

Appunti universitari
Tesi di laurea
Cartoleria e cancelleria
Stampa file e fotocopie
Print on demand
Rilegature

NUMERO: 334 DATA: 25/07/2012

APPUNTI

STUDENTE: Gignone

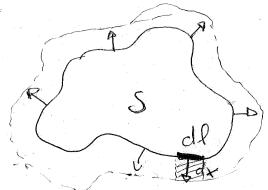
MATERIA: Chimica Fisica Sistemi Eterogenei

Prof. Vanni

Il presente lavoro nasce dall'impegno dell'autore ed è distribuito in accordo con il Centro Appunti. Tutti i diritti sono riservati. È vietata qualsiasi riproduzione, copia totale o parziale, dei contenuti inseriti nel presente volume, ivi inclusa la memorizzazione, rielaborazione, diffusione o distribuzione dei contenuti stessi mediante qualunque supporto magnetico o cartaceo, piattaforma tecnologica o rete telematica, senza previa autorizzazione scritta dell'autore.

© Proprietà riservata dell'autore - Digitalizzazione e distribuzione a cura del CENTRO APPUNTI - Corso Luigi Einaudi, 55 - Torino / Pagina 3 di 268
CHIMICA FISICA DEI SISTEMI ETEROGENEI
Fenomen di superficie / intertaccia dei sistemi dispersi
Fenoment de superficie / interfaccia dei sistemi dispersil particelle tra nell'ordine del nanometro fino a Mm
colloidali scala mesoscopica
No esperieura comune
1- Meconico (Termodinamios) dell'interfaccia
2- Strollura merfoccia serbolo-liquido
3- Proprietà dispersional collodoli (browniano, osmosi)
4- Forze interfacciali in sistemi dispersi (interazioni alguide che si vickellono, nella mesoscola)
5. Evolutione di sistemi dispersi
Volo scribb S se $S < 24 \Rightarrow 0 = S$ se $S > 24 \Rightarrow 0 = S$ se $S > 24 \Rightarrow 0 = S$ no $O = S \Rightarrow 0$
Martaccia e superficie di divisione tra due fasi

Infarfaccia : superficie di divisione tra due fasi.
Lo questa va bene tra solido-fluido
lo tradue liquidi é megho dire zona di separazione


lo tradue liquidi é megho dire zona di separazione

spessore della zona

si separazione

di relsi strati moleccióni

Effetti tipo: valenza non compensata si visentono anche a

Qual'é 1 lavoro necessarion ad espandère S?

dLavoro = dL = dF. dx = dF dx nt > y dl n. n. dx dF>dFeq

dl > ydldx dL > x dA

= movements on soperficie dA

J. dA é il limite minimo di lavovo de devo spendere se non ei sono effetti di vesistenza

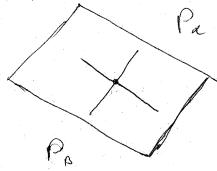
dL veressible = ydA

Altro significato chi gamma Gamma: lavovo da comprere/ unité di superficie

y [=] * M/m x [=] J/m2

In caso di Petroshile: l'energia fornità ad un surlais veversibile é = dF = energia libera di Gibbs Dodler (P,T) = d6

 $\Rightarrow D = \left(\frac{\partial G}{\partial A}\right)_{T,P}$


1 - non survono moleche 3 e cosi in solido non c'é di mezza l'elarhata del La y non si misora nei solidi An versore normale d5 = dl, dl O in vachant dly = 1/2 dos dl = 12 do2 Condizioni statiche = 0 combinazione delle Forze = 0 1) forza di pressione Quali Force agriscono

$$P_{R}-P_{\alpha}=\chi\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)$$

Esercizi

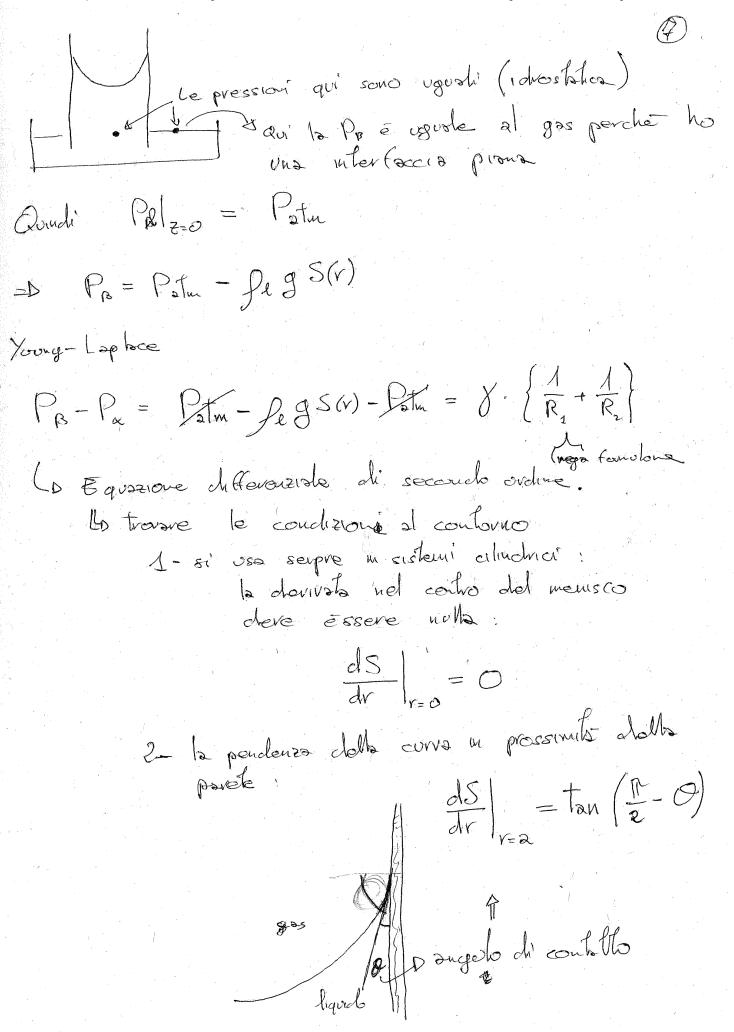
1- dela minazione di DP nota la forma dell'inhertaccia

$$\frac{1}{V_4} + \frac{1}{V_2} = 0$$

$$R_4 = R_2 = R$$

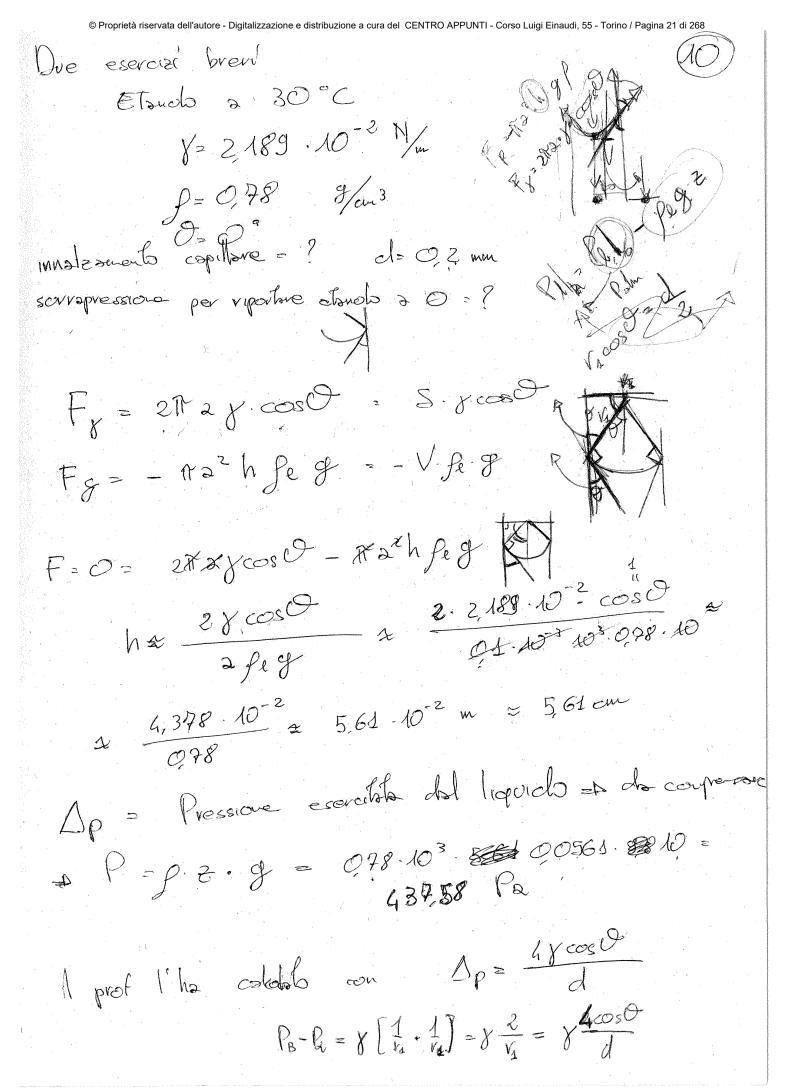
$$\frac{1}{V_1} + \frac{1}{V_2} = \frac{2}{R}$$

supportano goccia d'acqua in Avia: y= 0,070 /m


2 - delerminazione della forma data la Dp Vedrano sob dol osi porticolori con sumatria cilindrias goccia de positata so un solido lisero ciliadrica (overo una sezione de vuola)

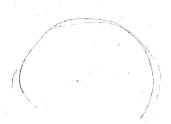
So poor dimostrare de m un generico ponto della seperficie $\frac{1}{R_1} + \frac{1}{R_2} = -\frac{\frac{d^2 S(r)}{dr^2}}{\left[1 + \left(\frac{dS(r)}{dr}\right)^2\right]^{\frac{3}{2}}} - \frac{\frac{ds(r)}{dr}}{r\left[1 + \left(\frac{ds(r)}{dr}\right)^2\right]^{\frac{1}{2}}}$

 $P_{R_1} - P_{\alpha} = \chi \left(\frac{1}{R_1} + \frac{1}{R_2} \right) R$ for Ever della forma Se noi viuscissimo a mellero come fonzione di S(v) potremmo visorverb come funzione ordinaria

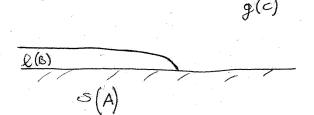

profib

colcobre

Consideramo liquido dossid e capillori con overgre (8) di legome forte (noon polmoni)
2cqua/ana y=0,090 /m
O2 0° elevab adsorbunalo
Con capillare di a = 1 mm
$h_2 = \frac{2.007 \cdot 1}{10^3 \cdot 10^3} \approx 0.014 \text{ m} \approx 1.6 \text{ cm}$ $\frac{1}{10^3 \cdot 10 \cdot 10^3} \approx 0.014 \text{ m} \approx 1.6 \text{ cm}$ $\frac{1}{10^3 \cdot 10 \cdot 10^3} \approx 0.014 \text{ m} \approx 1.6 \text{ cm}$ $\frac{1}{10^3 \cdot 10^3 \cdot 10^3} \approx 0.014 \text{ m} \approx 1.6 \text{ cm}$ $\frac{1}{10^3 \cdot 10^3 \cdot 10^3} \approx 0.014 \text{ m} \approx 1.6 \text{ cm}$
2 = 0,01 mm
ha = \frac{2.007.1}{10^3.10-10^{-4}} \approx 1,4 m
2 = 1 mm (vosi delle prode) h 2 14 m
la colonne cost ette
l'acqua é appesa (trazione con Pressioni - 60 bar) -se per caso si geres in gerre l'acqua in qual punto evapora di sicoro : 8126 metastabile
non controlled the terroni (insience
in contribution for sopre se acquirere) por sollo se secco


= Se conosciano de de milarfaciali tollo é noto (é	9
Se une fase é solida la situatione é diverca	
gos/ocqus (louslines)	
hyordo o	
A singely solids	
O R	
ysl / / / / / / / / / / / / / / / / / / /	
Alvergue 1 Bulancio du Forze	
O = Jsg-Jsl-Ylgcos O	
a) cos O = Ssg - Ysl Young	
V serpre positivo due cosi: 1 / Yseg-Ysl >0	
$\frac{y_{sg}-y_{sl}}{y_{lg}}=\cos \theta \Rightarrow \cos \theta > 0$	
12) Ysg-Jsl & Ylg = 0 0xcosc = 1	
$\frac{\mathbb{R}}{2}$	

Marono die esercizi



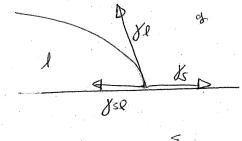
maggiore é la leusière superficiale più sors déficile dividere la socionia

put jap é prodo put le due faci sono simili so put é difficile sepovorle

- Lavoro di Baynatura

Lavoro reversibile, per unità di superficie, viduosto per sensibile la superficie bognata da un liquido

(B) S(A) S

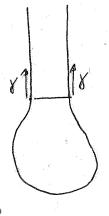

pedice dol gos

Lower of borgustura = Lovet = YAB+ YB - YA = - 5 = -coefficiently

Spondimento

Ysl + Yl - Ys

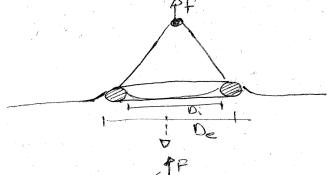
Riprouchomo Young-Lophice

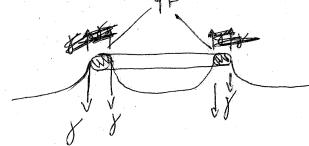

$$\cos S = \frac{y_s - y_s l}{y_e}$$

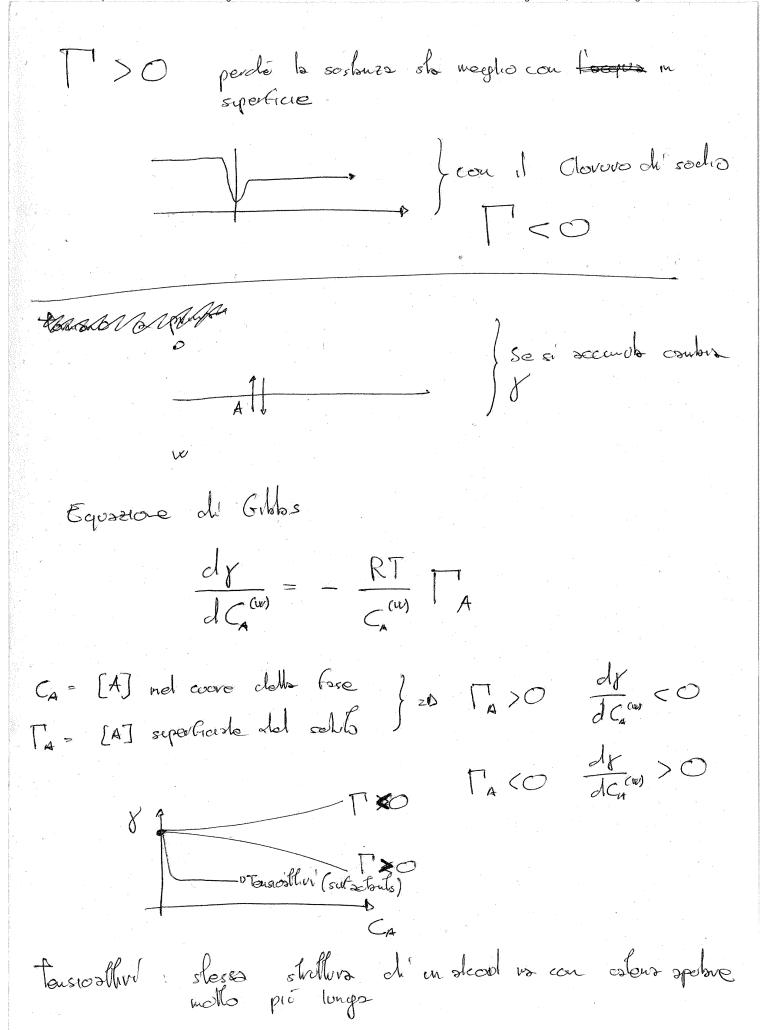
y decrescents) di pros

slesso cosa si può fre con le bolle

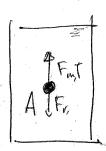
3) Peso di gocce codenti


fail coolère 10-100 gocce de un librarior quasi capillare e poi le pest e dividi per le gocce : così sal Il peso di una goccia




Unico problemo spessore del Tubicino

4) Bilancia a andlo/di Wilhelmy



1) Emulsions E A superficie delle goccionne di a 1 min nots energia 2 Bagnanti use tensiosthir chumunisco de a 6 volto l'eregia de visne 3) Solvorh Zzonti (mcolle) 4) Dolorgenti acqua (1) (a) tessub (s)(s) O é basse perde tiene bene You You You > Ysa - Yso > 0 Se adequirezamo tonasthro

Manosno Z lezion Roberone de Stokes- Memslen della differenta-DA = KOT 6Mya Possismo visualizzare la diffusione come dia Govre motrice VS recistente Finz legalo al polenziale dunico 2 - 1 dua da Fra = storelle de si move in un liquido con densité = -6Th, 27A Volutire la diffusione di una jone. A product apelliano de la rore si muova verso.
L'alb: ma applichmento compo elettrico per
contrastare o accelherare

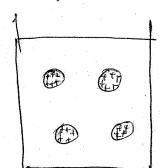
Fint = - 1 dla = - KoT dco

Moi Pobboso numoquesto come ono stevetto.

Heretto il mecconismo e onologo
sio per molecole sio per porticolle.

molecole - diffusione

portable - o moto brownsus

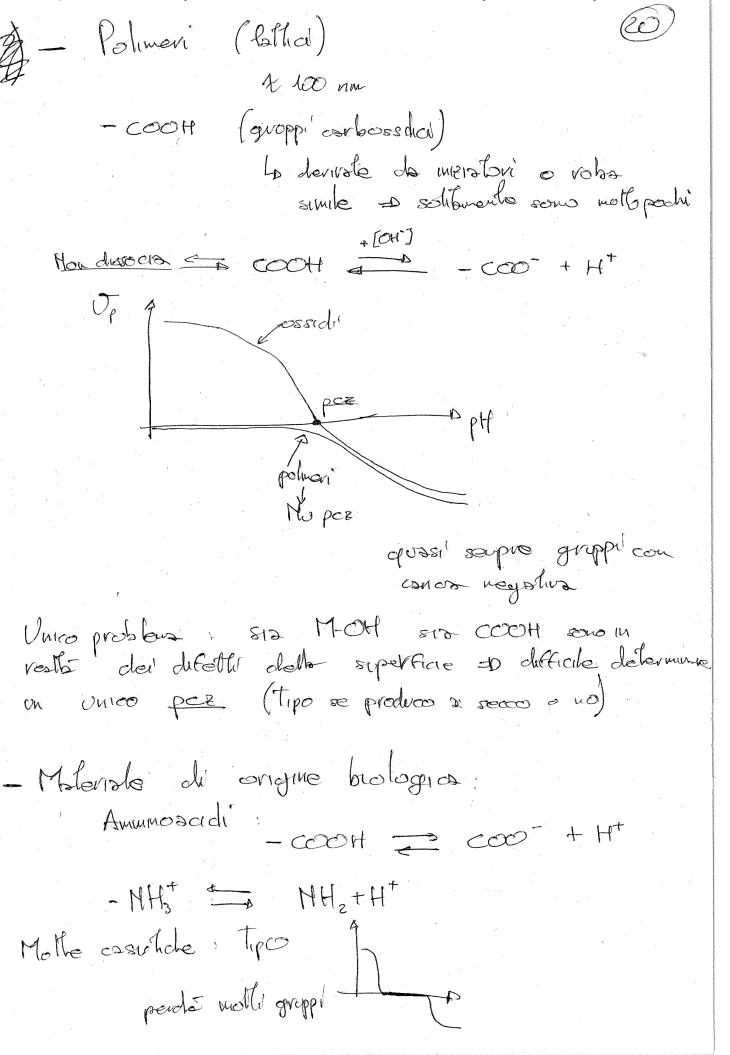

interface costitute da solido/solverní acquose L'o Alle interfacce, se c'e acqua, sono sepre presenti Ferovan dellinou

Los Ma quando biscognia consideratif ?

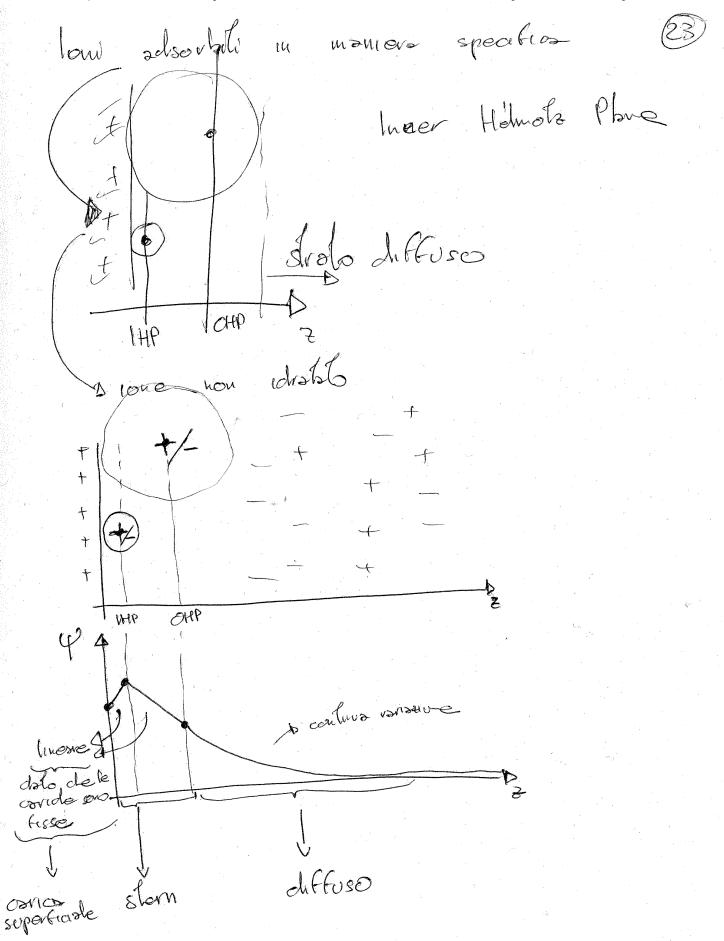
Fast finemente disperse.

metho inhortocia male effeth

Sospension d' particelle colloidall (simile envision)



polvere di Silice in acque : montre la immergo essa acquisisce una carca superficiale
ben specifica e non casoste


Perdé lacquisiscono:

1) dissociazione di grappi seprenficiali

- 2) chesoluzione selettiva di ioni 3) adsorbinento specifico di ioni
- 4) molosione di correct

Inclusione	de ose	100		• • • • • • • • • • • • • • • • • • •	(3)
· · · · · · · · · · · · · · · · · · ·	Argille		four so	d shao v	lone
Section 2		reupis	rest d	of stheep v	
		· ·			
		Sia+	- A131	* 0 1 con	a veyatva
			- My ?		
		localizza	le all'inte	uno dol	ustoriste
		ed in p siperficion	te dob a	le sons e	oths conos
0000		Dob de dours	priva era	metho do	plo
•	&	D Quind	dove c	caro finit	
	e-ticla			hopoids	
	50100	- (A) -	1		+ +
	Fterwadran		elellnos —D		
	+	+			-
					+
	**************************************	<u> </u>	· · · · · · · · · · · · · · · · · · ·		-
			3090	do	loubon dist
		eccesso condenapl		unhono e	lov by Co

Perde la cor	ico dentro	1 sold	b runde	costante?
--------------	------------	--------	---------	-----------

Leyge di Gaves

$$\phi_E = \frac{Q}{\xi_o \xi_r}$$

$$\phi_{\epsilon} = \frac{Q}{\xi \xi_{r}} \quad \text{All'interno il } \phi_{\epsilon} = 0$$

$$\phi_{\epsilon} = \int \xi_{r} \int ds ds = 0$$

$$= 4\pi r^{2} \xi_{r}$$
se $\phi_{\epsilon} = 0$ show $\xi_{r} = 0$

Cose ulli a noi

legge di Causs
$$\phi_{\varepsilon} = \frac{Q}{\varepsilon_{\varepsilon} \varepsilon_{r}}$$
legge di Poisson $\nabla^{2} \psi = \frac{P_{q}}{dx^{2}} = \frac{P_{q}}{\varepsilon_{\varepsilon} \varepsilon_{r}}$
legame $\Psi - \varepsilon_{\varepsilon} = \frac{Q}{dx^{2}} = \frac{P_{q}}{\varepsilon_{\varepsilon} \varepsilon_{r}}$
legame $\Psi - \varepsilon_{\varepsilon} = \frac{Q}{dx} = \frac{Q}{dx}$
 $\varepsilon_{\varepsilon} = 885 \cdot 10^{-12} \cdot \frac{Q}{dx}$

$$-\frac{1}{N_A}\frac{du}{dx} + \left(-\frac{dy}{dx}\right)z_ie - 6\pi A = 0$$

$$-\frac{du_i}{dx} - \frac{df}{dx} = 0$$

$$\frac{d}{dx}\left(\mathcal{U}_{i}+4z_{i}F\right)=0$$

Si put visolvère sualificamente sob quando:

- Pp & molto piccob (milli Volt)

Le unde correle present bonno un dottrolla simmetrico (Not CI) Cott SQu)

Primo Caso:

Approsermazione de si fa é:

ZiF P << 1 App di Deloye

o Quadi espendions in sevie of Taylor

Quidi la sommatoria diventa

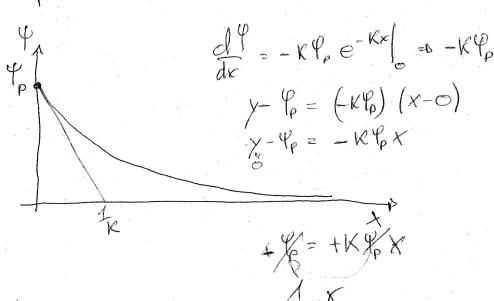
Assomights a ció de merano della prina

$$\begin{pmatrix}
\frac{d^2 \Psi}{dx^2} = K^2 \Psi \\
\Psi = 0 & \chi \to \infty
\end{pmatrix}$$

$$\begin{pmatrix}
\Psi = \Psi_p & \chi = 0
\end{pmatrix}$$

Studiore perdre?

Studiore perdre?

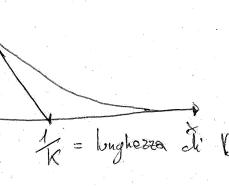

Coswoisco il polinomio constlovistico

$$\lambda^2 = K^2 \Rightarrow \lambda_1 = +K$$
 $\lambda_2 = -K$
 $\lambda_3 = -K$
 $\lambda_4 = -K$
 $\lambda_5 = -K$
 $\lambda_5 = -K$

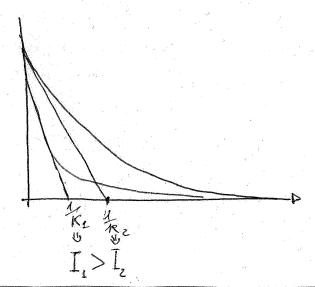
Prins condizione comborno

4=0 x -0 00

$$\Psi_p = A_z e^{-Kx}$$
 $\Delta_z = \Psi_p$



Modello di Govy-Chapman


dobubosione di asriche nd liquido

= lughezza di Deloye: ides dello spessore in cui si esouviscono il fonomeni dell'ini 2-3 votte lughezza di Deloye

* Forza 1011102 é l'unico follore de modifica sosbuzistments la lunghezza di Debye

El contravoni si comprimono viano al solido

Eserciziello

T = 298 K

colcobre to

I= [mol/e]

K= [nm]

30 nm

I = 1 2 2 2 Cm

: Macl 1M - I - 1 (12.1+(1)2.1)=1M

H2,50 1M - 1 = 1 (12 + (2)1) = 3 M

Fe,(502) 2 1M - [= 1/2 (3-2 +(-2)-3) = \$5 M

e Proprietà riservata dell'autore - Digitalizzazione e distribuzione a cura del CENTRO APPUNTI - Corno Luigi Einaudi, 55 - Torino i Pagina 57 di 268

$$\frac{d^2N}{dx^2} = K^2 \frac{N}{dx^2} = K^2 N$$

$$\frac{d^2N}{dx^2} = K^2 N$$

$$\frac{d^$$

Quando si può usare l'interfaccia piana?

1- Se la contro conce è in uno spessore molto minore

del vaggeo della particella

4) 1/K << 2

1+1-1

1- X2 >> 1

4= Poe-Kx

(povele)

11 visultato Qn = -4TE, E, 4, 2(1+K2) $Q_p = -Q_0$ L'ofto caso d' solvetore & quando 1 nostro elettrolito & simunetrico: Caso, - Coff SO4 la formula: ci do solo il visullab ZRT In 1 + tanh (3F 4) e-W 1 - tonh (ZF PD) e-KX Lo singolo elettrolite summétrico con interfaccio piona - ZKE, E, RT sinh (ZF 4) Non to spokes sol 4p Se confront il potenoste de Dobye con questo P= 2+ 4 19 1-2 con Debye non c'é différents albrimailé (3-4) é serpre un por minore la

© Proprietà riservata dell'autore - Digitalizzazione e distribuzione a cura del CENTRO APPUNTI - Corso Luigi Einaudi, 55 - Torino / Pagina 61 di 268
Oppure colcob [Mot] e [Ce] cosi.
$C_{i} = C_{b,i} e^{-Kx}$
$C_{i} = C_{b,i} e$ C_{i
[Not] = 10-3 e 0025
Se $x=0$ $96500(9005)$ Se $x=\frac{1}{K}$
Se $X = 0$ Se $X = \frac{1}{K}$ $10^{-3} e^{-\frac{96500}{8314.298}}$ $10^{-3} e^{-\frac{96500}{8314.298}}$
[DE] = 1.27.10-20 [DE] = 822.10 ¹⁰
Mon correlli, uscib prima
Trovore AyI (3) Op in sol acquosa NoCl 10-3 M
T=25°C 4 = 20 mV
inforfacio piona
concentrazione di ioni Ay+ seperficiale in eccesso vispello a carica nulla
eccesso vispeno a conco viona
Op = - Er EN. Pp => Op = Er Eo K. Pp
K = F V ZI E.E.RT Op = VE.E. VRT FYP =
= 180.8.85-10-12 VZ. 96500.002 = 1,46.10-3 /m2

Strusse il potenziale di provete può essere molto difficolloso e quindi solitamente si usano vavi sistemi per ogni molevisle

Quali sono le mognite

CH+ SOP A- AH P

nsolvible doudout come visulab

$$\left(\begin{array}{c}
K_{2} = \frac{C_{H,sop} \cdot \Gamma_{A}}{\Gamma_{T}} \\
\Gamma_{T} - \Gamma_{A}
\end{array}\right) = \left(\begin{array}{c}
K_{2} + C_{H,sop}
\end{array}\right) = K_{2} \cdot \Gamma_{T}$$

$$\Gamma_{t} = \Gamma_{A} + \Gamma_{AH}$$

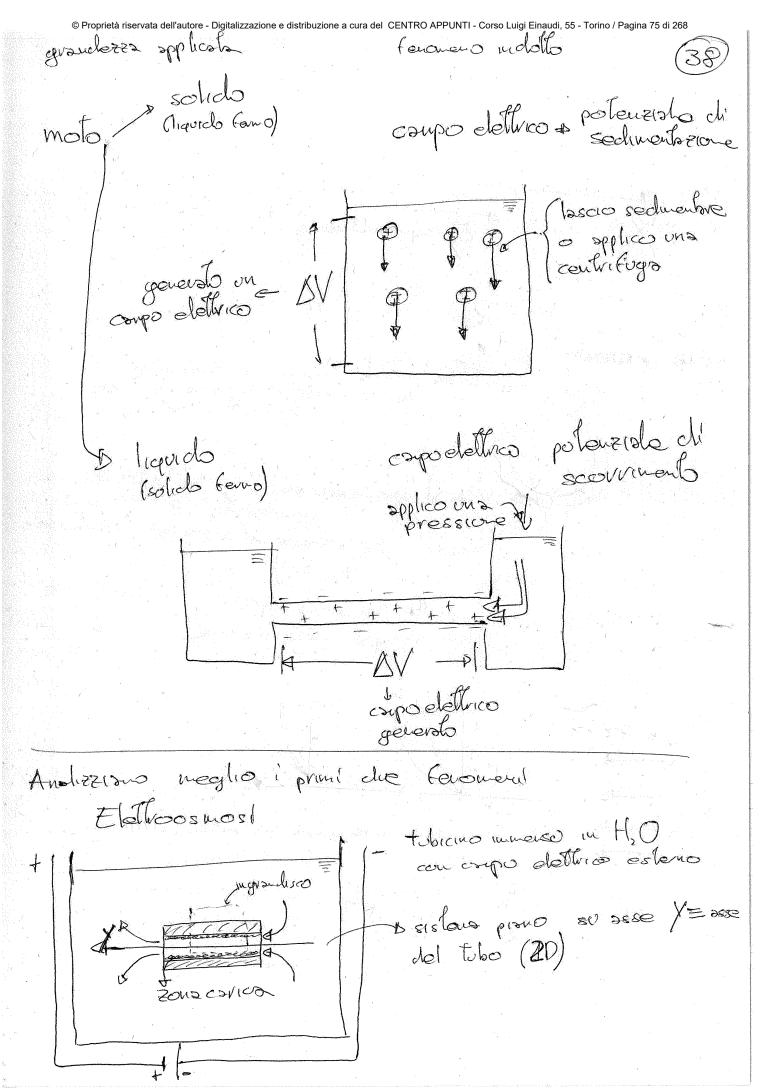
$$\int_{-\mathbb{R}} \frac{1}{\sqrt{1 + \frac{1}{2}}} \frac{1}{\sqrt{1 + \frac{1}{2}$$

$$e^{-\frac{2F}{KT}P_{p}} = \left(\frac{FF}{KEEP_{p}} - 1\right)\frac{K_{s}}{C_{HT}bulk}$$

Applichens il lu

© Pro	prietà riservata dell'autore -	Digitalizzazione e distribuzione a cui	a del CENTRO APPU	NTI - Corso Luigi Einaudi,	, 55 - Torino / Pagina 69 d	li 268
Inothe	bisogua	traccione	Op in	functione	di pAy	35)
			P (PAy)			
Con	pcz pł	pc2		In li)-5 non	ndran
Õp =	= KEE	r ZF la	Ci bolk	<u>IK</u>		The second second
	$K = F_i$	72 <u>5</u>	i and i			
	$I = \frac{1}{2}$	[12-(CAg)	+ 1	(Ca)		
		105				
		(-3) (-2)		trasov	rabile 2-6 in poi	
	$I = \frac{1}{2}$	- 1		10000000000000000000000000000000000000	,	ou)
	7 8 8			lel Cce-		
Op :	TEE, RF	V2.	2 Cagt	In CAgt	ty per	

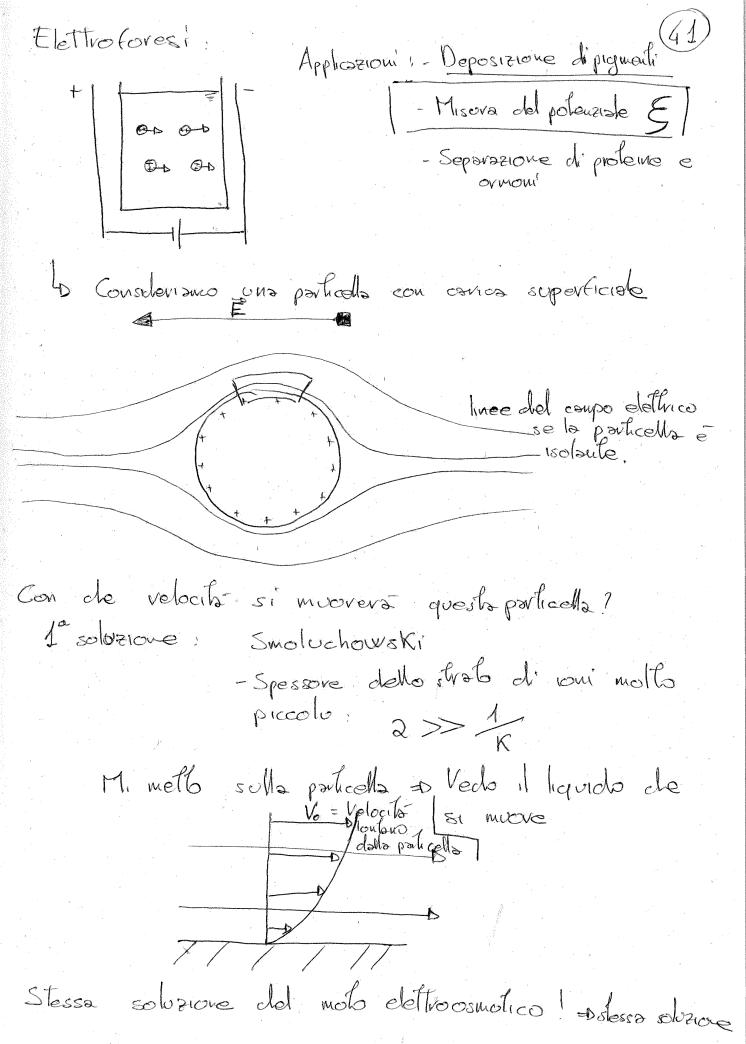
1)
$$\sqrt{p} = \frac{RT}{zF} \ln \frac{C_{i,b}}{C_{i,b}}$$


2)
$$\Psi = \Psi_0 e^{-Kx}$$
 (con Debye)

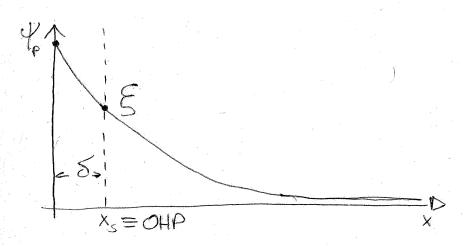
3)
$$C_{i} = C_{i,b} e^{-\frac{2F}{RT} \Psi}$$

4)
$$O_P = -O_0 = K \mathcal{E} \mathcal{E}_r \mathcal{E}_p$$
 (con beloye).

Quando $\delta < \frac{1}{K}$ Ovvero quando il pontenziale in $1 (P_p) = quaci identico a <math>2 (P_s)$ Strato di Sterm a 1-2-3 molecole d'acqua a decimi di namonetri a 1-2-3 nonometri per esser



$$u \frac{dV_x}{dx} = \varepsilon \varepsilon \varepsilon \frac{d\varphi}{dx}$$



Inlogrismo dimovo us sob fuo alla X = piano di scorrmento

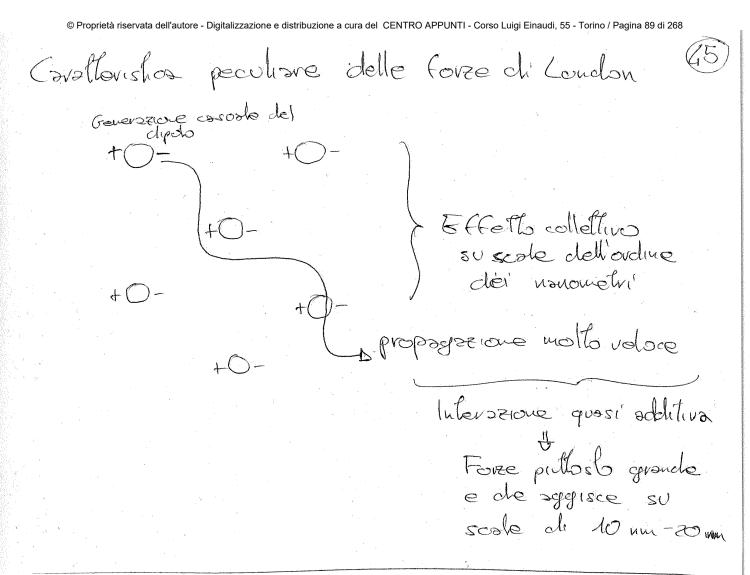
$$\mathcal{M} = \mathcal{E}_s \mathcal{E}_r \int_0^{x_s} \frac{dy}{dx}$$

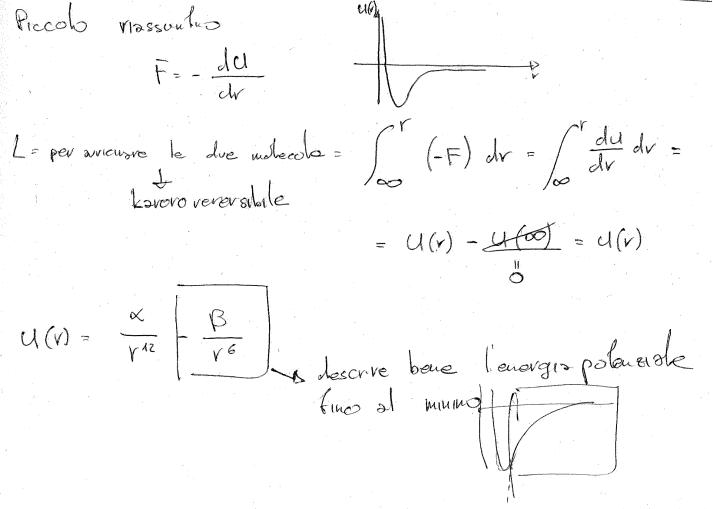
Una votta de abbirmo & possiono approssimere X, con lo strato di Helmotz (5) e quindi stimore Pp 1) & valitate su OHP

2) no adsorbinents specifico

$$\xi \xi \frac{d^2 \psi}{dx^2} = -p_{\psi}$$

la integrismo tra X* (un ponto dentro OHP) e X de lende 0


$$\int_{x^{2}}^{\infty} \mathcal{E}_{o} \mathcal{E}_{v} \frac{d^{2} \psi}{dx^{2}} dx = - \int_{x^{2}}^{\infty} + \beta q dx$$

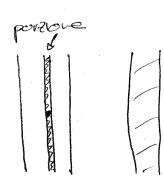

E E dy | x=0 in qualinque punto x* sia li deutro
li deutro visultato non cambia perde
li deutro non cie carioa

$$\mathcal{E}_{o}\mathcal{E}_{r}\left(\frac{d\Psi}{dx}\Big|_{\infty}-\frac{d\Psi}{dx}\Big|_{x^{*}}\right)$$

- E. E. dy = Jp

Mentre se ci sono non' adsorbiti in mocho (3)
specifico il nostro & potrebbe già essere
= 0 ma solomente perde compensata dogli
loui assorbili
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Altra informazione do si pro evere é Op
in nodo spermentate
Ag Br (s) prohosonale insolubile PAg
No solsorbinous specifico
Per offenere of miscrever Dop
Agegrungo An moli di AgNO3 Vovie aggrunte Aniq. Anil.
e => diminusce sulle noste particelle PAgo PAg
PAS e combisão la correr superficiale (miserabile)

$$U(m_1,p_2) = \int \frac{B}{r_6} \cdot q_2 \cdot 2\pi y \, dx \, dy$$

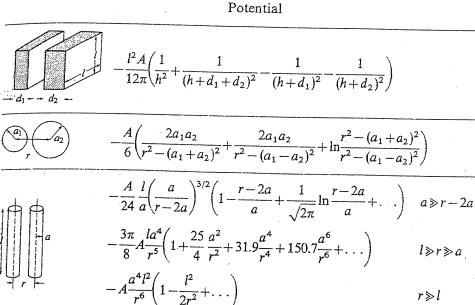

esprimion
$$V$$
 in fourious $d \times e y$

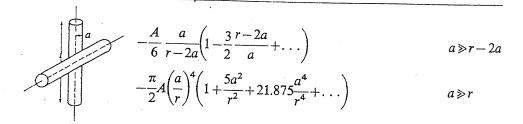
$$V^2 = (R + x)^2 + y^2$$

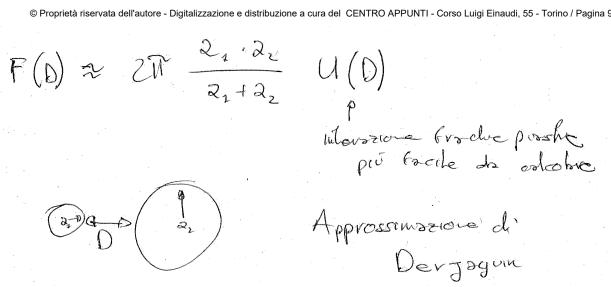
$$=\int_{x=0}^{8}\int_{y=0}^{\infty}\frac{\beta}{\left(\left(R+x\right)^{2}+y^{2}\right)^{8}}q^{2} 2\pi y dx dy = tabella mtegoali=$$

$$= -\frac{\text{PBQ2}}{6} \left\{ \frac{1}{R^3} - \frac{1}{(R+5)^3} \right\}$$

$$= \frac{-RB92}{6} \left\{ \frac{1}{R^3} - \frac{1}{(R+6)^3} \right\} 9 \times S dR$$




Che		puesta cartoule	NIRO APPUNII - Corso	o Luigi Einaudi, 55 - Torin	o / Pagina 93 di 2	(4)
			2	2		
	Misoriano Pe					4
	VIOSVISMO		A_{22}			
	11	1				
		Å ₁₂ =	centra	con Am	- A ₂₂	
12.7	$= R^{2} q_{1} q_{2} R$ $= R^{2} q_{1}^{2} R$ $= R^{2} q_{2}^{2} R$	1		V A22	9	


Table 5.1.

Geometry

From Mahanty & Ninham 1976.

App valida m agai caso con ogni tipo di forza (elettria, ecc.) e funcions beve se

D << 2, 2

Prima abbismo calcolato thel vuolo e se de un metto 3 questo mene soupre schemosto Si usa una teoria più recente du Litahita che porto allo stesso interazione (va che piashe trame per la costante A $A_{12(3)} = A_{12(3)} + A_{12(3)} \cdot f(h)$ in functione della dislanza Queste sono

difficilmente misovolul di permestlivita in funzare

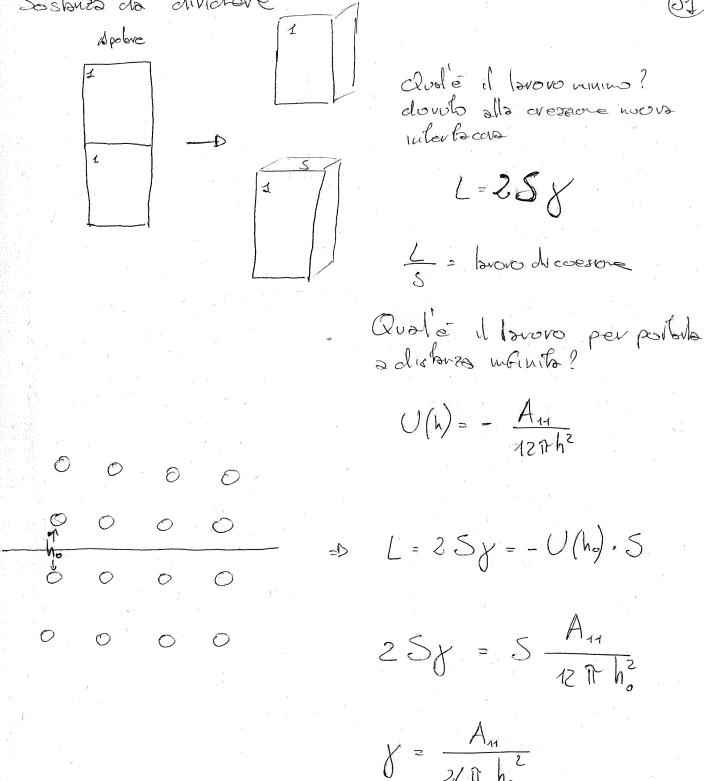
e do se usono vovi

dello frequenza

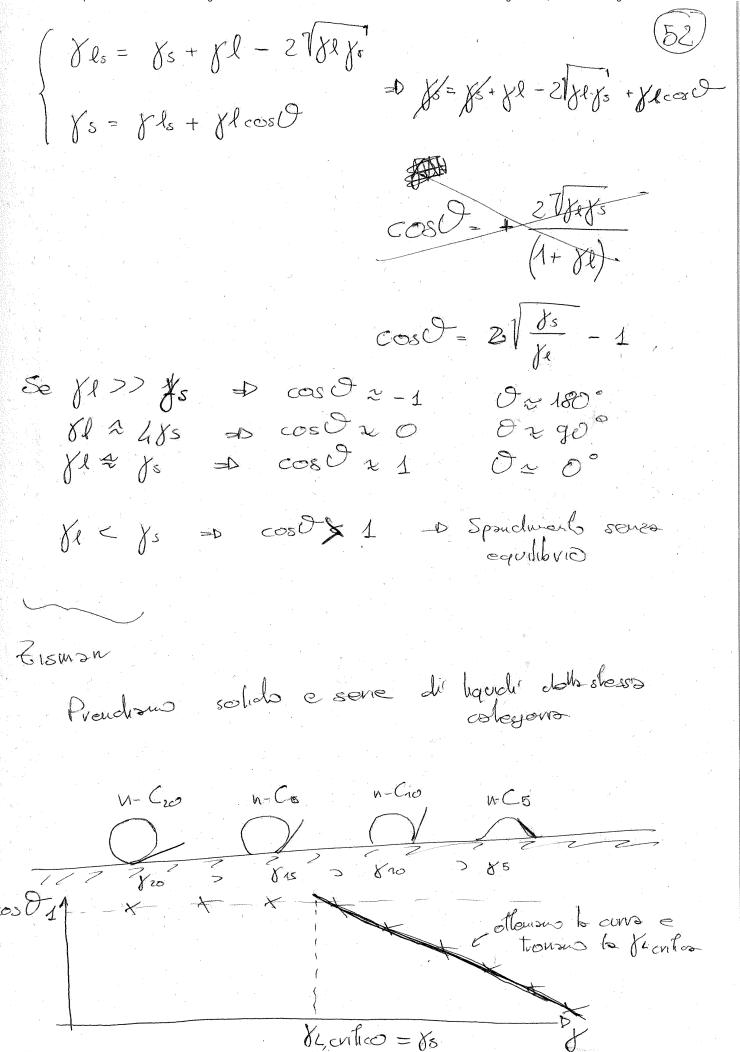
o Si misorono o si shuono cosi!

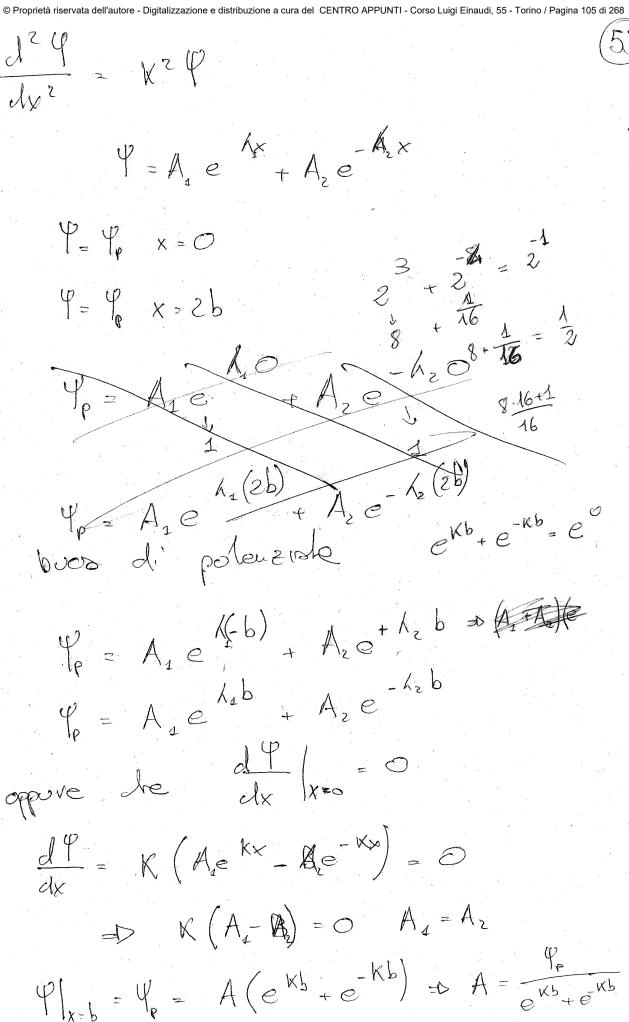
$$A_{11(3)}(h) = \frac{3}{4} k_B T \left(\frac{\varepsilon_{r,1}(0) - \varepsilon_{r,3}(0)}{\varepsilon_{r,1}(0) + \varepsilon_{r,3}(0)} \right)^2 + \frac{3h_P \sqrt{\nu_{uv,1}\nu_{uv,3}}}{64\bar{n}^{7/4}} \frac{X^2 \bar{n}^2 + 2X(n_1^2 - n_3^2) \cdot \bar{n} + (n_1^2 - n_3^2)^2 (3 + 2Y)}{\left[\left(Y - \sqrt{Y^2 - 1} \right)^{1/2} + \left(Y + \sqrt{Y^2 - 1} \right)^{1/2} \right]^3} F(Q)$$

$$\bar{n} = \sqrt{(n_1^2 + n_3^2)/2}$$


$$X = \frac{\nu_{uv,1}}{\nu_{uv,3}}(n_1^2 - 1) - \frac{\nu_{uv,3}}{\nu_{uv,1}}(n_3^2 - 1)$$

$$Y = \frac{1}{4 \cdot \bar{n}} \left[\frac{\nu_{uv,1}}{\nu_{uv,3}}(n_1^2 + 1) + \frac{\nu_{uv,3}}{\nu_{uv,1}}(n_3^2 + 1) \right]$$

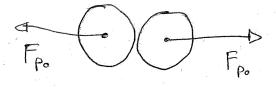

$$F(Q) = \frac{4\sqrt{2}}{\pi} \int_0^\infty \frac{(1+2Qx) e^{-2Qx}}{(1+2x^2)^2} dx$$


$$Q = n_3 \left(n_1^2 - n_3^2\right)^{1/2} \frac{2\pi \sqrt{\nu_{uv,1}\nu_{uv,3}} h}{c} \cdot 2\pi$$

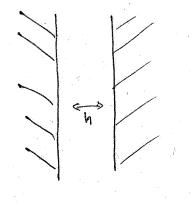
(a) ·	· liquids			(b) -	solids		
	$\varepsilon_r(0)$	n .	$\frac{\nu_{uv}}{10^{15}\mathrm{s}^{-1}}$	substance	$\varepsilon_r(0)$	n n	
n-pentane	1.844	1.349	2.987	fused quartz	3.80	1.448	3.221
n-hexane	1.890	1.365	2.981	cryst. quartz (average)	4.29	1.536	3.234
n-octane	1.948	1.387	2.965	fused silica	3.81	1.448	3.236
n-decane	1.991	1.402	2.981	calcite (average)	8.2	1.586	3.019
n-dodecane	2.014	1.411	2.987	mica	7.0	1.60	3.0
n-tetradecane	2.03	1.418	2.938	calcium fluoride	7.36	1.427	3.8
n-hexadecane	2.05	1.423	2.941	sapphire	11.6	1.752	3.210
cyclohexane	2.03	1.426	2.9 *	alumina	11.6	1.75	3.0
benzene	2.28	1.501	2.145	polystyrene	-2.55	1.557	2.3
carbon tetrachloride	2.24	1.460	2.7 *	polyvinylchloride	3.2	1.527	2.889
acetone	21.	1.359	2.9 *	polytetrafluoroethylene	2.10	1.359	2.853
methanol	33.64	1.317	2.976	polyisoprene	2.41	1.502	2.491
ethanol	25.07	1.361	3.062	polymethylmetacrilate	3.4	1.480	3.047
glycerol	42.5	1.462	3.016		•		
water	80.10	1.333	3.022				

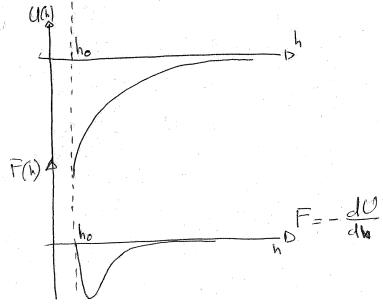
trovo de y é ben correlato con Am Se uso ho = 0,165 mm Se ho un liquido misuro y e poi Trovo A Se ho seholo thousavo A e travo of

Parliamo delle forze di coesione



Agglowersh tench usione do med force VdW


-utili come viempitari


-posso attrovarsare tillo il solido seura passare
nel liquido o viceversa

Mi é vhle Trousne quale sia la forza necessaria a dividence o déformare. Forza di pull-off

Commerciono delle prestre

65

Se
$$2_1 = 2_2 = 2$$

Se fossero diverse
$$U(h_0) = y_1 + y_2 - y_{12}$$

$$F_{p_0} = 2\pi \left(\frac{1}{2_4} + \frac{1}{2_5}\right)^4 (y_1 + y_2 - y_{12})$$

Sono s'ble surlupporte tourre molto pri complesse de tengono conto del di

- Deformazione

- Elmino l'approssimazione de mi permette di usare due pastre per le particelle

JKR

per particule luguali

(Janson, Kondoll, Roberts)
per particolle mollo deformabili

DMT

(Derjogmin, Müller, Topovor)
per particula rigida

Nel nostro caso (No doppio strata)

Cip (Cercano del diffonde ma sono blocaste

C+ Iden

x*

Generatione formand osmotico $P(x*) - P(\infty) = \prod_{x*} - \prod_{x=\infty} =$

 $= RT \left[\left(C_{+} \mid_{X^{*}} + C_{-} \mid_{X^{*}} \right) - \left(C_{+} \mid_{\infty} + C_{-} \mid_{\infty} \right) \right]$

1 selo elettrolib ed é simuelinco

My SOn - My + 502

 $C_{b,+} = C_{b,-} = C_{b}$ $Z_{+} = -Z_{-} = Z_{-}$

 $= RT \left[\left(C_{+}|_{x^{*}} + C_{-}|_{x^{*}} \right) - \left(2C_{b} \right) \right]$

 $C_{+}|_{x^{*}} = C_{b,+} e^{-\frac{2}{RT}} \varphi$ $= C_{b} e^{-\frac{2F}{RT}} \varphi(x^{*})$

 $C_{-}|_{x^{*}} = C_{-}|_{x^{*}} = C_{-}|_{x^{*}}$

$$F_{x} = \int_{x_{1}}^{x_{2}} E dq = \int_{x_{1}}^{x_{2}} E \int_{y_{0}}^{x_{2}} S dx$$

$$= \int_{X_1}^{X_2} \left(-\frac{d\varphi}{dx} \right) \cdot \left(-\frac{d^2\varphi}{dx^2} \mathcal{E}_{\delta} \mathcal{E}_{V} \right) \cdot \mathcal{S} dx =$$

do Poisson
$$\frac{d^2 \varphi}{dx^2} = -\frac{\beta_4}{\epsilon \epsilon_r}$$

$$= \underbrace{\mathcal{E}}_{x} \underbrace{$$

Risolvo moltiplicando e dividendo per 2

$$\frac{d}{dx} \left(f(x) \right)^2 = 2 f \frac{df}{dx}$$

$$\frac{d}{dx} \left[\left(\frac{dy}{dx} \right)^2 \right] = 2 \frac{dy}{dx} \cdot \frac{d^2y}{dx^2}$$

$$=\frac{\varepsilon_0 \varepsilon_V S}{2} \int_{x_1}^{x_2} \frac{d}{dx} \left[\frac{d\Psi}{dx} \right]^2 dx = 0$$

$$\frac{F}{3a} = \frac{5E_0E_x}{2} \left[\left(\frac{d\Psi}{dx} \right)_{x_2}^2 - \left(\frac{d\Psi}{dx} \right)_{x_4}^2 \right]$$

Quindi'

FR = 2 SRT Cb [cosh (ZF 9m)-1]

Questo é voholo solo se l'é sumetrico in nezzo

alliment d'esvelbe un minimo di torra elettrica

In questo caso fo non é considerado variable durante

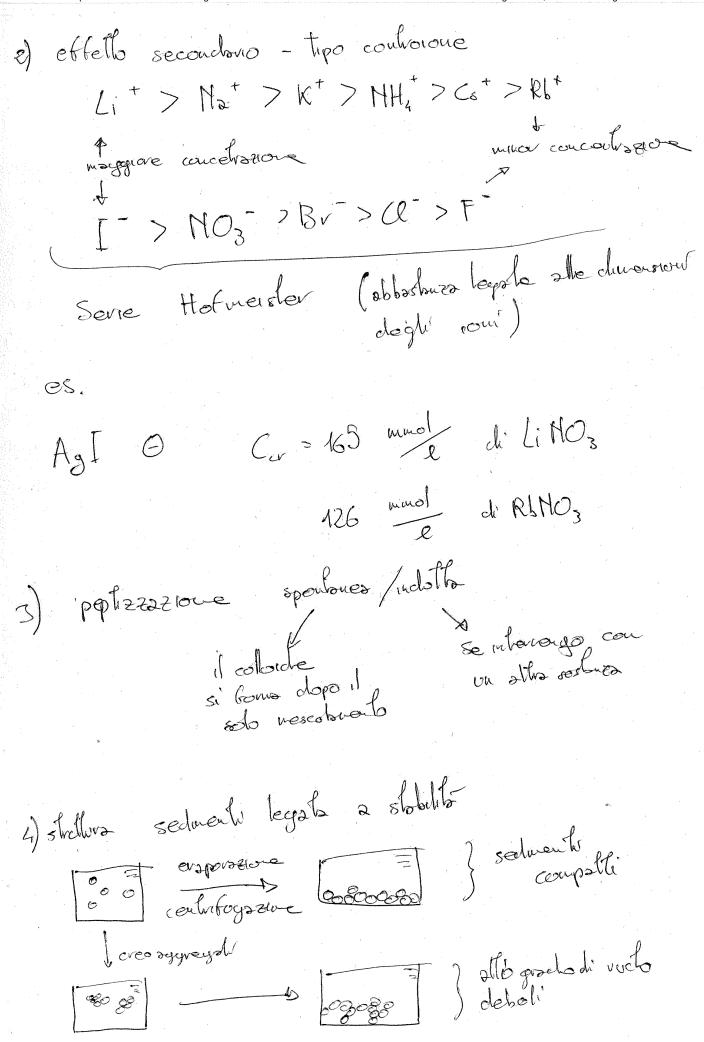
La l'avvicinamento. In vesthé essendo en equilibrio

questo auvicinamento deve essere lenta

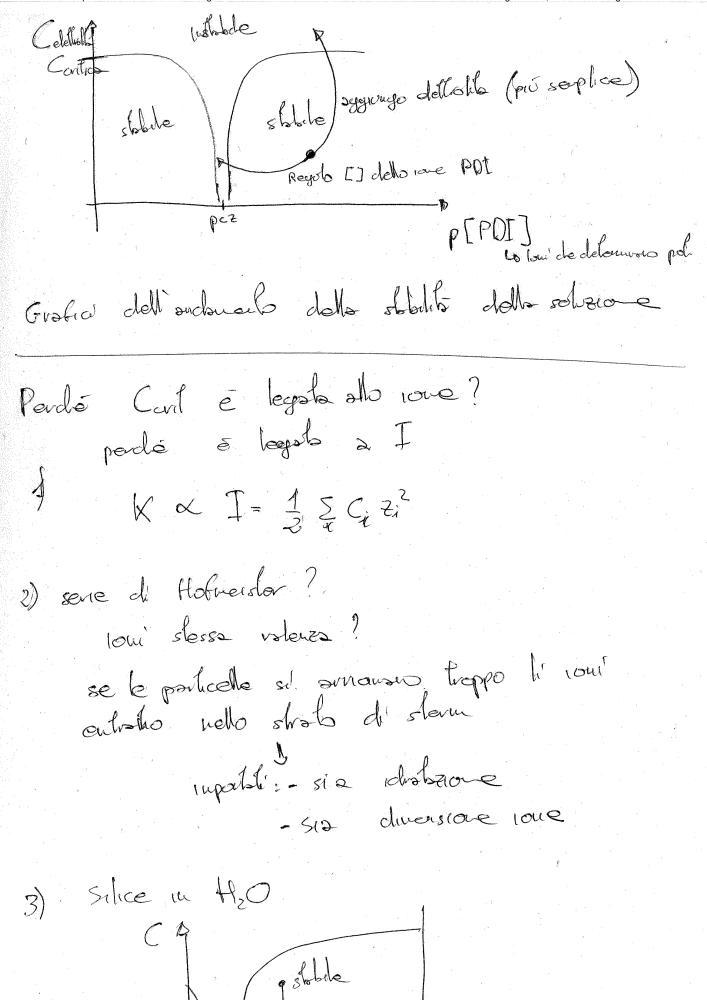
Invece anche se le particelle si avvicinamo molto veloconate

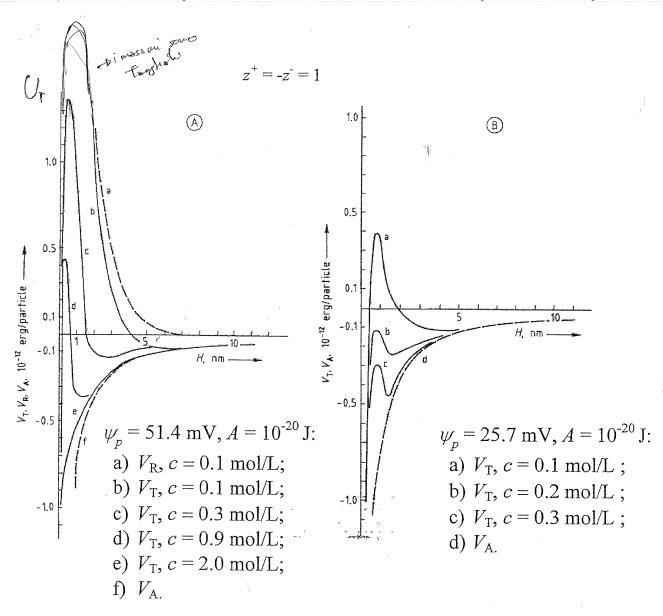
la carica superficiale manue costante quindir in

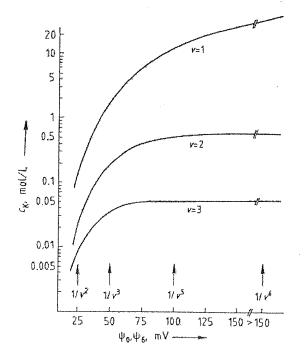
vestta fo cambria sarpre


Top = KPp & Er tanto (Kb)

In vesto la repulsione é maggiore di quella di


prima a causa di questo avvicinamento


Eserciziello A = 6.10-20 T p = 3000 kg/ms ho = 17 A FA = Fg Rmax = Fg= 4pR3. p= 981 = FA $F_{A} = 2\pi \left(\frac{1}{2} + \frac{1}{2}\right)^{-1} \left(-\frac{A_{11}}{12 \text{ Pl}_{12}}\right)^{2}$ EX (1) (- A11) = 2/3 x R3 p. 9.81


	Stabilizazione della solonia delle sospensioni
4)	Stabilité termochusines: - sosbuzza se composita come un soluto
	- Sospension associale (micelle) o o Energia & Energia G. (non disposso) colloidi idvotili o liofili
ಶ)	should cinetica [100-1000 anni]] caso de ci monessa (hofobil - idrofobil)
	coalescensa 800
	Pophezopione
	introduce force in grade di contrastre le
	stobilizzazione elettrostotios

Ut 1
max soma repulsiva
I mu. mobb loubre debote forza allastina
// forle tords allralliva
In leaves so dorrano avere like le particulté à chistories del primo miniono
del primo miniono
- In restlat esiste l'everges lerma de può forte seperare Il primo minimo (molo browniono)
of bring minimo (mojo promismo)
Se 1 massimo é poso pronuncialo
3 KbT pus essere sufficiente
3 KBT put essere sufficiente 2 mm. (chromob dal prof. minuo secondorio) è serpre poco pronuncialo
poco prononersto
Ssee well pro all 3 RT
poco prononcisto poco essere mello più allo di 3 ket
lo Come si modula UT = VATUR
How modebbile (departe del arter)

concentrazione critica di coagulazione per sfere con $A = 10^{-20}$ J

$$V_{p} = \frac{RT}{F} \ln \frac{C_{As}}{C_{As}}$$

$$V_{k} = \frac{Ae}{12h} = -\frac{\alpha}{h}$$

$$V_{k} = \frac{Ae}{12h} = -\frac{\alpha}{h}$$

$$V_{k} = \frac{Ae}{12h} = -\frac{\alpha}{h}$$

$$V_{k} = \frac{Ae}{12h} = \frac{\alpha}{k^{2}} = \frac{2Ch}{k^{2}} = \frac{$$

Come si esphatono Bie Di?

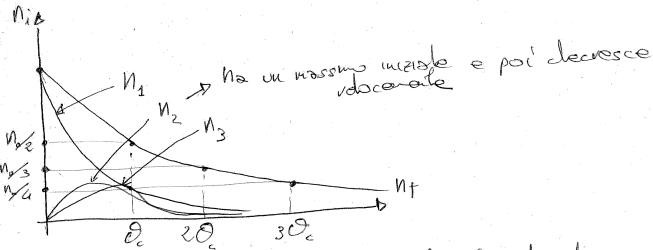
$$D_{i} = \sum_{J=1}^{\infty} V_{i,J}$$

$$\frac{dn_{i}}{dT} = \frac{1}{2} \sum_{J=1}^{4-1} Y_{J,i-J} - \sum_{J=1}^{\infty} Y_{i,J} = \frac{1}{2} \sum_{J=1}^{4-1} X_{J,i-J} N_{J} N_{i-J} - \sum_{J=1}^{\infty} N_{i} N_{J} N_{i,J}$$

$$i = 1,2,3, \quad \text{per ogmi closse}$$

**O Proposed intervals deltautice - Digitalizazione a distribuzione a cuis all' ETRO APPUNTI- Coro Ligi Etraudi. \$5. Totto / Pagins \$5.01285

$$= \frac{1}{2} K \begin{bmatrix} O & + & N_1 & N_1 & + & N_2 & N_3 & + & N_4 & N_2 & + & N_3 & N_4 & + & N_5 &$$


$$\frac{N_1(t)}{N_0(1+\frac{t}{\delta_c})^2} = \frac{1}{\left(1+\frac{t}{\delta_c}\right)^2}$$

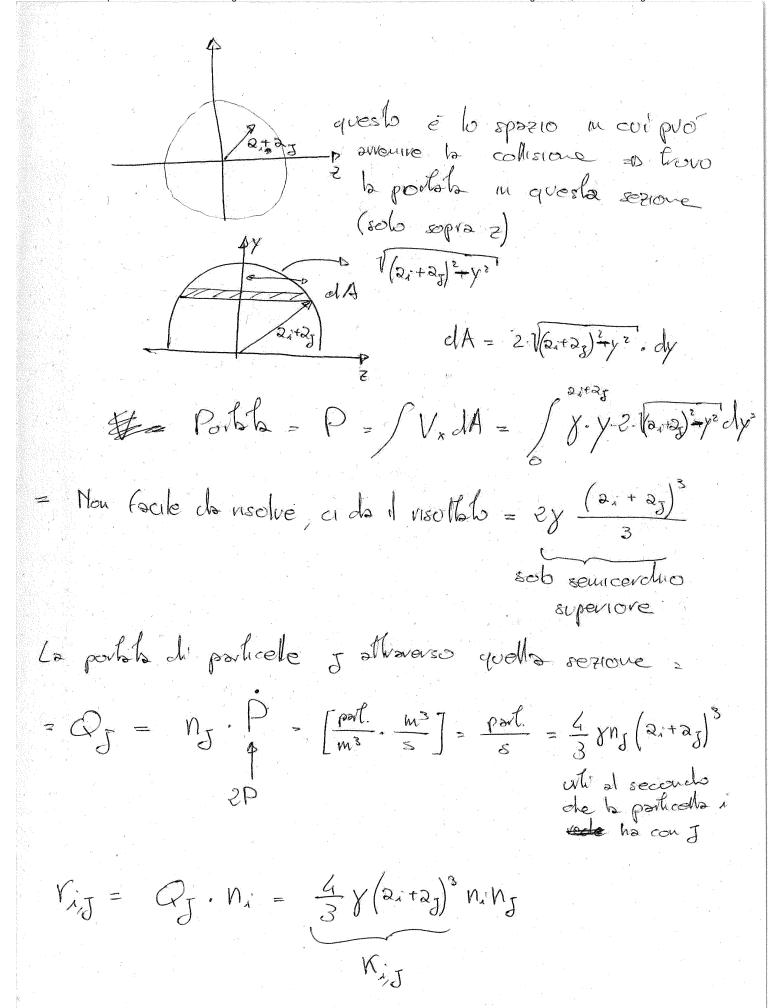
$$N_4 = \frac{N_0}{\left(1 + \frac{1}{\sqrt{Q_0}}\right)^2}$$

Poi si ripronde per i=2

Poi 1=3 e vis via iterativamente

$$N_{i} = \frac{N_{o}\left(\frac{1}{O_{c}}\right)^{i-1}}{\left(1+\frac{1}{O_{c}}\right)^{i+1}}$$

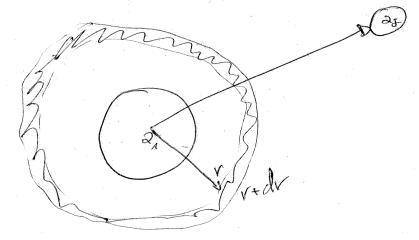
Per consilerizzare e maglio un albo tipo di diagrama


(Sampo chimansionale motto giranche


(Sampo chimansionale motto giranche

(Tampo chimansionale motto gira

Mechanism	$\operatorname{Kernel} k_{i,j}$
Brownian motion	$\frac{2kT}{3\mu} \frac{(r_i + r_j)^2}{r_i r_j}$
Laminar shear	$\frac{4}{3}\gamma(r_i+r_j)^3$
Isotropic turbulence	$1.29\sqrt{\frac{\varepsilon}{\nu}}(r_i+r_j)^3$
Turbulent inertia	$\frac{1.27(\varrho_p - \varrho_f)}{\mu} \left(\frac{\varepsilon^3}{\nu}\right)^{\frac{1}{4}} (r_i + r_j)^2 \left r_i^2 - r_j^2\right $
Differential sedimentation	$\frac{0.7g(\varrho_p-\varrho_f)}{\mu}(r_i+r_j)^2\left r_i^2-r_j^2\right $



10 30 100

© Proprietà riconate dell'eutere. Digitalimanione e distribuzione e sure del CENTRO ADDINITI. Caree Luigi Finandi EF. Tarine / December	ing 145 di 260
Proprietà riservata dell'autore - Digitalizzazione e distribuzione a cura del CENTRO APPUNTI - Corso Luigi Einaudi, 55 - Torino / Pag Un instreve di particelle su può consolerare la sua diffusione can la legge di	
Fick = processo diffusivo	
Js = flusso diffusivo = - Ds dCs dx	
$\frac{1}{s m^2}$	
noi non mobile ma porticottore	
J _{svi} = - D _{Ji} dN _J mothe to noshs	simuetra in vesta
partieble sel ragiono	

Join = - Dis du

Volchono la qualità di palicelle presenti in quedo volume di carbollo

$$\frac{dn_{J}}{dr} = \frac{1}{r^{2}} \frac{\partial}{\partial r} \left(+ r^{2} D_{ij} \frac{\partial n_{J}}{\partial r} \right)$$

1 approssumatione non quellicable: cerchiamo una soluzione sherione (dopo en deleminab basso di Tempo)

$$D_{ij} \frac{1}{v^2} \frac{d}{dv} \left(v^2 \frac{dn_j}{dv} \right) = 0$$

2 condition of contorns

I perdono la propria identifation de la propria identifation del propria identifation de la propria id

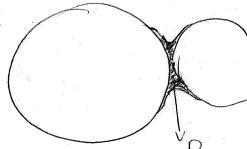
$$\frac{d}{dr}\left(r^2\frac{du_5}{dr}\right) = 0 \Rightarrow 0$$

secondo integrale

prino inlegiole

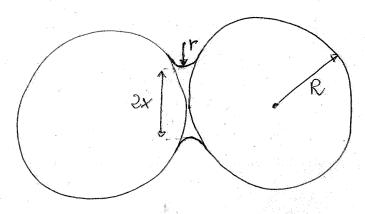
$$\int dn_{J} = \int \frac{A_{1}}{r^{2}} dr$$

$$n_J = -\frac{A_1}{r} + A_2$$

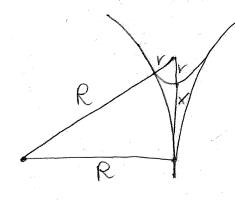

© Proprietà riservata dell'autore - Digitalizzazione e distribuzione a cura del CENTRO APPUNTI - Corso Luigi Einaudi, 55 - Torino / Pagina 149 di 268
Quadi noi voglismo sopere quoti somo le particelle
Dumdi not voylismo sopere quot somo le posticelle J de vono ad aderive su i
$Q_J = 4\pi r^2 J_J = 4\pi r^2 \left(-D_{iJ} \frac{dn_r}{dr} \right) =$
$= 4\pi y^{2} \left(-D_{ij} N_{b,j} \frac{2i+2j}{y^{2}}\right) =$
clervolo ch'
chemishs di $N_{J} = N_{b_{J}} \left(1 - \frac{2it21}{r} \right)$
= -41 Dig (ai+ag) MJb
- é veyetiro et le perticulte vanue dell'edem
and the second of the second o
all interno
- Quou dipende dol vogge (nel limite in out é,
Qz = an Dij (aitaj) nsib
A of the state of
ViJ = (Qgl. Ni = nonew dh ovh i, j
nomeno de entida J
nomero di erti di 5 nomero di erti di 6 a quelle del belli

e come se ne here comb!	46
mob Brownisms: - Forts mobile	1.3
Termochysma	n_du
_ // Vestshua	
Fluidochusmica	- 6TM a Velout
_ alle forze aggin	be of Moncio
$\frac{d}{dx}$	- poleneple elettrico
Fallbre di slabilità Wij	
nomero di orli for i est " efficaci fra i est	
(ideale) (ideale) Wij	
$W_{ij} = (2_i + 2_j) \int_{2i+2_j}^{\infty} e^{-\frac{V_r(i)}{V_b T}} \frac{dv}{v^2}$	

Riprendians


analisi forze superficiali

Force capillari: pouli di liquido/gas



idrofile a zgus idotobe con gos

Pressione l' deules più bossa de fuor!

$$P_{int} - P_{est} = y \cdot \left(\frac{1}{x} - \frac{1}{r}\right)$$

$$2Rr = x(x+2r)^{2}$$

ipolesi x>>r Up Part-Pesla-Y 1

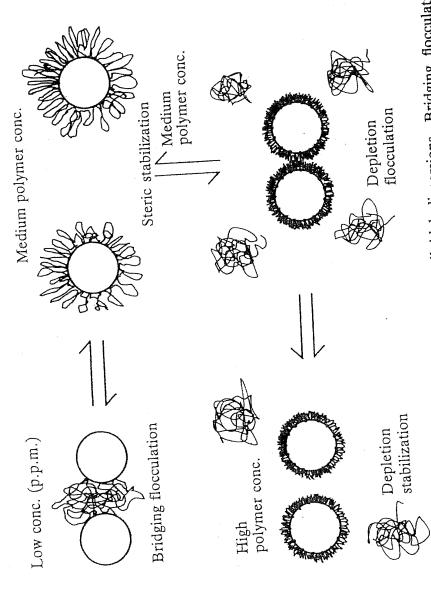


Fig. 8.13.1. Effects of polymer chains on colloidal dispersions. Bridging flocculation (section 8.12.1) can occur at very low polymer concentrations. Steric stabilization (sections 8.4-8.8) requires moderate polymer concentrations and the polymer must be whereas depletion stabilization (section 8.10.2) can be understood in terms of the work adsorbed and anchored. Free polymer effects occur only at moderate to high polymer concentrations; depletion flocculation (section 8.10.1) is essentially an osmotic effect, required to create a polymer free region between two approaching particles.

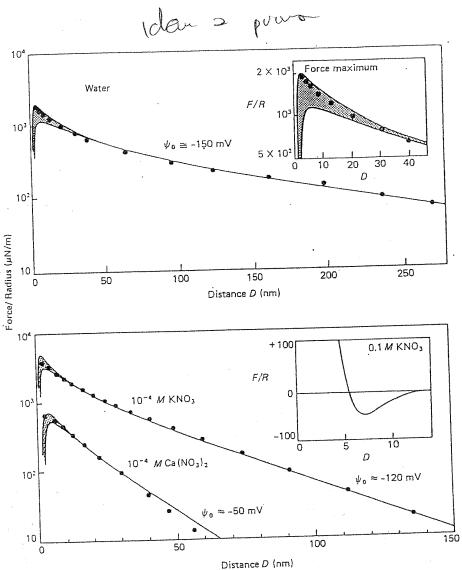


Fig. 12.13. Measured double-layer and van der Waals forces between two curved mica surfaces of radius R (\sim 1 cm) in water and in dilute \sim 10⁻⁴ M KNO₃ and \sim 10⁻⁴ M Ca(NO₃)₂ solutions. The continuous curves are the theoretical DLVO forces (using a Hamaker constant of $A=2.2\times10^{-20}$ J) showing the constant charge and constant potential limits. Theoretically, we expect the interactions to fall between these two limits.

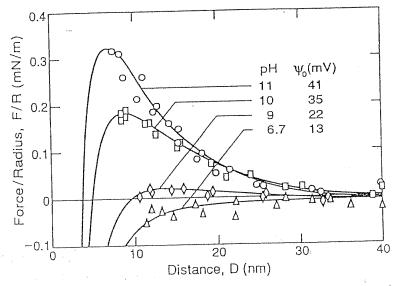


Fig. 12.14. Classic DLVO forces measured between two sapphire surfaces in 10^{-3} M NaCl solutions at different pH. The continuous lines are the theoretical DLVO forces for the potentials shown and a Hamaker constant of $A=6.7\times10^{-20}$ J (from Horn et al., 1988a).

stende Capolinary a bhooche! - una motto offine 2 porticetts - una molto office a fluido on poco polmero si include l'aggregazione Egaversione d' pout bridging flocculation - con concoils stant un po pro atte di polovero slabilizzazione slavior - se = lillo ricepello non ci sous silu di oggenicio - moltre il poluro dere asere ben didos occupare distanza maggiore di 5 - 10 mm overs schemere il polenziale e possibile for a distendere o vaggonidare le ortene polineriche Up Bosso de solvaire élabite a mobble

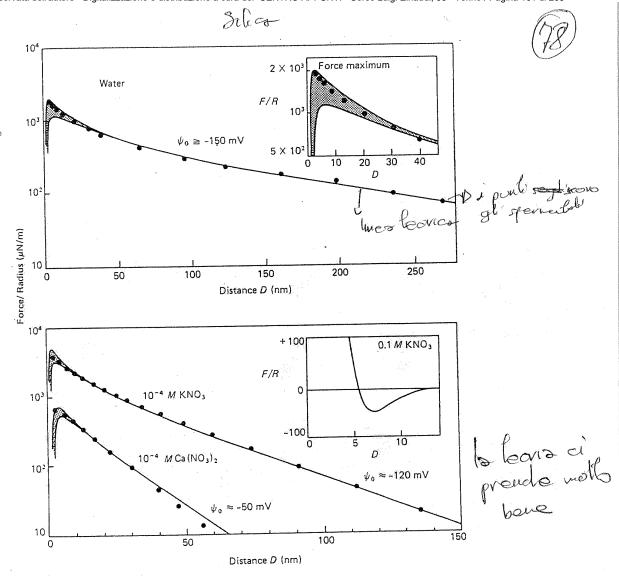


Fig. 12.13. Measured double-layer and van der Waals forces between two curved mica surfaces of radius R (\sim 1 cm) in water and in dilute \sim 10⁻⁴ M KNO₃ and \sim 10⁻⁴ M Ca(NO₃)₂ solutions. The continuous curves are the theoretical DLVO forces (using a Hamaker constant of $A=2.2\times10^{-20}$ J) showing the constant charge and constant potential limits. Theoretically, we expect the interactions to fall between these two limits.

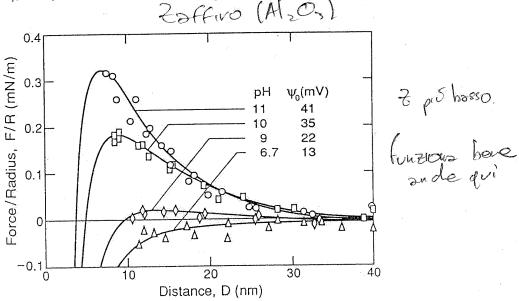
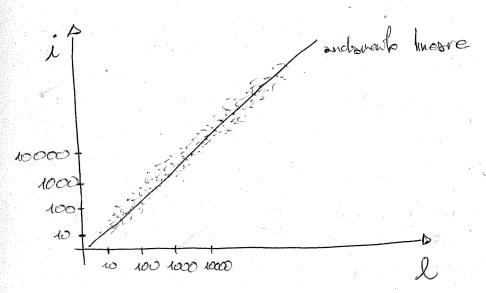


Fig. 12.14. Classic DLVO forces measured between two sapphire surfaces in 10^{-3} M NaCl solutions at different pH. The continuous lines are the theoretical DLVO forces for the potentials shown and a Hamaker constant of $A=6.7\times10^{-20}$ J (from Horn et al., 1988a).

Morfologia deyl aggregati


Montenmento forma eviginate - a constleristate pecchani

i = numero di menomari

1 = dimensione constantico:

- vaggio della steva più piccola de carlorna l'acgyresato

I = m Rg raggio di giro

ln(i) = m ln(l) + qDr + dimensione Frottole

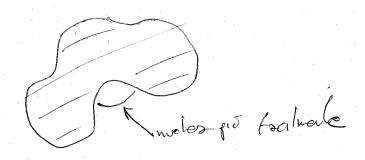
della popolozione

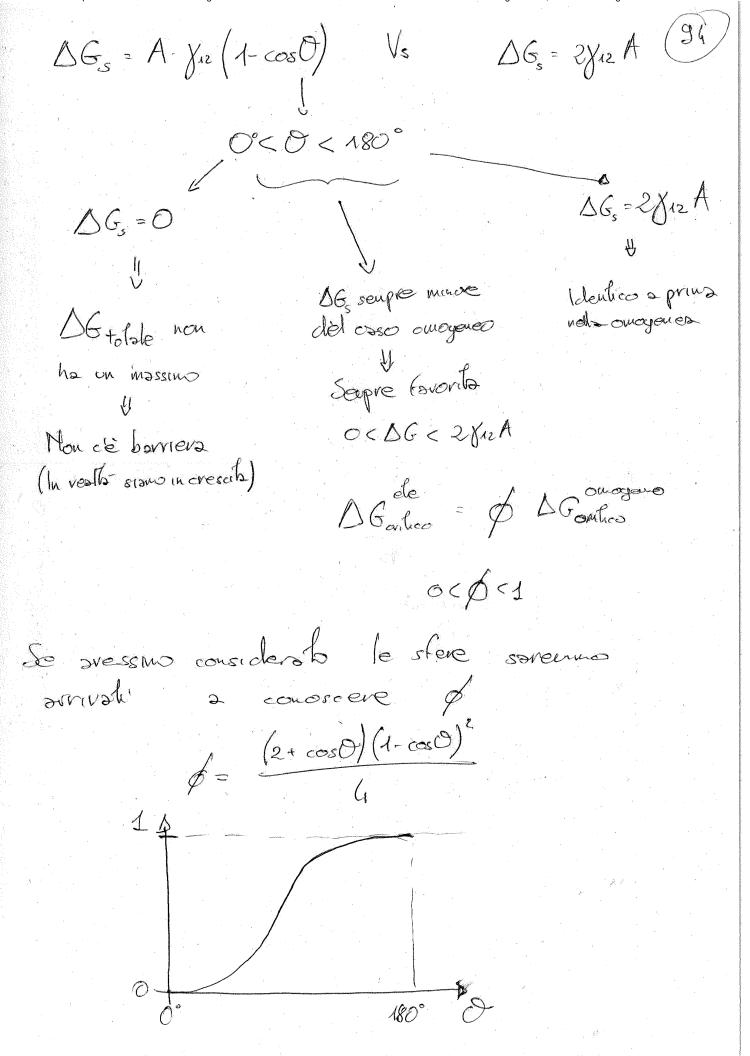
3 $i = q \cdot l^m - b \quad i = K_{\xi} l$

escapt limite:

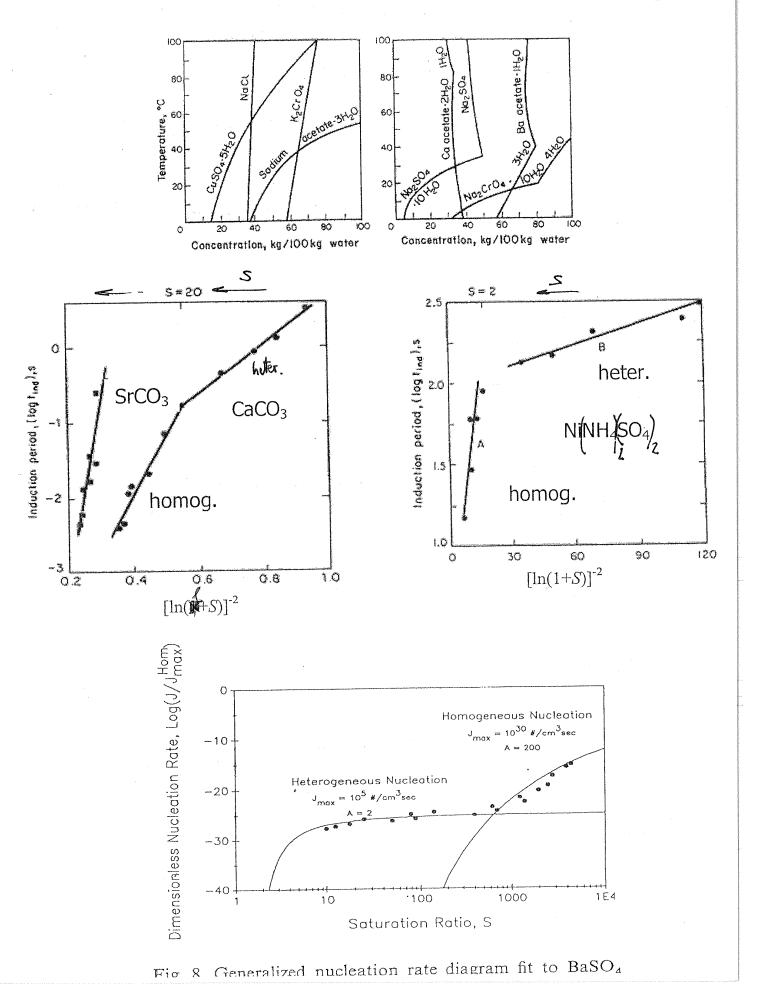
See perfetbrelle ordinale
$$i = L^3$$

$$\int_{-\infty}^{\infty} \frac{1}{V} = \frac{L^3}{V} = \frac{L^3}{L^3} = \cosh h e$$


Rolliva: frontimolori ecc. non ci inferessono 8:	1)
- sottoponiono l'aggregato a molo fluido dinamici	
Sigerers componente di toglio de to rvotore us vompe o ansce sude	
Come sol genera mob di taglio? - taglio	
fullobre III	
- elougozione porticular porticu	
Intensité si modulo con M= viscosité O Vi = Volocité Oxy	1


Crescho crescho	(II)
- solubilité in fuzione d'à	
CASO sobole sobole	
Acribio à voggeo della pshicelle	
Se 10 ho prihable con a < Aarthoo queste si	isciolypus
a > Acritica queste al	9CCNO36OM)
soluzione souvasalura CA > CA, sol	
crescib spontones se 2>2cr	
Quanto vale acritico? Ostovald	
Charle vale a wines $ \frac{C_{A,sol}(0)}{C_{A,sol}} = \frac{28\sqrt{s}}{2.R.T} $	
CA, sol	
5 = vapports de saluvazione	
In S = $\frac{28 \text{ V}_s}{\text{acr} RT}$ $\Rightarrow \text{acr} = \frac{28 \text{ V}_s}{\text{RT In S}}$	

© Proprietà riservata dell'autore - Digit	alizzazione e distribuzione a cura del	CENTRO APPUNTI - Corso Luigi Ei	naudi, 55 - Torino / Pagina 175 di 268
Tempo di induzio		_	
	Nuf =	1 nucleo	
	·	= tnd J	
		Sunde ans.	<u>s</u>
gocce H2O d	la vapove serve	ovier	
	Sovvasahvario	ove S	tud
	1		10 62 Juni
	3		000 anni
	4	en e	1 30000


Jo é il marino della velocita ellambile nella nuclearione
quando S-100

Nucleatione élevogenes

Dato de qui roppresentomo le velle togeraturi significo de quondo una prevate soll also presse de touto! Infalli: omogares $5 > 5_{tv}$ alla sovoestuszione se 5 < 1,5-2,0 mélosible Allovo el scorchono dell'incorporazione e ollenomo

JA = Kmt (CA, b - CA, e)
mass-troubed controllante

Altrimenti

superficial incorporation controller

Altrowark

whermedio

Mass transferl

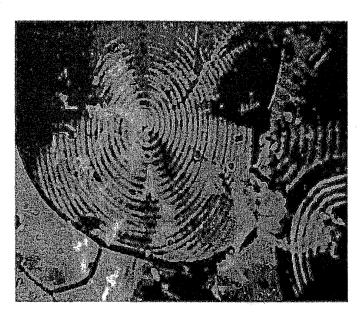


Figure 6.6. An elliptical spiral on the (100) face of an ammonium dihydrogen phosphate crystal growing in aqueous solution (Davey and Mullin, 1974)

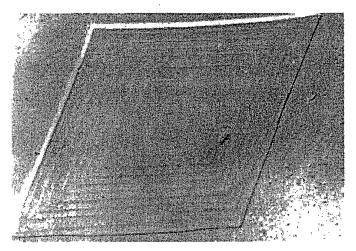
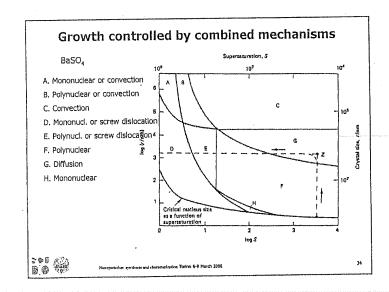
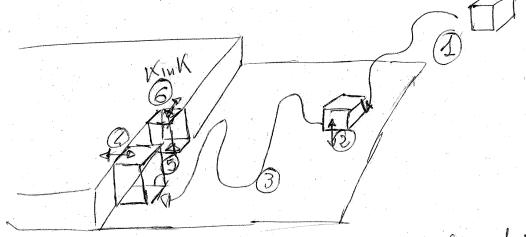



Figure 6.7. A polygonized spiral on the face of a C_M normal alkane crystal. (Courtesy of R. Boistelle)


4

G = 4 DAMA (CA, J-CA, e)

- inversamente proporzionale alla dimensione delle

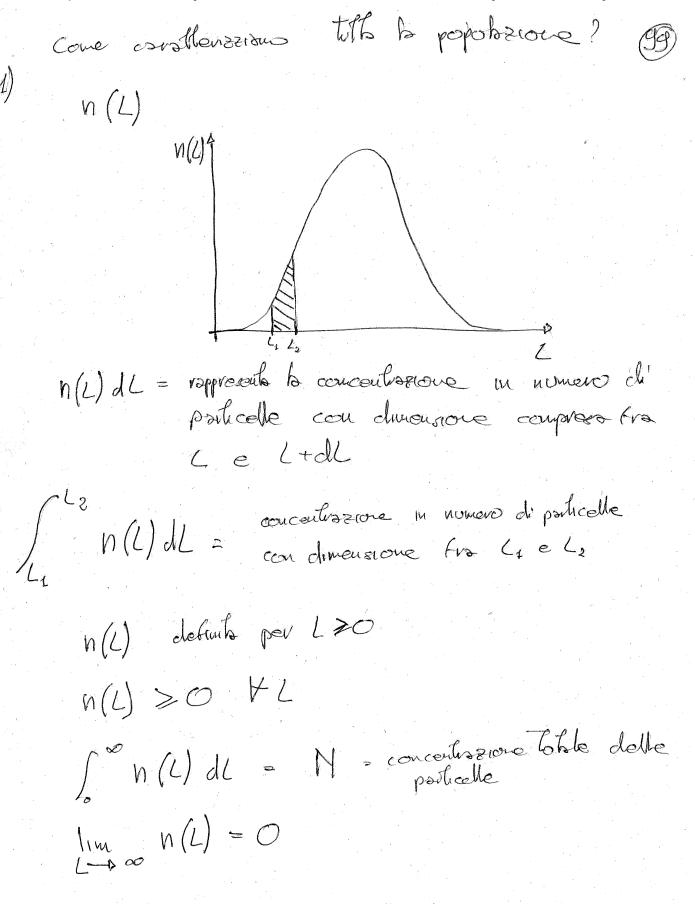
-con molecole pré grosse interviene suche la converione (se sono piccole queste si muorono col fluido! quindi non ci sorobbe)

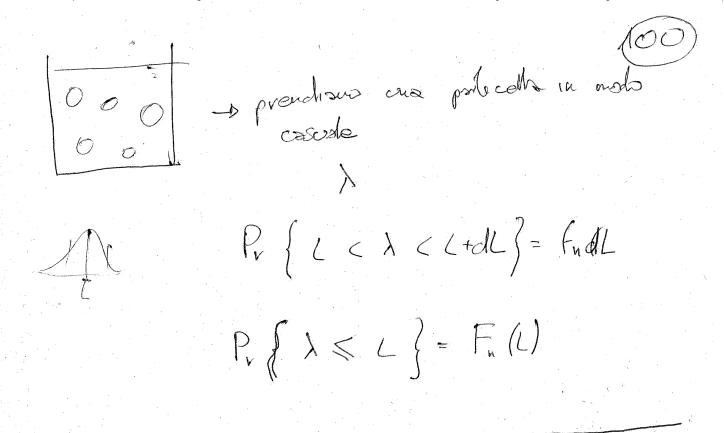
Incorporazione superficiale

1) mass-tranfer?

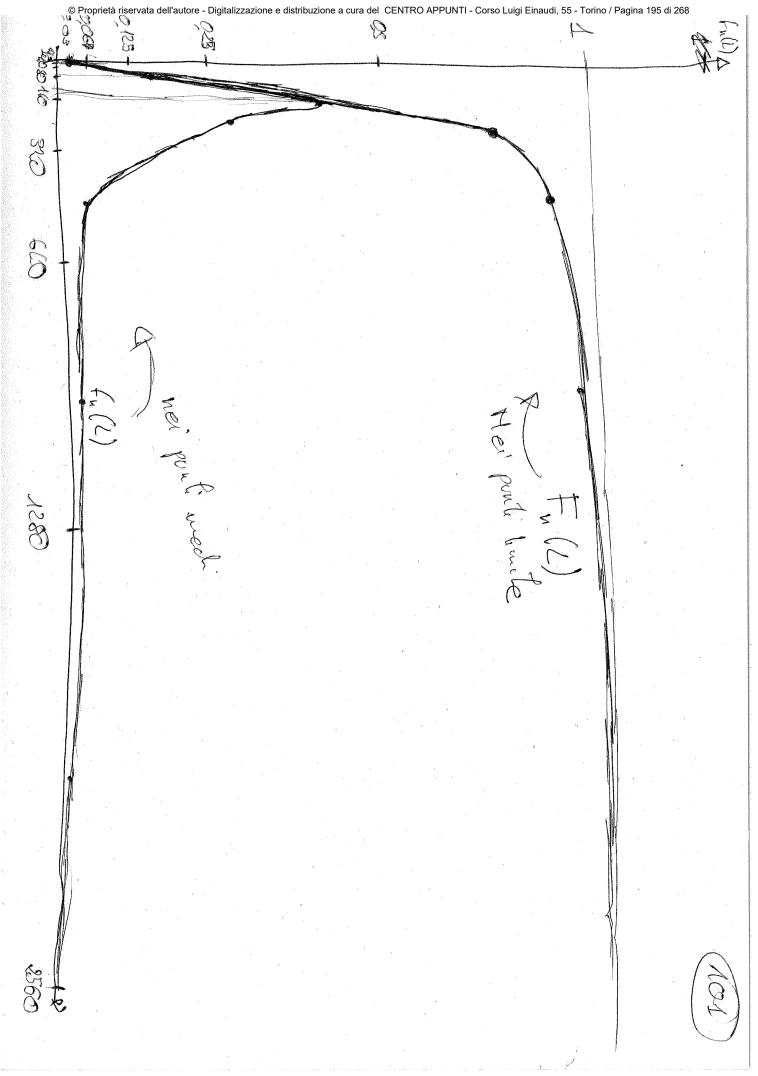
2) adsorbmento seperficuste

3) diffusione superficiale


4) adsorbment su gradino


5) diffusione su gradino

6) adsorbments nel Kink


perdito di acqua di solvalazione

Not 0000 di GN 1/2
toub essends priccole 10 20 30 40 Mm To 1000 s toub essends perclé sono puede girandi missale
있었다. 그 전 시 하는 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은
=D in leaves il vouge di dishibuerare diminuisce nel tempo :
= Alla fine landono ad avieve love
American Company of the Company of t
Mentre nel coso di Gra La
I range armento sempre

[= / L fn(l)dl = modio perola dei choneri= Lio 02 = [(L-Z)2 fn(L)dL = Varianza mi = / Li fr (4)dL = momenti moments de ordine D $m_1 = \int_0^\infty L f_u(l) dl = L$

$$\frac{1}{m_2} \cdot m_3 = \frac{m_3}{m_2} = L_{32}$$
Dismotro di Souler

In exposti sistemi sensi importanti
i chiometri spesso colchich

Riforeno con $f_V(U) dL = \frac{1}{6} L^3 f_V(U) dL$

$$\int_V \frac{1}{m_3} = L_{43}$$

$$\int_V \frac{1}{m_3} = L_{43}$$

$$\int_U \frac{1}{m_3} = L_{43}$$

n(L) dL	103	
Bilancio	popolatione	
No. 1	V = Volume bobble costorte	
2	Ve = Volume entrale Ve = Volume uscente Ve = Vo	
	Distribuzione grandonatrios in uscila è ugusta a quella in ingresso	2
MSMPR	Non é sempre vero e chipende de bocca de uscrib	
	Depute put grasse non vargono	
Mixed Suspe	ision, Mixed Product Removal	
	abbismo n(L) traune in ingresso nel	(۷)

© Proprietà riservata dell'autore - Digitalizzazione e distribuzione a cura del CENTRO APPUNTI - Corso Luigi Einaudi, 55 - Torino / Pagina 201 di 268
+
6 Movero dipolicable role fro te Itali
D Navaro du podicelle novle Evo tetalt
In uncerb islande quaite puthcolle ci sono in V?
1 ⁴ 2
$\int_{L}^{L_2} n(L,t) dL \cdot V$
[] portable w[ly L2]
Numero policelle a [4, L.]
Command a valuture : pezze de prima
1/ Ch2 (= 1+) 1/ Ch(f) d/=
$= V \cdot \left[\int_{L_1}^{L_2} \left[\ln \left(L, T + dt \right) - \ln \left(L, t \right) \right] dL \right]$

(2) No(1) dL. Ve dt = Numero part autroub u dt Li Volume [] entroube autroube

D(L)dL: Velocité d'morle

= part
m3.5

telli ulegisk consider Raccoglismo =10 Questa sceptions noi chellon o in terradere (G.n) = possion house essere ugusto condizion S S [ne(L,t)-n(L,t)]+ 2 [n(L,t)G(L)]-[B(L)-D(L)]}dco ζ. G. una forzione of integrab fra Gela かるの outhouse and essert who a solo in really 30,00 (m1712) O= 7p(1,2) & n (L,t) 2 L=0 00 to (t) n (Me-M)G. B, D, V. No 1: consecure TOGLIAPO L'INTEGRAL e dato che Lx, La profusiar che sudisus

$$\frac{\partial u}{\partial t} + \frac{\partial (G \cdot n)}{\partial L} = \frac{\dot{V}}{V} (n_e - n) + 2 - 2 \frac{\dot{V}}{3} \frac{\dot{V}}{3} = \frac{\dot{V}}{V} (n_e - n) + 2 \frac{\dot{V}}{V} (n_e - n)$$

$$G \frac{dn}{dL} = \frac{1}{2} (n_e - n)$$

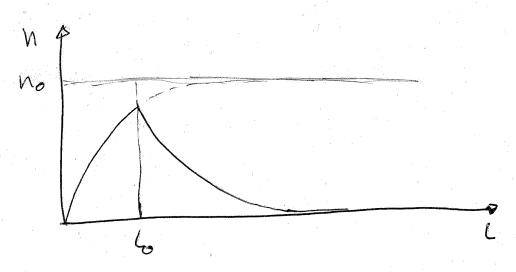
$$\int \frac{d\mathcal{L}}{G} = \int \frac{\mathcal{L}}{(n_e - n)} dn$$

$$\frac{1}{G} = -2 \cdot |\dot{n} (n_e - n)|_{a}$$

$$\frac{L}{G} = -2 \ln (n_{e} - n(L)) - 2 \ln (n_{e} + n_{e}) + C$$

$$\frac{N(l) - \frac{h_0}{h_0} = -\frac{h_0}{h_0} e^{-\frac{1}{62}}$$

$$0 < l < l_0 \qquad N(l) = N_0 \left[1 - e^{-\frac{1}{62}}\right]$$



1 The case

$$\frac{dn}{dL} = -\frac{n}{6.2}$$

$$\int_{n(L_0)}^{h(L)} \frac{du}{u} = -\int_{L_0}^{L} \frac{dL}{G^2}$$

$$\int_{N(L_0)}^{h(l)} \frac{dy}{y} = -\int_{L_0}^{L} \frac{dl}{G^2} \implies \lim_{N_0 \left[1 - e^{L_0 G^2}\right]} = \frac{l - L_0}{G^2}$$

nucleoreure Jn m3.3	(103)
mocles acce on m3.3	
crescibs G(C)	
Che condizioni di contorno isimo	
o Ln Lo Cal	emm
o Ln Lo minore alinn 21nn	
enormenente più grande di La al ponto de Le Esaconversto a O	e
Lu é accomonsto à	
Darkono dal bolancio in coi averano tilli gli integri	rah!
Applichesons and alls close to Oe L*	B-XdL
Applichiono ao alla chase tra Oe L*	nonde
D L1 +0	
=> (2 -> (=) (=	
However of policide note from O e Lt per units ferpo e volume	= Jn wascib

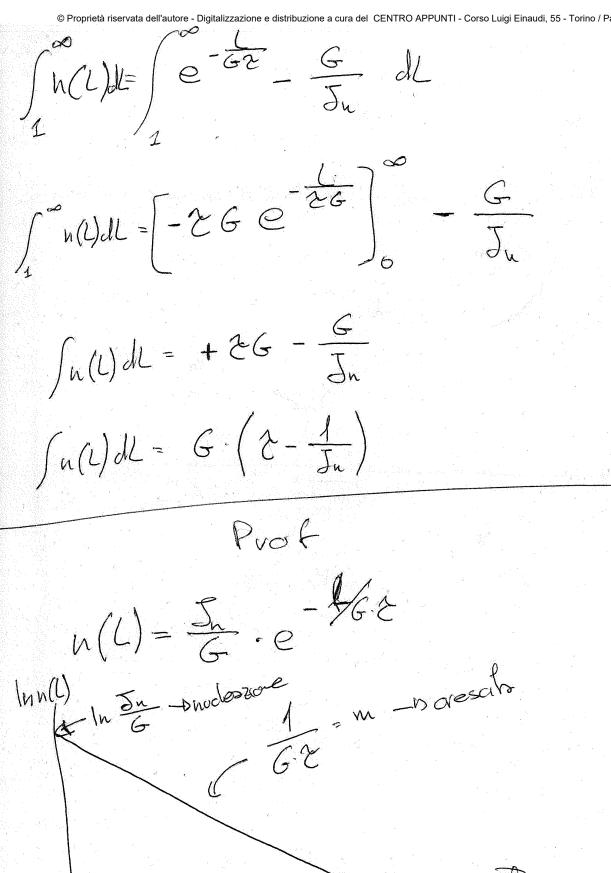
$$\frac{\partial k}{\partial t} + \frac{\partial (G \cdot n)}{\partial L} = \frac{v}{v} (n_e - n) + B - 8$$

$$G \cdot \frac{dn}{dL} = \frac{\dot{V}(-n)}{V} + J_n$$

$$G \frac{dn}{dL} = n \frac{\mathring{V}}{V} + J_n$$

$$G\frac{dn}{dL}=-\frac{n}{2}+J_n$$

$$\frac{G}{dL} = \left(-\frac{h}{2} + J_n\right) \frac{1}{dn}$$


$$\frac{dL}{c} = \left(\overline{J_n} - \frac{n}{2}\right)^2 dn$$

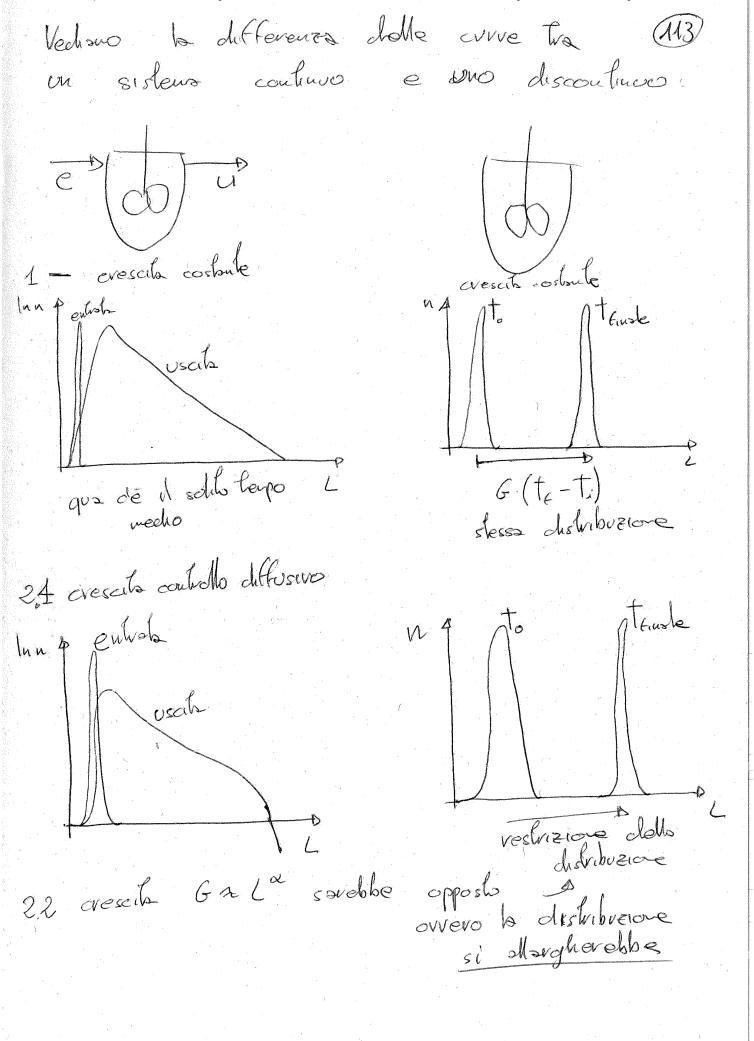
$$\int_{0}^{L} \frac{dL}{G} = \int_{0}^{\infty} \frac{n(u)}{3u - \frac{n}{2}} du$$

$$\frac{L}{2}GN = -2\ln\left(J_n - \frac{N(0)}{2}\right) + 2\ln\left(J_n - \frac{N(0)}{2}\right).$$

$$N(0) = \frac{5n}{6(0)} = \frac{5n}{6}$$
 express conditions

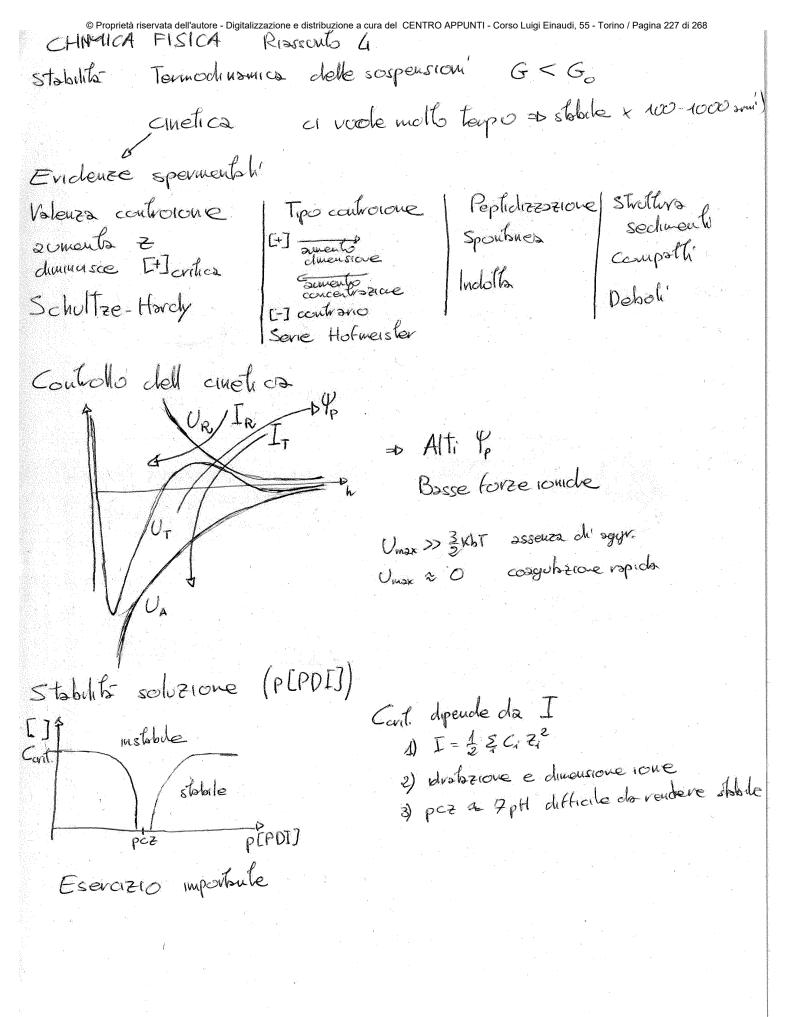
$$\frac{L}{4} = -2 \ln \left(J_n - \frac{N(L)}{2} \right) + 2 \ln \left(J_n - \frac{J_n}{6.2} \right)$$

$$\frac{\partial n}{\partial t} + \frac{\partial}{\partial L} (G \cdot n) = \frac{V}{V} (n_e - n) + \frac{1}{2} \int_{l=0}^{L} K(L, (L^3 - l^3)^{\frac{1}{3}}) v(l) v((L^3 - l^3)^{\frac{1}{3}}) dl + \frac{1}{2} \int_{l=0}^{\infty} K(L, l) v(l) dl$$


$$- v(L) \int_{l=0}^{\infty} K(L, l) v(l) dl$$

$$\cos^2 si \text{ trova in scala logarithmics?}$$

Se questo curvo continuos ondre in divensioni del um allovo vuol dive che c'è ogy. allonento è difficite comprendere se sio crescito o oggregozione


Se c'é nucleszione le curre arrivano à C altrimenti si femano prima

On = odedo

4 = colob numero

- Esercizio buca di polenziale.

CHIMICA PISICA

Rissout

Dismetro aprivolente

$$d_v = \sqrt[3]{\frac{6}{R}}$$
 Geometricke $d_s = \sqrt[3]{\frac{5}{R}}$

dap; dpp } procesione

de dd; dsieve) resistenza fluidahumica

Dishibuzious

$$\int_{L_{\pi}}^{L_{2}} n(L) dL = \frac{[A]_{L_{1}L_{2}}}{[L_{1}-L_{2}]}$$

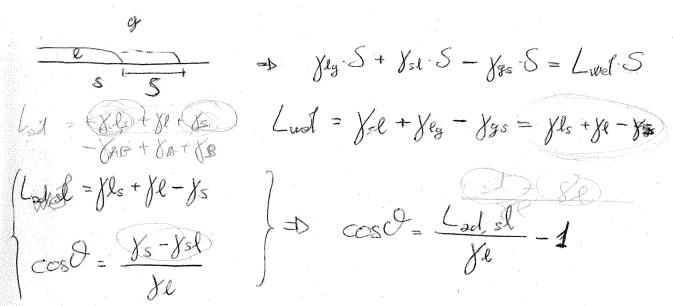
$$\int_{L_{1}}^{\infty} n(L) dL = N = [A]_{L_{1}}$$

$$\int_{L_{4}}^{L_{2}} f_{n}(L) dL = \frac{\int_{L_{4}}^{L_{4}} f_{n}(L) dL}{\int_{0}^{\infty} f_{n}(L) dL} = \frac{\int_{0}^{L_{4}} f_{n}(L) dL}{\int_{0}^{\infty} f_{n}(L) dL} = \frac{(f_{vozioue})_{o, L_{4}}}{(o - c_{4})}$$

$$\int_{0}^{\infty} f_{n}(L) dL = 1$$

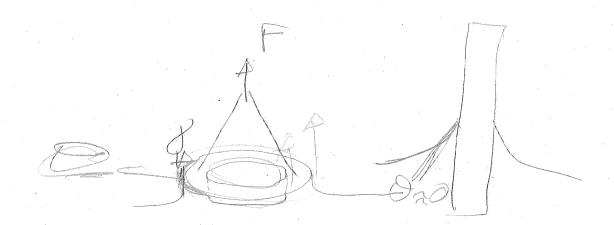
Ponti covatteristici

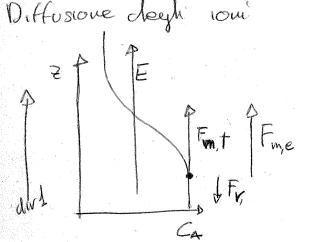
$$\langle L \rangle = \int_{0}^{\infty} L f_{n}(l) dl = L_{10} \qquad M_{1} = \int_{0}^{\infty} L^{1} f_{n}(l) dl$$


$$\langle L \rangle = \int_{0}^{\infty} L f_{n}(l) dl = L_{10} \qquad M_{1} = \int_{0}^{\infty} L^{1} f_{n}(l) dl$$

$$L_{10} = \frac{M_{1}}{M_{0}} = 0 \quad L_{1+1,1} = \frac{M_{1+1}}{M_{1}}$$

$$L_{10} = \frac{M_1}{M_0} = 0 \quad \text{Line, i} = \frac{M_{i+1}}{M_i}$$


- Calcolo Fr, Fz, Valormedo La, Lr


Lavoro di bagnativa

$$\frac{2\cos^{2}}{ye} = \frac{L_{ad,sl}}{ye} = 1 \quad \cos\theta > 0 \quad \theta < 90^{\circ}$$

$$\frac{L_{ad,sl}}{ye} < 1 \quad \cos\theta < 0 \quad \theta > 90^{\circ}$$

Applichismo voipo elettricos a soluzione di A in soluto

3 forte

$$F_{m,e} = qE = z \cdot e \cdot E = -z \cdot e \cdot \left(\frac{dY}{dz}\right)$$

Bilonoio in conchesioni di equilibrio modifondo E

$$C_{A} \cdot \left(-60 \text{M} \text{V}_{2} \text{V}_{2}\right) = + \frac{RT}{N_{A}} \frac{dC_{A}}{dz} + \left(C_{A} \cdot \left(ze^{-\frac{d\Psi}{dz}}\right) \cdot \left(\frac{(R/H_{A})T}{(R/H_{A})T}\right)\right)$$

$$-C_{A}V_{A} = \frac{K_{b} \cdot T}{6M\gamma v_{a}} \frac{dC_{A}}{dz} + \frac{K_{b}T}{6M\gamma v_{a}} \cdot \frac{ze^{-}Gd^{4}}{K_{b}T} dz$$

$$-J_{A} = D_{A} \frac{dC_{A}}{dz} + D_{A} \frac{z e^{-}C_{A}}{\kappa_{b}T} \frac{d^{y}}{dz}$$

ordinaria

forsts/migrazione