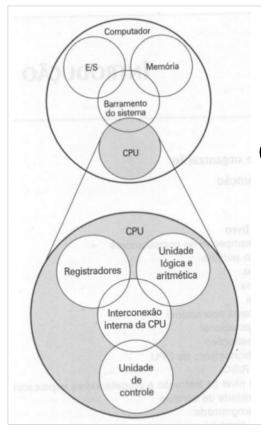

Introdução a Arquitetura e Organização de Computadores

Stallings: Cap.1 e 2, Monteiro: Cap. 1, Tanenbaum: Cap. 1

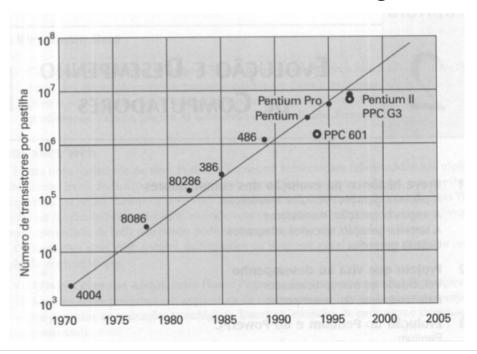
Prof. Alexandre Beletti Ferreira

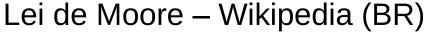

Tópicos

- Visão Geral de um Computador
- Lei de Moore
- Gerações de Computadores
- Primeira Geração
 - ENIAC
 - IAS
- Segunda Geração

Note que o estudo de um computador passar por 4 áreas:

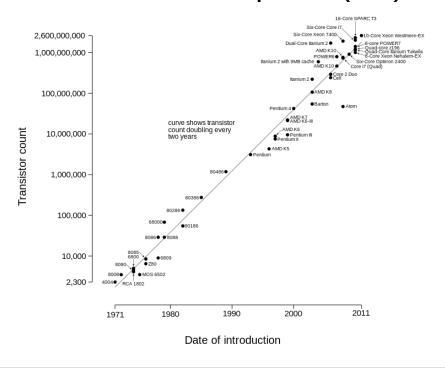
> 1-UCP 2-Memória 3-E/S 4-Barramento

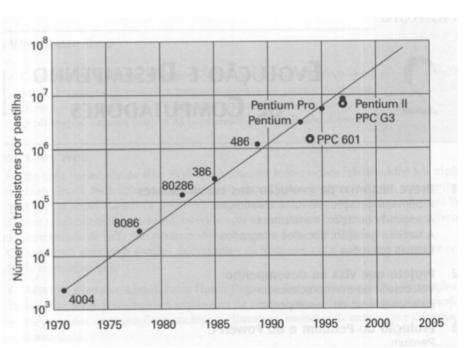



- Aqui temos uma figura de como direcionamos o nosso estudo na disciplina
 - Note que a CPU possui itens que necessitam de atenção especial

Lei de Moore

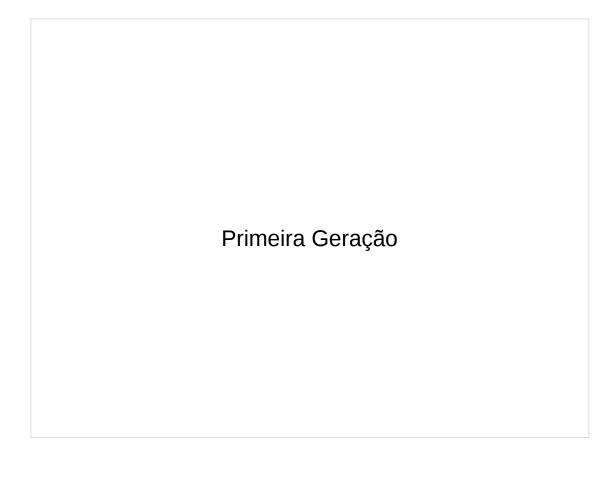
- É uma previsão sobre o futuro do hardware
- Estabelecida em 1965 (Gordon Moore)
- O número de transistores dobraria a cada 18 meses (pelo mesmo custo)
- Em 2015 pesquisadores mostraram que a Lei de Moore tende a deixar de ser verdadeira por questões como consumo de energia, custo de pesquisa e software mais dinâmicos


Lei de Moore - Stallings



Lei de Moore- Wikipedia (EN)

Lei de Moore


Gerações (Tanenbaum)

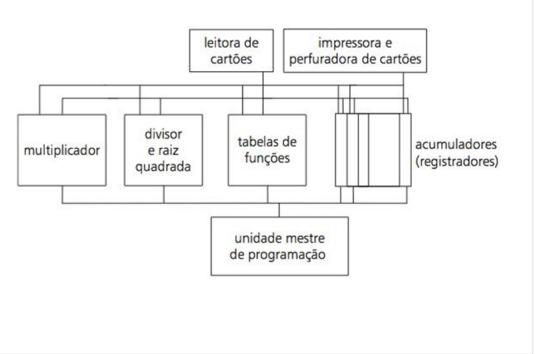
- Primeira válvulas (1945 1955)
- Segunda transistores (1955 1965)
- Terceira Circ. Integ. (1965 1980)
- Quarta VLSI (1980 presente data)
- Em 1952 o matemático Von Neumann desenvolveu o projeto IAS e seu modelo é utilizado até hoje, como veremos.

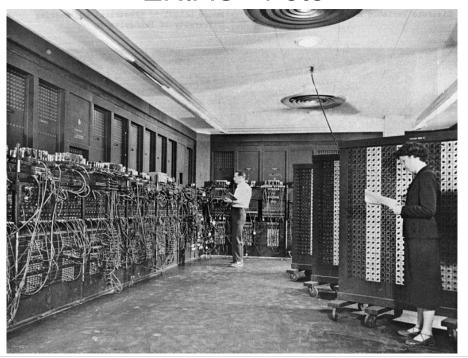
Gerações (Stallings)

Tabela 2.2 Gerações de computadores

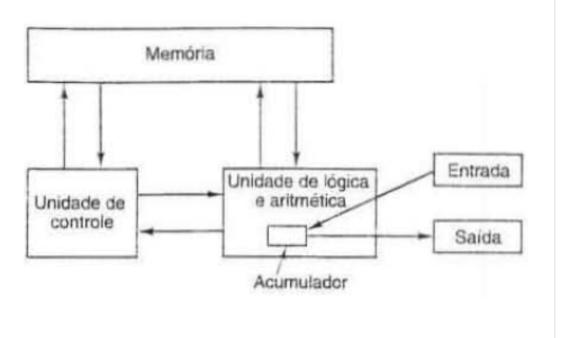
Geração	Datas Tecnologia aproximadas		Velocidade típica (operações por segundo)	
1	1946-1957	Válvula	40.000	
2	1958-1964	Transistor	200.000	
3	1965-1971	Integração em baixa e média escalas	1.000.000	
4	1972-1977	Integração em grande escala	10.000.000	
5	1978-	Integração em escala muito grande	100.000.000	

ENIAC


- Parte da Primeira Geração de Computadores
- Primeiro Computador Eletrônico de Propósitos Gerais
- Construído entre 1943 e 1946
- Universidade da Pensilvânia
- J. Mauchky e J. P. Eckert
- Tabelas Balísticas (tal qual Disp. Diferencial)
- 18 mil válvulas
- 30 toneladas


ENIAC

- Era uma máquina decimal e não binária
- Tinha 20 "acumuladores"
- Cada acumulador podia representar um valor de 10 dígitos
- Cada dígito era composto por um anel de 10 válvulas
- DESVANTAGEM: programador manualmente!
- Pronto somente depois da seg. guerra (1946)
- Foi desativado em 1955


ENIAC - Foto

IAS (modelo de Von Neumann)

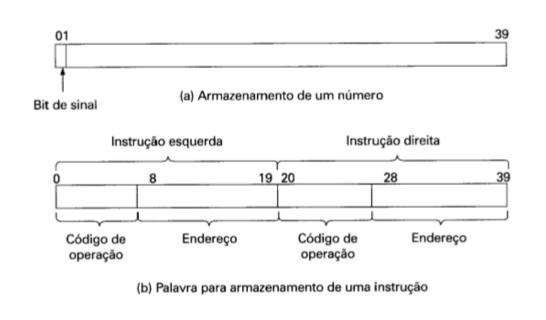
- Início do projeto em 1946
- Concluído em 1952
- Possuia o conceito de programa armazenado (ideia também concebida a Alan Turing)
- · Consistia de:
 - Memória principal (dados e instruções)
 - ULA (operava com dados binários)
 - UC (interpretava e executava instruções)
 - Dispositivos de E/S (via Unidade de Controle)

Modelo de Von Neumann

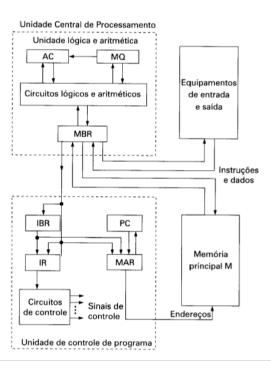
IAS: Memória e Instruções

MEMÓRIA

- 4096 palavras de 40 bits
- Cada palavra com:
 - 2 instruções de 20 bits ou;
 - Inteiro de 40 bits com sinal.

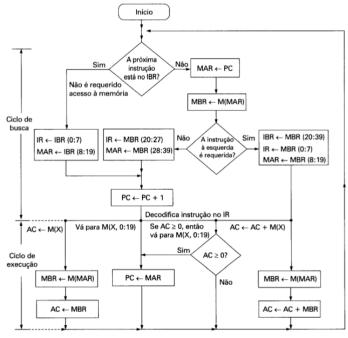

INSTRUÇÕES

- Formadas por 20 bits:
- 8 bits identificavam o tipo da instrução
- 12 bits para indicar uma das 4096 palavras de memória


IAS: Unidade Lógica e Aritmética

- O modelo original de Von Neumann não tinha aritmética de ponto flutuante
- Possuía um registrador Acumulador de 40 bits
- Um instrução típica fazia:
 - Adicionava uma palavra de memória ao acumulador
 - Armazenava o conteúdo do acumulador na memória

IAS: Formato de Palavra

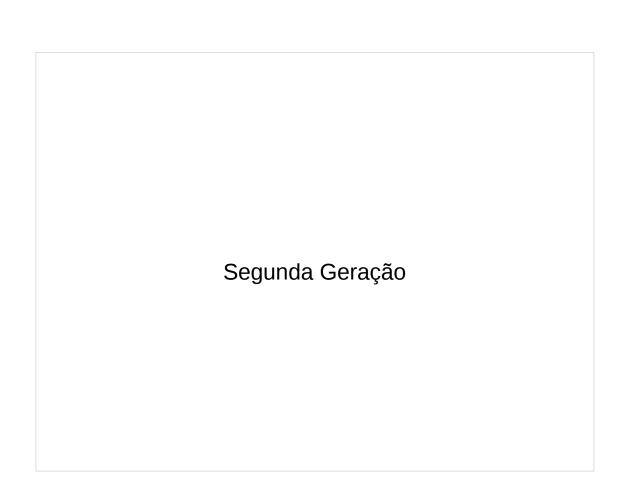

Estrutura do IAS

IAS: Registradores

- MBR: dado da memória
- MAR: endereço da memória
- IR: código de operação que está sendo exec.
- IBR: armazena temporariamente a porção a direita (baixa) de uma instrução
- PC: endereço da próxima instrução
- AC: acumulador (parte alta)
- MQ: quaciente de multiplicação (parte baixa)

IAS: Fluxograma de Operação

M(X) = conteúdo da posição de memória cujo endereço é X


(X : Y) = bits X a Y

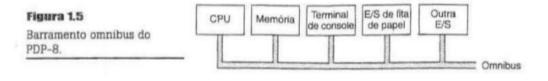
Modelo de Von Neumann x Dias Atuais

- O modelo de Von Neumann está presente em boa parte das máquinas modernas
- Existem variantes do modelo quando discutimos os tipos de arquiteturas:
- SIMD
- MISD
- Todas possuem especificidade nas questões ligadas ao paralelismo, porém inspiram-se no modelo original de 1952

Algumas Máquinas Geração "Zero" e Um

Ano	Nome	Construído por	Comentários
1834	Máquina analítica	Babbage	Primeira tentativa de construir um computador digital
1936	21	Zuse	Primeira máquina de calcular com relés
1943	COLOSSUS	Governo británico	Primeiro computador eletrônico
1944	Marki	Aiken	Primeiro computador norte-americano de uso geral
1946	ENIAC	Eckert/Mauchley	A história moderna dos computadores começa aqui
1949	EDSAC	Wilkes	Primeiro computador com programa armazenado
1951	Whirlwind I	M.I.T.	Primeiro computador de tempo real
1952	IAS	von Neumann	A maioria das máquinas atuais usa esse projeto

Segunda Geração


- Substituição da válvula pelo transistor
- Menor, mais barato e dissipa menos calor
- Dispositivo de estado sólido, feito de silício
- Inventado em 1947 (Bell Labs)
- ULA e UC mais complexas
- Linguagem de Prog. De Alto Nível
- Surgimento da DEC em 1957 → PDP

PDP-1 (DEC)

- Surgiu em 1961
- 4096 palavras de 18 bits
- 200 mil instruções por segundo
- Custava \$120.000
- Vendeu dezenas de unidades
- Deu início a era dos minicomputadores

PDP-8 (DEC)

- Máquina de 12 bits
- Custava \$16.000
- Possuia barramento único (omnibus)
 - Conjunto de fios paralelos para conectar os componentes de um computador
- Rompeu com a centralização de memória (IAS)
- Vendeu 50.000 unidades

Algumas Máquinas da Segunda Geração

1960	PDP-I	DEC	Primeiro minicomputador (50 vendidos)
1961	1401	IBM	Máquina para pequenos negócios de enorme popularidade
1962	7094	IBM	Dominou a computação científica no início da década de 1960
1963	B5000	Burroughs	Primeira máquina projetada para uma linguagem de alto nível
1964	360	IBM	Primeira linha de produto projetada como uma familia
1964	6600	CDC	Primeiro supercomputador centífico
1965	PDP-8	DEC	Primeiro minicomputador de mercado de massa (50 mil vendidos)

Terceira Geração

- Invenção do Circuito Integrado em 1958
- Permitiu dezenas de transistores em 1 chip
- Computadores menores e mais baratos
- Em 1964 a IBM era a líder dos computadores
- Lançou o System/360 para computação científica e comercial
- Possui variantes da mesma máquina porém com o mesmo ISA e capacidade crescente

Algumas variantes do IBM 360 (Tanenbaum)

Modelo 30	Modelo 40	Madela 50	Modelo 65
The state of the s	3,5	10	21
1.000	625	500	250
65.536	262.144	262.144	524.288
1	2	4	16
3	3	4	6
	1	1 3,5 1.000 625	1.000 625 500

Algumas variantes do IBM 360 (Monteiro)

Características da família/360					
Características	Modelo 30	Modelo 40	Modelo 50	Modelo 65	Modelo 75
Capacidade máxima de MP (bytes)	64K	256K	256K	512K	512K
Ciclo do processo em microssegundos	1	0,625	0,5	0,25	0,2
Quantidade máxima de canais (E/S)	3	3	4	6	6
Bytes puxados da MP por ciclo	1	2	4	16	16

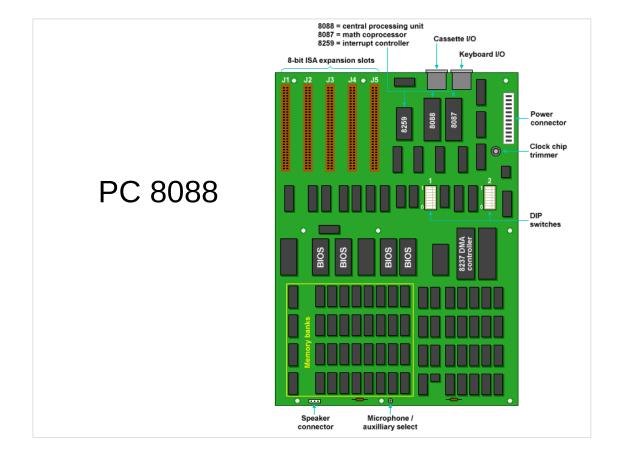
Inovações do IBM 360

- Multiprogramação
- Podia emular outros computadores
- Tinha 16 registradores de 32 bits
- Memória orientada a bytes
- Espaço de endereçamento de 2^24

Algumas Máquinas de Terceira Geração

1970	PDP-11	DEC	Dominou os minicomputadores na década de 1970
1974	8080	Intel ,	Primeiro computador de uso geral de 8 bits em um chip
1974	CRAY-1	Cray	Primeiro supercomputador vetorial
1978	VAX	DEC	Primeiro superminicomputador de 32 bits

Quarta Geração

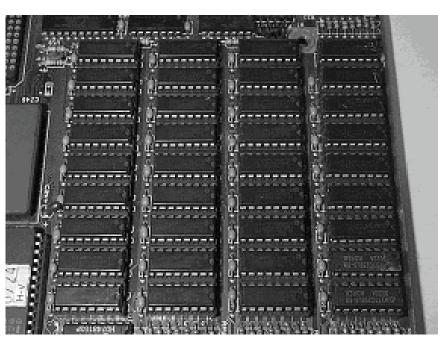

- VLSI: Very Large Scale Integration
- Integração em escala muito grande
- Milhões de transistores em 1 chip
- Processamento medido em MIPS (milhões de instruções por segundo)
- Ou MFLOPS (milhões de operações de ponto flutuante por segundo)

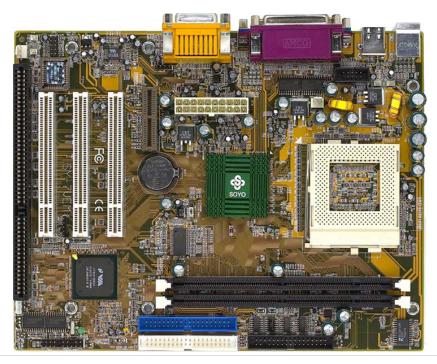
Algumas Máquinas da Quarta Geração

1993	Newton	Apple	Primeiro computador palmtop	
1992	Alpha	DEC	Primeiro computador pessoal de 64 hits	
1990	RS6000	IBM	Primeira máquina superescalar	
1987	SPARC	Sun	Primeira estação de trabalho RISC baseada em SPARC	
1985	MIPS	MIPS	Primeira máquina comercial RISC	
1985	386	Intel	Primeiro ancestral de 32-bits da linha Pentium	
1983	Lisa	Apple	Primeiro computador pessoal com uma GUI	
1981	Osborne-1	Osborne	Primeiro computador portátil	
1981	IBM PC	IBM	Deu início à era moderna do computador pessoal	

Família Intel até o Pentium 4

Chip	Data	MHz	Transistores	Memória	Observações
4004	4/1971	0,108	2.300	640	Primeiro microprocessador em um chip
8008	4/1972	0,108	3.500	16 KB	Primeiro microprocessador de 8 bits
8080	4/1974	2	6.000	64 KB	Primeira CPU de uso geral em um chip
8086	6/1978	5-10	29.000	1 MB	Primeira CPU de 16 bits em um chip
8088	6/1979	5-8	29.000	1 MB	Usada no IBM PC
80286	2/1982	8-12	134.000	16 MB	Com proteção de memória
80386	10/1985	16-33	275.000	4 GB	Primeira CPU de 32 bits
80486	4/1989	25-100	1,2 M	4 GB	Memória de cache de 8 KB embutida
Pentium	3/1993	60-233	3,1 M	4 GB	Dois pipelines; modelos posteriores tinham MMX
Pentium Pro	3/1995	150-200	5,5 M	4 GB	Dois niveis de cache embutidos
Pentium II	5/1997	233-450	7,5 M	4 GB	Pentium Pro mais instruções MMX
Pentium III	2/1999	650-1.400	9,5 M	4 GB	Instruções SSE para gráficos em 3D
Pentium 4	11/2000	1.300-3.800	42 M	4 GB	Hiperthreading; mais instruções SSE


Processador 8088


Processador 8086

Memória 8088 / 8086

Placa Mãe de PC

Registradores do 8088 e 8-86

AH	AL	acumulador
ВН	BL	base
CH	CL	contador
DH	DL	dado
		ponteiro para pilha
		ponteiro base
		indice fonte
		fndice destino
		apontador de instruçõe
		flags
		segmento de código
		segmento de dados
		segmento de pilha
		segmento extra

Referências

- Stallings W., Arquitetura e Organização de Computadores, 5ª edição, Prentice-Hall, 2005.
- Tanenbaum, A., Organização Estruturada de Computadores, 5^a edição, Editora Pearson, 2006.
- Monteiro, M. A., Introdução à Organização de Computadores, 4ª edição, LTC.