER IN MANAGEMENT

3 anni, 3 lauree, 3 stage

fra Torino, Londra, Parigi, Berlino e Madrid

"Ho scelto il MIM perché è la formula ideale da seguire per realizzare i propri sogni e le proprie ambizioni"

Matteo Lazzeretti, 23 anni - Lucca

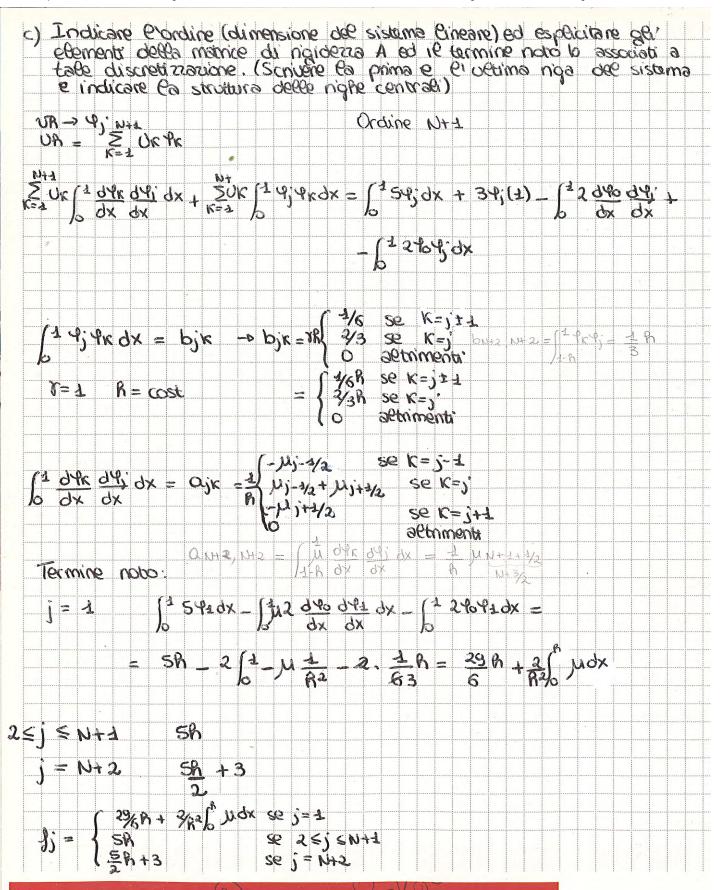
θ ineare $Ax = b$	o. Janonica done	co, caecaare	Ca 2007	sione de sistama
L0x = b -	> Ly=b			
	0x=4			
(41 = 5				
1 y1 + y2 = 3	$2 - 0 $ $y_2 = 1$	y = (5) 3 0		
1 4 3 = 3		9= (3)		
	-0 44 = 0	\0/		
5	; -D Xa = 4			
5X1 + X2 = 5 -19 X2 + X3 = 3	1 → X2=0	/4/		
$3 \times 3 = 3 \times 3$		$X = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$		
$6 X4 = 0 \rightarrow X$	(4=0	(0/		
े हेन रिनास्य हुई	n 6999b w soci	ltuare ea strab natrice A?	Big ar bi	cours, hee cacco
	namice A e gran			
Porché ea n	natrice A é gi	a a predomina		
Porche Ca n 3) Sia data Ca Ut - Sux = 1	natnice A é gi lagge di conse o XEIR, t	a a predomina ruazione: >0	sene asne	nale per nighe
Porche ea m 3 Sia data ea Ut - sux = m	natrice A é gir Pagge di conse	a a predomina ruazione: >0	sene asne	nale per nighe
Perchei ea m 3) Sia data ea Ut - Sux = m Si considen e Si considen un ampiezza costan	natnice A é gir Ragge di conse o X E IR, t Pa condicione ini na suddivisione d be Ax=1 con X	a a predomina	ansa diago 3 se x 3 se x	nae per nighe
Perchei ea m 3) Sia data ea Ut - Sux = m Si considen e Si considen un ampiezza costan	natnice A é gir Ragge di conse o X E IR, t Pa condicione ini na suddivisione d be Ax=1 con X	a a predomina	ansa diago 3 se x 3 se x	nae per nighe
Perchei ea m 3) Sia data ea Ut - Sux = n Si considen e Si considen un ampiezza costani a) Si sceega un	natnice A é gir Ragge di conse o X E IR, t Pa condicione ini na suddivisione d be Ax=1 con X	a a predomina ruazione: > 0 ziale (lo(x) = { eee' asse reale in i = i \(\) x , i \(\) Z e \(\) \(\) \(\)	ansa diago 1 se xo 3 se x n celle [x	na60 per nighe

MASTER IN MANAGEMENT

Percorso di Laurea internazionale e Master fra i diversi campus della Business School

Grazie al MiM sono diventato imprenditore,
oggi parlo 4 lingue e mi sento aperto ad altre culture"
Flavio Nappi, 28 anni – Napoli

e) Descrivere de proprieta di convergenza del metodo The metodo di dax-Friedricha Ra una convengenza di ondine ± in spazio e timpo ed introduce una diffusione atrificiale o numerica.


Emore discreti exazione u CE AX + CE At 4 Si consideri le problema del fill elastico L'ordine di consistenza de metado é 1 e $\frac{d}{dx}\left(\int u \frac{du}{dx}\right) + U = 5 \quad \text{in } (0,1)$ poiché per le tronema di shwartz u e susp. repolare coincide con U(0)=2 e ordine di convergenza / Mgo (1) = 3 9666, Eurole con $N = N(x) = X^2 + 1$. Si introduce one suddivisione di [0, 1] in N+1 introduce one suddivisione di [0, 1] in N+1 introduce one suddivisione di [0, 1] in [0, 1a) scrivere ea formulavoire variazionale continua del problema Introduce une spostemente ammissibile v e'insierne degli spostementi V = { V : [0, 1] -> IR ē una funcióne continua, denivabile a tratti con denivata prima continua e tale che v(0) = 03 . Integro never intervalle (0,1): $\int_0^2 - \frac{d}{dx} \left(y \frac{dy}{dx} \right) y dx + \int_0^2 y y dx = \int_0^2 5y dx$ Ingolo ber barg.: - [h go 2] + [gg ga gx gx - 71(7) 90(7) 2(7) + 71(0) 90(0) 2(0) V(0)=0 M ga (1) = 3, oltango quindi: $\int_{0}^{2} \frac{dv}{dx} \frac{dv}{dx} dx - 3v(1) + \int_{0}^{2} vv dx = \int_{0}^{1} sv dx$ Per ora UZV, poiche U(0)=2 mentre U(0)=0

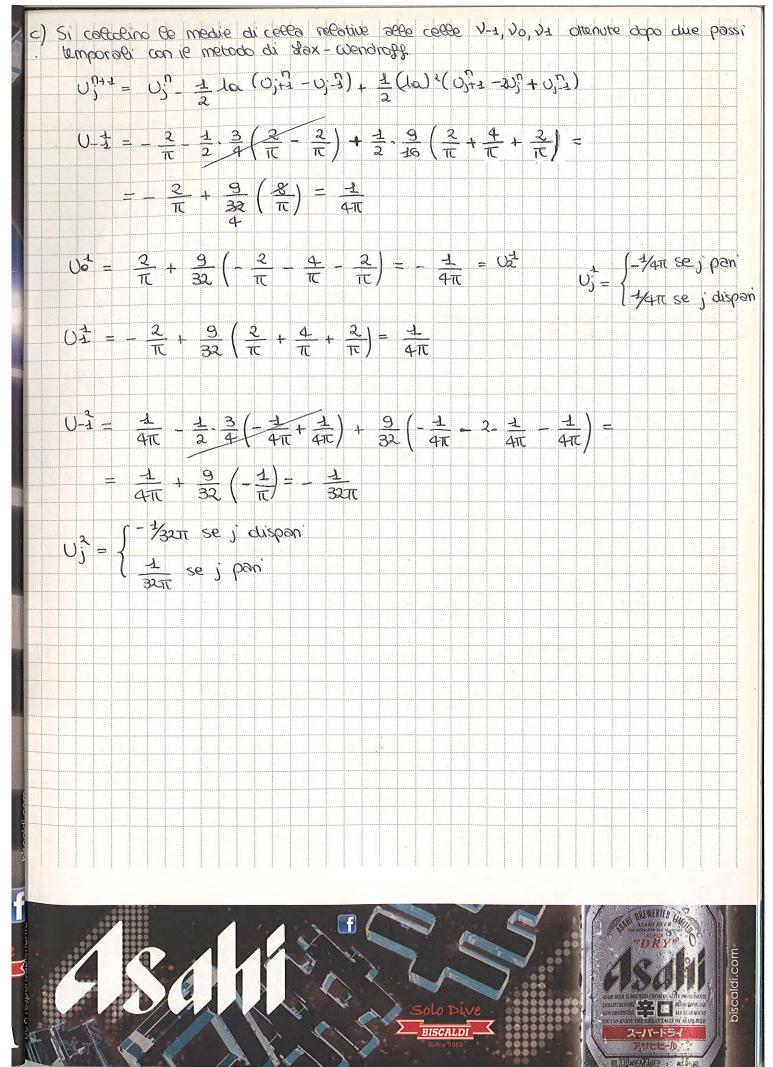
MASTER IN EUROPEAN BUSINESS

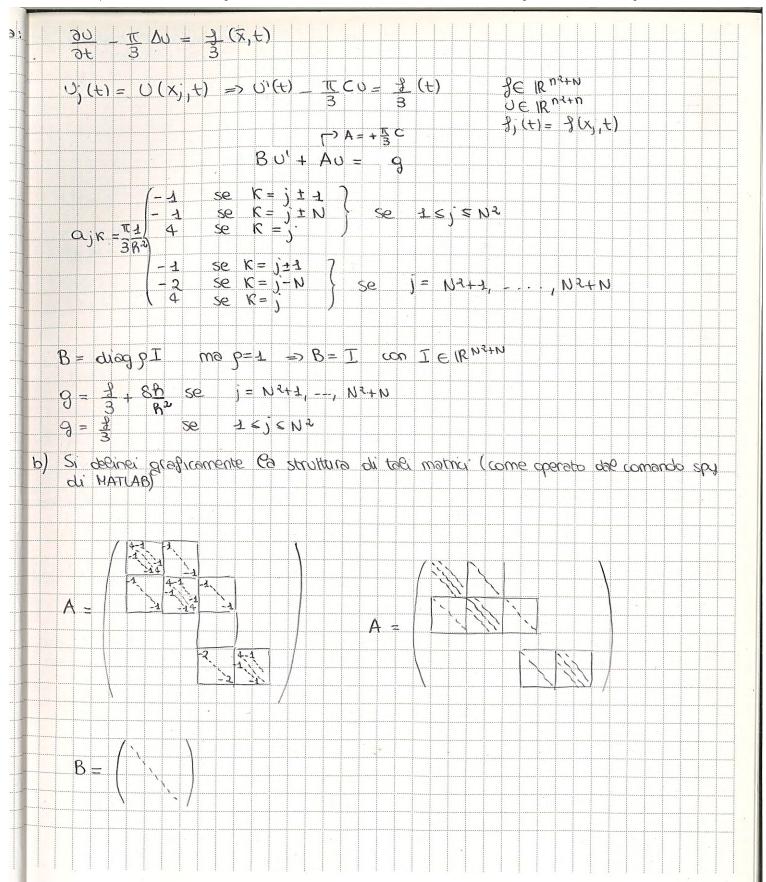
La porta di accesso a una carriera internazionale d'alto profilo

"Grazie al MEB ho ricevuto stimolanti proposte lavorative, sia all'estero che in Italia, dove attualmente ricopro il ruolo di responsabile trade marketing per una multinazionale"

LA CARTA RICARICABILE

STACCA IL COUP IN FONDO AL QUAE E RITIRALA IN FILIA





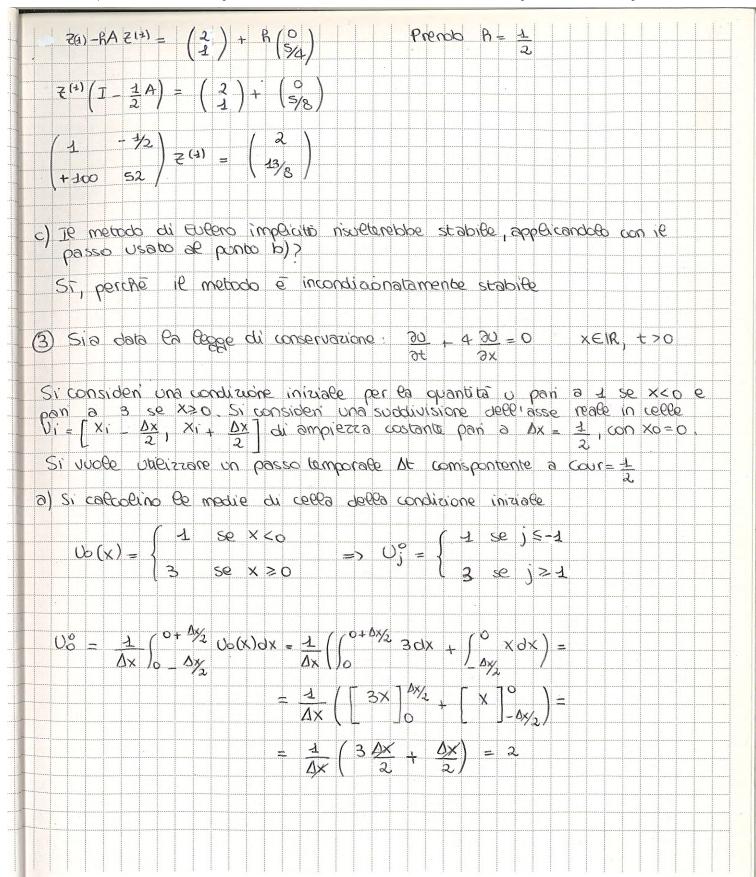
FACENDO SHOPPING!

PIÙ DI 1.500 BRAND | SPEDIZIONE E RESO SEMPRE GRATUITI ESTITUZIONE DEL PRODOTTO ENTRO 30 GIORNI I WWW. 741 ANDO I

*Squente codice sconte in fase di acquisto [Buono valido fino al 15.04.2014 | Valore minimo dell'ordine 50 € [Utilizzabile durante il processo di acquisto [I Possono esser convertiti in denaro o usati in combinazione con altre offerte | Vietata la vendita del voucher | Non valido sui prodotti ridotti | Alcuni brand besser convertiti in denaro o usati in combinazione con altre offerte | Vietata la vendita del voucher | Non valido sui prodotti ridotti | Alcuni brand bessere esclusi di questa offerta | Il servizio clienti è raggiungibile al numero verde gratulto 800 173015 | Codice valido per un solo acquisto su Zalando

© Proprietà riservata dell'autore - Digitalizzazione e distribuzione a cura del CENTRO APPUNTI - Corso Luigi Einaudi, 55 - Torino / Pagina 139 di 228

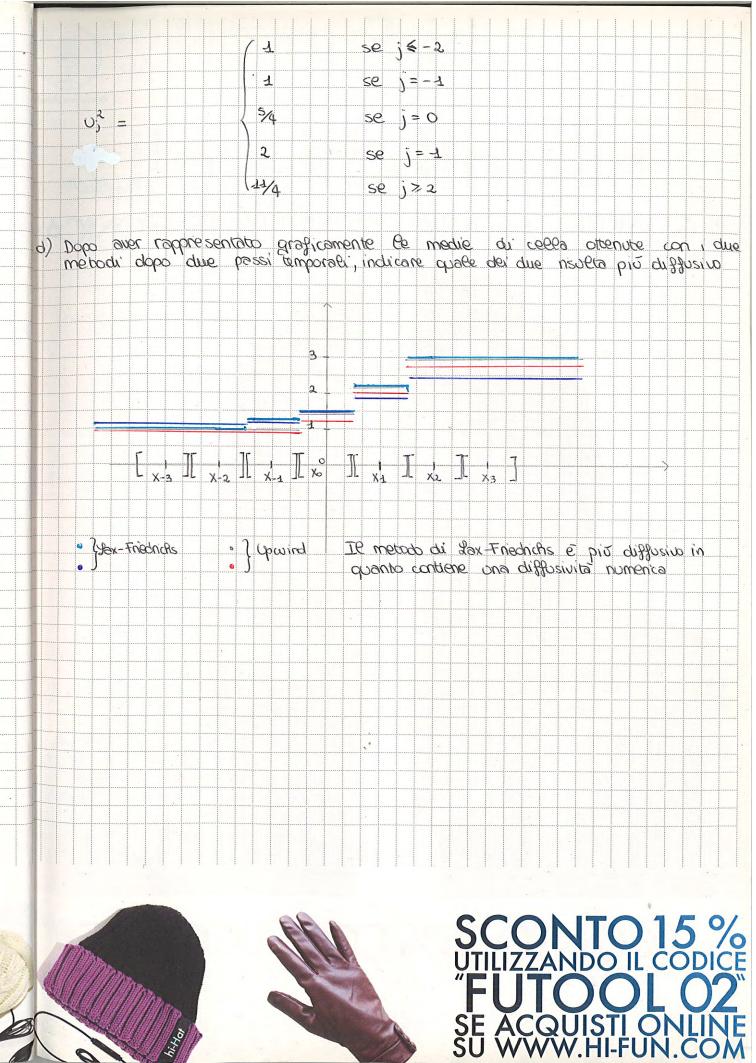
Ly = 6 /y=	= 6 $1 + y_2 = 2$ $y_2 + y_3 = 3$ = 0		a		10	
1 6	$1 + y_2 = 2$	-> y2=	*	u =	6 4 ⁶³ /23 0	
) 6/23	y2+y3=3	-> 43	_ 63	y-	63/23	
(44	= 0		23		\ 0 '	
0x=q						
$6X1 + X2 = 6 - 0X$ $23 \times 1 + X3 = 1 - 0X$	1=1		/			
		X =	0			
$63/23 \times 3 = 63/23 - 9 \times 7 \times 4 = 0 - 3 \times 10^{-1}$	3 = 1		4/			
7X4 = 0 -> X	4=0		\U'			
A Todison com omcodo	Men (com	200cH= -	V (202	p.:) ~~	red na	sict m:
c) Indicare come procede Binean Ax= ci, i= 1,	, 100 , 100	-Meima	is i cacci	Σα / Æ(` \	ionoreia 1	วเวดามา
(y=0)		Ůx	÷ y			
(U1 = 6		(6 XT	+ X2 = y	1		
(y1 = 6 1 y1 + y2 = 1		(36)	Q+X3= (Ja		
6/2012+02= 82 (3:14	4		X3 = 43			
	*	- ' T N	4=44			
Dalassegnato le problem	na di Cauchi		(4) (+) + 3	ω (t)+ :	100 a(t) =	t2+1 tel
		1	1(0) = 2			
		l l	91(0)=1			
oneminim si shasibni	di passi da e	Retur	re con is	etodo c	li Euleno	esplicito per
otenere un approssima	ione della sc	eurione	in t=2,	Barantend	o la stak	ileita dee m
(Z1(t) = 22(t)	116) = Z1(L)				
$(z_1'(t) = z_2(t)$ $z_2'(t) = -102z_2(t) - 200$	21(t)+t241 U'(1	t)= 23 (1) = &x(t)			
) 21(0) = 2	,					
(3(0) = 1						
₹ (t) = (₹3(t)) ₹2(t) /	A = (0 4		Q(t)=/	(0)	
(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		0 1 200 -10	2/	g(t)=(t2+1	


Vendi appunti, riassunti e tesi

Incassa a ogni download e preleva quando vuoi

Trova il coupon su questo quaderno Scopri di più su www.skuola.net/store/?fft

store

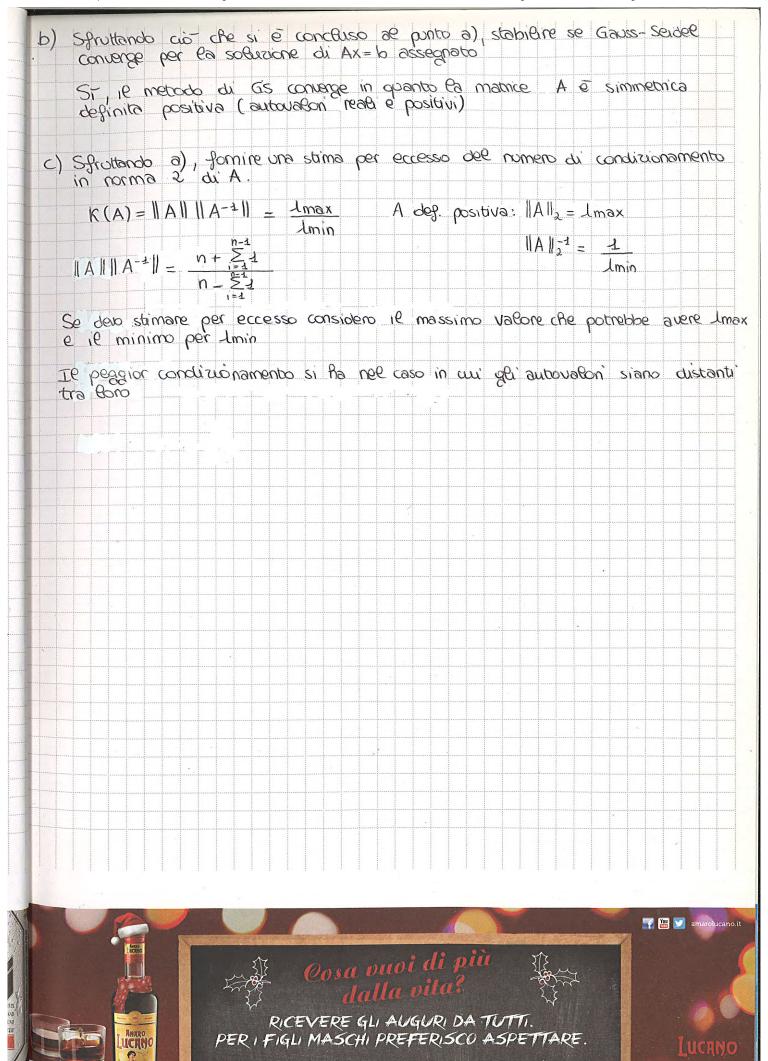

VOLA AL SITO CON IL QR CODE!



Valido entro il 31/01/2014

https://www.freefutool.it/airbnb

Puoi usarla di giorno e durante la notte.


FACENDO SHOPPING!

PIÙ DI 1.500 BRAND | SPEDIZIONE E RESO SEMPRE GRATUITI RESTITUZIONE DEL PRODOTTO ENTRO 30 GIORNI | WWW.ZALANDO.I'

*** Insquares codice sconto in fase di acquisto | Buono valido fino al 15.04.2014 | Valore minimo dell'ordine 50 € | Utilizzabile durante il processo di acquisto | 100 possono essere convertiti in denaro o usati in combinazione con altre offerte | Vietata la vendita del voucher | Non valido sui prodotti ridotti | Alcuni brando essere convertiti in denaro o usati in combinazione con altre offerte | Vietata la vendita del voucher | Non valido sui prodotti ridotti | Alcuni brando essere accusia via questa offerta | Il servizio identità e ri aggiungibile el numero verde gratulto 800 17505 | Codice validos run solo acquisto su Zalando

Se $0 < fe(b) < fe(a) $ put accordene $a \oplus b = fe(a)$ CANCELLAZIONE NUMERICA -> put venficarsi quando si esegue la sottrazione (male condizionamento di due numen macchina molto vicini tra lano a+ b e piccolo) -> pendita di cifre significative -> amplificaci emore di approssimazione sugli operandi
CANCELLAZIONE NUMERICA -> può venficarsi quardo si esegue la sottrazione (male condizionamento di due numeri macchina molto vicini tra lbro a+6 e piccolo) -> pendita di cifre significative -> ampdificazi
CANCELLAZIONE NUMERICA -> può venficarsi quando si esegue la sottrazione (male condizionamento di due numeri macchina molto vicini tra lbro a+6 è piccolo) -> pendita di cifre significative -> amplificazi
CANCEURZIONE NUMERICA -> può venficarsi quando si esegue la sottrazione (male condizionamento di due numeri macchina molto viuini tra lloro a+ b e piccollo) -> pendita di cife significative -> ampaficazi
(mae condizionamento di due nomeni macchina moeto vicini tra Boro a+ b è piccos) -> pendita di cifre significative -> ampaficati
3+p & biccop) -> beuging of all cities when the procession of the signification of the significant of the
permit a contrata
Può essere evitata usando quando possibile forme alternative per 18
caecae di un espressione
PROBLEMA BEN POSTO -> quando ammette una ed una socia sostituira che dipe
can continuità dai dati
PROBLEMA BEN CONDIZIONATO -> se De perturbacióni sui dati non influenzan
eccessivamente i nsuetati
11 c/x 11 < K 11 Ed 11 & 11 Ex 11 = K 11 Ed 11
11 x 11 = 11 x 1
K=K(d) -> numero di condizionamento del problema
Ben condizionato so K(d) piccolo, mal condizionato se K(d) grande
NUMERICAMENTE STABILE: apando la successione delle operazioni di macchin
usu subaltica eccessivamente da emoi qu'
anotordamento
Tulle De operación intermedie ed il nisullato finale delle algontino deu
presentare un emore refativo controllabile con la precisione di macci
Se 11x-x11 = Em -> ALGORITHO STABILE
l/ <u>×</u> l)

•	
	(
· Norme di matrice: A 1 = max; [] -> sommo le nighte e prendo il max sulle colonne	
11A12 = Vp(ATA), p(B) = maxi1Li(B)) -> spettrace	
Il rappio spettrale é il massimo (in modulo) degli autovalon di A → in MATLAB eig(A)	
$\ A\ _{\infty} = \max_{i} \sum_{j=1}^{n} \partial_{ij} \rightarrow \text{sommo be colonine e prendiction}$ $ A\ _{\infty} = \max_{j=1}^{n} \partial_{ij} \rightarrow \text{sommo be colonine e prendiction}$	5
$\ A\ _{E} = \left(\sum_{j=1}^{n-1} \sum_{j=1}^{n-1} 3^{j}\right)^{\frac{1}{2}} \rightarrow Frobenios$ $\frac{g_{0} \cdot egement_{0}}{schweup} \cdot di' \cdot tralp.$	
de elementi d'astati di talti.	
a a	(
EQUIVALENCA FRA NORME: 11.11x, 11.110	
∃ Q,C2/∀X ∈ Rn GIIXII B ≤ IIXII & ≤ C2 X	D
Numero di condizionamento: K(A)= (A A-+	
EUNINAZIONE GAUSSIANA	
HoPaiplication': mij = elemento 'che ste considerando	
944' 955' 900	
FATIORIZZAZIONE LU: · la matrice L ha uno sulla diagonale	k_
e zorto 69 grisdouage 49 - min. (d. bozzo zcunaus	
gió mentre facció e eliminacióne ae posto degli re	ni)
· Pa marrice U E Pa parte triang, sup, ollenula con	
6,66,m/ugarous danzeraug	
A = LU; il sistema l'ingane diventa: Lux = b => Ly = b Ux = y Coince	
In questo modo se devo nisofuere un sys fineare rambiando bases	
wa parta sortificio p cou c 6 uragneto i que rizami.	Ĺ

HETODI ITERATIVI Si USBNO CON MBDICI SPARSE di Ordine elbastro per evisite il		
Si usano con matrici sparse di ordine elevato per evilare il $\pm 1111 - 110 \Rightarrow$ n'emprimento matrici le u $\pm 1111 - 110 \Rightarrow$ n'emprimento matrici le u $\pm 1111 - 110 \Rightarrow$ n'emprimento matrici le u $\pm 1111 - 110 \Rightarrow$ n'emprimento matrici le $\pm 1111 - 110 \Rightarrow$ n'emprimento matrici le $\pm 1111 - 110 \Rightarrow$ n'emprimento matrici le $\pm 1111 - 110 \Rightarrow$ n'emprimento estima iniziale $\pm 1111 - 110 \Rightarrow$ n'elevatoro estima iniziale $\pm 1111 - 110 \Rightarrow$ n'elevatoro estima di matrice naturale. Se $\pm 1111 - 110 \Rightarrow$ n'elevatoro estima iniziale porche $\pm 1111 - 110 \Rightarrow$ n'elevatoro estima iniziale porche $\pm 1111 - 1111 - 1111 \Rightarrow$ n'elevatoro di convergenza maggiore $\pm 1111 - 1111 - 1111 \Rightarrow$ n'elevatoro di convergenza minore $\pm 1111 - 1111 - 1111 \Rightarrow$ n'elevatoro di convergenza minore $\pm 1111 - 1111 - 1111 \Rightarrow$ n'elevatoro di convergenza minore $\pm 1111 - 1111 - 1111 \Rightarrow$ n'elevatoro di convergenza minore $\pm 1111 - 1111 - 1111 - 1111 \Rightarrow$ n'elevatoro di convergenza minore $\pm 1111 - 1111 $		
Si usano con matrici sparse di ordine elevato per evilare il $\pm 1111 - 110 \Rightarrow$ n'emprimento matrici le u $\pm 1111 - 110 \Rightarrow$ n'emprimento matrici le u $\pm 1111 - 110 \Rightarrow$ n'emprimento matrici le u $\pm 1111 - 110 \Rightarrow$ n'emprimento matrici le $\pm 1111 - 110 \Rightarrow$ n'emprimento matrici le $\pm 1111 - 110 \Rightarrow$ n'emprimento matrici le $\pm 1111 - 110 \Rightarrow$ n'emprimento estima iniziale $\pm 1111 - 110 \Rightarrow$ n'elevatoro estima iniziale $\pm 1111 - 110 \Rightarrow$ n'elevatoro estima di matrice naturale. Se $\pm 1111 - 110 \Rightarrow$ n'elevatoro estima iniziale porche $\pm 1111 - 110 \Rightarrow$ n'elevatoro estima iniziale porche $\pm 1111 - 1111 - 1111 \Rightarrow$ n'elevatoro di convergenza maggiore $\pm 1111 - 1111 - 1111 \Rightarrow$ n'elevatoro di convergenza minore $\pm 1111 - 1111 - 1111 \Rightarrow$ n'elevatoro di convergenza minore $\pm 1111 - 1111 - 1111 \Rightarrow$ n'elevatoro di convergenza minore $\pm 1111 - 1111 - 1111 \Rightarrow$ n'elevatoro di convergenza minore $\pm 1111 - 1111 - 1111 - 1111 \Rightarrow$ n'elevatoro di convergenza minore $\pm 1111 - 1111 $		
Fill—IN \Rightarrow n'empirmento metrici $C \in O$ Spelitting di $A : A = M + N$ det $(M) \neq O$ \Rightarrow deve essere non singolere chinch invertibile $Mx = -Nx + b \Rightarrow Mx^{k+1} = -Nx^k + b$ CONVERGENZA: SE E SOID SE $P(B) \leq 1$ dove $B = M^{-1}N$ Tecrema : sia $M = M + M = M = M = M = M = M = M = M = $	METODI ITERATIVI	
Fill—IN \Rightarrow n'empirmento metrici $C \in O$ Spelitting di $A : A = M + N$ det $(M) \neq O$ \Rightarrow deve essere non singolere chinch invertibile $Mx = -Nx + b \Rightarrow Mx^{k+1} = -Nx^k + b$ CONVERGENZA: SE E SOID SE $P(B) \leq 1$ dove $B = M^{-1}N$ Tecrema : sia $M = M + M = M = M = M = M = M = M = M = $	Si usano con matrici sparse di ordine esevato per evitare il	
$Hx = -Nx + b \longrightarrow Hx^{k+1} = -Nx^k + b$ $\text{CONVERGENZA:} \text{SE} \in \text{SOLD SE} p(B) < 1 \text{close } B = N^{-1}N$ $\text{Tecrema:} \text{2 sia} \ \cdot \ \text{una norma di matrice naturale.} \text{Se IIBII} < 1 \cdot 10 \text{metric}$ $\text{Illinativo consençe per una qualinque stima iniviale poiche}$ $p(B) \leq \ B \ $ $\text{Se p(B)} \text{e} \text{vicino} \text{a } 0 \longrightarrow \text{velocită di convengenza minore}$ METODO DI TACOBI $A = E + D + F \qquad A = \begin{pmatrix} D & F \\ E \end{pmatrix} \qquad \begin{array}{c} N = D \\ N = (E + F) \\ X = D - 1 \end{pmatrix} \begin{pmatrix} E + F \\ E - F \\ E = D - 1 \end{pmatrix} \begin{pmatrix} E + F \\ E = D - 1 \end{pmatrix} \begin{pmatrix} $		-
CONVERGENS A: $SE \in SOLO SE \setminus P(B) \le 1$ obve $B = N^{-1}N$ Teaching: $SIA = 1 \setminus 1 \setminus 1$ on a normal di matrice naturale. Se II $BII \le 1 \cdot 10$ metrico di Canverge per una quallinque sti ma iniviable poiche per una quallinque sti ma iniviable poiche per $P(B) \le IBII $ Se $P(B) \in Vicino = 0 \rightarrow Vellocità di convergenza minore METODO DI TACCEI A = E + D + F A = \begin{pmatrix} E \\ E \end{pmatrix} A = E + E + E \end{pmatrix} A = E + D + F A = \begin{pmatrix} E \\ E \end{pmatrix} A = E + E + E \end{pmatrix} A = E + D + F A = \begin{pmatrix} E \\ E \end{pmatrix} A = E + E + E \end{pmatrix} A = E + D + F A = E + E + E A = E + D + F A = E + E + E A = E + D + F A = E + E + E A = E + D + F A = E + E + E A = E + D + F A = E + E + E A = E + D + F A = E + E + E A = E + D + F A = E + E + E A = E + D + F A = E + E + E A = E + D + F A = E + E + E A = E + D + F A = E + E + E A = E + D + F A = E + E + E A = E + D + F A = E + E + E + E A = E + D + F A = E + E + E + E + E + E + E + E + E + E$	Spelitting di A: $A = M + N$ $det(M) \neq 0$ -> deve essere non singofare spindi invertibile	
Tecrema: sia - una norma di matrice naturale. Se B < \pm 10 metrico conserge per una quallinge sti ma iniziale poiche p(B) \leq B Se p(B) \in vicino a 0 \Rightarrow velocità di convergenza maggiore """ a \pm \Rightarrow velocità di convergenza minore METODO DI TACCEI $A = E + D + F \qquad A = \begin{pmatrix} D & F \\ E \end{pmatrix} \qquad N = (E + F)$ $X^{K+2} = D^{-2} \begin{pmatrix} E + F \\ E \end{pmatrix} \Rightarrow D \text{ invertibilite (non singolare)}$ $X^{K+4} = D^{-4} \begin{pmatrix} D & E \times K - F \times K \\ E & E + D + F \end{pmatrix}$ METCDO DI GANSS SEIDEL $A = E + D + F \qquad M = E + D$ $N = F$ $B_{GS} = -(E + D)^{-2}F$	$Mx = -Nx+P \rightarrow Mx_{k+7} = -Nx_k+P$	
Tecrema: sia - una norma di matrice naturale. Se B < \pm 10 metrico conserge per una quallinge sti ma iniziale poiche p(B) \leq B Se p(B) \in vicino a 0 \Rightarrow velocità di convergenza maggiore """ a \pm \Rightarrow velocità di convergenza minore METODO DI TACCEI $A = E + D + F \qquad A = \begin{pmatrix} D & F \\ E \end{pmatrix} \qquad N = (E + F)$ $X^{K+2} = D^{-2} \begin{pmatrix} E + F \\ E \end{pmatrix} \Rightarrow D \text{ invertibilite (non singolare)}$ $X^{K+4} = D^{-4} \begin{pmatrix} D & E \times K - F \times K \\ E & E + D + F \end{pmatrix}$ METCDO DI GANSS SEIDEL $A = E + D + F \qquad M = E + D$ $N = F$ $B_{GS} = -(E + D)^{-2}F$	eleisini emila supribaco eno rea	
Identitio converge per una qualita sti ma iniziale poiche $p(B) \leq B $ Se $p(B) \in Vicino = 0 \implies vellocità di convergenza maggiore$ $ $	CONVERGENZA: SE E SOLO SE $P(B) < 1$ obre $B = N^{-1}N$	
Identitio converge per una qualita sti ma iniziale poiche $p(B) \leq B $ Se $p(B) \in Vicino = 0 \implies vellocità di convergenza maggiore$ $ $	Torona : sia 11:11 una roma di matrice naturale. Se 11811 st il m	hite
$p(B) \leq B $ Se $p(B) \in V(a)$ in a $0 \rightarrow V(b)$ outs di convergenza maggiore """ $a \neq -b = b$ METODO DI TACOBI $A = E + D + F \qquad A = \begin{pmatrix} D & F \\ E \end{pmatrix} \qquad A = (E + F)$ $B_{J} = -D^{-1}(E + F) \rightarrow D \text{ invertibility (non singolary)}$ $X^{K+1} = D^{-1}(b - E X^{K} - F X^{K})$ METODO DI GAUSS- SEIDEL $A = E + D + F \qquad M = E + D$ $V = F$ $B_{GS} = -(E + D)^{-1}F$		
Se $\rho(B)$ e vicino a $O \rightarrow Velboita$ di convergenza maggiore "" "" " a $d \rightarrow Velboita$ di convergenza minore METODO DI TACCRI $A = E + D + F \qquad A = \begin{pmatrix} D & F \\ E \end{pmatrix} \qquad M = (E + F)$ $B_{J} = -D^{-1}(E + F) \rightarrow D \text{ invertibile} \text{ (non singolare)}$ $X^{K+1} = D^{-1}(D - EX^{K} - FX^{K})$ METODO DI GAUSS- SEIDEL $A = E + D + F \qquad M = E + D$ $N = F$ $BGS = -(E + D)^{-1}F$		
METODO DI TACOBI $A = E + D + F \qquad A = \begin{pmatrix} E \\ D \end{pmatrix} \qquad M = D \\ M = (E + F) \end{pmatrix}$ $X = E + D + F \qquad M = E + D $ $X = E + D + E \qquad M = E + D $ $X = E + D + E \qquad M = E + D $ $X = E + D + E \qquad M = E + D $ $X = E + D + E \qquad M = E + D $ $X = E + D + E \qquad M = E + D $ $X = E + D + E \qquad M = E + D $ $X = E + D + E \qquad M = E + D $ $X = E + D + E \qquad M = E + D $ $X = E + D + E \qquad M = E + D $ $X = E + D + E \qquad M = E + D $ $X = E + D + E \qquad M = E + D $ $X = E + D + E \qquad M = E + D $ $X = E + D + E \qquad M = E + D $ $X = E + D + E \qquad M = E + D $ $X = E + D + E \qquad M = E + D $ $X = E + D + E \qquad M = E + D $ $X = E + D + E \qquad M = E + D $ $X = E + D + E \qquad M = E + D $ $X = E + D + E \qquad M = E + D $ $X = E + D + E \qquad M = E \rightarrow E $		
METODO DI TACOBI $A = E + D + F \qquad A = \begin{pmatrix} E \\ D \end{pmatrix} \qquad M = D \\ M = (E + F) \end{pmatrix}$ $X = E + D + F \qquad M = E + D $ $X = E + D + E \qquad M = E + D $ $X = E + D + E \qquad M = E + D $ $X = E + D + E \qquad M = E + D $ $X = E + D + E \qquad M = E + D $ $X = E + D + E \qquad M = E + D $ $X = E + D + E \qquad M = E + D $ $X = E + D + E \qquad M = E + D $ $X = E + D + E \qquad M = E + D $ $X = E + D + E \qquad M = E + D $ $X = E + D + E \qquad M = E + D $ $X = E + D + E \qquad M = E + D $ $X = E + D + E \qquad M = E + D $ $X = E + D + E \qquad M = E + D $ $X = E + D + E \qquad M = E + D $ $X = E + D + E \qquad M = E + D $ $X = E + D + E \qquad M = E + D $ $X = E + D + E \qquad M = E + D $ $X = E + D + E \qquad M = E + D $ $X = E + D + E \qquad M = E + D $ $X = E + D + E \qquad M = E \rightarrow E $	Se p(B) & vicino a 0 -> velocità di convengenza macquere	
METODO DI TACOBI $A = E + D + F \qquad A = \begin{pmatrix} D & F \\ E & \end{pmatrix} \qquad M = D \\ M = (E + F)$ $B_{J} = -D^{-1} (E + F) \implies D \text{ invertibility (non singologie)}$ $X^{K+1} = D^{-1} (D - E X^{K} - F X^{K})$ $METODO DI GAUSS- SEIDEL$ $A = E + D + F \qquad M = E + D$ $N = F$ $BGS = -(E + D)^{-1} F$		
$A = E + D + F \qquad A = \begin{pmatrix} E & D & E \\ D & E \end{pmatrix}$ $M = D + D = D = D = D = D = D = D = D = D$		
$A = E + D + F \qquad A = \begin{pmatrix} E & D & E \\ E & D & E \end{pmatrix}$ $A = E + D + F \qquad A = \begin{pmatrix} E & D & E \\ E & D & E \end{pmatrix}$ $A = E + D + F \qquad A = E + D$ $A = E + D + D$ $A = $	METODO DI TAKOBI	
$B_{3} = -D^{-1} \left(E + E \right) \rightarrow D \text{ invertibile (non singletent)}$ $X = E + D + E$ $M = E + D$		
$B_{3} = -D^{-1} \left(E + E \right) \rightarrow D \text{ invertibile (non singletent)}$ $X = E + D + E$ $M = E + D$	$A = E + D + F$ $A = \begin{pmatrix} D & F \end{pmatrix}$ $H = D$	
$X^{K+1} = D^{-1} \left(b - \xi X^{K} - \xi X^{K} \right)$ $METCDO DI GAUSS- SEIDEL$ $A = \xi + D + \xi \qquad M = \xi + D$ $N = \xi$ $BGS = - (\xi + D)^{-1} \xi$	(E / N= (E+F)	
$X^{K+1} = D^{-1} \left(b - \xi X^{K} - \xi X^{K} \right)$ $METCDD DI GAUSS- SEIDEL $ $A = \xi + D + F$ $M = \xi + D$ $N = F$ $BGS = - (\xi + D)^{-1}F$	$B_{J} = -D^{-\frac{1}{2}} (E+E) \rightarrow D$ invertibile (non singlete)	
$A = E+D+F \qquad M=E+D$ $N=F$ $BGS = -(E+D)^{-1}F$		
$A = E+D+F \qquad M=E+D$ $N=F$ $BGS = -(E+D)^{-1}F$		
$N=F$ $BGS = -(E+D)^{-1}F$	METODO DI GAUSS- SEIDEL	
$BGS = -(E+D)^{-1}F$	A = EIDIF M=EID	
	N=F	
$X_{k+q} = D_{-\gamma} \left(p - f(X_{k+q}) - f(X_k) \right)$	$BGS = -(E+D)^{-\frac{1}{2}}F$	
	$X_{k+q} = D_{-q} \left(p - f(X_{k+q}) - f(X_k) \right)$	
Co sostiltuisco incomito gia	- sostiltuisco incomite gia	
trovale nelle eduacioni.	tonga needs sangarani,	

	•
TEOREMA STEIN-ROSENBERG	
Sia ACIRnan con aij so, Vi = je ali >0, albora si ve	n-fice
UNO € UND SOLO dei seguenti nisuellati:	
• $1 < b$ (B2) $< b$ (Ba2) \rightarrow e2 bin Course 99669 20 Garage	ine
$\rho(BGS) = \rho(BT) = 0$	
· p (BGS) = p (BT) = 1	
TEOREHA	
Sia A E IR nxn una matrice TRIBIAGONALE con elementi d	iag. non
night, afficia	
$\rho(Bas) = \rho_{s}(Bas)$	
Ombro 16 without on er of on 1 secons connection of others	cno
simultareamente ed il tasso asintotico di convengenza di	e metado
simultareamente ed il tasso asintotrio di convergenta di di GS e doppio di quello del metrodo di Tacdoi.	e metado
simultareamente ed il tasso asintotico di convengenza di di GS e doppio di quello del metrodo di Jacdoi.	e metado
	el metado
	e metado
	el metado
	e metado
	e metado
	e metado
	e metado
	e metado
	e metado
	e metado
	e metado
	e metado
	e metado
	of wetad
	e wetado
	e wetado

	SASE DI NEWTON) $SASE$ DI NEWTON) $SASE$	no n
	$\frac{\partial \mathcal{L}(X) = 1}{\partial \mathcal{L}(X) = X - X_0}$ $\frac{\partial \mathcal{L}(X) = (X - X_0)(X - X_1)}{\partial \mathcal{L}(X) = \prod_{k=0}^{n-1} (X - X_k)}$ $\frac{\partial \mathcal{L}(X) = \prod_{k=0}^{n-1} (X - X_k)}{\partial \mathcal{L}(X) = \prod_{k=0}^{n-1} (X - X_k)}$ $\frac{\partial \mathcal{L}(X) = \prod_{k=0}^{n-1} (X - X_k)}{\partial \mathcal{L}(X) = \prod_{k=0}^{n-1} (X - X_k)}$ $\frac{\partial \mathcal{L}(X) = \prod_{k=0}^{n-1} (X - X_k)}{\partial \mathcal{L}(X) = \prod_{k=0}^{n-1} (X - X_k)}$ $\frac{\partial \mathcal{L}(X) = \prod_{k=0}^{n-1} (X - X_k)}{\partial \mathcal{L}(X) = \prod_{k=0}^{n-1} (X - X_k)}$ $\frac{\partial \mathcal{L}(X) = \prod_{k=0}^{n-1} (X - X_k)}{\partial \mathcal{L}(X) = \prod_{k=0}^{n-1} (X - X_k)}$ $\frac{\partial \mathcal{L}(X) = \prod_{k=0}^{n-1} (X - X_k)}{\partial \mathcal{L}(X) = \prod_{k=0}^{n-1} (X - X_k)}$ $\frac{\partial \mathcal{L}(X) = \prod_{k=0}^{n-1} (X - X_k)}{\partial \mathcal{L}(X) = \prod_{k=0}^{n-1} (X - X_k)}$ $\frac{\partial \mathcal{L}(X) = \prod_{k=0}^{n-1} (X - X_k)}{\partial \mathcal{L}(X) = \prod_{k=0}^{n-1} (X - X_k)}$ $\frac{\partial \mathcal{L}(X) = \prod_{k=0}^{n-1} (X - X_k)}{\partial \mathcal{L}(X) = \prod_{k=0}^{n-1} (X - X_k)}$ $\frac{\partial \mathcal{L}(X) = \prod_{k=0}^{n-1} (X - X_k)}{\partial \mathcal{L}(X) = \prod_{k=0}^{n-1} (X - X_k)}$ $\frac{\partial \mathcal{L}(X) = \prod_{k=0}^{n-1} (X - X_k)}{\partial \mathcal{L}(X) = \prod_{k=0}^{n-1} (X - X_k)}$ $\frac{\partial \mathcal{L}(X) = \prod_{k=0}^{n-1} (X - X_k)}{\partial \mathcal{L}(X) = \prod_{k=0}^{n-1} (X - X_k)$	us inc
	$\frac{\partial \mathcal{L}(X) = 1}{\partial \mathcal{L}(X) = X - X_0}$ $\frac{\partial \mathcal{L}(X) = (X - X_0)(X - X_1)}{\partial \mathcal{L}(X) = \prod_{k=0}^{n-1} (X - X_k)}$ $\frac{\partial \mathcal{L}(X) = \prod_{k=0}^{n-1} (X - X_k)}{\partial \mathcal{L}(X) = \prod_{k=0}^{n-1} (X - X_k)}$ $\frac{\partial \mathcal{L}(X) = \prod_{k=0}^{n-1} (X - X_k)}{\partial \mathcal{L}(X) = \prod_{k=0}^{n-1} (X - X_k)}$ $\frac{\partial \mathcal{L}(X) = \prod_{k=0}^{n-1} (X - X_k)}{\partial \mathcal{L}(X) = \prod_{k=0}^{n-1} (X - X_k)}$ $\frac{\partial \mathcal{L}(X) = \prod_{k=0}^{n-1} (X - X_k)}{\partial \mathcal{L}(X) = \prod_{k=0}^{n-1} (X - X_k)}$ $\frac{\partial \mathcal{L}(X) = \prod_{k=0}^{n-1} (X - X_k)}{\partial \mathcal{L}(X) = \prod_{k=0}^{n-1} (X - X_k)}$ $\frac{\partial \mathcal{L}(X) = \prod_{k=0}^{n-1} (X - X_k)}{\partial \mathcal{L}(X) = \prod_{k=0}^{n-1} (X - X_k)}$ $\frac{\partial \mathcal{L}(X) = \prod_{k=0}^{n-1} (X - X_k)}{\partial \mathcal{L}(X) = \prod_{k=0}^{n-1} (X - X_k)}$ $\frac{\partial \mathcal{L}(X) = \prod_{k=0}^{n-1} (X - X_k)}{\partial \mathcal{L}(X) = \prod_{k=0}^{n-1} (X - X_k)}$ $\frac{\partial \mathcal{L}(X) = \prod_{k=0}^{n-1} (X - X_k)}{\partial \mathcal{L}(X) = \prod_{k=0}^{n-1} (X - X_k)}$ $\frac{\partial \mathcal{L}(X) = \prod_{k=0}^{n-1} (X - X_k)}{\partial \mathcal{L}(X) = \prod_{k=0}^{n-1} (X - X_k)}$ $\frac{\partial \mathcal{L}(X) = \prod_{k=0}^{n-1} (X - X_k)}{\partial \mathcal{L}(X) = \prod_{k=0}^{n-1} (X - X_k)}$ $\frac{\partial \mathcal{L}(X) = \prod_{k=0}^{n-1} (X - X_k)}{\partial \mathcal{L}(X) = \prod_{k=0}^{n-1} (X - X_k)$	mo bearma
(C) (D) (V) (V) (V) (V) (V) (V) (V) (V) (V) (V	$D_{1}(x) = x - x_{0}$ $D_{2}(x) = (x - x_{0})(x - x_{1})$ $D_{3}(x) = \prod_{k=0}^{n-1} (x - x_{k})$ $D_{3}(x) = \prod_{k=0}^{n-1} (x - x_{k}$	wo wo
<u>D</u>		no beu mo
<u>D</u>		mo mo
<u>D</u>	wh(x) = $\prod_{k=0}^{n-2} (x-x_k)$ Difference divise = $\{Ex_{10},, x_{1k}\} = \{Ex_{10},, x$	us us
D	Differense divise: JEXIO, XIK] = JEXIJ, XIK] + PEXIO, XIK-1] OBE SECOND CONTINUED OBE SECOND CONTINUED OBE SECOND	up inc
U		no mo
U		no no
U		Segue
U		
	ennideta di Ruffini - Homen	
S	empre diversi da zero -> tavola ben definita	
10	NTERPOLAZIONE DI HERNITE	
	Detre al valore della funzione nel pinto do il valore della derivata	
4	ou just use brups.	(
X	(K JEXK] JEXK, XK+2] JEXK, XK+2, XK+2]	
Xo	$f(x_0)$ $f'(x_0)$	
K-X-I	1 f(x1) f[x0,x1] f[x0,x2] - f(x0)	
FX.	$f(x_1)$ $f'(x_2)$ $f'(x_3)$	
- 13		

Spaine di grado: • 2 -> continuità della derivata I nelle giunzioni · 2-3-> continuità delle denvate I,II nelle giunzioni SPUNE CUBICHE: NATURALI: S' (XO) = 0, S' (XO) = 0) . PERIODICHE: 53' (XO) = 53' (XO) - 53' (XO) = 53' (XO) 3) . VINCOLATE: S'3(XO) = y', S'3 (Xn) = y'n 1) · NOT-A-KNOT: 53"(X) continue arche in X1 e Xn-1 (pamo e ultimo (constrain oborn Counsideuss. Tecrema: Sia Sa(x) Pa spaire cubica interpolante i dati (Ki, yi) per i=0,...,n con condizioni di tipo ± 12.3 . Sia $h = max_1h_1$, $h_1 = x_1 - x_1 - \pm 1$. $\rightarrow h_2$ if più stanze condizioni di tipo ± 12.3 . Sia $h = max_1h_1$, $h_1 = x_1 - x_1 - \pm 1$. $\rightarrow h_2$ if più stanze con h_1 sense che la consideratione di h_2 sense che la consideratione di h_1 sense che consideratione di h_2 sense che consideratione di h_1 sense che consideratione di h_2 sense che consideratione di h_1 sense che consideratione di h_2 sense che consideratione di h_1 sense che consideratione di h_2 sense che consideratione di h_2 sense che consideratione di h_1 sense che consideratione di h_2 s • Se $f \in C^{\kappa}[a,b]$, K=3,4 e $\frac{A}{Ri} \in cost$ per $A \rightarrow 0$ si Ra: Se K > 2 Arcora Arcora $O(R^{3}-P) K=3$ $O(R^{4}-P) K=4$ P=0,1,2,3PROPRIETÀ SPLINE CUBICHE Tra tatte de foncióni pe callabol che assomono valon y nei nodi x, e saddisfacenti conditioni di tipo 1,2,3, Pe speine cubiche sono de sole funzioni che minimizzano e'integrate: dostant country $E(x) = \int_{x_0}^{x_0} [x_0(x)]^2 dx$ $\int_{x_0}^{x_0} |x_0(x)|^2 dx$ $\int_{x_0}^{x_0} |x_0(x)|^2 dx$ $\int_{x_0}^{x_0} |x_0(x)|^2 dx$ Le spaine naturali godono di una proprietà di minimo assocuto (1+ 1,(x)3)3/5

(1+ 1,(x)3)3/5

APPROSSINAZIONE DERIVATA PRIMA:
\circ Diff. in avanti: $f'(x) = \frac{f(x_0 + R) - f(x_0)}{R} - \frac{1}{2} f''(\xi +) R$
ERRORE che si ha approssimando ea
denvala con le reporto incrementale 8º emore si comporta come h a meno
Stella cancellarione numenica
• Diff. all indietro: fi(x0) = f(x0-R)-f(x0) + 1 gi (E-)R
• Diff. (Entrate: $f'(x_0) = \frac{f(x_0+R) - f(x_0-R)}{2R} + \frac{4}{42} \left(f'''(\xi+) + f'''(\xi-1) h^2 \right)$ in made simmetrice in spetto a x_0
GRORE can diff. in avanti o apprincieno: Cifi C. Prino termine: enore anaditico
y (approssing devinage con table incident)
" " diff. centrate: Czhz+ Cz R Secondo termine: emore numerica
b ocarda - stimo cora accurato ?
y biccopp -> couches signs unuevices combinences oppose y = 1 × 1 × 1
R biccopp -> couces sous invience
APPROSSINAR. DERIVATA SECONDA
$f'''(x_0) = \frac{f(x_0 + R) - 2f(x_0) + f(x_0 - R)}{R^2} + \frac{1}{24} (f''(E_+) + f''(E))R^2$
$f''(x_0) = \frac{1}{10000000000000000000000000000000000$
Florence i consulta como de
a chore st conform one !!
Posso inclure approssimant la derivata di f approssimando la funcione f mediante
speine e poi calcolando la denivala di quest'ultima.

Imponiamo che la formula di quadratura Jah f(x)dx = 2 wif(x) sia esalla su una base della spacio da' polinomi di grado n-1, in particolare 1, x, x2,..., xn-1 Scellao i posi in modo che $\omega_1 + \omega_2 + \dots + \omega_n = \int_0^b 4 dx = b - a$ $\omega_1 \times 1 + \dots + \omega_n \times n = \int_0^b x \, dx = \frac{1}{2} (b^2 - a^2)$ Volga e vogaglianza (vedi esercizi) $\omega_1 x_{1_{n-1}} + + \omega_0 x_{0_{n-1}}^{0} = \int_{p}^{9} x_{0_{n-1}} dx = \frac{1}{7} (p_n - 9_0)$ PROP Le formule du Newton-Cotes costruite su n nodi sono esalte per polinomi di grado fino a d=n-1 se n PARI, d=n se n DISPARI CONVERGENZA SE GIM RN = 0 TEDREMA: Se P E C[a,b] e i pesi soddisfano [| wil < K, con K costante indip. da n allbra la formula di quadratura è convergente I pesi delle formate di Newton-Coles non saddisfeno questo bonenne quindi non gerentiscono Go countideusa QUADRATURA COMPOSITA 1) Si sceglie una formita di interpolazione base costruita su un numero prefissato r di nodi (piccolo) 2) Si partiziona (1 intervallo di integrazione in N intervallini 3) Additività decer integrale: So fixidx = 5 /x; f(x)dx 4) Si applica la formula di quadratura a ciascuno degli integrali a dx FORHULA TRAPEZI COMPOSITI (mod equidistant) $I\overline{b} = \frac{R}{2} \left(f(x_1) + 2 \sum_{i=2}^{n} f(x_i) + f(x_{n+2}) \right)$ NHL Valletaz di fe. dividore un intervalle

Esistano sala metadi iterativi	
La convergenza dipende in modo crítico dilla scelta di Xo	
· I metadi passono convergene a punti che non sono de saluz cercate, ad esempio più saluzioni e voglio isolarne una	क कि
Si deve fare un breve studio prediminare di funzione in modo da ecalcizzare le e individuare un intervallo che contenga una e una sola radice	ısdici
METODO DI BISEZIONE	
Si basa sue bonema di esistenza degli sen por funzioni continue	
TH. Se f E C[a,b] e f(a)g(b) <0, Ic E [a,b] tale the f(c)=0	

A GLOS ALLIENTE DIVERGENTE - CONVINCADO SEURO POSONIO A DOLONO C

Hetoob GLOBALHENTE DIVERGENTE → convergenza SEMPRE garantila, qualunque sia Ca

STIHA DELL'ERRORE: per garantine un emone associato inferiore ad una certa tolleranza E

Sicuramente ex & E

Rongo Xm = 3+b

EQUAZIONI NON LINEARI

TEORENA (degli estremi di Fourier)	
Sia f E C2 [a, b] chiuso e Dimitato. Se:	
±) f(0)f(b) < 0	
3) $f'(x) > 0 \ \forall x \in [a,b] \ o \ f'(x) < 0 \ \forall x \in [a,b] \ (non si asset)$	[d,6] ni ism sx
3) $f''(x) \ge 0 \ \forall x \in [a,b] \ o \ f'(x) \le 0 \ \forall x \in [a,b]$ (non cambia	sego in [a,b]
-> la funziore non cambia concavità)	
Althora f(x)=0 ha un'unica radice X* in [a,b] e il metodo di	Newton converge a
x* V xo E [0,b] tab: che f(xo) 9"(xo) >0	
sousitors steap delibbos non se	So
TECRENA	
Sia JE C2 [a,b] chiuso e amitato. Se:	
1) f(a) f(b) < 0	
3) f'(x) >0 Ax E [9/p] O f'(x)<0 Ax E [9/p]	
B) 9"(x)>0 Vx E [a,b] 0 9"(x) <0 Vx E [a,b]	
$\frac{1}{3} \left \frac{1}{3} \right < b - 3$ e $\left \frac{1}{3} \right < b - 3$ -> ee tangenti mandate dagerintervaled	estremi cadaro
allora $f(x) = 0$ ha un unica radice x^* in $[a,b]$ e is metado of x^*	hi Newton converge
Metodo di Natipou costaro beutyre vigiliege eg dovi, bezer ficki e fick	(x) -> VARIANTI
1) NEWTON ALLE DIFFERENCE: f'(XX) approximate can differense in	avanti/aee indietro
XK+1 = XK - J(XK)	
$\frac{\chi_{K+1} = \chi_K - f(\chi_K)}{f(\chi_K + f_K) - f(\chi_K)}$	
r I K	

TEORENA: Se $\phi \in C^1$ in un intorma di $x^* \in \phi'(x^*) < 1$ allora es	model do also
I di x^* table che se $x_0 \in I$ la soccessione converge.	
Se vicences \$\phi'(\chi*) > 1	
Se \$'(x*) = 1 is netable delle ilurate successive può	**
convergers	contage o ray
$\phi'(x^*)>0 \rightarrow monotronia$	
$\emptyset'(X^+)<0 \rightarrow nmb = 0$ ox 0×0	
Se $\phi'(x^*) = 0 \rightarrow convergenza di ordine z$	
TEOREHA: Se esiste [a,b] talle che	
1) φ ∈ C ¹ [a,b]	
2) \$\phi : [a,b] \rightarrow [a,b]	
3) FK<+ tale che p'(x) ≤K + x ∈ [a,b]	
After a esiste un E un soco punto fisso in [a,b] e	ie metabo delle
iterate successive converge ad esso Y Xo E [a,b]	
$\frac{e_{\kappa+4}}{e_{\kappa}} \sim \frac{\phi^{(m)}(\chi^{+})}{m!}$	
6k mi	7.1
TEOREHA: Se 1) \$ (i) (X+) = 0 per i= 1,, m-1	
2) Ø ((x+) ≠ 0	
Appora produce di convergenza e m. In particola	t= m 92 90
$\frac{\text{Gim}}{\text{K-}>\infty} \frac{\text{Ex+1}}{\text{ex}} = \emptyset'(\text{X+}) \qquad \frac{\text{g'emore at passo x+1}}{\text{g'(x+)}}$	
L'ordine di convergenza e pari alle ordine della prima derivata chi	
rel punto fisso.	

ORDINE DI ALCONI HETODI: • 6	Expora T/E : n=4
	Expora T/E : n=4
	ELPOND T/E , D=4
0 -	2000 1/C : P=1
	Trapeu: $p = 2$
•	Heun: $\rho = 2$
	Runge Kutta: uariabile, ma pss
	- Pmax = S, S = 1 ->4
4	- Pmax = S-1, S = 5->7
	$- p_{max} = s - 2, s = 3,9$
	- Pmax = 5-3, 5≥±0
Un problema è ASINITOTICAMEN	TE STABILE se: Am g(t) = 0 per e es porentiade
er A fissalo, un metodo é A	ASSOLUTAMENTE STABILE Se: Rim yr=0 K=n° pass
Se ie problema <u>von</u> e asint stabile	obicamente stabile <u>Nesson</u> metodo sará assoculament
STABILITÀ DI SISTEMI	
Sistema di ODE Bineani a $y'(t) = Ay(t)$	coeff. costanti
	esponsabilisi della stabilista. In particulare, se (otricamente stabilis
Hetab assaluamento stabite ->	PLIERO YLI (e) autovalore più negativo fornisce ea restrazione sue posso)
170	

n	= 10
TABLED DI BUTCHER: by	
bz	CH
bs	; CS1 CS ₁ S-1
	C34 C5,5-4
$\sum_{i=1}^{j=4} 9_i = 1$ $p_i = \sum_{i=1}^{j=4} C_{i,i}$ $y_i = 1$	\$
Tableu Eulero esplicito: 00	
Tobea Hain: 0 0 0 0 1 1 0 1 1/2 1/2	61=0+0
3/, 4/)	bx=4+0
12 12	
	
	-

	Le .

Se 11 = cost si Ba: 11-0;-1+20;-0;+1 A = M triciag[-1 2-1] Tamine robo: \display(xj) Se Ro condizioni di Neumann: A = M tridiag [-1 1, -12 -1] A = 4 tridiag [-12-1; -1 1] -> se nell'ultimo nodo TEOREMA DI GERSCHGORIN Hatrice A quadrata di ordine n Cerchi di Gerschgonin: $C_i = \{z \in \mathbb{C} : |z-a_{ii}| \leq r_i = \sum_{i=1}^{n} |a_{ij}|\} = 1,...,n$ I cerchi hanno centro suell'asse reale nel ponto di ascissa aii, e rappio uquale alla somma dei module: degli elementi che stano nella nga i, al di fuon della diag. TEOREMA Sia A una matrice realle quadrata di ordinen e siano Ci, i=1...,n i suoi cerchi di Gerschgenn. Allora: 4) Opni autovalore 1 di A sta 1000 unione C= Un Ci dei cerchi di Gerschopini 2) Se C'=Um Circ e Plunione di m cerchi di Gerschapin ed e disquinta dall'unione dei nimanenti n-m cerchi (C'componente connessa di C-) agni elemento non spezzato in un insieme spezzato), allora esatlamente m autoualon di A stanno in c1. 3) Sia A imducibile, cice non esista nessona permotacione di nighe e colonne di A che Pa trasformi in una matrice diappnale a blocchi, con Azz, Azz matrici quadrate di Ordine < n. Se un autoualbre 1 si trova sul bordo oli C, allora 1 appartiene a tutti i

Se un autonague si tuora az pougo, o esso é inchas in parise

cerchi di Gerschgonn di A (i cerchi deuno essere collegati)

Malbrice A della discrevizz mediante differenze finite, con ju costante, posso calcolare
esperialmente all autovalori:
$(R_1 p = \frac{2M}{R^2} \left(1 - \cos \left(p \frac{\pi R}{I} \right) \right) \qquad p = 1, \dots, N$
Re ('L/)
$\frac{1-\cos t}{2} = \frac{1}{2} + $
(0x(t)->-1 so t->1 (nor h-> n n N)->+0
COSTON TO CONTRACT OF THE COSTON TO
18, N = 411
W.
c 1 (0) Ino. 19 1 4/2 by 1 1 5 6 9 7 7 0
Condi (A) = 1 max = 18, N ~ 4L2 - matrice via via più malcondicionala al
Imin IA, 4 THE diminuine del passo A
(0)((0)(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)
CONSISTENZA, STABILITÀ, CONVERGENZA
Problema discreto: Aue - g = r
1.10. 1.1201
$\ \Gamma\ _{2,m} \leq \frac{1}{4} \frac{R^2}{R^2} \frac{Max}{Max} \left \frac{d^40}{dx^4} \left(x \right) \right = \frac{1}{4} \frac{R^2}{M} \frac{Max}{R^2} \left \frac{d^2y}{dx^4} \left(x \right) \right $
12 x (q) 1 dx 1 1 22 M x (c) (] 1 dx 1
r→ o se A→ o → consistency del metado numeria
C-Harman And Park and Andrew Andrew
Soltraggo Ave-9=r e Av-9=0 e dlungo ve-v=A-2r
110e-0112,m < 11A-31121112,m
$ O^{-1}O _{\mathcal{L}_{1}(I)} \leq I _{\mathcal{L}_{1}(I)} + \mathcal{L}_{1}(I) _{\mathcal{L}_{1}(I)}$
$dove A^{1} _{2} = \frac{1}{484} \leq C \frac{1}{14}$
18,1 J.1
Ollargo infine: 110e-0112, m & C B2 max 1 d2f (x) metado numerica
XE[9L] JX2 CONVERGENTE
Convergenza del secondo ordine in R.

	4
	1., 1.
FILD ELASTICO CON RICHIANO	
$\int -\frac{dx}{dx} \left(y \frac{dy}{dx} \right) + xy = \theta \text{in (0,L)}$	
U(0)=U(1)=0	
1 (- Mj-1/2 Oj-1 + (Mj-1/2 + Mj+1/2) Oj - Mj+1/2 Oj+1) + 7j Oj = gj	
$\mathcal{L} = \mathcal{L}(x)$	
$A = A^{(\mu)} + A^{(\chi)} \qquad A^{(\chi)} = \text{diag}((\chi_j)_{1 \le j \le N})$	
•	
	<u> </u>
4	
	$a_1 = a_2$

のリリーナー 10010 元音 ロリリーナー 10010 (音)音	·
So $n = cost$ e dusqua edhisbariata $dik = n + 1$ $k = i \pm 1$ So $n = cost$ e dusqua edhisbariata $dik = n + 1$ $k = i \pm 1$	0
A= 11 midiag [-1 2 -1]	
Poiche gar gar. E USB se 12-K1>5	
Termine noto: $f_j = \int_0^L f_j^2 dx = f(x_j) \frac{R_j + R_{j+2}}{2}$ (formula da trapea)	
$A^{EF} = BA^{DF}$, $f^{EF} = Bf^{DF}$ $\Rightarrow U^{EF} = U^{DF} \Rightarrow i$ due metodi fornisco spossamento u	delle
• Matrice A definite positive • Numero di condizionamento $AR_1 \min \sim CR_1$, $AR_1 \max \sim CR^{-\frac{1}{2}}$ $AR_2 \min \sim CR^{-\frac{1}{2}}$ • Errore $\max_{x \in [O_1L]} U(x) - UR(x) \leq CR^2 \max_{x \in [O_1L]} \frac{dv}{dx^2} $	
Condición de bondo di <u>Dinithet non amagenee</u> Ub=go Ub+4=gr Ton amageneo	ds the
Introduce le néevamento del dato di Dincellet U= Vo+ (Confect) (x) e lo nella formulas. varias. continua componente del termine nato	asin9ani
$f_{1} = f_{1} - \alpha_{2}g_{0}$ $f_{0} = f_{0} - \alpha_{2}g_{0}$	

4					
				1.0	
	(1/3 (8j-1/2 Bj + 8j+	+ 3/2 8 (+ 2)	κ= <u>;</u>	(7
	(3 () 12)	. 72.37	r-)		
bjk =	が (でj-から) か (でj+がら)		C=j-1		
	1/6 (8)+1/2 K)		r=j+1		
	10		althiment.		
	(2/2 Y=:				
bjr = Th	$\begin{cases} \frac{1}{3} & \text{K=j} \\ \frac{1}{6} & \text{K=j\pm 1} \end{cases}$	B=	If purposed $\begin{bmatrix} \frac{2}{6} & \frac{3}{3} \end{bmatrix}$	4	
	(o accument				
Se si ha co	ndicione ae bondo d	di Neumann	r (o di Robin) si de	ve modificare	7
	se buine combarent				
see pinto o i	nell'ultimo nodo), i	CIR CIOCINO	3		
HEMBRANA {- V. (M.	SO 3U	(oppore	-μΔυ) ni di <u>DinithBet om</u>	octoline	
DO = 950	320 _ Japlacia	no funzione			
	THE STUANCE FOR			(
Supponiamo	$\mu = cost$ in $\Lambda = 0$	0,L) x (0,L)	one		
	discretizzazione: R=	L			
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		NH			
Single a equis	paziata & in IL=[c	o, cJe forma	ata dai nodi (xe,q	m) wan xe=PA e	
•	1 < e, m < N				
Uem = 0	se ecto, NA	13 offine	w∈ {0'N+7}		
					,

	100
)
$A = \begin{pmatrix} C & C & C & C & C & C & C & C & C & C$	1
A = CDC	
CDC	
· Autovalon di A contenuti nell'intervalle (0, 8 th) - matrice simm.	e def. positiva
· Num di condis peggiora con le raffinamento della gniglia	
$Cond_{\lambda}(A) \simeq ch^{-2} \simeq CN^{2}$	
· Lo schema ha convergenza quadratica	
$\max_{0 \leq 6, m \leq N} \mathcal{O}(x_6, n_m) - n_m \leq C_{H_1} \max_{x \in \mathcal{I}} \left(\left \frac{9x_4}{2p_1} \right + \left \frac{9h_4}{2p_4} \right \right)$	
0 < 6 w < N x < 15 (1 9x4), 1994))	C
DISCRETISSASIONE MEDIANTE ELEMENTI FINITI ZD	
· Condicioni di <u>Dinchest omogenes</u>	
1)V insieme degli spostamenti ammissibili (spario veltorialle)	
	1110
Un elemento di V è una funzione definita in I = 10 31, cA	s socgreta obbounde
Condition di continuità e derivabilità, e nuella su an	
R) MoRipelico ambo i membri per uno sper un soli integro	so in amm
$\begin{cases} -\mu \Delta v = f & \text{in } \Omega \\ v = 0 & \text{so } \partial \Omega \end{cases} \Rightarrow \int_{\Omega} \nabla \cdot (\mu \nabla v) r dx = \int_{\Omega} f dx$	200
$\overline{X} = (x_1 y_1)$	(-
3) Intego per parti il primo membro.	-
3) Iupo ber berti is bimo mempro:	
ar on	
To derivata normale di usu de	
4) Formulazione variazionale	
$\begin{cases} 0 \in V \text{ e soddisfa} \\ \int_{0}^{0} \mu \nabla v \cdot \nabla v dx = \int_{0}^{0} f v \forall v \in V \end{cases}$	
()21	

	••
Supponiamo che il sia un poligono, suddividiamolo in un numero di tr	isomb.
Por degeneri T che soddistino la seguente condizione di ammissibilità:	and Series
61 inpressions qu' que puedos que apparais obtanto essens	
on intero fato como o o due piandos.	
· Un vertice comune ai triangoli) triangolas, conforme T	
· Prinsiemo Justo	
Br = diam(T) -> max distanza tra i suoi punti (Pato maggiore)	
h = max ht → misura finessa triangolas.	
le E	
MA = NA' + NAb - bonds	,
$G = \begin{pmatrix} x_j - xe & y_j - ye \end{pmatrix} \qquad \overline{x_j} \overline{x}e \overline{x}_K \text{vertici triangula}$	
se det G = 0 -> triangalo non degenere	
$area(T) = \frac{1}{2} det G $	
Dato un triangolo T∈ T, sia	
P ₁ (T) = { ρ: T-> R ρ(x,y) = 2x+βy+ γ con 2,β, γ ∈ R}	
e'insieme dei polinomi algebrai di grado complessivo € 1 definiti su T.	
Sbasio 96666 finisioni coupino e bosinomias, a bessi snesa tuandosariore	
NA = {VR: I → IR: VA & continua e VAITE B. (T) per ogni TE]}	
Spazio degli spostamenti ammissibili discreti	
$VA = \{ VB \in VB : VB = 0 \text{ SO } 3 \cdot \Omega \}$	
	-

amice di nigiotezza del	61 efementa
Y(1) = (0x1/2) 1 < 1/2 < 3	
(7)	i – N
adib = AAB. Aby	$Q_{\lambda,\beta} = \mu_{\tau} \text{ area}(\tau) \nabla P_{\beta} \cdot \nabla P_{\lambda}$
$\mu_T = \frac{1}{2000} \int_T \mu d\bar{x}$	$(3,\beta = \mu + \alpha + \alpha + \gamma
2089(T))T)	
	e triangels in senso ANTIORARIO:
$P_{1,X} = \frac{y_2 - y_3}{2 \operatorname{deg}(T)}$	41,4 = X2-X3 Regni dei gradienti scambiati
7969(1)	understone in vinetastone in
$f_{2,X} = \frac{y_3 - y_4}{2 \operatorname{area}(T)}$	49,4=- X3-X1 PREO DIANO 20180(T)
Zarea (T)	23rea(T)
13 x - 42-42	43 0- X1-X2
	$43, 4 = \frac{X1 - X2}{20000(T)}$ Ca somma dechi elementi su ogni nga di $A^{(t)}$ $\tilde{e} = 0$
Terring rate so on equipments $f_j = \frac{1}{3} \int_{-\infty}^{\infty} \frac{1}{3} \int_{-\infty$	estince di rigidera: conda(A)= (R_{ij}^{in}) o (R_{ij}^{in})
$ \frac{\text{Ormine roto so on eq}}{\text{ormine roto so on eq}} $ $ \frac{1}{j} = \frac{1}{3} \int_{-\infty}^{\infty} X_j \sum_{i=1}^{\infty} X_i ^2 \sum_{i=1}^{\infty} $	Consume also triang. (See condividuo il node $\frac{1}{3}$
$ \frac{\text{Ormine roto so on eq}}{\text{ormine roto so on eq}} $ $ \frac{1}{j} = \frac{1}{3} \int_{-\infty}^{\infty} X_j \sum_{i=1}^{\infty} X_i ^2 \sum_{i=1}^{\infty} $	Partice di rigidera: conde (A)= $\frac{1}{3}$ f(x) area (suppri) approssimavione dei trapea:
$ \frac{741 + 742 + 743 = 0}{67mine noto so on ee} $ $ \frac{7}{3} = \frac{1}{3} f(\overline{x_i}) \underbrace{5}_{area}(\overline{x_i}) $ Conditionamento deela m	Paramo dechi elementi su con riga di $A^{(\tau)}$ $\tilde{e} = 0$ mento comma area triàrg. (Re condividoro il nodo $a_1 = \frac{1}{3} f(x_1)$ area (suppri) approssimazione dei trapea: atrice di rigidera: conda(A)= (Rimin Rimin = min fit $a_1 = a_2$
$ \frac{741 + 742 + 743 = 0}{67mine noto so on ee} $ $ \frac{7}{3} = \frac{1}{3} f(\overline{x_i}) \underbrace{5}_{area}(\overline{x_i}) $ Conditionamento deela m	Partice di rigidera: conde (A)= $\frac{1}{3}$ f(x) area (suppri) approssimavione dei trapea:

Un E Vn(g)	0
UP(X) = \(\frac{\infty}{\infty} \) \(\frac{\infty}{\inft	_()_
Formulacione variacionale discreta -> appiungo pedice h	
UA = 4; ; sostituisco UA e clango	
$\sum_{K=4}^{N} \alpha_{jk} d\kappa = \int_{\mathcal{R}} \frac{1}{7} q_{j} dx + \int_{D_{j}} \frac{1}{7} q_{j} ds - \sum_{K=N+4}^{N} \alpha_{jk} q_{jk} \qquad \text{con } \alpha_{jk} = \int_{D_{j}} \mu_{j} dx \cdot \nabla q_{j} dx$	
· Condizione di Robin	
N 30 + 40 = A ≈ LN	-0-
La condizione di Robin modifica e'espressione del brimine di bondo:	
$\int_{\partial \mathcal{L}} \gamma \gamma \frac{\partial U}{\partial r} dr = \int_{\mathcal{L}} \gamma \frac{\partial U}{\partial r} r dr = \int_{\mathcal{L}} \gamma \frac{\partial U}{\partial r}	
Formstavione variationale discreta	
SUR EVA e saddista (2) UN VU. VUDA + STU LUUDS = ST FUDA + STU LUBS Per coni UR E VA(0)	
[] I N JO. Judy + In aduds = In frox + In toos per agni UA E VA(0)	1
Viene modificata ea matrice di nigidezza A	
ajk = In Myk. Thiox + Ind 4k fids	
Poiche 2≥0, la matrice A risulta ancora simmetrica del positiva	

NUMERO DI PECLÈT LOCALE: POT = 112T11 BT NUMERO DI PECLÈT DI GRIGUA: POR = MOX POT Diff. dominants se Peh < 1 -> vanno bene EF e DF Convex dominants so PER>1 -> possors essere instabilit PROBLEMI A DIFFUSIONE DOMINANTE Discretizzazione medianto differenze finite IP lumine conventivo viene discretizzato con diff centrate neede direz x e y 0/2m + 021/2m (00+21/m - 06-21/m) + 021/2m (06+2m+2 - 06+2m-2) + + 1 (-Ue,m-1-Ue-1,m+ 4Vem - Ue+1,m - Ue,m+1) = fem Discretisiazione mediante ocementi finiti Formulas varias discreta -> Po in più a primo membro il termine convettiu C= (Cik) Hatrice (tr) deper efemento T∈ I $C_{\lambda,\beta}^{(T)} = \int_{T} (\overline{a}_{T} \cdot \nabla^{2}\beta)^{2} d\overline{x} = \overline{a}_{T} \cdot \nabla^{2}\beta \int_{T} \sqrt{2}\overline{x} = \frac{1}{3}|T| \overline{a}_{T} \cdot \nabla^{2}\beta + \frac{1}{3}|S| \leq 2|S| \leq 3$ Algume tellaegio che la come pare

```
HODELLI DI EVOLUZIONE TEHPORALE
        Ednas gollo oujo: b 350 - 1 (h 10) = }
                                                                                                                                         - condiz. 20 bonds so ar 4 t
                                                                                                                                           - 2 condiz initiali so 12 a t=0
    Equazione de cabre: 9 \frac{\partial U}{\partial t} - \nabla (\mu \nabla U) = f \mu = \frac{\kappa}{c} e f = \frac{PA}{c}
                                                                                                                                                       - condiz. al bordo su an 4t
                                                                                                                                                          - 1 condit initiale sur a t=0
        Bu'' + Au = f => u' = -B^{-1}Au + B^{-1}f = F(u_1t) cashe u(0) = u_0

Bu'' + Au = f => u'' = -B^{-1}Au + B^{-1}f = F(u_1t) and u(0) = u_0
Semi-discretizzaz. in spazio dell' equaz. del callore mediante diff. finite

Pe, m Ulem + M (-Ue, m-1 - Ue-1, m + 4Ulem - Ue+1, m - Ue, m+1) = flem

passo a numeraz ad un indice
                        B = diag(p1, 19, ... p12) se p= cost B= pI
        Semi-discretizz in spazio mediante EF
    Formulaz. Uaniaz. discreta \{U_h(t) \in V_h \in \text{saddisfa} \}
\{x \in \frac{\partial U_h}{\partial t} \text{ Vip.} dx + \int_{\mathcal{R}} M \nabla U_h \cdot \nabla V_h d\overline{x} = \int_{\mathbb{R}^n} V_h d\overline{x} + \int_{\mathbb{R}^n} M \nabla U_h \cdot \nabla V_h d\overline{x} = \int_{\mathbb{R}^n} V_h d\overline{x} + \int_{\mathbb{R}^n} M \nabla U_h \cdot \nabla V_h d\overline{x} = \int_{\mathbb{R}^n} V_h d\overline{x} + \int_{\mathbb{R}^n} M \nabla U_h \cdot \nabla V_h d\overline{x} = \int_{\mathbb{R}^n} V_h d\overline{x} + \int_{\mathbb{R}^n} M \nabla U_h \cdot \nabla V_h d\overline{x} = \int_{\mathbb{R}^n} V_h d\overline{x} + \int_{\mathbb{R}^n} M \nabla U_h \cdot \nabla V_h d\overline{x} = \int_{\mathbb{R}^n} V_h d\overline{x} + \int_{\mathbb{R}^n} M \nabla U_h \cdot \nabla V_h d\overline{x} = \int_{\mathbb{R}^n} V_h d\overline{x} + \int_{\mathbb{R}^n} M \nabla U_h \cdot \nabla V_h d\overline{x} = \int_{\mathbb{R}^n} V_h d\overline{x} + \int_{\mathbb{R}^n} M \nabla U_h d\overline{x} + \int_{\mathbb{
                                                    \int_{\mathcal{B}} b \frac{\partial f}{\partial x} \wedge y \, dx = \sum_{k=1}^{k=1} C_k \int_{\mathcal{B}} b_k k \, dx
                                                                                                                                                                                                              bik - matrice B - matrice di massa
       Matrice di massa di un efemento
                   ba, B(T) = { 1/6 Se d= B
```