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A B S T R A C T

This paper presents a wearable brain–computer interface relying on neurofeedback in extended reality for
the enhancement of motor imagery training. Visual and vibrotactile feedback modalities were evaluated
when presented either singularly or simultaneously. Only three acquisition channels and state-of-the-art
vibrotactile chest-based feedback were employed. Experimental validation was carried out with eight subjects
participating in two or three sessions on different days, with 360 trials per subject per session. Neurofeedback
led to statistically significant improvement in performance over the two/three sessions, thus demonstrating
for the first time functionality of a motor imagery-based instrument even by using an utmost wearable
electroencephalograph and a commercial gaming vibrotactile suit. In the best cases, classification accuracy
exceeded 80% with more than 20% improvement with respect to the initial performance. No feedback modality
was generally preferable across the cohort study, but it is concluded that the best feedback modality may be
subject-dependent.
. Introduction

Motor imagery consists of imagining a movement without executing
t. Interestingly, the neuronal activities during both the execution and
he imagination of a movement are compatible. Both of them induce
‘event-related desynchronization’’ and ‘‘event-related synchronization’’
f the 𝜇 and 𝛽 rhythms [2–4]. Because of this, motor imagery is widely
xploited in building brain–computer interfaces (BCI) [5] as it offers an
lternative way to communicate motor intentions without involving pe-
ipheral nerves or muscles [6]. Motor imagery-based BCIs are powerful
ools both for people with [7–10] and without motor disabilities [11].
pplication examples range from controlling a wheelchair [8] or a
obotic arm [9] to navigating a virtual environment [11] or assess-
ng awareness in disorder of consciousness [12] or implementing a
peller [10]. Such BCIs typically rely on electroencephalography (EEG)
o measure brain activity due to its non-invasiveness, low cost, and
earability [13,14]. However, in contrast with other common BCI

∗ Corresponding author at: Augmented Reality for Health Monitoring Laboratory (ARHeMLab), Italy.
E-mail address: pasquale.arpaia@unina.it (P. Arpaia).

1 The concept of classification accuracy is taken into account, namely the ratio between the number of correctly classified tasks and the total number of tasks.
his should not be confused with measurement accuracy, namely ‘‘the closeness of agreement between a measured quantity value and a true quantity value of
measurand’’ [1].

paradigms [15,16], the user must be trained to properly control a BCI
based on motor imagery. In this framework, neurofeedback helps the
user to self-learn to modulate sensorimotor rhythms intentionally.

Fig. 1 represents a closed-loop metrological chain where neurofeed-
back is used to support the modulation of EEG rhythms [17,18]. As
a consequence, this aims to enhance the performance in BCI control
applications [19]. According to the literature, unimodal feedback such
as visual, auditory, and haptic, are compatible in terms of perfor-
mance [20–22]. Among them, haptic (somatosensory) feedback could
improve the sense of agency in motor imagery BCI’s [22]. Moreover, it
has the potential to enhance cortical activation and system performance
as well as increase the pertinence of provided feedback [22–24].

Multimodal feedback is also sought to enhance user engagement
[25,26]. The most commonly investigated multimodal feedback com-
bines visual and haptic somatosensory feedback modalities. Recent
vailable online 5 December 2022
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Fig. 1. Representation of visual neurofeedback in a brain–computer interface based on motor imagery. EEG: Electroencephalography.
studies showed virtual hands appearing on a screen while an electri-
cal [27] or vibrotactile [28] stimulation was delivered to the user’s
hand. In both cases, results suggest that multimodal feedback was bene-
ficial for motor imagery detection, even in comparison with a unimodal
feedback modality. Meanwhile, the authors in [29] demonstrated that
better detection accuracy1 was associated with visual or multimodal
feedback if compared to the vibrotactile feedback alone. In that case,
haptic feedback was provided by two vibrating motors placed on the
wrists. Finally, three tactile actuators were used in [30] to stimulate
the shoulder blade. However, no significant differences were found in
terms of detection accuracy between visual or visual-haptic guide.

There is thus evidence that neurofeedback enhances the detection of
motor imagery. However, there is no consensus about what is the best
feedback modality or what is the best way to provide it/them. Notably,
the number of EEG acquisition channels in the above-mentioned studies
ranged from 11 to 64. However, previous research also suggests that
three is a minimum number of channels to properly measure sensorimo-
tor rhythms [31], so that a lower number of channels could be used to
achieve user comfort, wearability, portability, and ease of use [32,33].

On these premises, the present work investigates different neuro-
feedback modalities within the implementation of a wearable BCI based
on motor imagery. In acquiring brain signals, only three differential
channels were chosen a-priori to achieve utmost wearability and porta-
bility. Meanwhile, visual and haptic feedbacks were presented through
a custom virtual reality scenario. For the first time, a wearable haptic
suit was exploited as an actuator for chest vibrotactile feedback. The
remainder of the paper is organized as follows. Section 2 presents the
proposed system with specific regards to hardware, software, and sig-
nal processing. Then, Section 3 discusses the experimental procedures
adopted to validate the instrument prototype, while Section 4 reports
the results of an experimental campaign carried out according to those
methods.

2. Proposal

The proposed closed-loop wearable BCI is presented in this section.
Two feedback modalities were adopted either singularly or simultane-
ously, namely visual and vibrotactile modalities. The former consisted
of a rolling virtual ball, while the latter was a vibration delivered on
the chest. As this study aims to maximize user engagement and comfort,
EEG signals were acquired through a recently commercialized wireless
cap, FlexEEG [34], while the chest-based feedback was delivered with
a suit designed for immersive experiences.

The block diagram of the BCI system is shown in Fig. 2. The EEG
signals, acquired from the user’s scalp, are sent via Bluetooth to a
2

custom Simulink model embedding online signal processing. The EEG
processing output is sent to a purposely designed Unity application,
and it is employed for modulating the sensory feedback. Thus, the
loop is closed by delivering the neurofeedback to the user. In addition,
the Unity application also dictates the timing for the motor imagery
tasks (synchronous cue-based paradigm [35]). Details about the system
implementation are discussed in the following subsections.

2.1. Wearable hardware

The hardware of the wearable BCI system involves two main de-
vices: a commercial electroencephalograph, and a haptic suit for vi-
brotactile feedback. Visual feedback was instead delivered through the
screen of a personal computer, though, in a real application, the visual
feedback may be naturally provided as an effect of the control task.

EEG acquisition was carried out with the FlexEEG headset by Neu-
roCONCISE Ltd2 shown in Fig. 3. The headset was used with the
FlexMI channels montage, which is specifically designed to record the
sensorimotor area of the brain. Notably, it consists of three differential
channels placed at FC3-CP3, FCz-CPz, and FC4-CP4, while the ground
electrode is at AFz (Fig. 3(b), see [36] for the international 10/20 EEG
standard locations). Conductive gel was used to ensure low contact
impedance and high stability at the scalp interface. The EEG signals
were filtered and amplified by the electronic board. Then, these signals
were digitized with 16-bit resolution by sampling at 250 Sa∕s and
then down-sampling to 125 Sa∕s. The data were finally transmitted via
Bluetooth 2.0.

The hardware for the haptic feedback consists of the vibrotactile
suit from bHaptics Inc3 shown in Fig. 4. This is wearable and portable,
and it is primarily commercialized for gaming. It provides a double
5 × 4 matrix with motors installed on the front and back of the torso.
Vibration can be modulated in terms of intensity per each single motor,
and patterns can be created to give a specific haptic sensation to the
user. In the current application, vibration patterns consist of activating
a column of five motors vibrating at the same time. The column shifts
to the left or to the right side of the torso starting from the front
centre. They are controlled through Bluetooth via the Unity application
according to online classification of EEG signals.

2.2. Software application

A virtual scenario was developed with the Unity games engine to
deliver the feedbacks and dictate the timing of the experiment and

2 https://www.neuroconcise.co.uk/technology/
3 https://www.bhaptics.com/tactsuit/tactsuit-x40

https://www.neuroconcise.co.uk/technology/
https://www.bhaptics.com/tactsuit/tactsuit-x40


Measurement 206 (2023) 112304P. Arpaia et al.
Fig. 2. Block diagram of the wearable brain–computer interface. The information exchanged between blocks (black) and the exploited communication protocols (blue) are
highlighted. EEG: Electroencephalography, UDP: User Datagram Protocol, NF: Neurofeedback.
Fig. 3. Wearable and portable EEG acquisition system: (a) EEG cap with electrodes,
(b) FlexMI channels configuration with three pairs and a reference electrode.

Fig. 4. Wearable and portable haptic suit with a double vibration motors matrix: (a)
suit, (b) front view of matrix with motors.

trials. The visual feedback consisted of a virtual ball with the capability
to roll in one dimension to the left or the right side of a screen. Gravity
was applied to the ball to keep it tied to the virtual floor (Fig. 5). Its
movement was controlled in accordance with online classification of
EEG signals where the class and score (i.e., class probability) associated
with the EEG signals determine the force applied to the ball in terms
of direction and intensity, respectively. Meanwhile, the haptic pattern
(columns of vibrating motors) could be modulated in terms of position
and intensity, again according to class and score.

Through the graphical interface, the experimenter could select the
feedback to deliver: visual, vibrotactile, or both. When the visual
feedback was not wanted, the virtual ball disappeared. Instead, if the
vibrotactile feedback was unwanted, the suit was shut down. In any
case, the task indication was always provided with an arrow appearing
on the screen. Details on the timing will be provided in Section 3.

2.3. Signal processing

In order to translate the brain activity into control commands, the
acquired EEG data were processed both online and offline with an
3

Fig. 5. Visual feedback consisting of a ball rolling according with motor imagery.

algorithm based on ‘‘filter-bank common spatial pattern’’ (FBCSP) [37,
38]. This approach was successfully replicated and tested on bench-
mark datasets [37–40], and some studies even showed its efficacy in
analysing differential channel data [41]. FBCSP involves the following
steps:

• the EEG signals are filtered with an array of 17 bandpass Type
II Chebyshev filters (tenth order, attenuation 50 dB) from 4Hz to
40Hz (4–8, 6–10, 8–12, . . . , 36–40 Hz);

• the data from the three channels are spatially filtered using the
Common Spatial Pattern (CSP) algorithm, which transforms the
raw EEG signals to maximize the variance of one class while
minimizing the variance of the other;

• the most informative features are selected by means of the Mutual
Information-based Best Individual Features (MIBIF) algorithm;

• the signal features were classified using a Bayesian approach,
namely the Naive Bayesian Parzen Window (NBPW).

The steps of the FBCSP are shown in Fig. 6. Further details about the
implementation of each processing block are reported in the litera-
ture [37,38]. It is worth mentioning that the adopted classifier assigns
a probability to the two possible classes (left and right), and hence the
most probable class is assigned to the processed EEG data. By exploiting
the class and its probability as a score, the feedback could be modulated
in terms of direction and intensity, respectively.

Note that the algorithm must be trained before being used for online
classification. For this purpose, a first set of data was acquired subject-
by-subject without any pre-processing being applied (more details in
Section 3.1). The model for EEG processing was thus identified with
these initial data for each subject. Then, in a second step, the identified
model was used for online classification of unlabelled EEG data. In the
online version, the EEG data stream was processed with a sliding win-
dow of fixed duration in order to provide a continuous feedback. The
width of the sliding window was fixed at 2.00 s while the shift between
consecutive windows was fixed at 0.25 s. These choices were made
both according to empirical evidence from preliminary measures and
according to literature [42]. The same FBCSP approach was adopted in
offline analyses as well.

3. Experimental validation

The experimental protocol is described in the following section
and the methods for offline analyses of the results are discussed.
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Fig. 6. EEG signals processing in the proposed wearable brain–computer interface. CSP: Common Spatial Pattern, MIBIF: Mutual Information-based Best Individual Features.
Fig. 7. Structure of a single session of the experimental campaign. noF: no feedback, NF: Neurofeedback.
Some details are also given about the participant in this preliminary
validation.

3.1. Experimental protocol

The experiments were carried out in two or three sessions on
different days, each lasting about two hours. Participants were asked to
imagine the movement of the left or right hand. A single experimental
session is depicted in Fig. 7. In each session, they first performed motor
imagery without any feedback (noF block), which was required for
identifying the online classification model. Then, they received online
feedback (NF block). The presentation of the three feedback modalities
were randomized for each subject to avoid biases associated with the se-
quence of presentation. A questionnaire (see Table 1) was administered
during each session to monitor changes in the participants’ mental and
physical state between blocks. This was adapted from [43] to include
neurofeedback-related aspects.

The noF block consisted of three runs with 30 trials each (15 per
class) with about two-minute breaks in between. The order of the cue-
based motor imagery was again randomized to avoid any bias. The
timing of a single trial was recalled from the standard paradigms of
BCI competitions [44]. In particular, it consists of an initial relax, a
cue at 𝑡 = 2 s indicating the task to carry on, motor imagery starting at
𝑡 = 3 s, and motor imagery ending at 𝑡 = 6 s. Final relaxation was then
presented, and its duration was randomized between 1 s to 2 s.

After the first block, a 10-minute break was employed to con-
tinue the questionnaire and identify the online classification model.
In particular, the FBCSP was used in a 5-fold cross validation with
10 repetitions for selecting the best time window in terms of optimal
classification accuracy. The time-varying classification accuracy and
the associated standard deviation were calculated with a 2.00 s wide
sliding window to span the 0.00 s to 7.00 s range with a 0.25 s shift. For
each subject, the best time window was chosen in terms of maximum
classification accuracy during the motor imagery task and minimum
difference between within class accuracies. The online model was hence
trained by using such a window. A further run of the noF block was
repeated if the classification results were compatible with randomness.

Once the model was trained, participants performed the NF block,
namely they received feedback in response to the motor imagery task.
In each of these trials, the online processing began 0.50 s after the cue at
𝑡 = 2 s and it relied on a sliding time window of 2.00 s shifting of 0.25 s
until the end of the motor imagery task. For each type of feedback,
4

three runs with 30 trials each and two classes of imagery were recorded
in total. The timing of a trial with feedback is shown in Fig. 8. Note
that, unlike the previous block, in this case the imagination starts from
the cue. The participants were asked to maintain high concentration
throughout the entire motor imagery task, even if the feedback did
not respond correctly. Between feedback types, a 10-minute break was
given.

Regarding the visual feedback, the goal for the user was to overcome
the white line (Fig. 5). Instead, for the haptic feedback, the goal
for the user was to activate the haptic feedback maximally on the
respective side of the chest. Finally, in the multimodal feedback case,
the aforementioned feedbacks were jointly provided. During feedback,
the virtual ball or the haptic pattern could move only if the obtained
EEG class was equal to the assigned task (positive bias [45]). Otherwise,
no feedback was provided, and the virtual ball was drawn towards the
centre of the screen while the vibration intensity was stopped.

3.2. Offline data analysis

After the experiments, the 360 available trials were analysed of-
fline per session per subject. Firstly, baseline removal was applied by
considering the 100ms before the cue. Then, the time-varying accuracy
was calculated for all subjects, blocks and sessions by means of cross
validation [46]. A permutation test was performed for each session,
subject and block. The purpose was to validate the results obtained
in the time-varying analysis by evaluating how far these were from
random classification. Hence, the labels associated with the left and
right motor imagery tasks were randomly permuted and the time-
varying analysis was repeated. In both cases, the cross-validation was
performed. Finally, the comparison between the results with permuted
and non-permuted labels was carried out by using the non-parametric
Wilcoxon test.

Next, by relying on the best 2.00 s time window in terms of clas-
sification accuracy, the one-way analysis of variance (ANOVA) was
performed to compare the accuracies in different conditions. To check
for the normality assumption of the distributions, the Jarque–Bera
test [47] was performed. Instead, the homoscedasticity was tested by
means of the Bartlett’s test. When the assumption of homoscedastic-
ity was violated, Welch’s correction to ANOVA was applied. When
the distributions were not normally distributed, the Kruskal–Wallis
non-parametric test was used.
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Table 1
Questionnaire administered to the participants during each experimental session.
Experimental Information at start

Date yyyy:mm:dd
Session #
Starting time hh:mm
Handedness 1: left/2: right/3: both
Age #
Sex 1: male/2: female
Do you practice any sport? 0: no/1: yes/2: professional
BCI experience 0: no/1: active/2: passive/3: reactive/4: multiple types
Biofeedback experience 0: no/number: how many times
How long did you sleep? number: hours
Did you drink coffee within the past 24 h? 0: no/number: hours before
Did you drink alcohol within the past 24 h? 0: no/number: hours before
Did you smoke within the past 24 h? 0: no/number: hours before
How do you feel? Anxious 1 2 3 4 5 Relaxed

Bored 1 2 3 4 5 Excited
(Physical state) Tired 1 2 3 4 5 Very good
(Mental state) Tired 1 2 3 4 5 Very good

Which motor imagery are you confident with? 1: grasp/2: squeeze/3: kinesthetic/4: other

After training block

How do you feel? (Attention level) Low 1 2 3 4 5 High
(Physical state) Tired 1 2 3 4 5 Very good
(Mental state) Tired 1 2 3 4 5 Very good

Have you nodded off/slept a while? No 1 2 3 4 5 Yes
How easy was motor imagery? Hard 1 2 3 4 5 Easy
How do you feel? (Attention level) Low 1 2 3 4 5 High

(Physical state) Tired 1 2 3 4 5 Very good
(Mental state) Tired 1 2 3 4 5 Very good

Have you nodded off/slept a while? No 1 2 3 4 5 Yes
Did you feel to control the feedback? (Visual) No 1 2 3 4 5 Yes

(Haptic) No 1 2 3 4 5 Yes
(Multimodal) No 1 2 3 4 5 Yes

How easy was motor imagery? Hard 1 2 3 4 5 Easy

After the motor imagery experiment

Which type of feedback did you prefer? 0: v/1: h/2: v-h
How do you feel? Anxious 1 2 3 4 5 Relaxed

Bored 1 2 3 4 5 Excited
How was this experiment? (Duration) Too long 1 2 3 4 5 Good

(Timing) Too fast 1 2 3 4 5 Good
(Environment) Poor 1 2 3 4 5 Good
(System) Uncomfortable 1 2 3 4 5 Comfortable
Fig. 8. Timing diagram of a single trial in the BCI experiment with neurofeedback.
3.3. Subjects

Eight right-handed volunteers (three males, mean age 28 years,
and five females, mean age 25 years) participated in the experiments.
These were conducted at the Augmented Reality for Health Monitoring
Laboratory (ARHeMLab, University of Naples Federico II) in Italy.
When designing the experiments, the number of subjects was chosen
according to the expected effect size [48,49] due to neurofeedback.
Notably, a preliminary study [50] suggested a Cohen’s d index greater
than 0.8, namely a large effect size [51]. Consequently, a sample size
of six was enough to achieve a statistical power around 95% [52].
Nonetheless, eight subjects were actually considered in accordance with
recent studies in this field [53,54].

All subjects had no brain injury or motor impairment, and did not
report any other medical or psychological illness/medication. More-
over, they had normal or corrected to normal vision. All subjects signed
an informed consent before taking part to the experiment. By means of
5

the questionnaire, it emerged that half of the participants played sport
(S01, S03, S05, S08), though none of the participants practiced them
at a professional level. Subjects S03 and S05 had previous experience
with multiple BCI paradigms, S08 had previous experience with motor
imagery only, while S01 and S07 only had experience with evoked po-
tentials. The remaining three participants had never used a BCI before.
The subjects S03, S05 and S08 had already experienced neurofeedback.

By analysing the experimental sample as a whole, it resulted that the
night before the experiment subjects slept about 7 ± 1 h. In considering
the subjects’ answers to the questionnaire from all sessions, about
35% of cases reported that they did not drink coffee within the 24 h
prior to the experiment. When coffee was consumed, it was drunk
4 ± 2 h earlier. No subjects drank alcohol within the 24 h prior to the
experiment and only 20% of times participants smoked a cigarette
approximately an hour before starting (subjects S04 and S08).

Prior to the experiment beginning, subjects were instructed with
information about the experimental protocol. The goal of the exper-
iment was first explained, and then they were asked to try different

ways of imagining hand movement (kinaesthetic sensation, squeezing
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Fig. 9. An example of the accuracy and permutation test accuracy for subject S03. Mean classification accuracy and associated standard deviation are calculated in time with
cross-validation. The blue line corresponds to actual classification (original labels), while the red line corresponds to random classification (permuted labels). The relevant time
instants are reported in bold according to the trial timing diagram of Fig. 8. noF: no feedback, H: Haptic, V: Visual, M: Multimodal.
a ball, grasping an object, snapping their fingers, imagining themselves
or another person performing the movement) to identify the one they
were most confident with. Once chosen, they were asked to keep it
constant throughout the single session. Finally, they were instructed
to avoid muscle and eye movements and eye blinks during the motor
imagery task.

4. Experimental results

Experimental data were analysed in accordance with the previous
section and the results are reported hereafter. Among the eight vol-
unteers, four subjects participated in three sessions and four subjects
participated in two sessions.

4.1. Permutation test

The time-varying accuracies generated with the original and ran-
domly permuted labels are shown in Fig. 9 for the subject S03 (four
feedback types, three sessions). In accordance with the previous dis-
cussion, they were obtained through a sliding window of width 2.00 s
on the −1.00 s to 8.00 s range. Therefore, the accuracy at 𝑡 = 0.00 s
corresponds to the −1.00 s to 1.00 s window, the point in 𝑡 = 0.25 s
corresponds to the −0.75 s to 1.25 s window, and so on. This allows to
span the 0.00 s to 7.00 s range as a whole with a 0.25 s step.

The different sessions are reported on rows, while the different
feedback modalities are shown in columns. Per each plot, the time
in seconds is reported on the 𝑥-axis, while the mean classification
accuracy along with its associated standard deviation are reported in
percentage on the 𝑦-axis. The blue curves correspond to the results
obtained with the true labels while the red curves indicate the accuracy
corresponding to the permuted labels. The two bounded lines overlap
up to the cue at 𝑡 = 2 s as expected during the baseline period. Then, the
curves are separated during the motor imagery (event related) period
in most cases.

The significance of the difference between the curves was proven
with the Wilcoxon test. The results are reported in Table 2 for all
subjects. They refer to a test executed by considering the only motor
imagery window and a 5% significance level. A significant difference
6

resulted in the first session for only half of the participants when no
feedback was provided. However, the number of subjects associated
with significant, non-random, classification rose to five, seven, and five
with the haptic, visual, and multimodal feedback, respectively. Regard-
ing the second session, statistically significant results were obtained
for six subjects with no feedback, seven subjects with haptic feedback,
six subjects with visual feedback, and seven subjects with multimodal
feedback. Finally, for the last session, all the four subjects obtained
a statistically significant result without receiving feedback, while only
three out of four obtained a significant result for each of the feedbacks.
These results prove the functionality of the wearable BCI and already
suggest the effectiveness of providing neurofeedback during the motor
imagery task. Moreover, a training effect across sessions is indicated,
since a greater percentage of significant results was obtained in the first
block (no feedback provided) during the second and third sessions. This
is confirmed by the classification results discussed next.

4.2. Classification results

In analysing offline classification results, the best 2.00 s-wide time
window was selected per each subject, session, and feedback modality.
In particular, the window associated with the highest mean accuracy
during the motor imagery task was selected. The results are reported
in Table 3 in terms of mean accuracy, by reporting results in bold
that were significantly different from the ‘‘no feedback’’ case with a
significance level equal to 5%. The statistical significance was tested by
performing the ANOVA, eventually adjusted according to Section 3.2.
The mean accuracy across the subjects is also reported along with the
associated standard deviation.

The results confirm that, thanks to the neurofeedback, the system
performance improves with respect to the absence of feedback. The
accuracy improvement indicates that this is especially true for the first
session. Notably, also the mean accuracy among the subjects increases
across sessions in the ‘‘no feedback’’ case, thus suggesting the training
effect that was already indicated by the permutation tests. In detail,
the quantitative increase is from (63 ± 2)% to (70 ± 4)%. However,
when considering the feedback modalities, the mean accuracies do

not significantly change between sessions. Finally, by considering the
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Table 2
P-values associated with the permutation test. The significant results of the Wilcoxon non-parametric test (5% significance level) with respect to the permuted results are marked
n boldface. noF: no feedback, H: haptic, V: visual, M: multimodal.

p-value

Session 1 Session 2 Session 3

noF H V M noF H V M noF H V M

S01 0.002 0.349 0.011 <0.001 0.999 0.004 0.491 <0.001
S02 0.967 <0.001 <0.001 <0.001 0.001 <0.001 <0.001 <0.001
S03 0.076 <0.001 <0.001 <0.001 0.042 <0.001 0.003 <0.001 <0.001 <0.001 <0.001 <0.001
S04 0.272 0.002 0.212 0.212 0.013 0.004 0.004 0.009
S05 0.225 0.040 0.119 0.262 <0.001 0.586 <0.001 0.832 <0.001 <0.001 0.258 0.185
S06 0.036 <0.001 <0.001 0.034 <0.001 <0.001 0.001 <0.001 <0.001 0.094 <0.001 <0.001
S07 0.756 <0.001 0.023 0.013 0.791 <0.001 <0.001 <0.001 <0.001 <0.01 <0.001 <0.001
S08 0.194 <0.001 <0.001 <0.001 <0.001 <0.001 0.001 <0.001
Table 3
Classification accuracies using a 5-folds cross validation with 10 repetitions. The significant results from the ANOVA (5% significance level) with respect to the no feedback block
are marked in boldface. noF: no feedback, H: haptic, V: visual, M: multimodal. Recall that, in Session 3, some values are missing because those subject were only involved in two
experimental sessions.

Accuracy (%)

Session 1 Session 2 Session 3

noF H V M noF H V M noF H V M

S01 70 60 89 60 57 59 65 64
S02 57 83 65 84 67 78 66 75
S03 70 75 87 82 62 80 77 82 74 80 82 85
S04 64 60 60 60 67 66 62 58
S05 63 65 64 68 65 60 61 64 72 67 67 59
S06 62 61 61 57 74 75 59 69 75 59 72 65
S07 57 68 59 65 61 80 62 76 60 83 75 70
S08 64 90 84 88 76 90 70 90

Mean 63 70 71 71 66 73 65 72 70 72 74 70
Uncertainty 2 4 5 4 2 4 2 4 4 6 3 6
t
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subjects as a whole, no significant differences emerged between the
different feedback conditions.

4.3. Discussion

In validating the proposed system, the permutation test and the
ANOVA applied to classification results led to compatible results. Both
tests confirmed two important aspects: (i) the feedback improves sys-
tem performance with respect to the absence of feedback, and (ii) a
training effect subsists between different sessions. When comparing the
classification accuracy associated with the ‘‘no feedback’’ case, it is
worth noting that the results of the third session are compatible with
those obtained when the feedback is provided. Such accuracy values
are above 70% in most cases, which is often considered as an empirical
hreshold for motor imagery-based control in BCI.

However, no mean improvement is demonstrated by the current
esults. This is justified by the fact that subjects show variegated per-
ormance associated with motor imagery detection. Therefore, although
mprovements can be highlighted in a subject-by-subject analysis, the
urrent results do not prove a statistically significant improvement on
verage across the cohort. Furthermore, the results do not suggest an
verall best feedback modality. This is compatible with literature find-
ngs on unimodal feedbacks [20], although the results do not provide
ufficient evidence to prefer the multimodal feedback either.

It should be pointed out that the multimodal feedback occasionally
ppeared less effective than single feedback modalities, even when
oth single feedbacks improved the detection. This suggests that the
ultimodal feedback does not simply consist of a combination of

ingle feedbacks, and that delivering multiple feedback simultane-
usly could be distracting or less engaging for the user and/or may
equire additional sessions to enable to the subject to gain familiar-
ty with simultaneous feedback modality presentation. In this regard,
nvestigating a greater experimental sample would be desirable to
7

etter understand the differences between the proposed neurofeedback c
modalities. This would mean both to involve more subjects and to
consider more sessions.

Questionnaire results also provide some complementary indications
to the classification results. First, in motor imagery, participants pre-
ferred to imagine squeeze in 50% of circumstances, the kinaesthetic
sensation associated with touching an object for 20% of times, grasp
in 15%, and other imagery, such as to snap the fingers or to dribble, in
he remaining 15%. Only two subjects, S05 and S07, changed the type
f motor imagery between sessions. Regarding feedback, participants
tated that they preferred visual and multimodal over haptic feedback.
inally, the degradation of classification performance occurring in some
essions could be correlated with the worsening in physical and mental
tate of the participant. As an example, if considering the ‘‘no feed-
ack’’ and the haptic feedback for subject S03, there was an accuracy
iminishing of about 10% from the first to the second session, but the
ubject declared that he was mentally tired and bored during the second
ession. More motivating feedback with improved accuracy enabled
hrough a number of additional EEG channels may indeed enhance
ccuracy.

.4. Limitations

At the end of the experiments, some issues could be also pointed
ut. In the future, a balanced sample in terms of dominant hand
hould be considered because of the relevance that handedness has on
otor imagery control [55]. Moreover, a single experimental session
as still long enough to tire the participants indeed. Therefore, the
sage of transfer learning techniques would be desirable during future
evelopments to simultaneously reduce the time required for model
alibration and to improve the classification performance by means
f preliminary acquired data. Notably, improving the accuracy would
lso be desirable to better engage the user during motor imagery. This
ould be accomplished by means of a better online pipeline of EEG
ata analysis, e.g., by dealing with non-stationarity and lowering its

omputational cost [56].
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After shortening the single experimental session, a greater number
of subjects could be considered to investigate the correlation between
the best feedback modality and subject’s profile. In a daily-life applica-
tion, the BCI should continuously measure the brain activity and also
detect when the user is willing to act (asynchronous BCI). Moreover, as
a further development, imagining both hands, or both feet, or tongue
movements will be also considered, thus increasing the number of
possible commands.

Finally, dry electrodes should be foreseen to enhance usability of the
system, though a major problem with dry electrode may be the need to
apply pressure to reduce impedance. Furthermore, this will also require
effective artefact removal strategies, whose necessity was limited in the
present work due to the usage of conductive gel.

5. Conclusions

In this paper, neurofeedback was applied to engage the user during
motor imagery, and aimed to improve the detection of the associated
neurophysiological phenomena. Visual and haptic feedback modali-
ties were compared, and multimodal sensory feedback was explored
by providing both feedback modalities simultaneously. A closed-loop
wearable brain–computer interface based on the detection of motor
imagery was designed and implemented by including an innovative
vibrotactile chest-based feedback, wearable and portable EEG, and
online signal processing.

The system was validated with an experimental campaign involving
eight subjects in two or three sessions taken on different days in
accordance with a standard synchronous paradigm. Results demon-
strated that the feedback improves the classification with respect to the
absence of feedback, even with an utmost wearable system. However,
a statistically significant mean improvement was not always observed
because of the limited subject sample with performance variation.
Moreover, no feedback modality was generally preferable. Hence, fur-
ther experiments are recommended, in which the overall system should
be enhanced by means of a more immersive feedback, better online
processing, and artefacts removal strategies. Finally, more experimental
sessions with more subjects would be needed especially to highlight the
training effect and differences between feedbacks in more depth.
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