

Appunti universitari
Tesi di laurea
Cartoleria e cancelleria
Stampa file e fotocopie
Print on demand
Rilegature

NUMERO: 416 DATA: 02/11/2012

APPUNTI

STUDENTE: Bessone

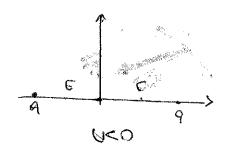
MATERIA: Fisica II

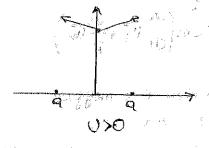
Prof. Barbero

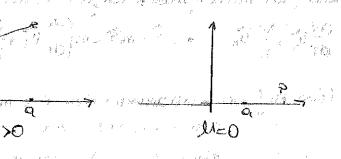
Il presente lavoro nasce dall'impegno dell'autore ed è distribuito in accordo con il Centro Appunti. Tutti i diritti sono riservati. È vietata qualsiasi riproduzione, copia totale o parziale, dei contenuti inseriti nel presente volume, ivi inclusa la memorizzazione, rielaborazione, diffusione o distribuzione dei contenuti stessi mediante qualunque supporto magnetico o cartaceo, piattaforma tecnologica o rete telematica, senza previa autorizzazione scritta dell'autore.

IF F Contomb = A S

Q = aana sorguite


much of our strains and the discovering income in company of our property La openmente con il Duncibo di sonoppostione cledi effetti


CANPO : ELETTROSTATICO :
$$\vec{E} = \frac{\vec{q}}{q_0} = k \frac{\vec{q}}{r^2} \vec{u}$$


our except x2 to a x5 to detecte allowing it about the active of the stand of the s

que o xo o xo o shotogo albahig al church shelatatirels up è dunquel allowhands da ma fore

un punto é de equilibrio incliférente ou la patrollo rumane forma

particle di coppos R mi dib du Clevanos p

and the same of th
1==
e m
A WE

3 = spointe du Adduncede

As non 11 boro gourby;

$$m\vec{a} = m\vec{g} - 6\pi \eta R\vec{V} - \vec{S} = m\vec{g} - 6\pi \eta R\vec{V} - \frac{4}{3}\pi R^3 R\vec{g} = \frac{4}{3}\pi R^3 (\vec{p} - \frac{4}{3}\pi R^3 - 6\pi \eta R\vec{V} = \frac{4}{3}\pi R^3 (\vec{p} - \vec{p}_a)\vec{g} - 6\pi \eta R\vec{V}$$

Q=0

& wholico en compo eletrico È

conscier pa mosso approprio reparte en comprendado becuento e chanca. E bompo pe

$$E = \frac{1}{0} m v^2 + Q_0 V$$

$$\overline{Z} = \frac{1}{2} \frac{1}{$$

$$\frac{1}{12} = \frac{1}{12} \times \frac{1}{12}$$

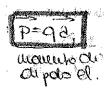
$$\frac{\partial F_{2}}{\partial z} = \frac{\partial I}{\partial z}$$
 $\frac{\partial F_{3}}{\partial z} = \frac{\partial F_{3}}{\partial z$

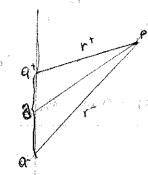
$$\frac{94}{80} \qquad \frac{93}{940} \qquad \frac{93}{940} \qquad \frac{93}{940} \qquad \frac{93}{940} \qquad \frac{94}{940} \qquad \frac{94$$

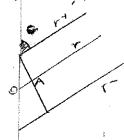
$$\frac{9\times}{20} = \frac{9\times91}{20} = \frac{$$

Minimizer,
$$\frac{9^x}{9^{\frac{1}{4}}}$$
 ... Almosto, $\frac{9^x}{31}$ $\frac{9^x}{31}$ $\frac{9^x}{9^{\frac{1}{4}}}$ $\frac{9^x}{9^{\frac{1}{4}}}$ toolesmon on 2 most.

$$\vec{F} = -\frac{\partial U}{\partial x} - \frac{\partial U}{\partial y} - \frac{\partial U}{\partial z} = \frac{\partial U}{\partial z} + \frac{\partial U}{\partial z} = \frac{\partial U}{\partial z} + \frac{\partial U}{\partial z} = \frac{\partial U}$$


$$f_{y} = \frac{\partial U}{\partial x}$$


$$f_{y} = \frac{\partial U}{\partial y}$$


$$F dS = Qu = \sum_{x} F_{x} dx + F_{y} dy + F_{2} dz + \frac{34}{3x} dx + \frac{34}{32} dy + \frac{34}{32} dz = 0 \qquad \forall dx, dy, dx$$

$$\left(F_{x} + \frac{34}{3x}\right) dx + \left(F_{y} + \frac{34}{3x}\right) dy + \left(F_{2} + \frac{34}{32}\right) dz = 0$$

pessenor formate da que rances à an seson opposto boste a diplomia a

$$OA = \frac{Q}{2} \cos \theta$$

$$r^{4}=r-\frac{9}{2}\cos \theta$$
 $r^{-}=r+\frac{9}{2}\cos \theta$

$$r = r + \frac{9}{2} \cos \theta$$

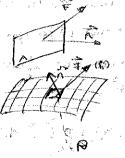
$$[V(P) = \kappa \left(\frac{1}{r - \frac{Q}{2}\cos\theta} - \frac{1}{r + \frac{Q}{2}\cos\theta}\right) = \kappa Q \left(\frac{r + \frac{Q}{2}\cos\theta - r + \frac{Q}{2}\cos\theta}{r^2 - \frac{Q}{2}\cos\theta}\right) = \kappa Q \frac{\alpha\cos\theta}{r^2} = \kappa Q \frac{\alpha\cos\theta}{r^2}$$

(A) abolish cloped in ad others ognes ind closely

$$\frac{9x}{9x} = \kappa \frac{9x}{9} \left\{ (6^{\times} \times + 64 A + 65 + 1) \right\} = \kappa \left\{ 6^{\times} \times + 64 A + 65 + 1) \right\} = \kappa \left\{ 6^{\times} \times + 64 A + 65 + 1) \right\} = \kappa \left\{ 6^{\times} \times + 64 A + 65 + 1) \right\} = \kappa \left\{ 6^{\times} \times + 64 A + 65 + 1) \right\} = \kappa \left\{ 6^{\times} \times + 64 A + 65 + 10 \right\} = \kappa \left\{ 6^{\times} \times + 64 A + 64 A + 65 + 10 \right\} = \kappa \left\{ 6^{\times} \times + 64 A + 64 A$$

$$\frac{\partial V}{\partial V} = K \frac{1}{\sqrt{3}} \left\{ P_1 - \frac{3V}{\sqrt{2}} (\vec{p}, \vec{r}) \right\} \qquad \frac{\partial V}{\partial V} = K \frac{1}{\sqrt{3}} \left\{ P_2 - \frac{3V}{\sqrt{2}} (\vec{p}, \vec{r}) \right\}$$

$$\frac{\partial V}{\partial z} = \kappa \frac{1}{V^{\delta}} \left(P_2 - \frac{BZ}{V^2} (P, r) \right)$$

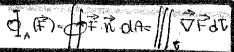

$$= -\nabla V = -\left(\frac{1}{12} \frac{3V}{3X} + \frac{1}{12} \frac{3V}{3Y} + \frac{3V}{12} \frac{3V}{3Y} \right) = -\left(\frac{1}{12} \frac{7}{12} + \frac{1}{12} \frac{7}{12} - \frac{1}{12} \frac{7}{12} \right) \left[\frac{3V}{4X} + \frac{1}{12} \frac{3V}$$

(S) obotall Cooks We other

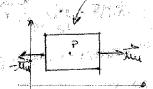
$$\frac{\partial V}{\partial x} = -2K \frac{\partial V}{\partial x} = -K \frac{\partial$$

se la suproficie mont pouc

TEOREMA DEMA DIVERGEN FA

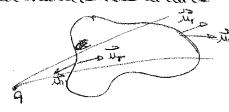

Emal son le condinate di P, eP2?


$$P_1 \equiv (x, y + \frac{\Delta y}{Q}, z)$$
 $P_2 \equiv (x, y - \frac{\Delta y}{Q}, z)$


$$F_{ij}(P_2) = F_{ij}\left(x_1y_1 - \frac{\Delta y}{2}, 2\right) = F_{ij}(x_1y_1, 2) - \frac{\delta \hat{x}_1}{\partial y_1} \frac{\Delta y}{2}$$

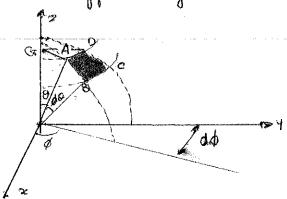
stessa cosa bend* =
$$\frac{9x}{9x}$$
 at $\frac{9^{5}}{9x^{5}}$ at

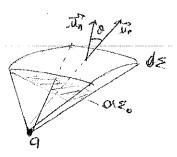
$$\Delta \varphi = \Delta \varphi_{x} + \Delta \varphi_{y} + \Delta \varphi_{z} = \left(\frac{\partial f_{x}}{\partial x} + \frac{\partial f_{y}}{\partial y} + \frac{\partial f_{z}}{\partial z}\right) \Delta t = \nabla F \Delta T$$


ASSENTED TO

(LEGGE DI GAUSS We todo 117)

Déterminance el flusso d'innicompollettrico attroverso ema aperficie chiusa nel cosa in mila

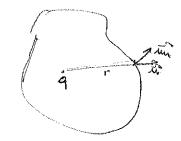

como de cua y combo se espero allo 2 serficie


De a celocus ada

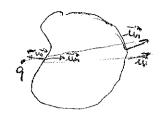
is a contended to the consistency of the date of the start withing the color of the start of the

quadrank del raggio della sfera. E'un numero - STERBOIANTE

De coordinate ofericle


augob polido tohal a fruidold - 27 sundo - 27 [0000] 477

Compos studes fin to delimitate da un dias 12 - // seno dodo - 2 ti (1-coso)

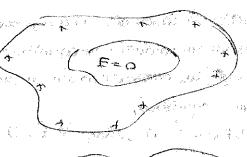

a culvema

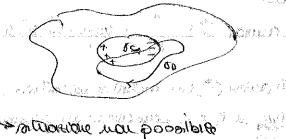
$$dC = \vec{\epsilon} \cdot \vec{n} \cdot d\vec{r}$$
 $\vec{\epsilon} = \frac{kQ}{r^2} \cdot \vec{u}_r$

$$\phi_{\epsilon} = \oint_{\epsilon} kqd\Omega = kq4\pi = \frac{1}{4\pi\epsilon} 4\pi q \left(\frac{9}{\epsilon}\right)$$

$$dd_1 + dd_2 = \vec{\xi}_1 \cdot \vec{\theta}_{n_1} d\vec{\xi}_1 + \vec{\xi}_2 \cdot \vec{u}_{n_2} d\vec{\xi}_2 = kq \frac{\vec{u}_n \cdot \vec{u}_{n_1}}{r_1^2} d\vec{\xi}_1 + kq \frac{\vec{u}_n \cdot \vec{u}_{n_2}}{r_2^2} d\vec{\xi}_2 = kq \frac{\vec{u}_n \cdot \vec{u}_{n_1}}{r_2^2} d\vec{\xi}_1 + kq \frac{\vec{u}_n \cdot \vec{u}_{n_2}}{r_2^2} d\vec{\xi}_2 = kq \frac{\vec{u}_n \cdot \vec{u}_{n_1}}{r_2^2} d\vec{\xi}_1 + kq \frac{\vec{u}_n \cdot \vec{u}_{n_2}}{r_2^2} d\vec{\xi}_2 = kq \frac{\vec{u}_n \cdot \vec{u}_{n_1}}{r_2^2} d\vec{\xi}_1 + kq \frac{\vec{u}_n \cdot \vec{u}_{n_2}}{r_2^2} d\vec{\xi}_2 = kq \frac{\vec{u}_n \cdot \vec{u}_{n_1}}{r_2^2} d\vec{\xi}_1 + kq \frac{\vec{u}_n \cdot \vec{u}_{n_2}}{r_2^2} d\vec{\xi}_2 = kq \frac{\vec{u}_n \cdot \vec{u}_{n_1}}{r_2^2} d\vec{\xi}_1 + kq \frac{\vec{u}_n \cdot \vec{u}_{n_2}}{r_2^2} d\vec{\xi}_2 = kq \frac{\vec{u}_n \cdot \vec{u}_{n_1}}{r_2^2} d\vec{\xi}_1 + kq \frac{\vec{u}_n \cdot \vec{u}_{n_2}}{r_2^2} d\vec{\xi}_2 = kq \frac{\vec{u}_n \cdot \vec{u}_{n_2}}{r_2^2} d\vec{\xi}_1 + kq \frac{\vec{u}_n \cdot \vec{u}_{n_2}}{r_2^2} d\vec{\xi}_2 = kq \frac{\vec{u}_n \cdot \vec{u}_{n_2}}{r_2^2} d\vec{\xi}_1 + kq \frac{\vec{u}_n \cdot \vec{u}_{n_2}}{r_2^2} d\vec{\xi}_2 = kq \frac{\vec{u}_n \cdot \vec{u}_{n_2}}{r_2^2} d\vec{\xi}_1 + kq \frac{\vec{u}_n \cdot \vec{u}_{n_2}}{r_2^2} d\vec{\xi}_2 = kq \frac{\vec{u}_n \cdot \vec{u}_{n_2}}{r_2^2} d\vec{\xi}_1 + kq \frac{\vec{u}_n \cdot \vec{u}_{n_2}}{r_2^2} d\vec{\xi}_2 = kq \frac{\vec{u}_n \cdot \vec{u}_{n_2}}{r_2^2} d\vec{\xi}_1 + kq \frac{\vec{u}_n \cdot \vec{u}_{n_2}}{r_2^2} d\vec{\xi}_2 + kq \frac{\vec{u}_n \cdot \vec{u}_{n_2}}{r_2^2} d\vec{\xi}_1 + kq \frac{\vec{u}_n \cdot \vec{u}_{n_2}}{r_2^2} d\vec{\xi}_2 + kq \frac{\vec{u}_n \cdot \vec{u}_{n_2}}{r_2^2} d\vec{u}_{n_2} + kq \frac{\vec{u}_n$$

Canadeniano em condutade como e cano


La como os dispone Turre ongla espertira espera


Renticando con la fegge de Gamma of 4PET fo

E=0 => d (#) # E mi az = 9nt = 0 => 9 m+0

Naté manche possible la divisione delle conche attano olla cavita infanti è è carsemativo

Quandi & E 02=0, mand a roote cos

Charger To Sur Page 10 10 Best 12 60

ENGLINE CONTRACT

I'm to a december of Dicker R

Y HOUSE SHOW TO -

Carsiderano en conduttore scouco e caro e introduciono admirio un conduns tor carico monta en conduns de caro e introducione admirio un conduns de caro e introducione admirio de caro e in

9,49,=0 => do:)=0 => 9,40 =0

HARA MARKET MARKET

Farm by Eliza

il conduitore con contribu uno ochemicalitico doctrio perfeito tro opera unione ed esteno

The amount of the control of the property of the control of the co

() The factor wint (letter to explain) the small the properties and comments of the loss with an and

Existinctions has expected by I make experience him home years when in a

COULCAMENTO DI COMDENZALORI

condensatori in paraufic + q: f q: q: + q: - q: - q:

hama la stessa AV=Va-V3

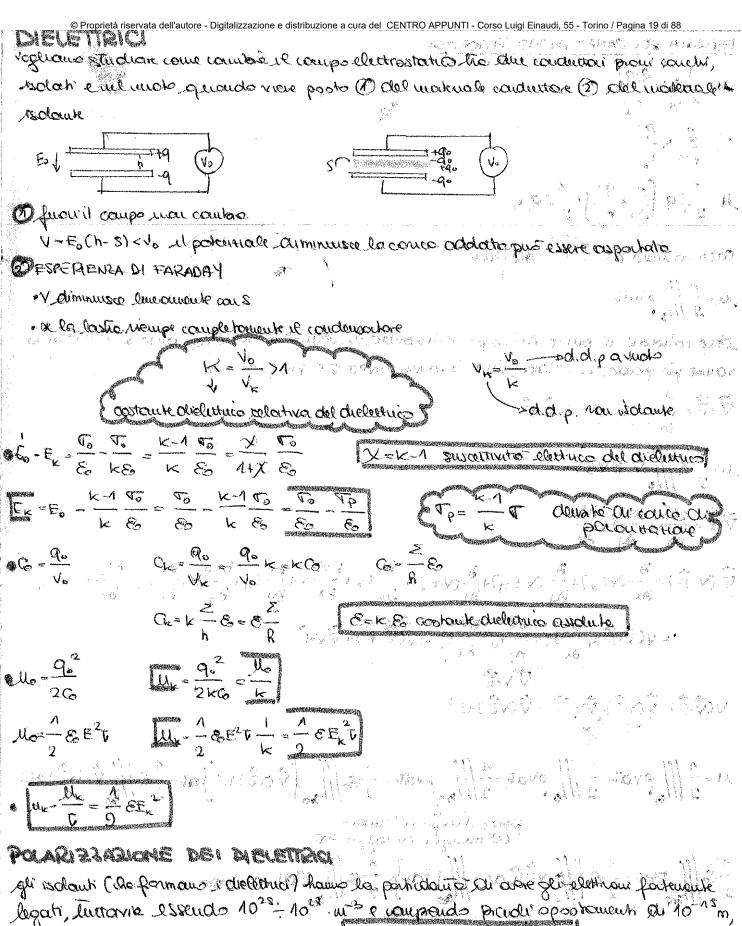
$$q_1 = C_2 \Delta V$$
 $q_2 = C_2 \Delta V$

hamo la opería carre (1)

$$C_2 = \frac{9}{\Delta V_1}$$
 $C_2 = \frac{9}{\Delta V_2}$

$$\Delta V_2 = \frac{9}{C}$$

ENERGIA DEI CAMPO ELETTROSIATICO: Lovero che bioggia fane dall'edemo percheme il


compo elettuco (ENERGIA PROPEIA DEI SISTEMY)

WWW.aff Till COMMENT MERCH

古凯语的 医二氏溶解性纤维溶解术 的现在分词

Calado dell'enego in fenizione del comp-

$$E = \frac{\nabla}{8}$$
 V=En q=Z σ

Palariziane dei dielettra

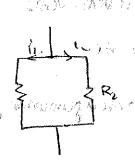
gli isolanti (cho formans i dielletrici) hamo la patridoni o cui ave gli elettroni fatendite legati, luttorie essendo 1025-102 m2 e compaido piculi opostomento de 10 15m,

Salve flowers of other analysis & ofmen me in many other

polounable to atomico dp-dNp accused a dipolo di un volumento et de configued atomi dN-ndt

ap=ndvp3 = de = 178 **FOLAPIFFATION**

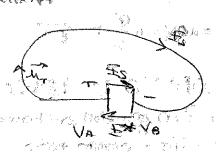
$$V(A) = \frac{1}{4\pi\epsilon_0} \left\| \int_0^1 \frac{\nabla \vec{p}}{\kappa} d\vec{r} \cdot \left(\frac{\vec{p}}{r} \right) + \vec{\nabla} \cdot \left(\frac{\vec{p}}{r} \right) \right\|_{L^{\infty}} d\vec{r} \cdot \frac{1}{4\pi\epsilon_0} \left\| \left(\frac{\vec{p}}{r} \right) - \frac{\vec{p}}{\kappa} d\vec{r} \cdot \frac{1}{4\pi\epsilon_0} \left\| \left(\frac{\vec{p}}{r} \right) - \frac{\vec{p}}{\kappa} d\vec{r} \cdot \frac{1}{4\pi\epsilon_0} \left\| \left(\frac{\vec{p}}{r} \right) - \frac{\vec{p}}{\kappa} d\vec{r} \cdot \frac{1}{4\pi\epsilon_0} \left\| \left(\frac{\vec{p}}{r} \right) - \frac{\vec{p}}{\kappa} d\vec{r} \cdot \frac{1}{4\pi\epsilon_0} \left\| \left(\frac{\vec{p}}{r} \right) - \frac{\vec{p}}{\kappa} d\vec{r} \cdot \frac{1}{4\pi\epsilon_0} \left\| \left(\frac{\vec{p}}{r} \right) - \frac{\vec{p}}{\kappa} d\vec{r} \cdot \frac{1}{4\pi\epsilon_0} \left\| \left(\frac{\vec{p}}{r} \right) - \frac{\vec{p}}{\kappa} d\vec{r} \cdot \frac{1}{4\pi\epsilon_0} \left\| \left(\frac{\vec{p}}{r} \right) - \frac{\vec{p}}{\kappa} d\vec{r} \cdot \frac{1}{4\pi\epsilon_0} \left\| \left(\frac{\vec{p}}{r} \right) - \frac{\vec{p}}{\kappa} d\vec{r} \cdot \frac{1}{4\pi\epsilon_0} \left\| \left(\frac{\vec{p}}{r} \right) - \frac{\vec{p}}{\kappa} d\vec{r} \cdot \frac{1}{4\pi\epsilon_0} \left\| \left(\frac{\vec{p}}{r} \right) - \frac{\vec{p}}{\kappa} d\vec{r} \cdot \frac{1}{4\pi\epsilon_0} \left\| \left(\frac{\vec{p}}{r} \right) - \frac{\vec{p}}{\kappa} d\vec{r} \cdot \frac{1}{4\pi\epsilon_0} \left\| \left(\frac{\vec{p}}{r} \right) - \frac{\vec{p}}{\kappa} d\vec{r} \cdot \frac{1}{4\pi\epsilon_0} \left\| \left(\frac{\vec{p}}{r} \right) - \frac{\vec{p}}{\kappa} d\vec{r} \cdot \frac{1}{4\pi\epsilon_0} \left\| \left(\frac{\vec{p}}{r} \right) - \frac{\vec{p}}{\kappa} d\vec{r} \cdot \frac{1}{4\pi\epsilon_0} \left\| \left(\frac{\vec{p}}{r} \right) - \frac{\vec{p}}{\kappa} d\vec{r} \cdot \frac{1}{4\pi\epsilon_0} \left\| \left(\frac{\vec{p}}{r} \right) - \frac{\vec{p}}{\kappa} d\vec{r} \cdot \frac{1}{4\pi\epsilon_0} \left\| \left(\frac{\vec{p}}{r} \right) - \frac{\vec{p}}{\kappa} d\vec{r} \cdot \frac{1}{4\pi\epsilon_0} \left\| \left(\frac{\vec{p}}{r} \right) - \frac{\vec{p}}{\kappa} d\vec{r} \cdot \frac{1}{4\pi\epsilon_0} \left\| \left(\frac{\vec{p}}{r} \right) - \frac{\vec{p}}{\kappa} d\vec{r} \cdot \frac{1}{4\pi\epsilon_0} \left\| \left(\frac{\vec{p}}{r} \right) - \frac{\vec{p}}{\kappa} d\vec{r} \cdot \frac{1}{4\pi\epsilon_0} \left\| \left(\frac{\vec{p}}{r} \right) - \frac{\vec{p}}{\kappa} d\vec{r} \cdot \frac{1}{4\pi\epsilon_0} \left\| \left(\frac{\vec{p}}{r} \right) - \frac{\vec{p}}{\kappa} d\vec{r} \cdot \frac{1}{4\pi\epsilon_0} \left\| \left(\frac{\vec{p}}{r} \right) - \frac{\vec{p}}{\kappa} d\vec{r} \cdot \frac{1}{4\pi\epsilon_0} \left\| \left(\frac{\vec{p}}{r} \right) - \frac{\vec{p}}{\kappa} d\vec{r} \cdot \frac{1}{4\pi\epsilon_0} \left\| \left(\frac{\vec{p}}{r} \right) - \frac{\vec{p}}{\kappa} d\vec{r} \cdot \frac{1}{4\pi\epsilon_0} \left\| \left(\frac{\vec{p}}{r} \right) - \frac{\vec{p}}{\kappa} d\vec{r} \cdot \frac{1}{4\pi\epsilon_0} \left\| \left(\frac{\vec{p}}{r} \right) - \frac{\vec{p}}{\kappa} d\vec{r} \cdot \frac{1}{4\pi\epsilon_0} \left\| \left(\frac{\vec{p}}{r} \right) - \frac{\vec{p}}{\kappa} d\vec{r} \cdot \frac{1}{4\pi\epsilon_0} \left\| \left(\frac{\vec{p}}{r} \right) - \frac{\vec{p}}{\kappa} d\vec{r} \cdot \frac{1}{4\pi\epsilon_0} \left\| \left(\frac{\vec{p}}{r} \right) - \frac{\vec{p}}{\kappa} d\vec{r} \cdot \frac{1}{4\pi\epsilon_0} \left\| \left(\frac{\vec{p}}{r} \right) - \frac{\vec{p}}{\kappa} d\vec{r} \cdot \frac{1}{4\pi\epsilon_0} \left\| \left(\frac{\vec{p}}{r} \right) - \frac{\vec{p}}{\kappa} d\vec{r} \cdot \frac{1}{4\pi\epsilon_0} \left\| \left(\frac{\vec{p}}{r} \right) - \frac{\vec{p}}{\kappa} d\vec{r} \cdot \frac{1}{4\pi\epsilon_0} \left\| \left(\frac{\vec{p}}{r} \right) - \frac{\vec{p}}{\kappa} d\vec{r} \cdot \frac{1}{4\pi\epsilon_0} \left\| \left(\frac{\vec{p}}{r} \right) - \frac{\vec{p}}{\kappa} d\vec{r} \cdot \frac{1}{4\pi\epsilon_0} \left\| \left(\frac{\vec{p}}$$


ENANON DELL PLENDOSTATION IN PRESENTATION DELL'ENDING

DIELETTRICI LINEARI MOTROPI

ull casodella lastra

© Proprietà riservata dell'autore - Digitalizzazione	e distribuzione a cura del CENTRO APPUNTI - Corso Luigi Einaudi, 55 - Torino / Pagina 23 di 88
$\iiint_{\mathbf{b}} \frac{\partial \rho}{\partial t} dt + \iiint_{\mathbf{b}} \nabla_{\mathbf{b}} dt = 0$	
	The following the state of the second of
30 + 7]= 0 eq all cautinula	n its lang tertifikalaman menladig terdakan pelitika nambandan ditudak dibembilik. B
CORRELLY STAZY CHOWD: D was differen	do dal tempo ma ala dalla posmicie pl?)
5:3=0 Nethose demande	· District and the continuous with our or considered from described
	. I me rate agrana especial de establica que es establica de la reconstrucción de la reconstr
	alternative by a solvenius por training to training translation in mounts this
of 1 marzo	victoria a ser esta esta esta en esta en esta en el respersa en el
// valadz, +// Julindz, +// Julindz	12 = 0 () m () () () () () () () () (
	En com the grants are superest that the man is also
$I_{n}(\xi_{n})=I_{n}(\xi_{n})$ la faient che e	sæ e uguale a quella de entra
LEGGE OF CHILD OF THE	
The second secon	A
ETJ	T=Pesishvita
consolización un conductor alumbia	
YA-YB=E.H	
ranger in the second of the se	
E-pj-pz	A B
Va-Va i	Wou cookante
1 - 1 = P = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =	h zii
	- Sesimens Outhing R
V=Pi por readulation callibri	- PESISIONIA COMMONEY - LA TRANSPORTE NO K
tell and Addition to County of the	uni ordo. 10
the case of ordinario conserious,	Well cookeling
	Control Contro
1 = 0 0 × 1 × 2 10	The the past of the second of regard
-av-pjds==pitutde	å pa
- av = / p - ar quando	e plo é collisió de la recensión de la
A la Z con I	
V-Vo-Risquoido de filo e cal	The the second the Cardendal Cary of the second is referenced by
R=LPPZ	
18 Carlon Lance	
CSSFRVAIONE	
CONTRACTOR OF COMPANY	and the control of th


© Proprietà ris	ervata dell'autore - Digitalizzazione e
Resisteri W	serie -
IVA VOER	[VA = VA-VB
	2v2-v9-vc
	1 1 13-4C
VA-Ve=VA-Vgt	V3-VC=V1+V2=V
V1+V2=(R1+K	
(V=Regi	
RESISTOU W	con all the said as
Va-Va=Rain	
	1 = 1, + 12
VA-VBERRIL	(1514.415
N= 211 0131	n a per required in
1 v=Rin	.7
	Jim Car 17
licintine 5	V (1)

oftha didip ou capi

authorization dalla okina consult

FORZE EVETTROMOTRICE - LIETLO E IN CHM GENERALHAND se il vampo è causeautivo B-VV => JE 08=0 As a same force disopertive in done esserting force of Trasport le concle -> CAMPO ETETRONOTORE ET le conce deve passare da VB a VA per into anna force agail colema

是三字*中

4P & Y Juandal generalize ===== 流(马士。到二米五、五一五

Loge of Chargeneral Rate Vo-Vn - [E305- - dV

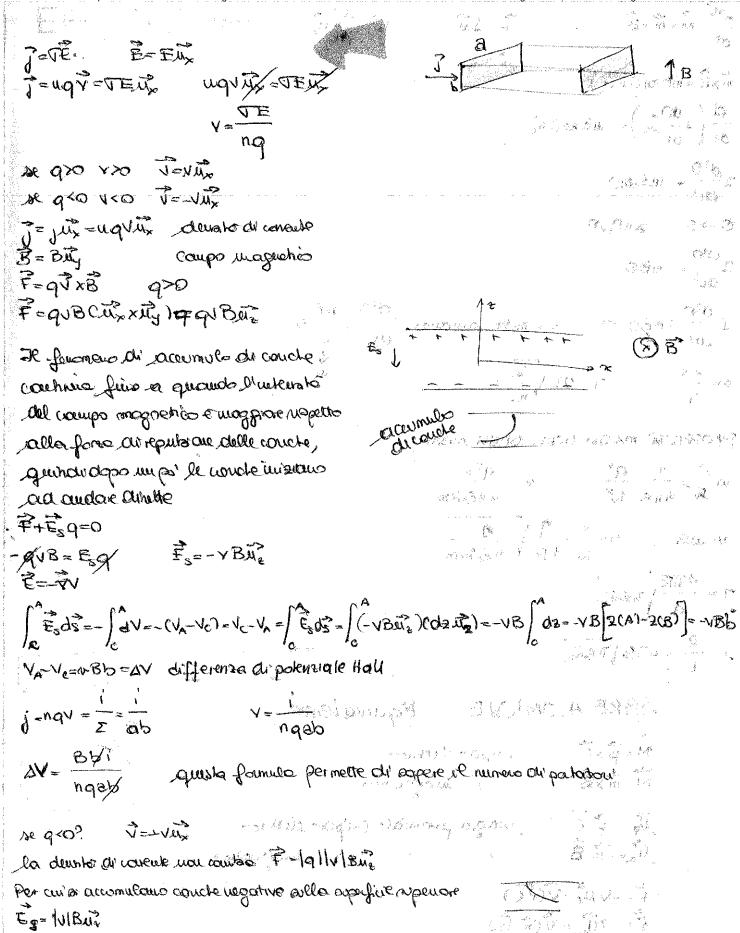
L'aurge univaluent contenut o nel condunatore é dissipate dolle resistence denante le

$$\frac{\Lambda}{C} q \frac{dq}{dt} = \frac{d}{dt} \left(\frac{\Lambda}{2C} q^2 \right)$$

$$\int_{0}^{\infty} \frac{d}{dt} \left(\frac{\Lambda}{2c} q^{2} \right) dt = \frac{q^{2}}{2c} = - \int_{0}^{\infty} R \left(\frac{dq}{dt} \right)^{2}$$

lucio O flethostatus bel condensator

EMPROIA form he dal glumatope


Energia unmagamuata dal generatare

$$\int_{0}^{\infty} \frac{d}{dt} \left(\frac{q^{2}}{2C} \right) dt = \frac{q^{2}(00)}{2C} - \frac{q^{2}(0)}{2C} = \frac{C^{2}E^{2}}{2C} = \frac{1}{2}CE^{2}$$

Everga formée dal generation cir R = energa formée dal generation lungo crimogornia

con
$$\frac{d}{dt}(qE) = \frac{d}{dt}(\frac{1}{2}\frac{q^2}{c}) + Ri^2 = \int_0^\infty \frac{d}{dt}(qE)dt = \int_0^\infty \frac{d}{dt}(\frac{1}{2}\frac{q^2}{c})dt + \int_0^\infty Ri^2dt$$
 provemente de

$$\frac{8dq}{dt} = \frac{1}{c} q \frac{dq}{dt} + \frac{Rdq}{dt} \frac{dq}{dt} = \frac{d(8q)}{dt} = \frac{d}{dt} \left(\frac{1}{2} \frac{q^2}{c}\right) + Ri^2$$

9>0

9<0

OKVA

O>VA

Tetroducations in vertice island outpools of the

X(+)=x(+)-x(6)

d(H=ycn -yco)

X(4)= Soucot)

Service of the servic

900 => 0000 900 => 0000

(3x(t)= \frac{\sqrt}{\sqrt} \sqrt) \frac{\sqrt}{\cut} \cut) \frac{\sqrt}{\cut} \cut) \frac{\sqrt}{\cut} \rac{\sqrt}{\cut} (you) = \frac{\sqrt1}{n} \cocort1 \approx \frac{\sqrt1}{n}

4 to TKKN 940 0

Esistenzam oquias la propos 3 a orp se

n 9<0 n n porallelon

 $\vec{\omega} = \frac{9\vec{8}}{3}$ altumout.

MUp=0 7=0x7

 $\vec{a} = \frac{d\vec{v}}{dt} = \frac{d}{dt} (\vec{w} \times \vec{n}) = \vec{w} \times \frac{d\vec{r}}{dt} = \vec{w} \times \vec{v}$

 $(\nabla \times \omega) m = \overline{B} \times \nabla p$

คุรี่หลื -m (พังมี)=0

QUINT BXID

 $\nabla \times \left(\frac{9}{m} \vec{8} + \vec{\omega} \right) = 0$

 $\vec{w} = -\frac{q}{8}$

18 V 20

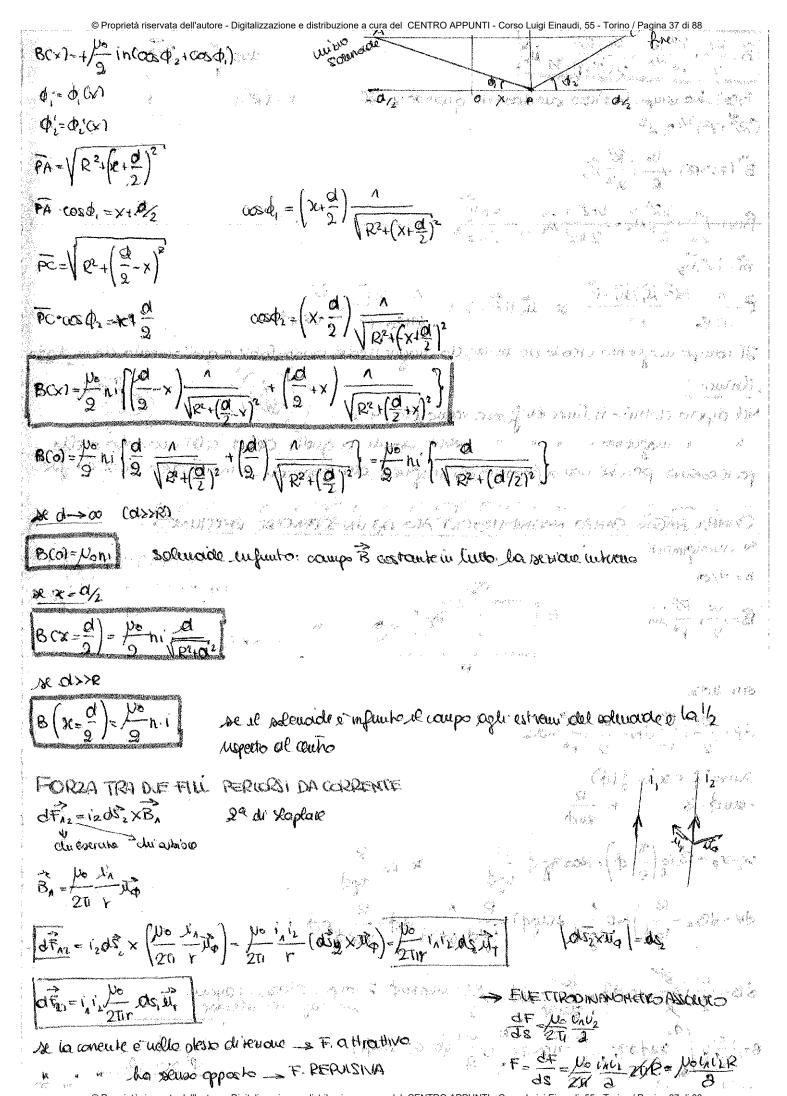
Jacu-kas- hiskulati

9 (4)-y(0) = \frac{\gamma_1}{6} (00) (00+)

12(1)-2(0)=1/0+

Va=Vo=cost

LOWING PARK


Control of the Contro

try he my

Commission of

The state of the s

B_W = dB_V = \(\frac{\mathcal{V}_0}{\mathcal{V}_T} \) \(\frac{\mathcal{V}_0}{\mathcal{V}_0} \) \(\frac{\mathc

aispargaro lugo a (OURVA DI MINA QUETIRHAZIONE)

SECOND VECILIE DI CURIE PROPRIETO?

remane della enagnetionarione residua

mente a Bo e gerinari ad # = Bopo:

alla devate libeare di tali carrenti

AN=nAU

ΔW=ΔN<m>= UΔT<W>

M= AM = u < M>

M-Harahardz

Om=Mzdz=di_Z

< m > = maneulo_ch depolo mogretico peratomo

2. 5 fa decreace H - la cuevo a actorio vallo o heto vergine una

la magnetiteation 4 del cilmono e prodotto dalle covent omperane ea e ignale ni modul

VETTORE MACHETIRARIONE ia seputo dell'applicazione du un compo magnetio lo kuno un apurasso

eliberad oto trains with the working working to the standard or the standard with the standard will be standard to the standard of the standar

al disopra di To divento poramognetto

Marine Str. 8 &

加强创业证

(3-3) 1-33

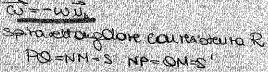
(Eage D)

MARMCEUS PAGASAST

$$8i = \frac{d\phi(\vec{k})}{\omega t}$$

ogu qualvat re fluss del aug maguela Ofès causteato co m ancuro nomo orego 'ellos del circum ma forse eletromotice mater dato dall'appara aquel del fluss mel trans

$$\left| \left| \int_{\mathbf{x}(\mathbf{x})} \vec{\nabla} \times \vec{\mathbf{x}} | \vec{\mathbf{x}} \cdot d\mathbf{x} = -\frac{\delta}{\delta \tau} \right| \right|_{\mathbf{x}(\mathbf{x})} \vec{\mathbf{x}} \cdot \vec{\mathbf{x}} d\mathbf{x}$$


$$\iiint_{\mathcal{L}(S)} \left(\overrightarrow{\nabla} \times \overrightarrow{E} + \frac{\partial \overrightarrow{S}}{\partial z} \right) \overrightarrow{w} d \leq = 0$$

$$\nabla^2 x = \frac{3}{100} = 0$$

JONAHOR TEMPORON ON B COMPORTA NOTE

WARNETY-LADVINE IN SIDE THE THE MOUNT OF THE SHE IN STATE OF THE STATE

GENERATORE IN CORRENTE AUTERNATA

$$\widehat{U_n} = \widehat{U_n} \approx 0.91 \widehat{U_n} \cos 0$$

$$\widehat{\Phi}_{\underline{s}}(\widehat{B}) = \iint_{\underline{s}} \widehat{B}\widehat{U_n} \cdot \underline{\partial}_{\underline{s}} = \widehat{B}\widehat{U_n} \cdot \underline{\partial}_{\underline{s}} = \widehat{B}\cos \underline{\partial}_{\underline{s}}$$

A 0=0(+)=0t

$$\int_{-\infty}^{\infty} \frac{dS_{1}}{dS_{2}} = \frac{\omega BS_{2}}{R_{1}} \frac{\omega BS_{2}}{R_{1}}$$

$$Pdisp_{polic} = \frac{1}{T} \int_{0}^{t} Pdiss_{t} dt$$

$$T = \frac{2\pi}{\omega} \qquad dt = \frac{d\eta}{\omega} \qquad \omega t = \eta$$

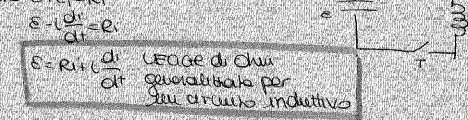
$$= \frac{CuB^{2}}{2R} \qquad \text{volcas}$$

$$= \frac{CuB^{2}}{2R} \qquad \text{otherwise}$$

$$\varepsilon_1 = \frac{-d\phi}{dt}$$
 $\phi = \iint dt dt$

$$J = \frac{E_1}{R} = \frac{A}{R} \frac{d\Phi}{dt}$$
 $\frac{d\theta}{dt} = \frac{d\theta}{dt} - \frac{A}{R} \frac{d\phi}{dt} \implies Q = \frac{\Phi_1 - \Phi_2}{R}$

Compa B pre la prime de toplage
$$\frac{1}{8} \frac{10}{4\pi i} \frac{108 \times 10^{2}}{10} = \frac{1}{10} \frac{108 \times$$

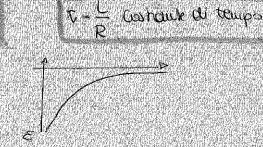

$$\phi = U_1 \qquad \text{for } U = \frac{||u_0||}{4\pi} ||u_0|| \left(\frac{1}{2} \frac{\partial u_0^2 \times \overline{u_0}}{\partial u_0^2} \right) ||u_0||_{L^2}$$

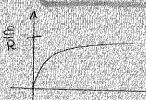
atobili me four E stockinger enally, clumb who claustones arely in column so Juje (2) p esso ellurio la stusalo à la

$$\mathbf{z} = \frac{\mathbf{d} \mathbf{c}(\mathbf{B})}{\mathbf{d} \mathbf{c}} \mathbf{c}$$

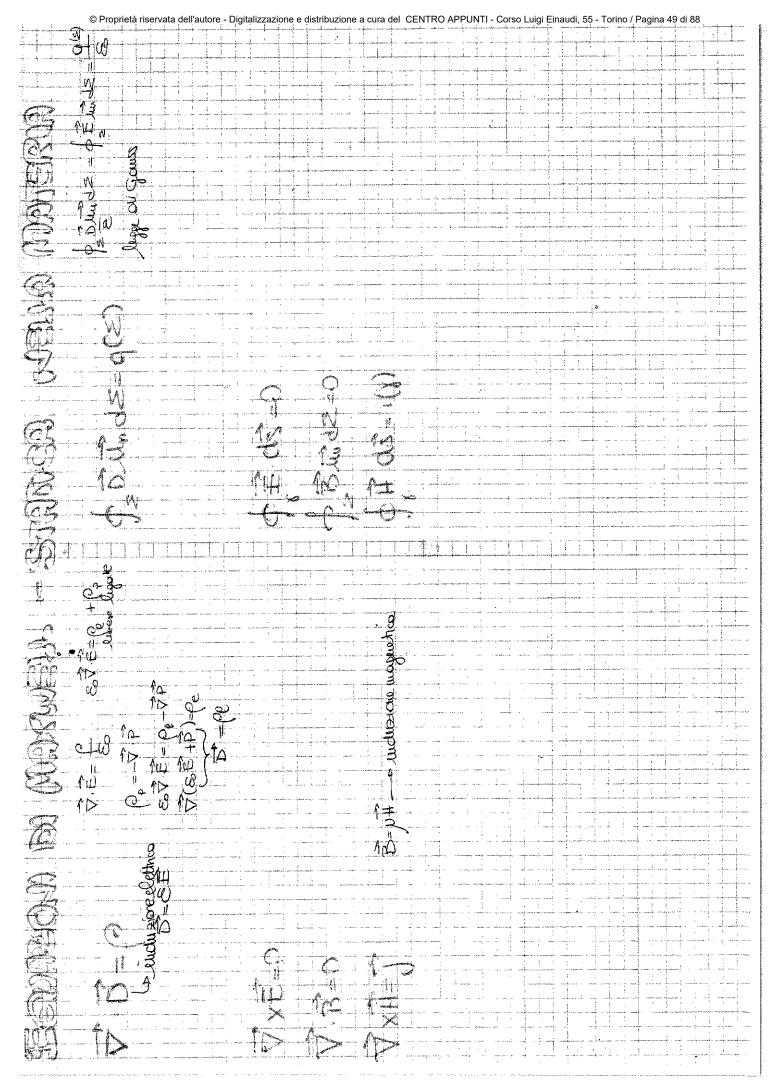
strongs grand compa laconark was made in ancidan

In left of the objects $e_1e_1=R_1$




Chippins dil unium (10)=0 per cutimine

をよっている。


$$P_{\text{NOM}} + L \frac{O_{\text{NOM}}}{O_{\text{H}}} = O - \frac{O_{\text{LOM}}}{O_{\text{H}}} = -\frac{R}{L} \lambda_{\text{OM}}$$

$$\frac{2}{\sqrt{3}} + \frac{3}{\sqrt{3}} + \frac{3$$

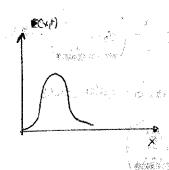
$$\frac{dU_{A}}{dx} + U_{A}U_{A} \frac{dx_{1}}{dx} = \frac{dx_{1}}{dx_{1}} \left(\frac{1}{2} L_{A}U_{A}^{2} + \frac{1}{2} L_{A}U_{A}^{2} \right) = \frac{dx_{1}}{dx_{1}} \left(\frac{1}{2} L_{A}U_{A}^{2} + \frac{1}{2} L_{A}U_{A}^{2} \right) = \frac{dx_{1}}{dx_{1}} \left(\frac{1}{2} L_{A}U_{A}^{2} + \frac{1}{2} L_{A}U_{A}^{2} \right) = \frac{dx_{1}}{dx_{1}} \left(\frac{1}{2} L_{A}U_{A}^{2} + \frac{1}{2} L_{A}U_{A}^{2} \right) = \frac{dx_{1}}{dx_{1}} \left(\frac{1}{2} L_{A}U_{A}^{2} + \frac{1}{2} L_{A}U_{A}^{2} \right) = \frac{dx_{1}}{dx_{1}} \left(\frac{1}{2} L_{A}U_{A}^{2} + \frac{1}{2} L_{A}U_{A}^{2} \right) = \frac{dx_{1}}{dx_{1}} \left(\frac{1}{2} L_{A}U_{A}^{2} + \frac{1}{2} L_{A}U_{A}^{2} \right) = \frac{dx_{1}}{dx_{1}} \left(\frac{1}{2} L_{A}U_{A}^{2} + \frac{1}{2} L_{A}U_{A}^{2} \right) = \frac{dx_{1}}{dx_{1}} \left(\frac{1}{2} L_{A}U_{A}^{2} + \frac{1}{2} L_{A}U_{A}^{2} \right) = \frac{dx_{1}}{dx_{1}} \left(\frac{1}{2} L_{A}U_{A}^{2} + \frac{1}{2} L_{A}U_{A}^{2} \right) = \frac{dx_{1}}{dx_{1}} \left(\frac{1}{2} L_{A}U_{A}^{2} + \frac{1}{2} L_{A}U_{A}^{2} \right) = \frac{dx_{1}}{dx_{1}} \left(\frac{1}{2} L_{A}U_{A}^{2} + \frac{1}{2} L_{A}U_{A}^{2} \right) = \frac{dx_{1}}{dx_{1}} \left(\frac{1}{2} L_{A}U_{A}^{2} + \frac{1}{2} L_{A}U_{A}^{2} \right) = \frac{dx_{1}}{dx_{1}} \left(\frac{1}{2} L_{A}U_{A}^{2} + \frac{1}{2} L_{A}U_{A}^{2} \right) = \frac{dx_{1}}{dx_{1}} \left(\frac{1}{2} L_{A}U_{A}^{2} + \frac{1}{2} L_{A}U_{A}^{2} \right) = \frac{dx_{1}}{dx_{1}} \left(\frac{1}{2} L_{A}U_{A}^{2} + \frac{1}{2} L_{A}U_{A}^{2} \right) = \frac{dx_{1}}{dx_{1}} \left(\frac{1}{2} L_{A}U_{A}^{2} + \frac{1}{2} L_{A}U_{A}^{2} \right) = \frac{dx_{1}}{dx_{1}} \left(\frac{1}{2} L_{A}U_{A}^{2} + \frac{1}{2} L_{A}U_{A}^{2} \right) = \frac{dx_{1}}{dx_{1}} \left(\frac{1}{2} L_{A}U_{A}^{2} + \frac{1}{2} L_{A}U_{A}^{2} \right) = \frac{dx_{1}}{dx_{1}} \left(\frac{1}{2} L_{A}U_{A}^{2} + \frac{1}{2} L_{A}U_{A}^{2} \right) = \frac{dx_{1}}{dx_{1}} \left(\frac{1}{2} L_{A}U_{A}^{2} + \frac{1}{2} L_{A}U_{A}^{2} \right) = \frac{dx_{1}}{dx_{1}} \left(\frac{1}{2} L_{A}U_{A}^{2} + \frac{1}{2} L_{A}U_{A}^{2} \right) = \frac{dx_{1}}{dx_{1}} \left(\frac{1}{2} L_{A}U_{A}^{2} + \frac{1}{2} L_{A}U_{A}^{2} \right) = \frac{dx_{1}}{dx_{1}} \left(\frac{1}{2} L_{A}U_{A}^{2} + \frac{1}{2} L_{A}U_{A}^{2} \right) = \frac{dx_{1}}{dx_{1}} \left(\frac{1}{2} L_{A}U_{A}^{2} + \frac{1}{2} L_{A}U_{A}^{2} \right) = \frac{dx_{1}}{dx_{1}} \left(\frac{1}{2} L_{A}U_{A}^{2} + \frac{1}{2} L_{A}U_{A}^{2} \right) = \frac{dx_{1}}{dx_{1}} \left(\frac{1}{2} L_{A}U_{A}^{2} + \frac{1}{2} L_{A}U_{A}^{2} \right) = \frac{$$

GO THE PARTON IN THE WANTED WA		五年 430 68	63-65-6 Septiment 18 (3E 200) 10-26-36 10-26-36 10-36-36
	0.30 % Common of the common of		
Callia (Face DIFFERM) R do CB) P do CB) P do CB) O (B) = Bu OE	STAN WAS TO STAN TO ST	マンカン (エナイ) (エナイ) (エナイ) (エナイ) (マンカン)	
MA		5	

nel piono di equazione z-se

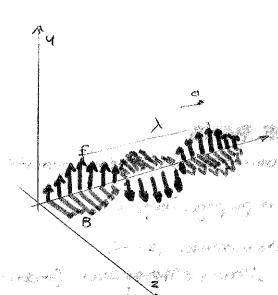
$$\frac{9x_3}{95\hat{\Phi}} = \frac{k_3}{\sqrt{35\hat{\Phi}}} \frac{9t_3}{55\hat{\Phi}}$$

$$\frac{9x}{9h} = \frac{9x}{95} = \frac{95}{9h} + \frac{95}{9h} = \frac{95}{9h} + \frac{90}{9h}$$


$$+\frac{959}{950} + \frac{94}{9} + \frac{94}{950} = \frac{95}{95} + \frac{94}{950} + \frac{94$$

$$\frac{\partial f}{\partial \phi} = \frac{\partial f}{\partial \phi} + \frac{\partial f}{\partial \phi} + \frac{\partial f}{\partial \phi} + \frac{\partial f}{\partial \phi} + \frac{\partial f}{\partial \phi} = \sqrt{\frac{\partial f}{\partial \phi}} - \sqrt{\frac{\partial f}{\partial \phi}}$$

$$-\sqrt{\frac{390}{990}} + \frac{34^{2}}{34^{2}} = \sqrt{\frac{39}{99}} + \frac{34^{2}}{34^{2}} = \sqrt{\frac{39}{99}} + \frac{34}{34^{2}} + \frac{34}{34^{2}} - 2\frac{34}{94^{3}} - 2\frac{$$


$$\frac{\partial^2 \psi}{\partial x^2} - \frac{1}{\delta^2} \frac{\partial^2 \psi}{\partial t^2} \Rightarrow \frac{\partial^2 \psi}{\partial \eta^2} + \frac{\partial^2 \psi}{\partial \eta^2} + \frac{\partial^2 \psi}{\partial \eta^2} - \frac{\partial^2 \psi}{\partial \eta^2} + \frac{\partial^2 \psi}{\partial \eta^2} - \frac{\partial^2 \psi}{\partial \eta^2} + \frac{\partial^2 \psi}{\partial \eta^2} +$$

$$\frac{\partial^2 \varphi}{\partial \eta^2} = 0$$

ズ × を = ボ × (Eq vq + Ez v 3 = Eq (ボ × ル) ト Ez (ボ × ル) ト Ey v を を V で と Ey v を を V で と C で × ル) ト Ey v を を V で と Ey v を と Ey v を で と Ey v を と 元"至 $\vec{B} = \frac{1}{C} \vec{J}_{x} \times \vec{E}$ formano una terna!

l'auda proma é polonitate cettilhe amente

· E e B ar propogour cou la otesse relocato c= VEIL

· 7. weappilight camb Bone Jahan apple sported on brobanique B= 0

E e B seco-entroperalista laco e alla duerian du proposariare: le ande eleutromagnente sono audit ras renalis e per ese é significativo Il conceto du polonimonere.

managogan to consult security of standar orthogonal second second

ecomb. E 6 B. gombonono m famo simple.
That biological annuals are arbeings got bare of single edinorion on Howards is a comboned. E 6 B. gombonono m famo simple.

$$\left(\frac{Q_1}{Q_1}\right)^2 + \left(\frac{Q_2}{Q_1}\right)^2 = 1$$

polarivation alutio

Pu=Az=A => polouizionian andone

como magnetio B+ compo elettrão E MA Energia MA divento u distributa nello

Consider the Service of the Constitution of

ripendiamo le 09. del candinactore
$$U_{\epsilon} = \frac{1}{2}qV = \frac{1}{2}CV^{2} = \frac{1}{2}E_{0}Z = \frac{1}{2}E_{1}Z = \frac{1}{2}E_{2}Z = \frac{1}{2}E_{1}Z = \frac{1}{2}E_{2}Z = \frac{1}{2}E_{1}Z = \frac{1}{2}E_{2}Z = \frac{1}{2}E_{1}Z = \frac{1}{2}E_{2}Z = \frac{1}{$$

reprendence le eq del selencido
$$M_{B^{\frac{7}{2}}} Li^2 = \frac{1}{2} \frac{V_o^2}{V_o} n^2 \ge di^2 = \frac{1}{2} \frac{B^2}{V_o} L$$

$$\mu_{B} = \frac{\mu_{B}}{t} = \frac{1}{2\mu_{0}} B^{2}$$

densità istantanea di energa elettromagnetico $u = \frac{1}{2} EE^2 + \frac{\Lambda}{2} B^2$ remordando de $u_{E} = \frac{\Lambda}{2} EE^2 = \frac{\Lambda}{2} ECE_{ij} + \frac{1}{2} E_{i}^2$

l'aurica esettromognetico risulto per meto dounto al compo elettros e meto dal campo

Consideriano ma ospafare & I alla direriano della propogotiano.

wel tempo de possos elangão contento mel volume de

$$M = \int_{\Sigma} u dt = \int_{\Sigma} E^2 e \Sigma dt$$

$$\frac{\partial u}{\partial t} = \frac{\partial}{\partial t} (u_8 + u_t) = \frac{\partial}{\partial t} \left(\frac{1}{2} & E^2 + \frac{1}{2v_0} B^2 \right) = \frac{\partial}{\partial t} \left(\frac{1}{2} & E(E) + E_1^2 \right) + \frac{1}{2v_0} \left(B_1 + B_2^2 \right) = \frac{\partial}{\partial t} \left(\frac{2}{2} & E(E) + E_1^2 \right) + \frac{1}{2v_0} \left(B_1 + B_2^2 \right) = \frac{\partial}{\partial t} \left(\frac{2}{2} & E(E) + E_1^2 \right) + \frac{1}{2v_0} \left(\frac{2}{2} & E(E) + E_1^2 \right) + \frac{1}{2v_0} \left(\frac{2}{2} & E(E) + E_1^2 \right) = \frac{\partial}{\partial t} \left(\frac{2}{2} & E(E) + E_1^2 \right) + \frac{\partial}{\partial t} \left(\frac{2}{2} & E(E) + E_1^2 \right) + \frac{\partial}{\partial t} \left(\frac{2}{2} & E(E) + E_1^2 \right) = \frac{\partial}{\partial t} \left(\frac{2}{2} & E(E) + E_1^2 \right) + \frac{\partial}{\partial t} \left(\frac{2}{2} & E(E) + E_1^2 \right) + \frac{\partial}{\partial t} \left(\frac{2}{2} & E(E) + E_1^2 \right) = \frac{\partial}{\partial t} \left(\frac{2}{2} & E(E) + E_1^2 \right) + \frac{\partial}{\partial t} \left(\frac{2}{2} & E(E) + E_1^2 \right) + \frac{\partial}{\partial t} \left(\frac{2}{2} & E(E) + E_1^2 \right) = \frac{\partial}{\partial t} \left(\frac{2}{2} & E(E) + E_1^2 \right) + \frac{\partial}{\partial t} \left(\frac{2}{2} & E(E) + E_1^2 \right) + \frac{\partial}{\partial t} \left(\frac{2}{2} & E(E) + E_1^2 \right) = \frac{\partial}{\partial t} \left(\frac{2}{2} & E(E) + E_1^2 \right) + \frac{\partial}{\partial t} \left(\frac{2}{2} & E(E) + E_1^2 \right) + \frac{\partial}{\partial t} \left(\frac{2}{2} & E(E) + E_1^2 \right) = \frac{\partial}{\partial t} \left(\frac{2}{2} & E(E) + E_1^2 \right) + \frac{\partial}{\partial t} \left(\frac{2}{2} & E(E) + E_1^2 \right) + \frac{\partial}{\partial t} \left(\frac{2}{2} & E(E) + E_1^2 \right) + \frac{\partial}{\partial t} \left(\frac{2}{2} & E(E) + E_1^2 \right) + \frac{\partial}{\partial t} \left(\frac{2}{2} & E(E) + E_1^2 \right) + \frac{\partial}{\partial t} \left(\frac{2}{2} & E(E) + E_1^2 \right) + \frac{\partial}{\partial t} \left(\frac{2}{2} & E(E) + E_1^2 \right) + \frac{\partial}{\partial t} \left(\frac{2}{2} & E(E) + E_1^2 \right) + \frac{\partial}{\partial t} \left(\frac{2}{2} & E(E) + E_1^2 \right) + \frac{\partial}{\partial t} \left(\frac{2}{2} & E(E) + E_1^2 \right) + \frac{\partial}{\partial t} \left(\frac{2}{2} & E(E) + E_1^2 \right) + \frac{\partial}{\partial t} \left(\frac{2}{2} & E(E) + E_1^2 \right) + \frac{\partial}{\partial t} \left(\frac{2}{2} & E(E) + E_1^2 \right) + \frac{\partial}{\partial t} \left(\frac{2}{2} & E(E) + E_1^2 \right) + \frac{\partial}{\partial t} \left(\frac{2}{2} & E(E) + E_1^2 \right) + \frac{\partial}{\partial t} \left(\frac{2}{2} & E(E) + E_1^2 \right) + \frac{\partial}{\partial t} \left(\frac{2}{2} & E(E) + E_1^2 \right) + \frac{\partial}{\partial t} \left(\frac{2}{2} & E(E) + E_1^2 \right) + \frac{\partial}{\partial t} \left(\frac{2}{2} & E(E) + E_1^2 \right) + \frac{\partial}{\partial t} \left(\frac{2}{2} & E(E) + E_1^2 \right) + \frac{\partial}{\partial t} \left(\frac{2}{2} & E(E) + E_1^2 \right) + \frac{\partial}{\partial t} \left(\frac{2}{2} & E(E) + E_1^2 \right) + \frac{\partial}{\partial t} \left(\frac{2}{2} & E(E) + E_1^2 \right) + \frac{\partial}{\partial t} \left(\frac{2}{2} & E(E) + E_1^2 \right) + \frac{\partial}{\partial t} \left(\frac{2}{2} & E(E) + E_1^2 \right) + \frac{\partial}{\partial t} \left(\frac{2}{2} & E(E) + E_1^2 \right) + \frac{\partial}{\partial$$

$$+\frac{1}{2 l h} \left(2 B_1 \frac{\partial B_1}{\partial t} + 2 B_2 \frac{\partial B_2}{\partial t}\right) = 8 \left(-\frac{1}{8 h} \frac{\partial B_2}{\partial x} \pm l + \pm \frac{1}{2} \frac{\partial B_1}{\partial x} + \frac{1}{2} \frac{\partial B_2}{\partial x} + \frac{\partial E_2}{\partial x} \frac{\partial E_2}{\partial x} + \frac{\partial E_2}$$

$$=\frac{1}{\sqrt{2}}\left\{-\left(\frac{\partial \mathcal{S}}{\partial \mathcal{S}}+\frac{1}{2}\right)+\left(\frac{\partial \mathcal{S}}{\partial \mathcal{S}}+\frac{1}{2}\right)+\left(\frac{\partial \mathcal{S}}{\partial \mathcal{S}}+\frac{1}{2}\right)+\left(\frac{\partial \mathcal{S}}{\partial \mathcal{S}}+\frac{1}{2}\right)+\frac{\partial \mathcal{S}}{\partial \mathcal{S}}\right\}+\frac{\partial \mathcal{S}}{\partial \mathcal{S}}\left(\frac{\partial \mathcal{S}}{\partial \mathcal{S}}+\frac{1}{2}\right)+\frac{\partial \mathcal{S}}{$$

$$\frac{dM}{dt} = A \int_{V_1}^{V_2} \frac{A}{h \partial x} \frac{\partial}{\partial x} (E_1 B_2 - E_1 B_1) dx = A \left(\frac{E_1 B_2 - E_2 B_1}{h \partial x} \right) - \left(\frac{E_1 B_2 - E_2 B_1}{h \partial x} \right) \frac{1}{h}$$

$$\nabla^2 \psi - \frac{\Lambda}{V^2} \frac{8^2 \psi}{\partial \xi^2} = 0$$

$$\frac{9^{3}}{9_{5}} + \frac{5^{3}}{9_{5}} + \frac{5^{5}}{9_{5}} + \frac{5^{5}}{9_{5}} - \frac{N_{5}}{\sqrt{3}} \frac{5^{5}}{9_{5}} = 0$$

$$\frac{9x}{9h} = \frac{9x}{9h} \frac{9x}{9h}$$

$$\frac{\partial \mathbf{r}}{\partial \mathbf{x}} = \frac{1}{2} \frac{2 \mathbf{x}}{\mathbf{x}^2 + \mathbf{y}^2 + \mathbf{z}^2} = \frac{\mathbf{x}}{\mathbf{r}}$$

$$\frac{9x}{9\phi} = \frac{k}{\lambda} \frac{9x}{9\phi}$$

$$\frac{3f}{9h} = \frac{\lambda}{5} \frac{\lambda}{3h} = \frac{3f}{46}$$

$$\frac{3^{2}}{3^{2}} = \frac{3^{2}}{3^{2}} \left(\frac{3^{2}}{3^{2}} \right) = \frac{3^{2}}{3^{2}} \left(\frac{1}{x} + \frac{3^{2}}{3^{2}} \right) = \frac{1}{x} \frac{3^{2}}{3^{2}} + \frac{3^{2}}{3^{2}} \left(\frac{1}{x} + \frac{3^{2}}{3^{2}} \right) = \frac{1}{x} \frac{3^{2}}{3^{2}} + \frac{3^{2}}{3^{2}} \left(\frac{3^{2}}{3^{2}} \right) = \frac{3^{2}}{3^{2}} \left(\frac{3^{2}}{3^{2}}$$

$$=\frac{1}{\sqrt{30}}\frac{3^{2}}{\sqrt{30}}+\frac{1}{\sqrt{30}}\left(\frac{1}{\sqrt{30}}\frac{3^{2}}{\sqrt{30}}\right)=\frac{1}{\sqrt{30}}\frac{3^{2}}{\sqrt{30}}+\frac{1}{\sqrt{30}}\frac{3^{2}}{\sqrt{30}}\left(\frac{1}{\sqrt{30}}\frac{3^{2}}{\sqrt{30}}\right)$$

$$\frac{\partial^2 \phi}{\partial y^2} = \frac{1}{r} \frac{\partial \phi}{\partial r} + \frac{y^2}{r} \frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial \phi}{\partial r} \right)$$

$$\frac{\partial^2 \psi}{\partial z^2} = \frac{r}{\Lambda} \frac{\partial \psi}{\partial r} + \frac{r}{Z^2} \frac{\partial}{\partial r} \left(\frac{r}{\Lambda} \frac{\partial \psi}{\partial r} \right)$$

$$\nabla^2 \phi = \frac{3 \times 2}{3^2 \phi} + \frac{3^2 \phi}{3^2 \phi} + \frac{3^2 \phi}{3^2 \phi} = \frac{r}{3} \frac{3r}{3 \phi} + r \frac{3r}{3} \left(\frac{r}{3} \frac{3r}{3 \phi} \right) = \frac{r}{3} \frac{3r}{3 \phi} + r \left(-\frac{r^2}{3} \frac{3r}{3 \phi} + \frac{r}{3} \frac{3r^2}{3 r^2} \right) = \frac{r}{3} \frac{3r}{3 \phi} + \frac{r}{3} \frac{3r}{3 \phi}$$

$$=\frac{1}{3}\frac{94}{94} - \frac{1}{1}\frac{94}{94} + \frac{94}{34} = \frac{1}{2}\frac{94}{34} + \frac{94}{34} = \frac{1}{1}\frac{94}{35}(44)$$

$$\frac{1}{\sqrt{3^2}}(r\phi) - \frac{\sqrt{3}}{\sqrt{3}}\frac{3^2\psi}{3t^2} = 0$$

$$\frac{\partial^2}{\partial x^2} (c r \phi) - \frac{\sqrt{2}}{4} + \frac{\partial^2 \phi}{\partial t^2} = 0$$

$$\frac{9k_5}{9_5C} - \frac{N_5}{\sqrt{9_5C}} = 0$$

$$\psi(c,t) = \frac{1}{r} f(r,vt) = \frac{r}{r} \cos(kr - wt)$$

$$\psi(r,t) = \frac{1}{r} f(r,vt) = \frac{\rho}{r} \cos(kr-wt) \qquad \text{Ia}(\psi)^2 \implies \text{Ia}(\frac{\rho^2}{2r^2})$$

$$\mathbf{I} = \frac{\mu}{r^2} \implies \left(\frac{dv}{dt}\right) = \int \mathbf{Ia}(\mathbf{Ia}) d\mathbf{Ia}(\mathbf{Ia}) = \frac{\mu}{r^2} d\mathbf{Ia}(\mathbf{Ia}) =$$

$$\Rightarrow IM < \frac{A \theta^2}{2 r^2} >$$

1 = 12 Ti and aide in fore mo INTERFERENZA COSTRUTINA

TO = 1,+1, +2/1, 1, = ((I,+1,1)2

Kerzin szaltoszak kelentek eszek kelentek előtős jako akon kelentek előtős jakok előtős jakok kelentek előtős jakok előtős jakok kelentek előtős jakok kel

Bangageran William Dimensional Professional Commencial Commencial States of the Commencial Commenci

B=12441) I mo oude in oppositione chifose mis interferenza Distrottina IZ= In +I, -Q(IL - (VI - IZ))2

$$\mathbf{e} = \left(n + \frac{1}{2} \right) \lambda$$

vel caso in our A,=A,=A

a=n> IR=4I0

 $\hat{\mathbf{a}} = \left(n + \frac{\Lambda}{2}\right)\lambda$ $\mathbf{I}_{R} = 0$

Te-I, +I, +21,000 A=210+21000 A=210(1+000A)=11000 ==41000 (100)= = 41000° [11=]

Le due sorgenti ana sono inocerenti. Verifichiano l'interferenzo in apris to caso?

 $F_{\mu}(x,t) = \theta_{\mu}(\cos(\phi + \phi'(t)))$

 $|E_2(x,t) = A_2\cos(\mu + \Phi^2(t) + \Delta)$

B= \$ C+1 + A - dic+) =

x(+)= \$\phi_2(+) - \$\phi_1(+)

B=2(4)+A

AR = \A,2+A,2+2A,A,cosB

IR = 10 ESA > = 10 E < P? > + 10 CE < P? > + A, A, COSB> = 10 CE < A, 2+ A? > - INTZ

Nel 1980 du porgonti incorenti por cle interforenca, l'untenste totale e la rooming delle intensto garditiation in the

og comb cou ogro by borogen,

元中30, A=1tx2)事

Francia Companies and a sure field to make the companies and the

T(A+4)200 A+ Tul 200 A-(+x) I

E2 (3,4) = A2 cos (1) (+2A, A2 cos 4) cos (10+A) (1) 1+A2 cos (10+A) (10+A) = A 2005 4+ A2 002 (C(D+D) + 2A, A2 (OSC COSC (D+D))

many of the commentation of the comment of the second

inter an image of a laxify

Ballo in the state of the control of

KERLING MEDICAL CHAPTER

Carry Agency Agency (A)

$$\Delta = k\partial = \frac{2\pi}{\lambda} \partial$$

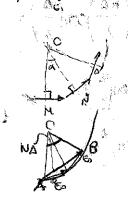
$$R = \frac{\sec\left(n \operatorname{Ti} \frac{\partial}{\lambda}\right)}{\sec\left(\operatorname{Ti} \frac{\partial}{\lambda}\right)} = \Re\left(\frac{\partial}{\lambda}\right)$$

$$\sqrt{\frac{8}{\lambda}}$$

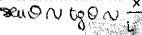
o the flam will how the word for any

Man Viva Para Caral

2º metrodo


tutti pli augali costinenti la soliganale sono

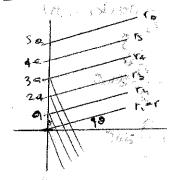
purafranis aux ui ahamar cezago


$$R = \frac{60}{28u^{\frac{4}{2}}}$$

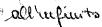
$$\overline{AB} = 2RSRU\left(\frac{N\Delta}{2}\right)$$

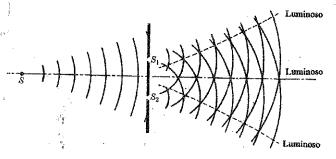
$$\overline{AB} = E_0 \frac{8u(\frac{\overline{AA}}{2})}{8u(\frac{\overline{A}}{2})}$$

Par Grand Harris.

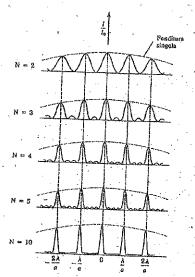

$$\frac{3 \times m}{x} = m = 2 \times 2 = 3$$

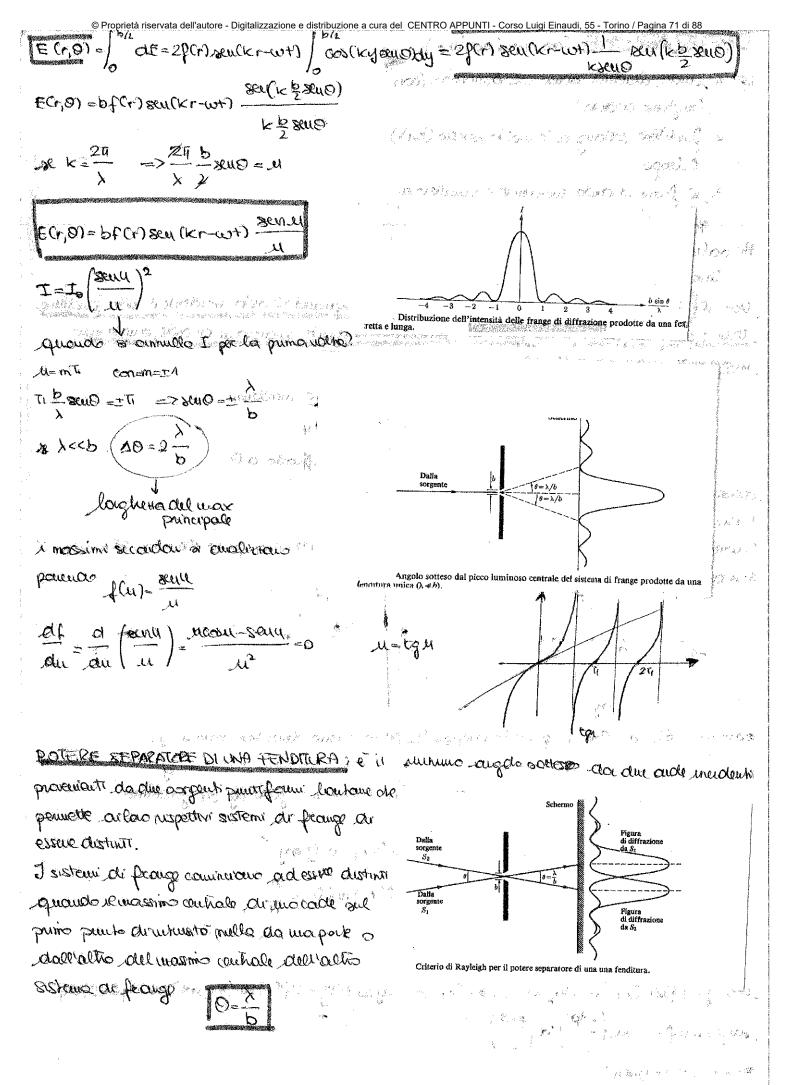
$$\frac{3 \times m}{x} = \frac{3 \times m}{x}$$

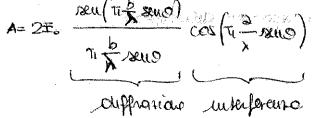

$$\frac{8}{2} 840 \text{m} = \frac{2m+1}{2} \text{Tr}$$

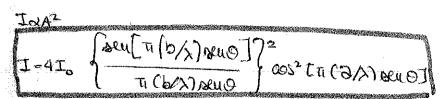

$$2n = \left(m + \frac{1}{2}\right) \frac{\lambda L}{3}$$

massimo an adrio o mossimi secondari K-1/15/1/5


especiena di Journe con N sorgenti, uckelereme





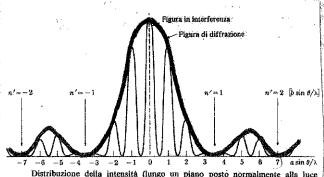

$$P_{n} = \frac{A}{r_{n}} \cos(kr_{n} - \omega t) = \frac{A}{r_{n}} \cos(kr - \omega t - (nA)) \cos(\omega t)$$

$$1 - 1^{\circ} \frac{8\pi \left(1 - \frac{1}{2} 8\pi \right)}{8\pi \left(1 - \frac{1}{2} 8\pi \right)}$$

Medicanar cre gerans re experie comberzeno qui onttranar ber que fenguese é Medicanar che dissins le françe du meriferenta du due sorgents cossents, modulaire dall'espressiane per le françe diralfration di ma solo fendituro

sero=m= interference max

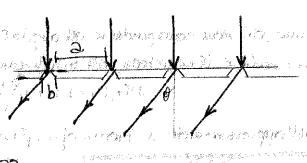
seu0=n & difficultiements


date de ab i puer a liferate nello delle franze of different pais mazgament distaurati de mon delle françe de interference

a fractional more properties of the control of the

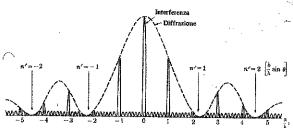
were a fire and supplied the state of the

and it income to a mounty or (a


Distribuzione della intensità (lungo un piano postó norma ente) risultante da due fenditure strette lunghe e parallele. (a/b=3,5)

KELICOTO DI DILLESAFICATE

[CONSINO ITUI NSS


enfharme [seu[Ti(b/)/seu0]]2

T=I [Sent (16/1) pen (2/2) T sent (16/1) T T = T Sent (1/6) T T sent (1/6) T T sent (1/6) T

se n'é moto grande el solema de frança econose De ma serie desde fearge chiane causa deut al max punapali delle franze du metriferenza

che acus date do. a seu 0 = m), male loro untruate saw modulate dalle frage shroughavious

3) Magnetismo

Magnetostatica nel vuoto

11

Campo generato da una corrente : $\overrightarrow{B} = \frac{\mu_o}{4\pi}i$

interno solenoide indefinito : $B = \mu_o i n$ [n

Forza agente su una corrente : $\overrightarrow{F}=\int i \overrightarrow{dl} \times \overrightarrow{B}$ Forza su carica in moto(Forza Lorentz) : $\overrightarrow{F}=q$ $\overrightarrow{v}\times\overrightarrow{B}$

 $\int_{\Sigma} \operatorname{Chiusa}_{B} \frac{D \cdot town}{dt} = \frac{1}{\mu_{o}} \sum_{i} t_{i}$ $\overrightarrow{\nabla} \cdot \overrightarrow{B} = 0$ $\overrightarrow{\nabla} \times \overrightarrow{B} = \mu_o \overrightarrow{J}$

Dipolo magnetico

Per una spira piana: $\overrightarrow{m} = i S$

Energia dipolo in campo esterno : $U=-\overline{m}\cdot \overline{B}$ Momento agente su dipolo in campo esterno : $\overline{M}=\overline{m}\times \overline{B}$ carica q, massa m, in moto circolare uniforme: $\overrightarrow{m} = \frac{q}{2m} \overrightarrow{L}$ Momento magnetico e momento angolare di una

Proprietá magnetiche della materia

 $: \overrightarrow{M} = \lim_{\Delta \tau \to 0} \frac{\Delta \overrightarrow{m}}{\Delta \tau}$ (momento dipolo per unitá di volume) Vettore magnetizzazione

 $\overrightarrow{M} = \frac{1}{\mu_0} \frac{\chi}{1 + \chi} \overrightarrow{B} = \chi \overrightarrow{H}$ mezzo isotropo e lineare:

Equazioni dell'elettrostatica in presenza di dielettrici

 $\oint \vec{E} \cdot \vec{dl} = 0$ $\oint_{\Sigma} \vec{D} \cdot \hat{n} dS = Q_{tb}$

 $\nabla \times \vec{E} = 0$ $\nabla \cdot \vec{D} = \rho$

WQQ

Condizioni di continuitá all'interfaccia fra due mezzi

 $E_{t1} = E_{t2} \quad ; \quad D_{a1} = D_{a2}$

Campo generato da una carica in moto : $\overrightarrow{B} = \frac{\mu_o}{4\pi} q \frac{\overrightarrow{v} \times \overrightarrow{r}}{r^3}$

 $: \overrightarrow{B} = \frac{\mu_o}{2\pi} \frac{i}{r} \hat{\tau}$ -filo rettilineo indefinito

-spira circolare (sull'asse !) : $\overrightarrow{B} = \frac{\mu_0}{2} i \frac{\pi}{\sqrt{(R^2)}}$

Equazioni della magnetostatica nel vuoto:

医生物性现象的现象

 $(V_i$ potenziale conduttore i con carica $Q_i)$

Densitá energia del campo : $u=\frac{1}{2}\overrightarrow{E}\cdot\overrightarrow{D}=\frac{1}{2}\epsilon_{c}\epsilon_{r}E^{2}$ Densitá energia interazione di un dielettrico in un campo esterno:

 $u = \frac{1}{2} \overrightarrow{E} \cdot \overrightarrow{D} = \frac{1}{2} \epsilon_o \epsilon_r E^2$

Energia distribuzione discreta : $U = \frac{1}{2} \frac{1}{4\pi\epsilon} \sum_{i,j \neq i} \frac{q_i q_j}{r_{ij}} = \frac{1}{2} \sum_i q_i V_i$ (V_i potenziale di tutte le cariche $\neq i$)

Energia elettrostatica

Energia distribuzione continua : $U=rac{1}{2}\int
ho V \ d au$

 $: U = \frac{1}{2} \sum Q_i V_i$

Energia sistema conduttori

Campo : $\vec{B} = \frac{\mu_o}{4\pi} \left[\frac{3(\vec{m} \cdot \vec{r})}{\pi^5} \right]$

Precessione (di Larmor) in campo esterno:

2) Correnti stazionarie

Densitá di corrente : $\overrightarrow{j} = nq\overrightarrow{v} = \rho \overrightarrow{v}$ Equazione di continuitá : $\overrightarrow{\nabla} \cdot \overrightarrow{j} = -\frac{\partial \rho}{\partial t}(\rho = \text{densitá} \text{ di carica})$

Intensitá di corrente : $i=\frac{dq}{dt}=\int_{\Sigma}^{\infty}\vec{j}\cdot\hat{n}\;dS$ Legge di Ohm (forma locale) : $\vec{j}=\sigma\vec{E}(\sigma=$ conducibilitá) per elemento finito : V=RiResistenza conduttore di sezione costante : $R = \frac{1}{\sigma S} \frac{l}{S} = \rho_9 \frac{l}{S}$

N resistenze in serie : $R = R_1 + R_2 + ... + R_N$ Legistenze in parallelo

in forma locale : $dP = \overrightarrow{j} \cdot \overrightarrow{E} \ d\tau$ conduttore finite : $P = V \ i = i^2 R$ Effetto Joule(potenza P = dW/dt, W = energia)

vettore d'onda : $\vec{k} = k$ (versore propag. lunghezza d'onda : $\lambda =$

pulsazione : $\omega = 2\pi\nu$

 $\phi = \phi_0 \sin(kz - \omega t) \equiv \phi_0 e^{i(kz - \omega t)}$ onda piana sinusoidale progressiva(1D):

onda sferica sinusoidale progressiva(1D):

 $\phi = \frac{\phi_0}{r} \sin(\overrightarrow{k} \cdot \overrightarrow{r} - \omega t) = \phi_0 e^{i(\overrightarrow{k} \cdot \overrightarrow{r} - \omega t)}$

Caratteristiche delle onde elettromagnetiche

Velocitá di propagazione(fase) : $v=\frac{c}{\sqrt{c_r\mu_r}}$ Traeversalitá onde e.m. : $\overrightarrow{E}=\overrightarrow{v}\times\overrightarrow{B}$

Onda piana (polarizzata || asse-x) : $E = E_x = E_0 \sin(kz - \omega t)$ $B = B_y = B_o \sin(kz - \omega t)$

 $E_o = vB_o = Z_oH_o$; $Z_o = \sqrt{\frac{\mu_o}{\epsilon_o}} \simeq 377\Omega$

Velocitá di gruppo : $v_g = \frac{d\omega}{dk} = \frac{-1}{2}$

 $n(\omega) + \omega \frac{c_{\alpha}}{d\omega}$ Effetto Doppler (c=velocitá onda e.m.):

Effetto Doppler nel moto collineare(non relativistico, v=velocitá onda): $v' = v \frac{1 - (v_{oss}/c) \cos \theta}{1 + (v_{oss}/c) \cos \theta}$

 $V = \frac{v - v_{oss}}{v - v_{sor}}$

Energia e impulso dell'onda

Densitá di energia : $u = \frac{1}{2}cE^2 + \frac{1}{2}\mu H^2 = cE^2 = \frac{B^2}{\mu}$

(energia per unitá di volume)

Vettore di Poynting : $\overrightarrow{\mathcal{P}} = \overrightarrow{E} \times \overrightarrow{H}$

Intensitá (istantanea) dell'onda : $\mathcal{I}=\left|\overrightarrow{\mathcal{P}}\right|=v\epsilon E^2=vu$ (potenza per unitá di superficie) Intensitá (media) dell'onda(sinusoidale) : $<\mathcal{I}>=v\epsilon\frac{E^2}{2}$

Quantité di moto dell'onda : $\overrightarrow{p} = u_{con} \hat{k} = \frac{\overrightarrow{p}}{v}$ (per unitá di superficie e unitá di tempo)

Dipolo elettrico oscillante

Campo a grandi distanze (vuoto): $E_{\theta} = \frac{1}{4\pi\epsilon_{o}} \frac{p_{o}}{r} \sin \theta(\frac{\omega}{c})^{2} \sin (kr - \omega t) ; \quad B_{\theta} = \frac{1}{4\pi\epsilon_{o}} \frac{p_{o}}{c} \sin \theta(\frac{\omega}{c})^{2} \sin (kr - \omega t)$ Intensitá(media) irraggiata dal dipolo : $<\mathcal{I}>=\frac{p_0^2\omega^4}{32\pi^2\epsilon_0\omega^3r^2}\sin^2\theta$ (energia per unitá superficie e unitá di tempo) $p(t) = p_o \sin \omega t$

Potenza (media) totale irraggiata dal dipolo : $P = \langle \frac{dE}{dt} \rangle = \frac{T_c^2 \omega^4}{12\pi \epsilon_0 c^3}$

Carica accelerata

Potenza(media) totale irraggiata (carica qoscillante sinusoid. $z=z_o \sin \omega t$

 $P=<\frac{dE}{dt}>=\frac{q^2 c_e^2 \omega^4}{12\pi\epsilon_o c^3}$ Intensitá irraggiata da carica accelerata nella direzione θ (rispetto all'accelerazione): $I(\theta) = \frac{dP}{d\theta} = \frac{q^2 a^2}{16\pi^2 \epsilon_0 \epsilon_3} \sin^2 \theta$

Potenza istantanea irraggiata da una carica accelerata : $P=rac{dE}{dt}=$

Ottica geometrica

Indice di rifrazione : $n = \sqrt{\epsilon_r}$; $\epsilon_r = \epsilon_r(\omega)$ cost. dielettrica

velocitá della luce in un mezzo : $v = \frac{c}{n}$ cammino ottico : $d = \sum_i n_i l_i$

Leggi di Snell : $\theta_{inc} = \theta_{rifl}$; $\frac{\sin \theta_1}{\sin \theta_2} = \frac{n_2}{n_1} = \frac{1}{n_2}$

angolo limite : $\sin \theta_{lin} = \frac{n_2}{n_1}$; $\sec n_2 < n_1$

angolo di Brewster : $\tan \theta_{\rm Bre} = \frac{n_2}{n_1}$ Formule di Fresnel $(\mu_1 = \mu_2 \simeq \mu_o)$:

 $\sin(\theta_1 + \theta_2)\cos(\theta_1 - \theta_2)$ $2\cos\theta_1\sin\theta_2$ $\sin(\theta_1 + \theta_2)$ $2\cos\theta_1\sin\theta_2$ $\frac{(E_{rtf})_1}{E_{tre}} = \frac{n_1 \cos v_1}{n_1 \cos \theta_1 + n_2 \cos \theta_2} = -\frac{2n_1 \cos \theta_1}{E_{tre}}$ $\frac{E_{re}}{E_{tre}} |_{\parallel} = \frac{2n_1 \cos \theta_1}{2n_1 \cos \theta_1} = -\frac{2n_1 \cos \theta$ $\frac{E_{rift}}{(E_{rio})_{\parallel}} = \frac{n_2 \cos \theta_1 - n_1 \cos \theta_2}{n_2 \cos \theta_1 + n_1 \cos \theta_2}$ $E_{rift}, \qquad n_1 \cos \theta_1 - n_2 \cos \theta_2$ $\frac{E_{tra}}{E_{tnc}})_1 = \frac{2n_1\cos\theta_1}{n_1\cos\theta_1 + n_2\cos\theta_2}$

Line trasmittivitá : $t = (\frac{E_{tra}}{E_{trac}})^2$ riflettivitá: $r=(rac{E_{ri,H}}{E_{inc}})^2$

9) Costanti di uso frequente

Costante dielettrica del vuoto : $\varepsilon_o = 8.85 \cdot 10^{-12} F/m$ Permeabilità magnetica del vuoto : $\mu_o = 4\pi \cdot 10^{-7} H/m$ Carica dell'elettrone : $e = 1.60 \cdot 10^{-13} C$ Massa dell'elettrone : $m_e = 9.1 \cdot 10^{-31} kg$ Rapporto e/m dell'elettrone : $e/m = 1.76 \cdot 10^{13} C/kg$ Massa del protone : $m_p = 1.67 \cdot 10^{-27} kg$ Wassa del protone : $m_p = 1.67 \cdot 10^{-27} kg$ Velocità delle onde e.m. nel vuoto : $c = 3.0 \cdot 10^5 m/s$ Impedenza del vuoto : $Z_o = 376.7 \cdot \Omega$ Costante di Planck : $h = 6.626 \cdot 10^{-24} A \cdot m^s$ Magnetone di Bohn : $\mu_B = 9.42 \cdot 10^{-24} A \cdot m^s$ Costante gravitazionale : $G = 6.672 \cdot 10^{-24} A \cdot m^s$ Costante dei Bohn : $\mu_B = 9.42 \cdot 10^{-24} A \cdot m^s$ Costante dei Bohn : $\mu_B = 9.42 \cdot 10^{-24} A \cdot m^s$ Costante dei Bohn : $\mu_B = 1.80 \cdot 10^{-24} A \cdot m^s$ Costante dei gas : $R = 8.314 \cdot 1/(mol K)$ = 1.986 cal/(mal K)
Volume di una mole(STP gas ideale) : $k = 22.414 \cdot 10^{-3} m^s mol^{-1}$

Volume di una mole(STP gas ideale) : $k=22.414\ 10^{-3}\ m^3$, Unitá astronomica : $AU=1.49598\ 10^{11}\ m$ Raggio(equatoriale)della terra : $R_{\Phi}=6.378\ 10^6\ m$ Massa della terra : $M_{\Phi}=5.973\ 10^{24}\ kg$ Massa del sole : $M_{\odot}=1.989\ 10^{30}\ kg$

Campo elettrico vs. campo magnetico	2
10 Moto di cariche	7
Parte II - Campi non statici	8
11 Equazioni di Maxwell	8
12 Correnti elettriche e "correnti magnetiche"	8
13 Energia del campo	8
14 Circuiti R-C ed R-L	9

Parte I - Campi statici

1 Introduzione

L'elettrostatica è lo studio delle interazioni tra cariche elettriche ferme, la magnetostatica è lo studio delle interazioni tra magneti fermi o tra correnti continue. Vista la difficoltà di una trattazione quantitativa, a livello elementare, delle proprietà dei magneti permanenti, abitualmente si trattano solo le interazioni tra correnti.

Nel caso dell'elettrostatica solitamente si introduce prima il concetto di forza e poi quello di campo, nel caso della magnetostatica si procede invece in senso opposto. Per questioni di confronto sceglieremo, in questo riepilogo, il secondo approccio in entrambi i casi.

Come si vedrà, in molti casi la trattazione del campo magnetico è più complessa che non quella del campo elettrico.

2 Gli oggetti elementari delle interazioni

Gli oggetti elementari delle interazioni elettriche sono le cariche puntiformi, positive o negative.

Gli oggetti elementari delle interazioni magnetiche sono gli "aghi magnetici", tratti "infinitamente piccoli" di fili percorsi da corrente, oppure cariche (puntiformi) in moto. A livello elementare la trattazione degli aghi magnetici, per fini quantitativi, è difficile, per cui ci limiteremo solo a correnti o cariche in moto.

Si deve subito notare la profonda differenza fra le due situazioni.

Nel caso elettrico gli oggetti base possono essere schematizzati con punti.

Nel caso magnetico gli oggetti base sono o tratti di filo percorsi da corrente o cariche, magari puntiformi, ma *in moto*, e quindi essenzialmente oggetti non puntiformi.

Questa differenza di comportamenti è legata a risultati sperimentali completamente diversi nel caso elettrico rispetto a quello magnetico.

È possibile separare le cariche elettriche positive da quelle negative.

Non è possibile separare i poli magnetici Nord dai poli magnetici Sud: in ogni "oggetto magnetico" sono sempre presenti entrambi i poli.

3 I campi

Un campo vettoriale è una funzione definita in un'opportuna regione dello spazio, e che associa ad ogni punto P dello spazio un vettore w(P). Abitualmente si scrive w_P , anzichè w(P). Il campo elettrico si

Luciano Battaia

http://www.batmath.it

4

precedenti: mentre prima le cariche o le correnti erano gli oggetti dell'azione da parte di sorgenti non meglio precisate, ora esse sono le sorgenti di azioni su oggetti che non interessa qui precisare.

La legge di Coulomb

$$\mathrm{d}\boldsymbol{E} = \frac{1}{4\pi\varepsilon_0} \frac{\mathrm{d}q}{r^3} \boldsymbol{r} \,.$$

La legge di Biot-Savart

oppure
$$\mathrm{d} \bm{B} = \frac{\mu_0}{4\pi} \frac{i \; \mathrm{d} l \wedge r}{r^3} \; ,$$

$$\mathrm{d} \bm{B} = \frac{\mu_0}{4\pi} \frac{\mathrm{d} q \; v \wedge r}{r^3} \; .$$

Si noti che, in entrambi i casi, si ha una inversa proporzionalità al quadrato della distanza: si tratta di una proprietà comune ai due campi (e anche al campo gravitazionale) e di una legge frequente in fisica.

5 Le linee di forza

La rappresentazione grafica di un campo vettoriale mediante linee di forza o (meglio) linee di campo è uno strumento molto potente per trattare i fenomeni relativi.

Le linee di forza del campo elettrico hanno sempre origine sulle cariche positive (sorgenti) e termine sulle cariche negative (pozzi).

Le linee di forza del campo magnetico sono sempre *linee chiuse*, e questo fatto è la traduzione in formule dell'inesistenza del monopòlo magnetico.

6 Le equazioni di Maxwell

Le equazioni di Maxwell costituiscono le equazioni fondamentali dell'elettromagnetismo. Restando nel caso statico esse si riducono a formulazioni particolarmente semplici e, in particolare, le equazioni relative al campo elettrostatico sono completamente separate rispetto a quelle del campo magnetostatico.

Le equazioni si riferiscono, rispettivamente, al flusso attraverso una superficie chiusa e orientata verso l'esterno (flusso uscente), $\Phi_{Sch}(E)$, $\Phi_{Sch}(E)$, e alla circuitazione lungo un percorso chiuso e orientato, C(E), C(B). I teoremi relativi al flusso prendono anche il nome di *Teoremi di Gauss*, quello relativo alla circuitazione nel campo magnetico prende il nome di *Teorema di Ampére*.

$$\Phi_{Sch}(E) = rac{\sum q_{int}}{arepsilon_0}$$
 $C(E) = 0$
 $C(B) = \mu_0 \sum i_{conc}$
 $\Phi_{Sch}(B) = 0$

Le equazioni del flusso per il campo elettrico e della circuitazione per il campo magnetico costituiscono le due equazioni fondamentali (potrebbero essere usate in sostituzione delle leggi di Coulomb e Biot-Savart rispettivamente). Le leggi della circuitazione per il campo elettrico e del flusso per il campo magnetico esprimono in formule una proprietà fondamentale per ciascuno dei campi: il campo elettrico è conservativo, nel campo magnetico non esistono monopòli.

La dimostrazione dei teoremi del flusso per il campo elettrico e della circuitazione per il campo magnetico si possono fare, a livello elementare, in maniera sostanzialmente analoga, considerando un caso particolarmente semplice di campo e di superficie chiusa nel primo caso, di campo e di linea chiusa nel secondo.

Nel caso elettrico la situazione che permette una agevole verifica del teorema di Gauss è quella del campo prodotto da una sola carica puntiforme (campo radiale), se si prende come superficie di calcolo una superficie che coincida con una delle superfici equipotenziali: in questo modo il campo ha modulo costante sui punti della superficie e l'angolo tra la perpendicolare alla superficie e il campo è costantemente nullo (e quindi con coseno 1).

Nel caso magnetico la situazione che permette una agevole verifica del teorema di Ampére è quella del campo prodotto da un filo rettilineo infinito, se si assume come linea chiusa di calcolo una circonferenza che coincida con una linea di forza del campo: in questo modo il campo ha modulo costante sui punti della linea e l'angolo tra la tangente alla linea e il campo è costantemente nullo (e quindi con coseno 1).

http://www.batmath.it

Luciano Battaia

в

lo all'interno del conduttore, all'esterno ha simmetria radiale e modulo identico a quello che avrebbe una sola carica puntiforme posta al centro e con intensità pari alla carica totale del conduttore, Q:

$$E=rac{1}{4\piarepsilon_0}rac{|Q|}{r^2}\,,\quad r\geq R\,.$$

7.6 Campo di una distribuzione sferica omogenea di carica

Il campo di una distribuzione sferica omogenea di raggio R ha simmetria radiale e modulo crescente linearmente per r < R, identico a quello di un conduttore sferico dello stesso raggio per $r \ge R$:

$$E = \begin{cases} \frac{|Q|}{4\pi\varepsilon_0 R^3} r & r < R \\ \frac{1}{4\pi\varepsilon_0} \frac{|Q|}{r^2} & r \ge R \end{cases}$$

8 Le definizioni di Coulomb e Ampére

La forza tra due cariche

La forza tra due cariche elettriche q_1 e q_2 , poste ad una distanza r, ha modulo:

$$F = \frac{1}{4\pi\varepsilon_0} \frac{|q_1|\,|q_2|}{r^2}\,.$$

La forza tra due fili percorsi da corrente

La forza tra due fili rettilinei percorsi da corrente continue i_1 e i_2 , posti ad una distanza r, ha modulo:

$$F = \frac{\mu_0}{2\pi} \frac{i_1 i_2 l}{r} \,.$$

Queste formule, che sono sostanzialmente le formule sperimentali fondamentali, permettono di dare una definizione di Coulomb (C) o di Ampére (A): basterà scegliere un opportuno valore per le costanti. È chiaro che la scelta dell'una o dell'altra come unità fondamentale è solo questione di convenienza, in quanto le due grandezze sono legate dalla relazione

$$C = A \cdot s$$
.

Se si pone, arbitrariamente, il valore della costante $\frac{1}{(4\pi\epsilon_0)} = 9 \cdot 10^9$, si ha la definizione di Coulomb:

1 Coulomb è il valore di una carica che, posta a distanza di un metro da un'altra identica la respinge con una forza di $9 \cdot 10^9$ N.

Naturalmente a questo punto il valore di $\mu_0/2\pi$ rimane determinato.

Se si pone, arbitrariamente, il valore della costante $\mu_0/2\pi=2\cdot 10^{-7}$ si ottiene la definizione di Ampére:

1 Ampére è la corrente che, attraversando due conduttori rettilinei indefiniti posti a distanza di 1 metro, produce tra di essi una forza magnetica di $2 \cdot 10^{-7}$ N per ogni metro di lunghezza.

Naturalmente a questo punto il valore della costante $^{1}/(4\pi\varepsilon_{0})$ è completamente determinato.

9 Dipoli e spire

I dipoli elettrici e le spire percorse da corrente hanno, nei casi elettrico e magnetico rispettivamente, comportamenti simili, tanto che una spira percorsa da corrente può essere considerata alla stregua di un dipolo magnetico elementare.

Date due cariche $\pm q$, poste ad una distanza d, il vettore p di modulo uguale a qd, direzione della congiungente le cariche e verso dalla carica negativa alla positiva, si chiama momento di dipolo elettrico.

Data una spira piana di area S percorsa da corrente i, il vettore m di modulo uguale a iS, direzione perpendicolare al piano della spira e verso definito secondo la consueta regola della mano destra si chiama

http://www.batmath.it

Luciano Battaia

$$\begin{cases} x = v_{0_x} t \\ y = \frac{1}{2} \left(\frac{qE}{m} \right) t^2 + v_{0_y} t. \end{cases}$$

$$\left\{ \begin{array}{l} r = \frac{mv}{qB} \\ T = \frac{2\pi m}{qB} \end{array} \right.$$

È particolarmente importante, per le applicazioni ai ciclotroni, il fatto che il periodo non dipende dalla velocità.

Parte II - Campi non statici

11 Equazioni di Maxwell

Le equazioni di Maxwell relativamente al flusso non subiscono modificazioni nel passaggio dal caso statico a quello dinamico: esse esprimono, nella sostanza, la legge di Coulomb e la possibilità di separare le cariche positive da quelle negative (caso elettrico) e la impossibilità do ottenere il monopolo magnetico (caso magnetico).

Le equazioni relative alla circuitazione sono invece sostanzialmente diverse e traducono in formule la possibilità che tra le sorgenti di campo elettrico ci sia anche un campo magnetico variabile (legge di Faraday-Neumann-Lenz) e, viceversa, che tra le sorgenti di campo magnetico ci sia anche un campo elettrico variabile (corrente di spostamento).

$$\begin{split} \mathcal{C}(\boldsymbol{E}) &= -\frac{\mathrm{d}\Phi(\boldsymbol{B})}{\mathrm{d}t} & \Phi_{Sch}(\boldsymbol{E}) = \frac{\sum g_{int}}{\varepsilon_0} \\ \mathcal{C}(\boldsymbol{B}) &= \mu_0 \left(\sum i_{conc} + \varepsilon_0 \frac{\mathrm{d}\Phi(\boldsymbol{E})}{\mathrm{d}t} \right) & \Phi_{Sch}(\boldsymbol{B}) = 0 \end{split}$$

12 Correnti elettriche e "correnti magnetiche"

Un moto ordinato di cariche elettriche produce una corrente elettrica. Se si hanno diversi tipi di carica in moto, i contributi alla corrente da parte di cariche positive che si muovono in un verso e di cariche negative che si muovono in verso opposto si sommano, mentre se si hanno cariche positive e negative mobili nello stesso verso i contributi si sottraggono. Per esempio il moto di un dipolo elettrico non produce corrente elettrica.

Le "cariche magnetiche" sono sempre in coppia, visto che non è possibile separare i poli magnetici opposti. Per questo motivo non ha alcun senso il concetto di "corrente magnetica".

È per questo che, nelle equazioni di Maxwell, esiste una dissimetria tra le equazioni relative al campo elettrico e quelle relative al campo magnetico.

La dissimetria scompare completamente quando si considerano campi elettrici o magnetici generati non da cariche o da correnti, ma solo da altri campi variabili:

$$\mathcal{C}(E) = -rac{\mathrm{d}\Phi(B)}{\mathrm{d}t}$$
 $\Phi_{Sch}(E) = 0$ $\mathcal{C}(B) = \mu_0 \varepsilon_0 rac{\mathrm{d}\Phi(E)}{\mathrm{d}t}$ $\Phi_{Sch}(B) = 0$

13 Energia del campo

Collegando un condensatore ad un generatore di

Se si collega una forza elettromotrice ad un circui-

http://www.batmath.it

Luciano Battaia