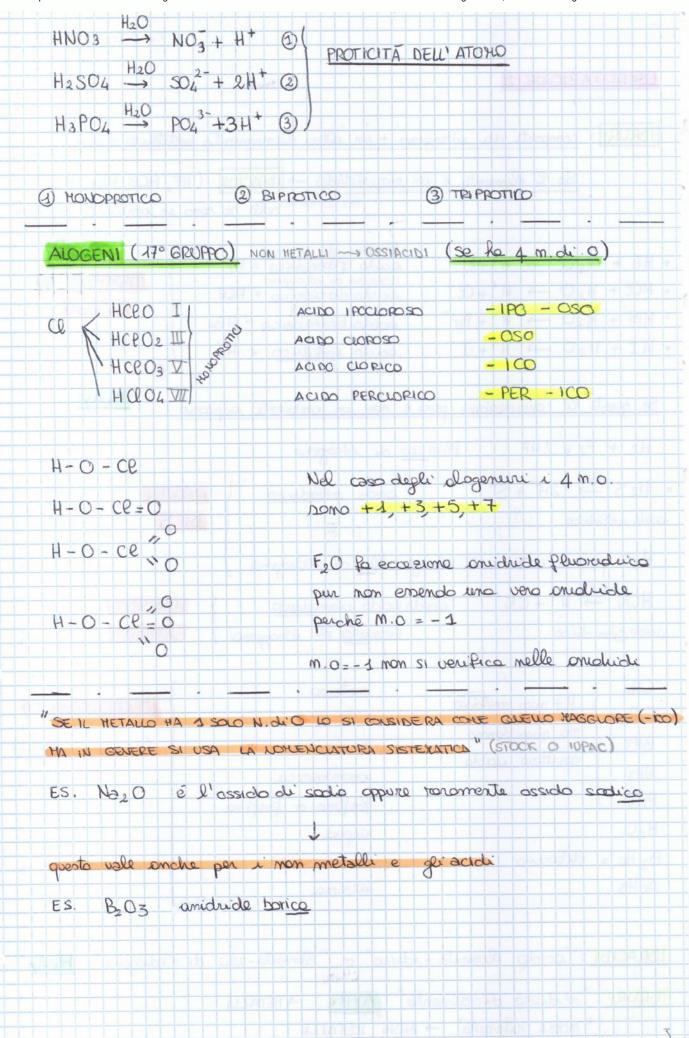


Appunti universitari
Tesi di laurea
Cartoleria e cancelleria
Stampa file e fotocopie
Print on demand
Rilegature

NUMERO: 1393A - ANNO: 2015

APPUNTI

STUDENTE: Arcidiacono


MATERIA: Chimica Esercitazioni + Esercizi. Prof.Onida

Il presente lavoro nasce dall'impegno dell'autore ed è distribuito in accordo con il Centro Appunti. Tutti i diritti sono riservati. È vietata qualsiasi riproduzione, copia totale o parziale, dei contenuti inseriti nel presente volume, ivi inclusa la memorizzazione, rielaborazione, diffusione o distribuzione dei contenuti stessi mediante qualunque supporto magnetico o cartaceo, piattaforma tecnologica o rete telematica, senza previa autorizzazione scritta dell'autore.

2 OTTOBRE 2014

ESERCITAZIONE 1 OSSIDI: tutte i composti formate da O ed um elemento diverso dall'assigeno. - METALLI: somo spesso composti ionici formati de anione 02 e cotioni metallici com legame di matura elettrostatica governata della legge di coulomb. -> legame intermedio tra ionica e cavalente - Considero cationi monoralente H+ → H2O composto mentro - Catione birdente H2+ > HO - Catione trivalente H3+ -> H2O3 - Cotione Hat -> HO2 PRINO CRUPPO formano cationi manovalenti H+ - SECONDO GRUPPO formono cotioni bivalente H2+ Hetalli 6 TRANSIZIONE (blocco D) dammo pui cationi diverni LANTANIDI E ATTIVIDI (blocco F) Liz O I GRUPPO OSSIDO DI "nome elemento" Na20 C520 Mg2+ MgO OSSIDO DI "nome elemento" II GRUPPO 60 Ba O G 2+ Cu+ G, 0 CuO TRANSIZIONE CO2+ Co3+ COO 6,03 (BLOCCHI Ded F) Sm2+ Sm4+ SmO2 -> GRUPPO 14 (p) - OSO conica pui bono del catione SUFFISSO pui alta del cotione - ICO carico

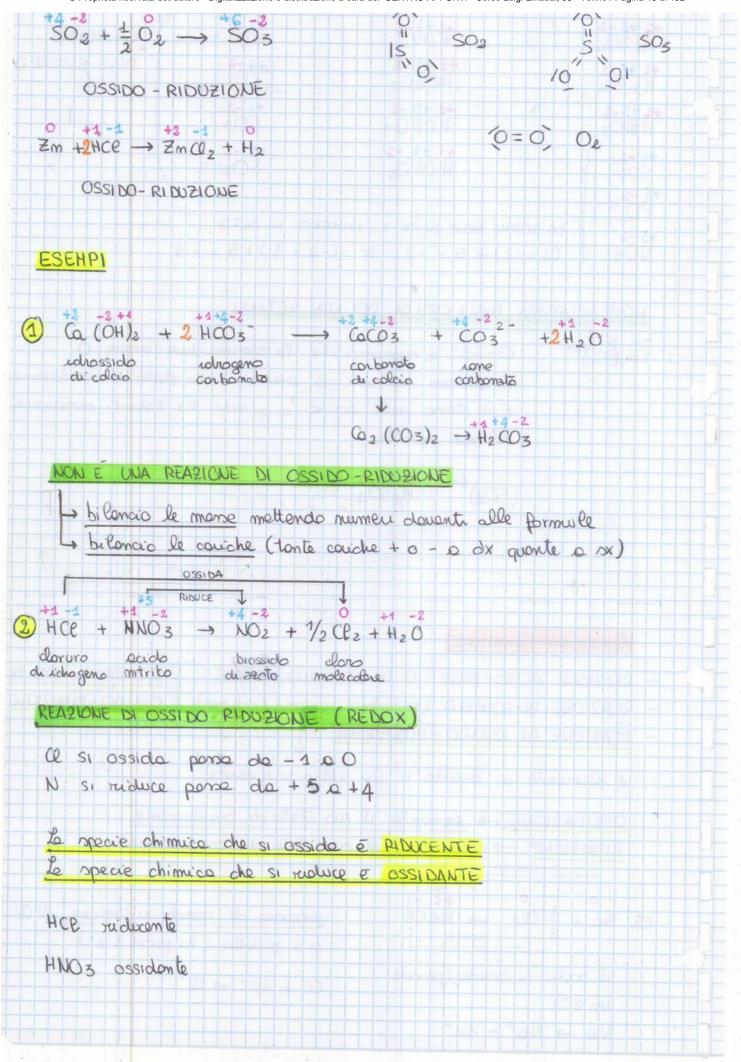
	TRIOSSIDO DI BITO	SFORD -> ANIBRIDE FOSFOROSA (H3PO3)
P2 O5	PENTAOSSIDO DI BIFO	DISTORD -> ANIDRIDE FOSFORICA (H3PO4)
SO ₂	BIOSSIDO DI ZOLFO	ANIDRIDE SOLFORDSA M.O = - 2 NON E
SO ₃	TRIOSSIDO DI ZOLFO	→ ANIDRIDE SOLFORICA ANIDRIDE
	HETALLI -> OSS	IDI BASICI
OSSIDI	NON HETALLI -	SPESSO OSSIDI ACIDI
OSSINO	BASICO: Messo	in contatto con H2O forma un IDROSSIDO
		ntiene e libera comi OH" (comi corossidi)
	L CS EL	10 elettroni
		1H + 80 + 1(-) = 10
		forme una BASE
		printe are state
	HA A CH	
OSSIDO		nte acqueso forma un ossiACIDO che Ebera
<u>Ossido</u>		
		nte acqueso forma un ossiACIDO che Ebera
Dempre	} ion: H+ 1	nte acqueso forma un ossiación che libera (è un protone)
sempre metalli,	ssidi di non	nte acqueso forma un ossiACIDO che libera (è un protone)
sempre metalli,	ioni H+ 1 cssidi di non Ma non tutti i	nte acqueso forma un ossiACIDO che libera (è un protone)
sempre metalli, non me	ioni H+ cssidi di non Ma non tutti i etalli rono ecidi	nte acqueso forma un ossiACIDO che libera (è un protone)
sempre metalli, non me (es. CC	ioni H+ cossidi di non Ma non tutti i etalli rono ecidi o in H2O remone	nte acqueso forma un ossiACIDO che libera (è un protone)
sempre metalli, non me (es. CC co e	ioni H+ cossidi di non Ma non tutti i etalli rono ecidi o in H2O remone non crea acidità, N2O)	nte acqueso forma un OSSIACIDO che Elbera (\vec{\varepsi} un protone) forma un ACIDO
sempre metalli, non me (es. CC co e	iani H+ cossidi di non Ma non tulti i etalli rono acidi o in H20 remone non crea acidità, N20)	nte acqueso forma un OSSIACIDO che Elbera (
sempre metalli, non me (es. CC co e	ioni H+ cossidi di non Ha non tulti i etalli rono ecidi o in H2O remone non crea ecidità, N2O) 11: composti che ros (ossidi di non	nte acquese forme un ossiación che libera (è un protone) forme un ACIDO gendo con acque formano assiación metalli)
sempre metalli, non me (es. CC co e	iani H+ cossidi di non Ma non tulti i etalli rono acidi o in H20 remone non crea acidità, N20)	nte acquese forme un ossiación che libera (è un protone) forme un ACIDO gendo con acque formano assiación metalli)
sempre metalli; non me (es. CC) co e anohe	icomi H+ cossidi di non Ma mon tulti i etalli nono ecidi o un H2O remone non crea ecidità, N2O) 11: composti che res (ossidi di non Anibrio: combinat	nte acquese forme un ossiación che libera (è un protone) forme un ACIDO gendo con acque formano assiación metalli)

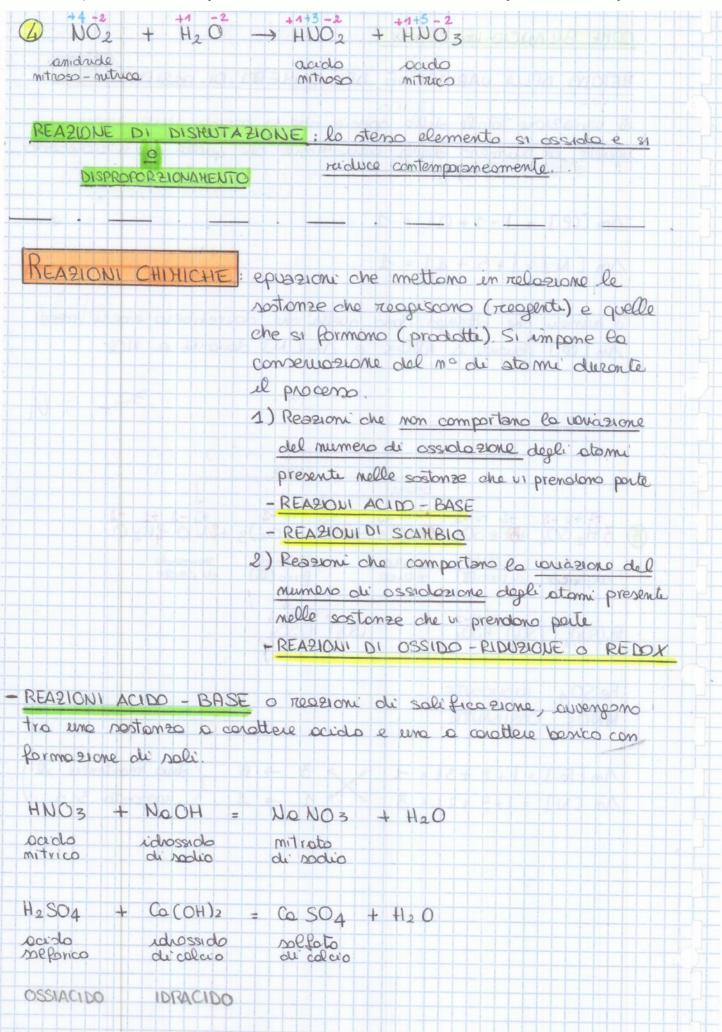
	OTERI: elementi il ceni ossido però avere na conottere acio
	che boxico a reconda dell'ambiente un cui si tra
	SENIHETALLI (AP, As,)
As203 +	triossida di biorservica
As203 +3H2	ALIO '
	AHBIENTE H3 ASO3 forma un Ossiacida ARSENIOSO
TRANSIZIONE	H3 ASO4 ACIDO ARSENICO
GUARDO LA U	ARICA:
	uoru → metalli
	way - enfoteri
· PER ALTI VAL	ORI -> non metalli [VI e VII]
	Dia - III- III- III- III- III- III- III-
C _v (TI) (*O + H.O > Cr(OH); IDROSSIDO DI CTONO(D) HETALLO
C _v (TI) (TO + H2O -> Cr (OH)2 IDROSSINO DI CROMO (II) HETALLO ACIDO 2Cr (OH)3 IDROSSINO DI CROMO (III) ANFOTERO
Cr (III) C	$rO + H_2O \rightarrow Gr(OH)_2$ idensite the croppe (III) HETALLO $r_2O_3 + r_3H_2O$ RASICO H_3CrO_3 ACIDO CROPLOSO ANFOTERO
Сr (Ш) С	$rO + H_2O \rightarrow Gr(OH)_2$ idenses the discrete (II) HETALLO $r_2O_3 + _0H_2O $ $r_2O_3 + _0H_2O $ $r_3O_3 + _0H_2O \rightarrow H_2GrO_4$ Acide creation (NON) $r_3O_3 + _0H_2O \rightarrow H_2GrO_4$ Acide creation (NON)
$C_{r}(II)$ $C_{r}(III)$ $C_{r}(III)$ $C_{r}(III)$ $C_{r}(III)$ $C_{r}(III)$	$rO + H_2O \rightarrow Gr(OH)_2$ idensite the croppe (III) HETALLO $r_2O_3 + r_3H_2O$ RASICO H_3CrO_3 ACIDO CROPLOSO ANFOTERO
$C_{r}(II)$ $C_{r}(III)$ $C_{r}(III)$ $C_{r}(III)$ $C_{r}(III)$ $C_{r}(III)$	$rO + H_2O \rightarrow Gr(OH)_2$ idensite di croho (II) HETALLO $r_2O_3 + _0H_2O \nearrow ACIAD 2Cr(OH)_3$ idensite di croho (III) $r_2O_3 + _0H_2O \nearrow H_2CrO_4$ ACIAD CROHOSO $rO_3 + H_2O \rightarrow H_2CrO_4$ ACIAD CROMICO $rO_3 + H_2O \rightarrow H_2Cr_2O_7$ ACIAD DICROMICO HETALLO
$C_{r}(II)$ $C_{r}(III)$ $C_{r}(III)$ $C_{r}(III)$ $C_{r}(III)$ $C_{r}(III)$	$rO + H_2O \rightarrow Gr(OH)_2$ idrossing di croho (II) HETALLO $r_2O_3 + _0H_2O \nearrow ACIDO 2Cr(OH)_3$ idrossing di croho (III) ANFOTERO $rO_3 + _0H_2O \rightarrow H_2CrO_4$ ACIDO CROHOSO $rO_3 + _0H_2O \rightarrow H_2CrO_4$ ACIDO CROHICO $rO_3 + _0H_2O \rightarrow H_2Cr_2O_7$ ACIDO DICROMICO
Cr (III) C Cr (III) C Cr (IVI) C 2G Hm (II)	$rO + H_2O \rightarrow Gr(OH)_2$ ideassind di croho (II) HETALLO $r_2O_3 + _{O}H_2O \stackrel{?}{\searrow} ACIDA & CCr(OH)_3 ideassind di croho (III). r_2O_3 + _{O}H_2O \stackrel{?}{\searrow} ACIDA & CCOO CROHOSO rO_3 + H_2O \rightarrow H_2CrO_4 ACIDA CROHICO (NON rO_3 + H_2O \rightarrow H_2Cr_2O_7 ACIDA DICROMICO (NON H_2O \rightarrow H_2Cr_2O_7 ACIDA DICROMICO (NON H_2O \rightarrow H_2O \rightarrow H_2Cr_2O_7 ACIDA DICROMICO (NON H_2O \rightarrow H_2O \rightarrow H_2O_1O_1O_1O_1O_1O_1O_1O_1O_1O_1O_1O_1O_1O$
Cr(II) C Cr(III) C Cr(III) C 20	$rO + H_2O \rightarrow Gr(OH)_2$ ideassind di croho (II) HETALLO $r_2O_3 + _{O}H_2O \stackrel{?}{\searrow} ACIDA & CCr(OH)_3 ideassind di croho (III). r_2O_3 + _{O}H_2O \stackrel{?}{\searrow} ACIDA & CCOO CROHOSO rO_3 + H_2O \rightarrow H_2CrO_4 ACIDA CROHICO (NON rO_3 + H_2O \rightarrow H_2Cr_2O_7 ACIDA DICROMICO (NON H_2O \rightarrow H_2Cr_2O_7 ACIDA DICROMICO (NON H_2O \rightarrow H_2O \rightarrow H_2Cr_2O_7 ACIDA DICROMICO (NON H_2O \rightarrow H_2O \rightarrow H_2O_1O_1O_1O_1O_1O_1O_1O_1O_1O_1O_1O_1O_1O$
Cr (III) C Cr (III) C Cr (VII) C 2G Hm (II)	$(rO + H_2O) \rightarrow (r(OH)_2)$ ideassing of crond (II) HETALLO $(r_2O_3 + r_3H_2O) \leftarrow (r_3O_4)$ Acido crondo (III) ANFOTERO $(rO_3 + H_2O) \rightarrow (r_3O_4)$ Acido crondo (III) ANFOTERO $(rO_3 + H_2O) \rightarrow (r_3O_4)$ Acido crondo (III) ANFOTERO $(rO_3 + H_2O) \rightarrow (r_3O_4)$ Acido crondo (III) ANFOTERO $(rO_3 + H_2O) \rightarrow (r_3O_4)$ Acido crondo (III) ANFOTERO $(rO_3 + H_2O) \rightarrow (r_3O_4)$ Acido dicronico (III) ANFOTERO $(rO_3 + H_2O) \rightarrow (r_3O_4)$ Acido dicronico (III) ANFOTERO $(rO_3 + H_2O) \rightarrow (r_3O_4)$ Acido dicronico (III) ANFOTERO $(rO_3 + H_2O) \rightarrow (r_3O_4)$ Acido dicronico (III) ANFOTERO $(rO_3 + H_2O) \rightarrow (rO_4)$ Acido dicronico (III) ANFOTERO $(rO_3 + H_2O) \rightarrow (rO_4)$ Acido dicronico (III) ANFOTERO $(rO_3 + H_2O) \rightarrow (rO_4)$ Acido dicronico (III) ANFOTERO $(rO_3 + H_2O) \rightarrow (rO_4)$ Acido dicronico (III) ANFOTERO $(rO_3 + H_2O) \rightarrow (rO_4)$ Acido dicronico (III) ANFOTERO $(rO_3 + H_2O) \rightarrow (rO_4)$ Acido dicronico (III) ANFOTERO $(rO_3 + H_2O) \rightarrow (rO_4)$ Acido dicronico (III) ANFOTERO $(rO_3 + H_2O) \rightarrow (rO_4)$ Acido dicronico (III) ANFOTERO $(rO_3 + H_2O) \rightarrow (rO_4)$ Acido dicronico (III) ANFOTERO $(rO_3 + H_2O) \rightarrow (rO_4)$ Acido dicronico (III) ANFOTERO $(rO_3 + H_2O) \rightarrow (rO_4)$ Acido dicronico (III) ANFOTERO $(rO_3 + H_2O) \rightarrow (rO_4)$ Acido dicronico (III) ANFOTERO $(rO_3 + H_2O) \rightarrow (rO_4)$ Acido dicronico (III) ANFOTERO $(rO_3 + H_2O) \rightarrow (rO_4)$ Acido dicronico (III) ANFOTERO $(rO_3 + H_2O) \rightarrow (rO_4)$ Acido dicronico (III) ANFOTERO $(rO_3 + H_2O) \rightarrow (rO_4)$ Acido dicronico (III) ANFOTERO $(rO_3 + H_2O) \rightarrow (rO_4)$ Acido dicronico (III) ANFOTERO $(rO_3 + H_2O) \rightarrow (rO_4)$ Acido dicronico (III) Anformación (III)
Cr (II) C Cr (III) C Cr (VI) C 2G Hm (II) Hm (VII)	$TO + H_2O \rightarrow Gr(OH)_2$ ideas idea of Grono (II) HETALLO $T_2O_3 + T_2H_2O \rightarrow H_2GrO_4$ ideas idea crono (III) Antotero $T_2O_3 + T_2H_2O \rightarrow H_2GrO_4$ Acido cronoso $TO_3 + H_2O \rightarrow H_2GrO_4$ Acido dicromico (NON $TO_3 + H_2O \rightarrow H_2Gr_2O_7$ Acido dicromico (NON $TO_3 + H_2O \rightarrow H_2Gr_2O_7$ Acido dicromico (NON $TO_3 + H_2O \rightarrow H_2Gr_2O_7$ Acido dicromico (NON $TO_3 + T_2O \rightarrow T_2Gr_2O_7$ Acido dicromico (NON $TO_3 + T_2O \rightarrow T_2O_7$ Acido permanganico (NON $TO_3 + T_2O \rightarrow T_2O \rightarrow T_2O$ Acido permanganico (NON $TO_3 + T_2O \rightarrow T_2O$ Acido permanganico (NON

0201220001 00124220	
$H_2 SO_4 + H_g (OH)_2 \rightarrow H_g S$	04 +2420
	Se parto digli ossidi travo il SALE semza H2O
ACIDO	SALE
13 PO4 re sostituisco Lita Ht ottengo	L12 PO4
12S re rostituisco Co (II) a H+ ottengo	
100 so sostituisos Mg2+ a H+ attengr	o MgCP2
	V (CO)
e (OH)3 ne motituisco Ce a (OH) atte	
Ja (OH) se sostituisco CO3 la (OH) de	ngo Na ₂ (CO ₃)
Ni(OH)2 reportituras PO23- re (OHT) att	engo Ni3(PO4)2
H2(SO4) SO42-	9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
H ₂ (O ₃) CO ₃ ²	374 - 3142 - 0.01 - 0.00
H3(PO4) PO43-	
4(00) 00	
H, S S ²⁻	
, ANIONE	247
2 Noce + MgS -> NagS + MgCP2	CUH II N AOM IN SAIM AOD IN
	M + M
SAU BINARI: formati de un meta Te simbolo del metalo si scrive pru	ma di avella del mon matala
Possono emere otherwate per reason	the same december of the school

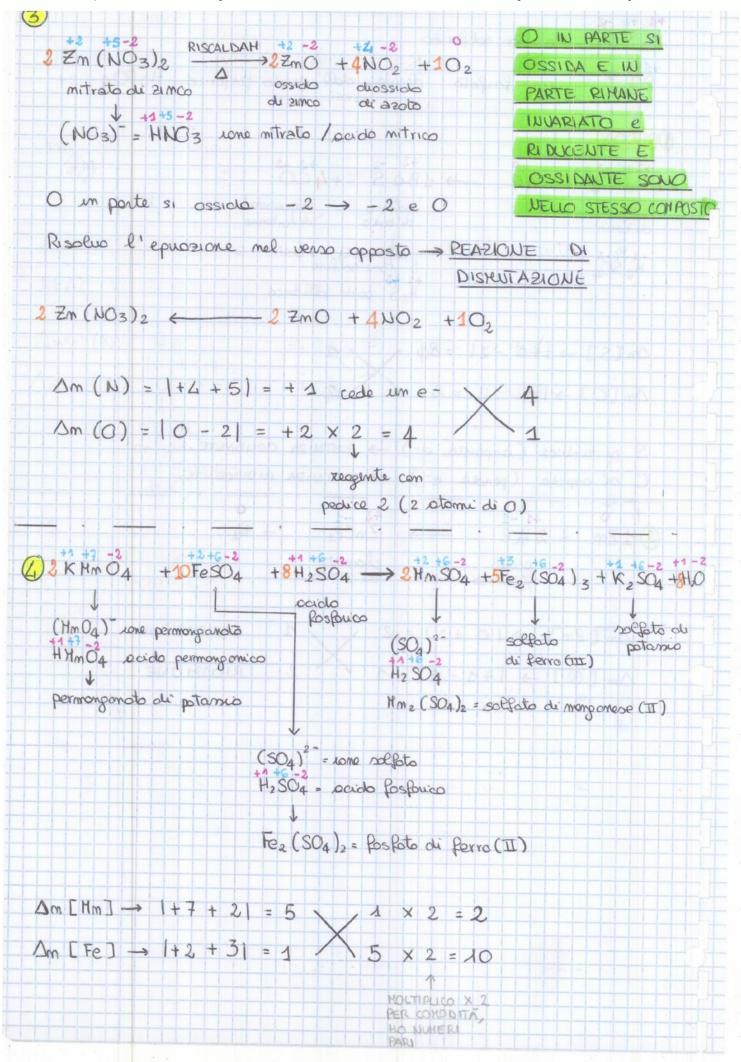
DISSOCIAZIONE ACIDI IN ACQUA IDRACIDO (m H20) HmX -> mH++ X m-OSSIACIDO (m 420) Hm Xb Oc -> mH++ (xbOc)m-HCe -> H++ Ce monoprotico IDRACIDI H2S -> 2H+ + S2- biprotico HNO3 > H+ + (NO3) - monoprotico H₂SO₄ → 2H⁺ + (SO₄)²⁻ biprotice H₃ PO₄ → 3H⁺ + (PO₄)³⁻ triprotice OSSIACIDI per guingere alla dissociazione completa H3PO4 -> H++ H2PO4 -> H+ HPO42--> H++ PO43-ANIONE ANIONE NEUTRO (dichageno pospota a (idageno pospota a pospota bispota bispota pospota manacida) BIACIDO (Postato) ANIONI some + prefisso numerico + radice elemento + uno O_2^2 none perossido come allemento some boruro Oz come superossido cone conuero cone coduro come mitrouro une dusce puro CATIONI Cut some romeoso HONOATOHIC come romeico come ourico une idrogeno Zm2+ come 21mco H30 Lome ossonio POLLATOHIC NH,+ come emmanio

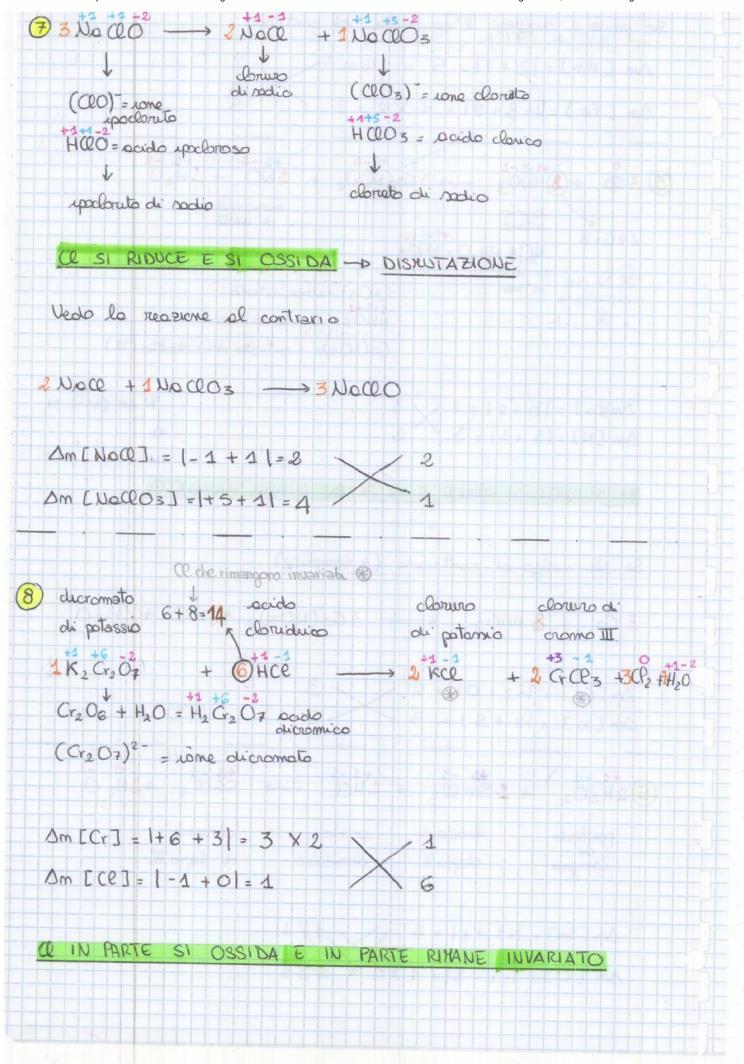
<u>Ossiacidi</u>

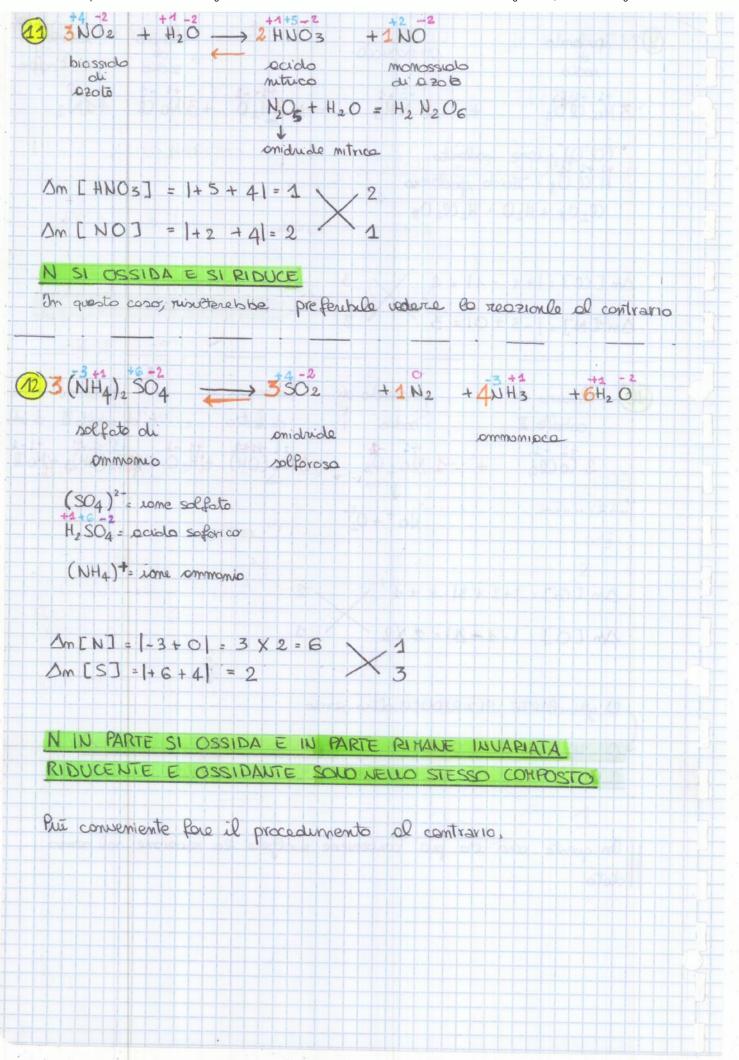

CO_2	\rightarrow	H_2CO_3	(C + 4)	A. Carbonico
N_2O_3	\rightarrow	HNO_2	(N + 3)	A. Nitroso
N_2O_5	\rightarrow	HNO_3	(N + 5)	A. Nitrico
SO_2	\rightarrow	H_2SO_3	(S + 4)	A. Solforoso
SO_3	\rightarrow	H_2SO_4	(S + 6)	A. Solforico
Cl_2O	\rightarrow	HClO	(Cl+1)	A. Ipocloroso
Cl_2O_3	\rightarrow	HClO ₂	(C1 + 3)	A. Cloroso
Cl_2O_5	\rightarrow	HClO ₃	(C1 + 5)	A. Clorico
Cl_2O_7	\rightarrow	HClO ₄	(C1 + 7)	A. Perclorico
B_2O_3	\rightarrow	H_3BO_3	(B + 3)	A. Borico ←
P_2O_5	\rightarrow	H_3PO_4	(P + 5)	A. Fosforico
CrO ₃	\rightarrow	H ₂ CrO ₄	(Cr +6)	A. Cromico
CrO ₃	\rightarrow	H ₂ Cr ₂ O ₇	(Cr +6)	A. Dicromico
MnO_3	\rightarrow	H_2MnO_4	(Mn +6)	A. Manganico
Mn ₂ O ₇	\rightarrow	$HMnO_4$	(Mn +7)	A. Permanganico
1				+
ANIDRIDI POI	CHÉ ESISTE L	'ACIDO		OSSIACIDI

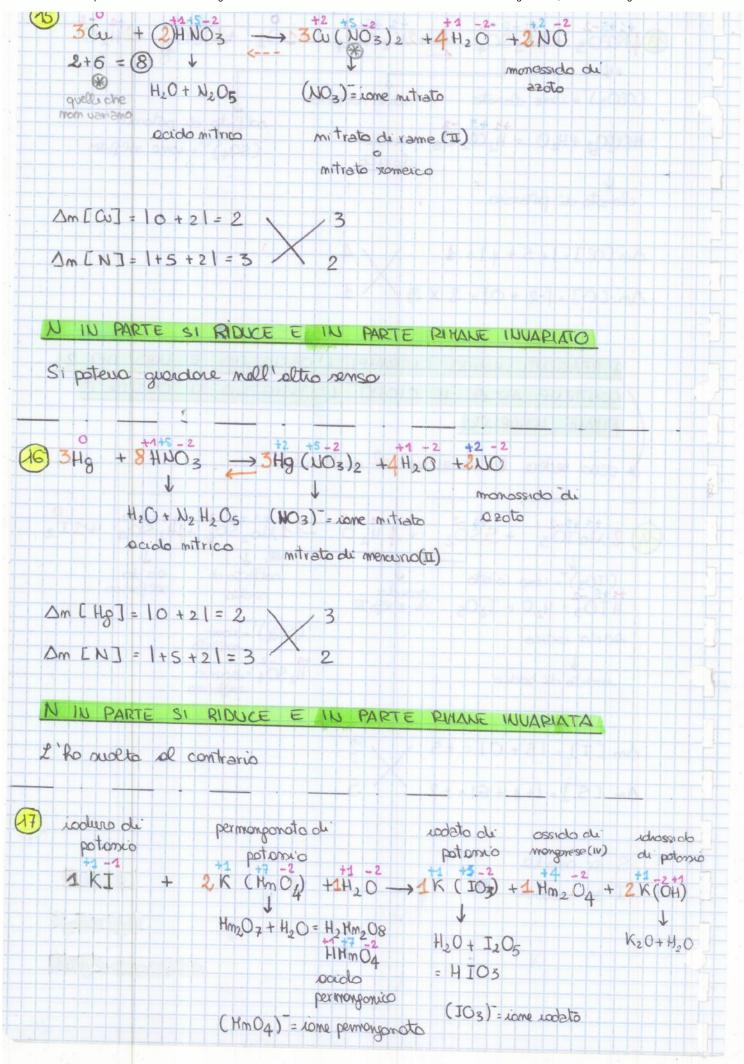

HA SONO HETALL!!

Idracidi (GRUPPO 17 + S)


HF	Acido Fluoridrico (F-1)
HCl	Acido Cloridrico (Cl -1)
HBr	Acido Bromidrico (Br -1)
HI	Acido Iodidrico (I -1)
H_2S	Acido Solfidrico (S-2)
HCN	Acido Cianidrico (CN)


DILA	NCI BHENTI	REAZIONI	CHINICHE
NUHE	RO DI OS	SIDAZIONE	¿ é la coura che quell'elements aurebbe se
			tutte gli e- di logome apportenessero all'element
			pui elettronegativo del legame.
	1 4	5	
NH3	H - N	÷H+1	
	14.		
H Dex	de un e	→ N. di C	
			-3 pui elettronegatio
			pu tuvanegous
ye n	umero di	ossidazione	ha sempre un segno
	0 16/10-	H+4	H perde un e -> +1
	10 0 -	M.	O acquista 2e -> -2
	10 0-	Ħ	S perde Ge → + 6
0 = 0	0.14		
O e J) + elettro	megativo	
10000	alforico	H2SO4	AND CHORAGO O DON STORES
GO: 0			
TH 0	ementi all	o otato el	$O = O \cdot ib \cdot N \leftarrow \text{ are the model}$
1) Wy	i comi >	comsponde	alla conica la stata di assidazione
M N.O			elettronegativi
	-1	DO megli	idrura dei metalli
O N.	1:0=-2	. sempre tro	on me mei perossidi -> -1
012 3	2 Xigami	1 1 cm0 cm +	elettronegativo quindi + 2 (unico caso)
F = -:	1		ASSAS IN ORIGINATION SOURCES
J N. ol	w.O ser	uono per	resolvere le reszioni chimiche e per dere
i nom	i oi con	nposti	
			THE PARTY OF THE P
	1 15 10	non grace	
		1 Daywood	





	30 OTTOBRE 2014
ESERCITAZIONE 4	0.5) 45 89 118 1
REASION OF OSSUE DISTRICT TO	
REAZIONI DI OSSIDO PIQUZIONE -> Trasferimento d	ue-
11/11/5 00 21 251212121	
NUMERO DI OSSIDAZIONE	
	AND AND MANAGEMENT
- SOSTANZE ELEKENTARI -> M.O = 0	
Fe, No, Cu, C, S, H2, O2, N2, F2, Q2, Br2, I2	
METALU NOU NOU METALLI ALOGENI METALU MOUECOLARI	
- HETALI ALCALINI ALLO STATO COMBINATO - M.C	0 = +1
- HETALLI ALCALINO - TERROSI ALLO STATO COMBIN	MTO -3 MO 12
3.110 (3.11)	10 - 11.0 = +2
- H COMBINATO CON ALTRI EVENENTI IN COMPOSTI -	
11 Want and a second of the control of	→ M. O = + 1
- H NEGU IDRURI DET METALI ALCAUNI O ALCAUNO	O TERROSI -> m.o = -1
- O COMBINATO CON ALTRI ELEMENTI IN COMPOST	$\Pi \rightarrow M.0 = -2$
- O NET PEROSSIDI [Li2O2 e H2O2] - M.O =	
	-4
- O NET SUPEROSSIDI [KO2] - M.O = - 1/2	
- O NEL DIFUDEURO DI GSSIGENO OF2 -> M.O = -	10
- GLI ALOGENI NEGLI ALOGENURI -> m. 0 =- 1	
- GU IONI -> M.O = conica dello ione [No+	2 52-7
The state and the two	62
- Al stato combinato -> m.a = +3	16 program (00) 1
THE STATE COMMON AND A MICE = + 5	
- Zm stato combinato -> mo = +2	
Zn side winding of m.o = +2	
- Fe stato combinato -> m. 0 = +2 0 +3	
- Cu stato combunato -> m.o = +1 0 +2	

6 NOVEMBRE 2014

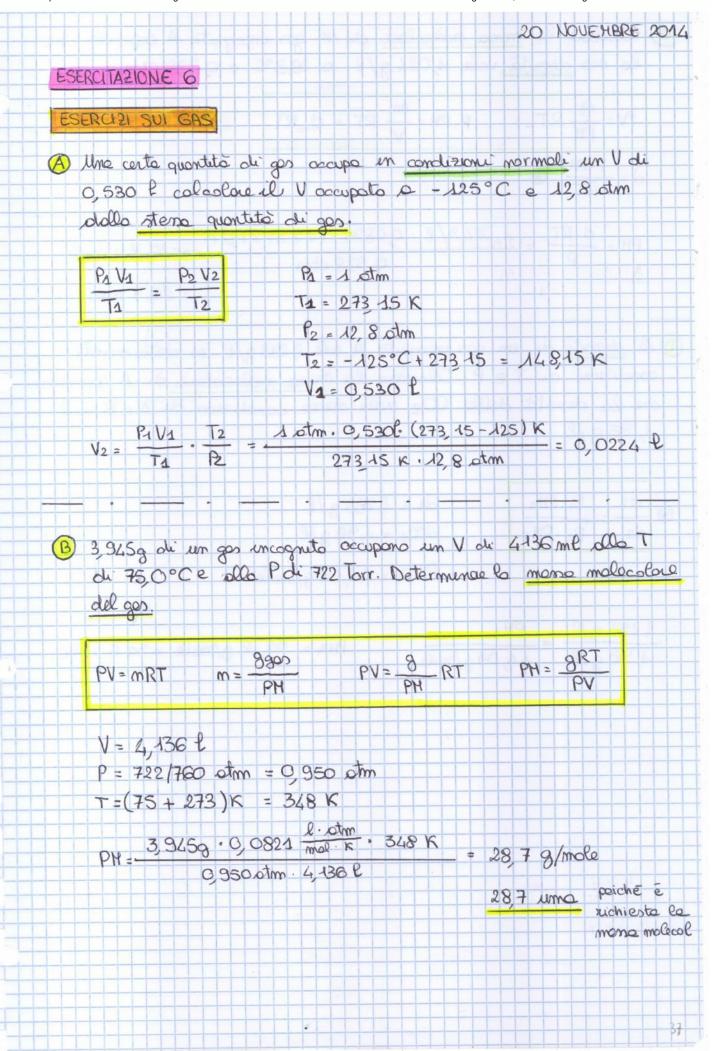
ESERCITAZIONE 5

STECHIOHETRIA

Colcolore il volume di CO2 misurato ad 1 atmosfera e a 25°C
 che si sviluppa facendo reagure 10g ali carbanato di calcio
 CoCO3 con ocido dorudrico HCL in eccema.

So the 0 solverone of priesto quando ho terminato $CaCO_3$ (reagents non in eccesso) \rightarrow REAGENTE LIMITANTE DELLA REAZIONE +2+4-2 +1-1 +4-2 +2 +2 +1 -2

é una reasione di decomposizione e non di assido xiduzione


ep. dei gas perfetti perché la bassissima P

$$V_{CO_2} = \frac{mRT}{P}$$

- Trasformo i grammi del reggente en moli

PHCOCO3 = (40+12+3×16) g/mole = 100 g/mole

Per consumore tutto l'HUO3 sono reconocie mmoli HUO3 = 0,941 mole mmoli Bi necessare = 0,235 male 0,235 < 0,476 il Bi è in eccesso mmoli NO 4 m mali di HNO3 moli: 10 = 0,941 = 0,235 meliPHNO = 14+16 = 30 g/mele gNO = 30 x 0,235 = 7,05 g Colcolore la quantità in grammi di Clz necessari per produrie con eccesso di NO(OH) 30,89 di NOCOO3 sopendo che la resa y. della reosione è del 71,7 y. 3002 + 6No (OH) 2 1 Noclo3 + 5Nocl + 5H2 O DISKUTA ZIONE Om[Necco3] = 1+5+01=+5 Dm [Noce] = 1-1+01=+1 PH NOCEO3 = 108 g/male moli No (203 = 30, 8/106 = 0, 290 moli moli @2 = 3 X 0, 290 = 0, 870 moli 0,870 : X = 71,7 : 100 X = 1,21 moli gCl2 = 1,21 × 70,9 = 86 g

11	Colodore la P un atmosfère a cui si deve sattaparre una
	date quantità di ges, che occupa un V di 1,30 x 10° f alla
	Toli 85,6°C e alla P di 2,10 x 104 Pa, affinché occupi un
	volume di 105 l'alla T di 341 °C

- 2 Colcolore la quantità in g di Olz che occupa un volume di 682 ml alle T di 38,2°C e alle P di 435 torr
- 3) 2,926 g di un ges incognito occipero un V di 1,00 l'un condizioni normali. Celcolore il Al del ges.

$$\frac{1}{\sqrt{14}} = \frac{P_2 \cdot V_2}{\sqrt{12}}$$

V1 = 1,30 X 102 &

T1 = 85, 6 + 273, 15 = 358, 75 K

$$P_1 = \frac{2,10 \times 10^4}{101325} = 0,207 \text{ stm}$$

10tm=101325 Pa

V2 = 1056

T2 = 341 + 273 15 - 614, 15 K

$$P_2 = \frac{P_1 V_1}{T_2} \cdot \frac{T_2}{V_2} = \frac{0,207 \text{ atm x1},30 \times 10^2 \times 66,15 \text{ K}}{358,75 \text{ K} \times 1058}$$

P= 435 torr /760 = 0,572 atm

PMQ_ = 70,91 g/mole

HISCELE DI GAS

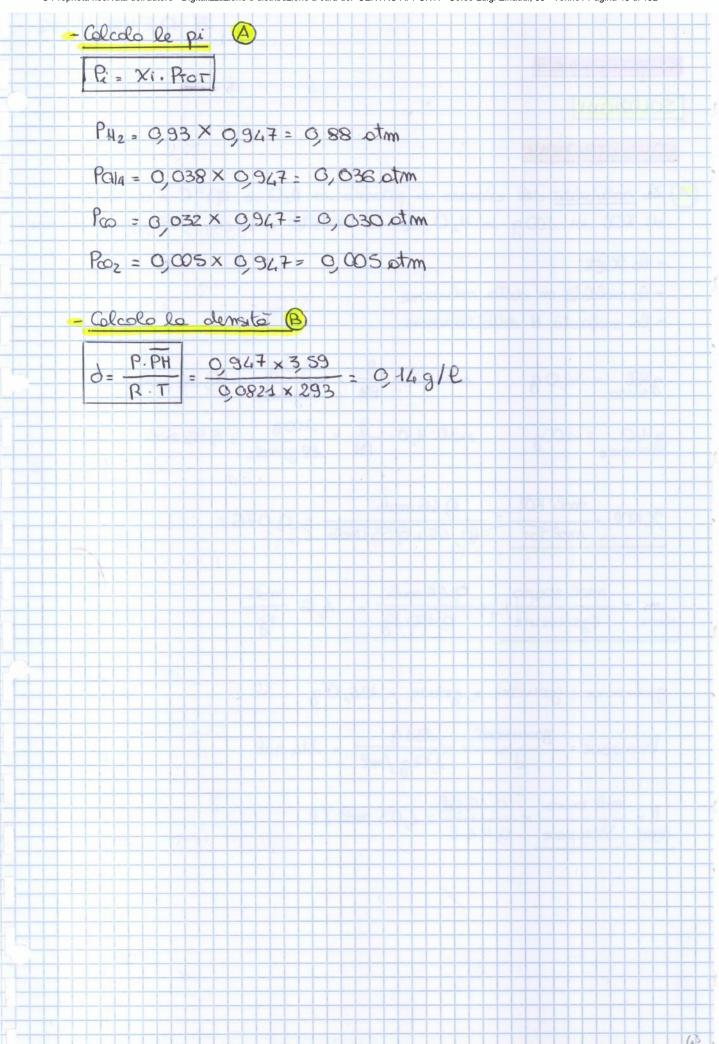
1 Una miscola genora ha la requente composizione percentuale in V

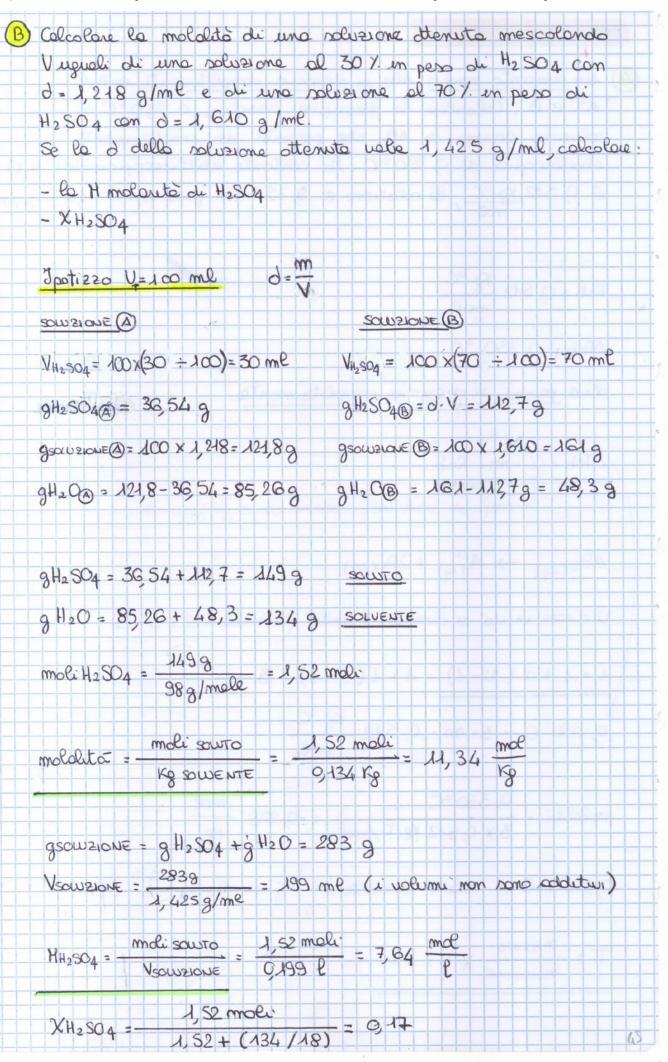
100 g di miscela sono posti un un recepiente di sol alla T di 27°C. Calcolore le Pporziali di ges

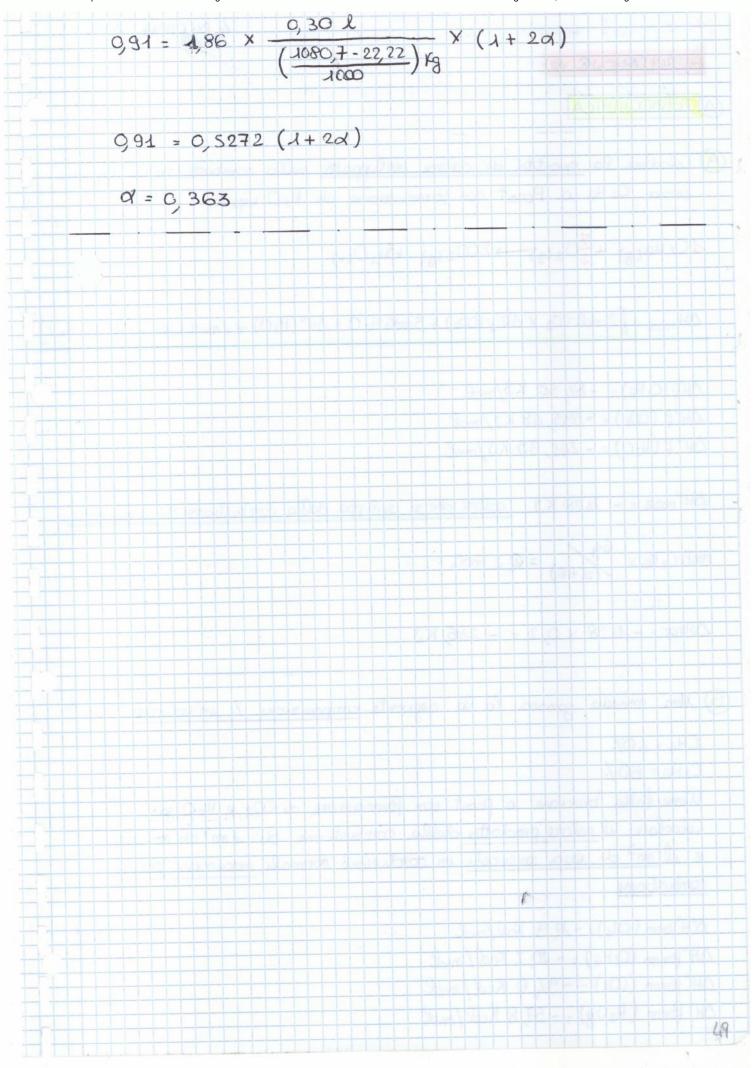
1 HOLE DI HISCELA

28,8 g/mde

Mimolimiscela =
$$\frac{1009}{28,89/\text{mole}}$$
 = 3,47 mole


PTOT = 8,55 otm


LEGGE DI PALTON Ri = Xi. Pror


PN = 0,30 × 8,55 = 2,56 atm

Pco = 0,50 x 8,55 = 4,70 potm

Poz = 9,20 X 8,55 = 1,71 otm

ARIA 02 = 21% N2 = 78% Ar = 1%
- 1CH4 + 202 -> 1CO2 + 2H2O(8) 1
$1C_2H_6 + {}^{\frac{7}{2}}CO_2 \longrightarrow 2CO_2 + 3H_2O(g) $
ΔHreaz@=[1x(-94 Kcd/mol) + 2x(-57,8 Kcd/mol) - (-17,9 Kcd/mol)]
OHreoz @ = -191,7 Kcol
Attreaz@ = [2x(-94,0Kcd/mol)+3x(-57,8 Kcol/mol)-(-20,2 Kcol/mol)]
DHreaz @ = -341,2 Kool
1 m³ = 1000l
VC+14 = 400 e
VC2 H6 = 600 l
$mcli CH_4 = \frac{PV}{RT} = \frac{1 \times 400}{0.0821 \times 273} = 17.8 moli$
mali C2H6 = PV
ΔΗτοτ Φ = -1947 X 17,8 = -3412,26 Kcol
AHTOT@ = -341,2 x 26,8 = -9144,16 Kcol
AHTOT : AHTOT @ + AHTOT @ = - 12556 Kcal
- $mdiO_2$ recerave = $(17.8 \times 2) + (26.8 \times \frac{7}{2}) = 129.4$ moli
$V = \frac{mRT}{P} = \frac{129.4 \times 0.0821 \times 273}{4} = 2900 29000 29000 29000 29000 29000 29000 29000 29000 2$
2900; 21 = X: 100 VARIA = 13, 8 m ³

1 Colodore il colore prodotto	a Prost doll	a combustione of Jm3 di
miscele costituita de co		
(bruciata com la quantita d'	'aria stechiom	etrica), T= 25°C.
2 Colcolore quanti grammi di -16,05 K3 per 1000 21 one C		
$Fe_2 O_3(s) + A^{\varrho}(s) \rightarrow$	Fe(s) + 48203	(e)
3 Colcolore il colorre un KJ di 20 cm³ di bensene CGH formozione di H20 upporce	le lipurdo (c	
di 20 cm³ di benzene C6+	16 lipudo (c	
di 20 cm³ di bensena C6+ formo sione di H20 upporce 200(8) + 102	16 lipuido (c . T= 25°C	nom si forma 420 perché mel combustibile

14° form (CO2(g)) = - 393, 5 K5/mol

AH reaz = [2x(-393,5) - 2x(-40,5)] = -566 KJ

1 m3 = 1000P

Vco = 60 &

molico = PV 1 x GO = 2, 45 moli

 $\Delta H_{TOT} = -566 \times \frac{2,45}{2} = -633,3 \times 3$ 2:-566 = 2,45: X

ESERCITAZIONE 9

EQUILIBRI OHOGENEI IN FASE GAS

A in un realtare montenita alla I ali 290 °C e alla P di 3,70 atm vengono introdutti 39 g di Cl2 (g) e 355 g PCl 5 (e) pentaloriero ali Posfaro. Sopendo che a questa T la Vic dell'epirebrio

 $P(ls(g) \rightleftharpoons P(ls(g) + (ls(g)), vole 0,050, colcolore la composizione 7. in volume della miscela in epvilibrio.$

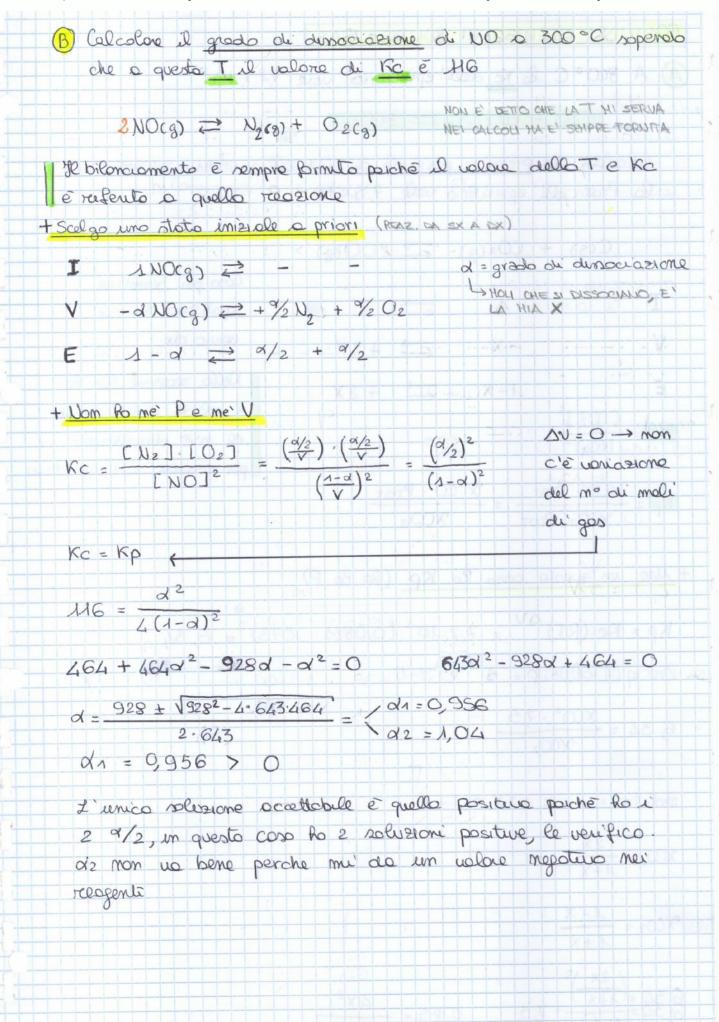
 $moli Cl_2 = \frac{39 g}{71 g/mole} = 0,55 moli (quantità moli PCl_5 = \frac{355 g}{208 g/mole} = 1,70 moli)$

PCls(g) + Cl2(g)

+ Immageno uno stato uniziale non en epischrio

1,70 moli Polsig) = 0,55 moli (leig)

+ Hi monco un produtto, la recozione ue da ox verso dx.
Impengo questa vouezione che è la mua incagnita


 $-X \rightleftharpoons +X + X$

i ropporti stechiometrici sono tutti 1:1 quindi

ho tulte x (moli che si sono formate)

+ Scrivo la reasione in epublibria

1,70 - X => X + 0,55+ X

ESERCITAZIONE 10		303	1-1-1-1-10/1
ECUILIBRI IN SOMBONE			
ACIDO - BASE (PH)			
A) Colcolor il PH di una ovente d=995	soluzione di	solds solf	orico 4,0.10 ⁻¹
PH = - log10 [H30+]	escludendo l'Hz	O (concentro 2)	ione costonte)
$H_2SO_4 + 2H_2O \rightleftharpoons ($	$504)^{2} + 2H_3C$	(cq) mat	[moli dus]
[Hz SO4] despoiato = 0	1. H = 0,95. N	3×10-1 -	X = [moli dus]
[H30+] = 2. [0,95.10)			
	1		
PH=-log(0,19) = 0,72			
PH=-log(0,19) = 0,72	ne soluzione /		ocado ocatico
PH=-log(0,19) = 0,72 B) Colcolore il PH di un	ne soluzione >		oado ecetico
B) <u>Celcolore</u> il PH di un Ka = 1,75 x 10 ⁻⁵ a CH3 COOH acado debol	ne soluzione >	10-2 H di	oado oatico
PH = - log (0,19) = 0,72 B) Colcolore il PH di un Ka = 1,75 × 10-5 a CH3 COOH acido debol	no soluzione /	10-2 H di	oado oatico
PH=-log(0,19)=0,72 B) Colcolore il PH di MY Ka=1,75 × 10-5 a CH3COOH acido debal CH3COOH + H2O 2	no soluzione /	10-2 H di	ocido ocetico
PH = - log (0,19) = 0,72 B) Colcolore il PH di un Ka = 1,75 × 10-5 a CH3 COOH acido debal CH3 COOH + H2 O 2	no soluzione / 25° C De CH3 COO	H30+	20do ecetico
PH = - log (0,19) = 0,72 B) Colcolore il PH di un Ka = 1,75 × 10-5 a CH3 COOH acido debol CH3 COOH + H2 O 2	ne soluzione > 25° C De → CH3 COO + X + X	+ H3O+ + X	

Kb = 10-5 e CB > 10-2 mal

posso quinali trioscurare [OH-] ia denominatorie

$$x^2 = [OH^-]^2 = 1,79 \times 10^{-5} \cdot 0,2$$

$$[H_3O^+] = \frac{Kw}{[OH^-]} = \frac{1,000 \times 10^{-14}}{1,89.10^{-3}} = 5,29 \times 10^{-12}$$

oppure calcalo durettomente il PH da qui

HHA = mol/l di HA

& = grado di dinociozione

KA = costante

HA + H20 = A + H30+

I HHA

V - ON THA

AHKO+ AHKO+

E HHA(1-0)

AHK & + AHK +

d'apende della
concentrazione
All'aumentare della
duluizione d'aumenta
Elettrolita pui dinac.
quanto pui e diluita
la soluzione

65

112 SO4 + 2NOCH -> NO2 SO4 + 2H2 O

II PH é doute all'exemo di idrossido o di acido

Se voglio consumore titto l'idrossido mi servono 0,0015/2 moli di acido.

Quindi 0,0015 mali di NoOH neutralizzono 0,00075 mali di H2SO4. Restono perció mali di H2SO4 residue e sono C,00325 (H2SO4 reogente in eccesso)

(2) Raso	4(3) = 3	04(00)+	Re (op)	
	Nos	$O_4(\varphi) \rightarrow$	2 Nat +	304 (m)	e cumentale la
	Re SO ₄₁	s) Z Ro2	(cop) +		So,2- che determinano la spestamento della
I	0			0,1	XI DRIBU SMOTE DOSK
V	1 2 3 100		S	S	
ε		a object	S	5+0,1	
K	Cs = 4 × 10	0-11 = S.	(\$+0)	1)	
				piccola di	6,3 × 10-6
		s	perché	sto dilven	se se
	/. V.)	C-11			
	5 = -0.1	0-11 = 4 ×	10-11-	e	
					H 100 21 149
					m p 3 4 p 4 - 13
			1400	UC 141 43 FT	
	0.034				
	7 (7)	3 SKATSPETEL MOD			
	10 100	58535555			
		- Folio	20 93 3	34	and and stamp of
		W RBI O	- 439	14600	
			SIN		24/ 31
				3-0-20	
		V 498	D - = 100		19910 - 19783
		g mula	0.4.00	M V JAMON B	
					01

B Colcolare la f.e.m a 25°C di una pila nella quale un semielemento e costituito de una lomena di Sm um merro un une soluzione 1 H di Sm2+ e l'altro semielemento de une lomena di Pb immersa in una soluzione 1.10-3 H di Pb2+

[Sm2+] = 14

[Pb2+] = 1 × 10-3 H

e gie stordard perche 1 H

E Pb 24/Pb = - 0,126 V CATODO

$$E_{Pb}^{2+}/P_{b} = -0,126 + \frac{0,0591}{2} \cdot log_{10} (1 \times 10^{-3}) = -0,215$$

Avena E molto simili ma ho differenza di concentrazione che la differenza; infatte anodo e catado si enectaro

OSSIDI + IDROSSIDI

Corso di Chimica, a.a. 2014-2015, Prof. Barbara Onida

CdO ossido di cadmio o monossido di cadmio o ossido di cadmio (II) $CdO + H_2O \rightarrow Cd(OH)_2$ idrossido di cadmio

Cu₂O ossido di rame (I) o monossido di dirame o ossido rameoso $Cu_2O + H_2O \rightarrow 2 Cu(OH)$ idrossido di rame (I) o idrossido rameoso

CuO ossido di rame (II) o monossido di rame o ossido rameico $CuO + H_2O \rightarrow Cu(OH)_2$ idrossido di rame (II) o idrossido rameico

TiO₂ biossido di titanio o ossido di titanio (IV) $TiO_2 + 2H_2O \rightarrow Ti(OH)_4$ idrossido di titanio (IV) o tetraidrossido di titanio

Dare il nome ai seguenti composti

-> Te (OH)3

- BaO OSSIDO DI BARIO OSSIDO DI BARIO (II) ROMOSSIDO DI BARIO
- COO OSSIDO COBALTOSO OSSIDO DI COBALTO (IL)- MOLOSSIDO DI COBALTO
- CO2O3 OSSIDO COBALTICO OSSIDO DI COBALTO (III)-TRIOSSIDO DI DICOBALTO
- V2O3 OSSIDO VANADIOSO OSSIDO DI VANADIO (III)-TRIOSSIDO DI DIVANADIO
- VO2 OSSIDO VANADICO OSSIDO DI VANADIO (II) BIOSSIDO DI VANADIO
- V2O5 035100 PERNANADICO OSSIDO DI VANADIO (I) PENTAOSSIDO DI DIVANADIO
- ONDATE IN COISSONCY (II) ONDATE IN COISED OCCUMENTS COISED ON
- SnO2 OSSIDO STANNICO OSSIDO DI STAGNO (T) DIOSSIDDO DI STAGNO
- PBO OSSIDO PIOHBOSO OSSIDO DI PIOHBO (II) YOUOSSIDO DI PIOHBO
- PBO2 OSSIDO PIOHBICO OSSIDO DI PLONBO (II) BIOSSIDO DI PLONBO
- Fe(OH)2 IDROSSIDO FERROSO IDROSSIDO DI FERRO (II) DIIDROSSIDO DI FERRO
- Fe(OH)3 IDROSSIDO FERRICO IDROSSIDO DI FERRO (III)-TRUOSSIDO DI FERRO
 - Al(OH)3 IDROSSIDO DI ALWHINIO IDROSSIDO DI ALWHINIO(TIL)-TRIOSSIDO DI ALWHINIO
 - Ag(OH) IDROSSIDO DI ARGENTO IDROSSIDO DI ARGENTO (I) MONDIDROSTIO DI ARGENTO
 - Mn2O7 CSSIDO PERHANGANICO COSIDO DI MANGANESE (XII) EPTACOSIDO DI DIMANGANESE
 - SiO2 OSSIDO DI SIUCIO OSSIDO DI SIUCIO (II) BLOSSIDO DI SIUCIO
 - CI2O5 OSSIDO CLORICO OSSIDO DI CLORO (II) PENTAOSSIDO DI DICLORO ANIDRIRE CLORICA
 - ZNO OSSIDE DI ZINCO OSSIDO DI ZINCO (II)- HONDSSIDO DI ZINCO
 - CeO2 OSSIDO CERICO OSSIDO DI CERIO (IV) BIOSSIDO DI CERIO
 - P2O3 OSSIDO FOSFOROSO OSSIDO DI FOSFORO (III)-TRUOSSIDO DI DIFOSFORO ANIDRIDE FOSFOROSA

Al2O3 OSSIDO DI ALLUHINO - OSSIDO DI ALLUHINO (III) - TRLOSSIDO DI DIALUHINIO

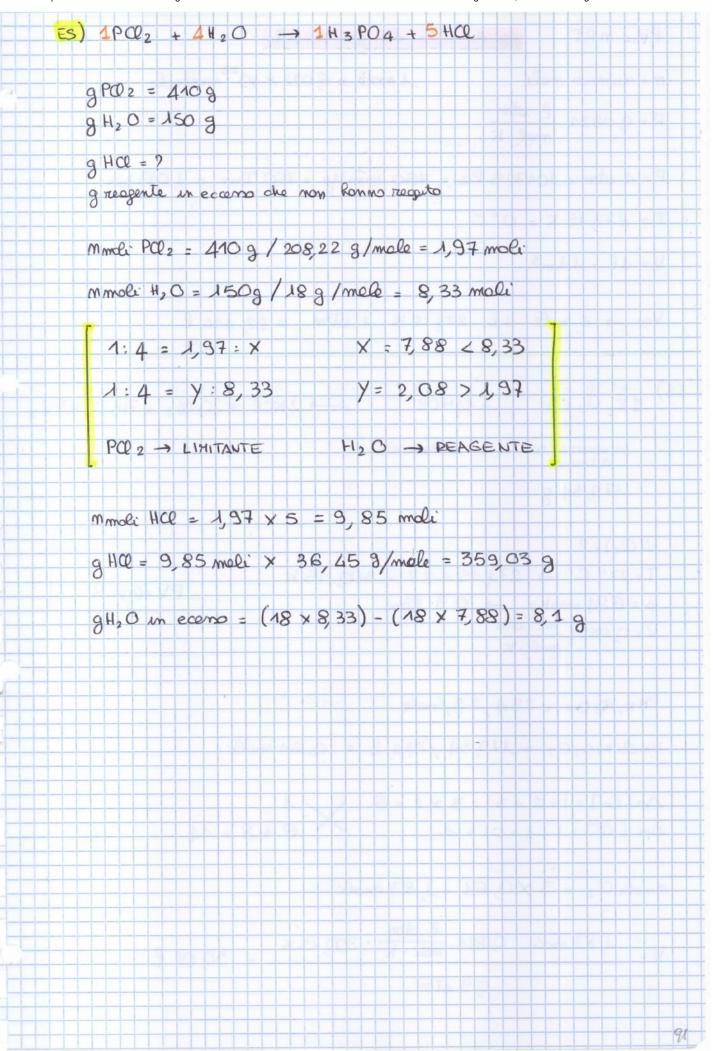
IUPAC STOCK TRADIZIONALE SUFFISSO

77

Corso di Chimica, a.a 2014-2015, Prof. Barbara Onida

Scrivere la formula di Lewis (con eventuali doppietti liberi) dei seguenti composti e elementi

- NH₃
- H₂S
- HNO₂
- CO₂
- N₂
- HI
- H₂S
- O₂
- HBrO
- HBrO₂
- HBrO₃
- HBrO₄
- SF₆
- PCI₅


Calcolare lo stato di ossidazione degli elementi nei seguenti composti:

- HNO2 H2O+ N2O3 = H2N2O4 sciolo mitroso
- -BF3 TRIFLUORURO DI BORO
- SF6 ESAFWORURO DI ZOLFO
- CaCl2 cloruro di colcio
- +2+6-2 - BaSO4 H2SO4 → Bo2(SO4)2 → solfato di bono
- +1+4-2 - Li2SO3 H2SO3 → H2O+SO2 = H2SO3 ecido rolforoso → rolfito di litro
- -H2O2 copie ossigenate O→-1
- $-OF_2$ diffuorum di ossigno $O \rightarrow +2$
- -KH idroro di patomio H = -1
- +1+3-2 - H3BO3 cado boruco 3H2O+ B2O3 = H6B2O6 = H3BO3
- +1+5-2 - H3PO43H2O + P2O5 = H6P2O8 = H3PO4 ocido fosforico

SF6 . S: (F) (F) (F) (F) (F)	
PCL'S . P	
SO : \$ = 0:	SO ₂
50 ₃	
CO .ċö. :C ⊆ O:	CO ₂ : • = C = • :
CO CE. CE.	

REGOVE BASE ESERCIZI STECHIOHETRUA ES) 9,7 moli di H2SO4 quanti gnommi di H2SO4? PH H2804 = (2 X 1 + 32 + 4 X 16) = 98 g/mole g = 0,7 x 98 = 68,6 g ES) 25 g Fe O3 (ossido ferrico) quente moli? 11 PHFe203 = (2 × 56 + 3 × 16) = 160 g/mole REAZIONE moli FeO3 = 258 = 0, 16 moli ES) H2O una mole 18 g = (2 x 1 + 16) una molecola 18 uma Ro so g di H2O quente moli Ro? 1 mole: 18 g = X moli: 50 g $m_{mol}: H_2O = \frac{50 g}{18 g} = 2,77 mol}$ numero moli = marsa (g) P.H(g/mole)

```
gOTTENUTY = 34,1 g x 0,82 = 27,98 g
ES) 2 \text{ HNO}_2 + 1 \text{ Bo (OH)}_2 \longrightarrow 1 \text{ Bo (NO}_2)_2 + 2 \text{ H}_2 \text{ O}_2
     9 HUO2? per 110 g di Bo (NO2)2
     PHBO (NO2) = 137,34 + 2 ×14 + 4 ×16 = 229,34 g/mole
    mmoli Ba (NO2)2 = MO g /229, 34 = 0, 48 moli
     mmol HNO2 = 2 x 0, 48 = 0,96 mol
     PM HNO2 = 1 + 14 + 2 × 16 = 47 g/mole
     9 HNO2 = 47 × 9,96 = 45,12 9
 ES) 3H2 SO4 + 1 Fe2 O3 -> 1 Fez (SO4) 3 + 3H20
     9 H2 SO4 = 89,0 g
                                       CERCO IL LIMITANTE E IL
     g Fez 03 = 55,0 g
                                       COMPONENTE IN ECCESSO
     9 Fe2 (SO4) 3 = ? 9 Fe2 03 in ecceno?
                             m moli H2 SO4 = 89/98 = 0, 907 moli
    PHH 2 SQ4 = 98 g/mole
     PHFe203 = 160 g/mole mmoli fe203 = 55/160 = 0,344 moli
     3:1=0,907:X X=0,302<0,344
     H2SO4 -> LIMITANTE
                           Fe203 → ECCESSO
    mmoli Fez (SQ4) 3 = 0,302 moli
     PH Fez (SO4)3 = 399, 9 g/mode
     9 Fez (SO4) 3 = 0,302 × 399, 9 = 120, 8 g
```



```
IN ECCESSO
     CLORURO DI
      109
   VNH3 = ? e 1 atm e 25°C
   P= lotm
   T = 25°C + 273,15 = 298,15 K
   R = 0,0821 e. otrm
   PH(NH4) ce = 53,45g/mole
   m mode (NH4)ce = 10/53, 45 = 0, 187 mele
   mmali NH3 = 0,187 moli
   27mS + 302 -> 22m0 +2502
     1409
                              283,45 K
  quantità di Oz che occupa sol a 10°C e 3 atm. Mali di Oz
  remoste a fine reasione?
  Mmoli 02 = 3 otm × 50l

0,082 \(\frac{\ell \cdrm}{mol}\) \(\chi \cdrm\) = 6, 46 moli
  mmoli 2mS = 140/97, 46 = 1, 44 moli
  2:3 = 1,44: X X = 2,16 moli
  Mmoli O2 a fine reassione = 6, 46 - 2, 16 = 4, 31 mali
```

```
3H2SO4 + 2AP(CH)3 - 1AP2(SO4)3 + 6H2O
  NO OSSIDO RIDUZIONE
68, 6 g di H2 504
Al (OH) = in eccerso
g Alz (SO4) 3 = ?
PHH2SO4 = (2x1 + 32 + 4x16) = 98 g/mole
 Mmdi H2 SO4 = 68, 6 g / 98 g/mole = 0,7 moli
 3: 1 = 0,7: X -> X = m moli Al2 (504)3 = 0,23 moli
 g Al2 (504) = 0,23 x (2 x 27 + 32 x 3 + 16 x 12) = 78,66 g
                         342 8/mole
                                                nen del 100%
RESA = GOTTENUTT X 100
GOTTENUT = GTEORICI X RESA = 78, 66 g X 0,85 = 66,92 g
Se ottengo 69,2 g la Resa sorá dell' 88%.
 OSSIDO RIDUZIONE
 Am[H] = 10 + 11 = 1 x 2 = 2
 g CO :?
 100 g CH3OH → g oTTENUTY
 R = 94%
 H2 in eccensor
 g TEORICI = 100 / G, 94 = 106, 38 g
 PHCH30H = (12+4×1+16) = 32 g/mole
```


200 g di Zn (al 95%), reagiscono con HCl(ag) in eccesso. Quanto H2 si svolge a 30°C ed a 611 mmHg?

H2 + Zmce2 + 2HCE OSSIDO-RIDUZIONE

T= 30° + 273, 15 = 303 15 K

P = 611 mm flg = 0, 80 otm R = 0,0821 | exotim molix K

допенит = g теописі x RESA = 200 g x 0,95 = 190 g

PHZm = 65,37 g/mole

mmoli Zm = 190g /65, 37g/mole = 2, 90 moli

m moli H2 = 2, 90 moli

cromato di sodio ottenibile.

PV = mRT

Il cromato di sodio si può ottenere facendo reagire in un forno nitrato di sodio, triossido di dicromo e carbonato di sodio, con formazione di NO e CO2. Avendo a disposizione una tonnellata di triossido di dicromo calcolare la quantità massima di

Dm[N]= |+5+2|=3

Am [Cr] = |+3+61=3×2 × 1

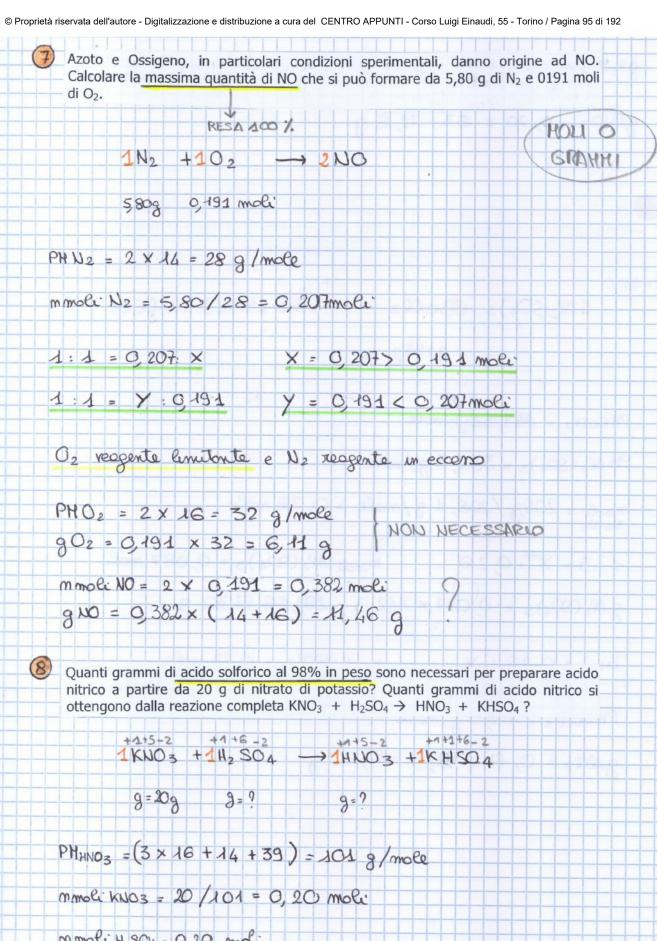
gCr203 = 1 tomm = 1000000 g

PHCr2O3 = (2 × 52 + 3 × 16) = 152 g/mole

mmoli Grz O3 = 1000000 /152 = 6578,94 moli

m moli No 2 (CrC4) = 2 x 6578, 94 = 13157, 89 moli

gNo 2 (GO4) = 13157 89 moli x (1 x 52 + 4 x 16 + 2 x 23) = 2131578, 95 / 1000000 = 8, 13 Tomm


In un recipiente indeformabile del volume di 50,0 litri, in cui è stato fatto inizialmente il vuoto, vengono introdotti 5,40 Kg di carbonato di calcio e 4,41 Kg di acido fosforico. Nel recipiente chiuso avviene la reazione che porta alla formazione di fosfato di calcio, biossido di carbonio e acqua. Calcolare la pressione esercitata biossido di carbonio a 33 °C, assumendo che il volume occupato dalle specie non gassose sia di 3,5 litri.

[R: 29 atm]

$$V = 50l - 3.5l = 46.5l$$

 $R = 0.0821 \frac{l \times atm}{mele \times K}$

m moli
$$G(03) = 5400 / 100, 10 = 53, 95 moli$$

mmoli $H_3RO_4 = 4410 / 98 = 45 moli$

© Proprietà riservata dell'autore - Digitalizzazione e distribuzione a cura del CENTRO APPUNTI - Corso Luigi Einaudi, 55 - Torino / Pagina 93 di 192

Mmoli H₂SO₄ = 0,20 moli

PMH₂SO₄ = (2 x 1 + 32 + 4 x 16) = 30 g/mole

PMHNO₃ = (1 + 3 x 16 + 14) = 63 g/mole

Calcolare la quantità di acido solfidrico che si forma quando 3,55 g di solfuro di ferro (II) sono trattati con eccesso di acido doridrico.

1 Fe S + 2 HCe --- 1H2S + 1 Fe Ce2

3,55g in eccesso

8 = 9

GRAHH

PHFes = 88 g/male

mmoli FeS = 3,55/88 = 0,04 moli

m moli H2S = 0,04 moli

gH2S= 904 x (2+ 32) = 1,379