
JavaServer Pages™
Specification

Version 1.2 

please send comments to jsp-spec-comments@eng.sun.com

Monday, August 27, 2001 Eduardo Pelegrí-Llopart, editor

901 San Antonio Road
Palo Alto, CA 94303 USA
650 960-1300 fax: 650 969-9131



ii



3

JSP 1.2

JavaServer Pages(TM) (JSP) Specification (“Specification”)

Version:  1.2
Status: FCS
Release: September 17, 2001

Copyright 2001 Sun Microsystems, Inc.
901 San Antonio Road, Palo Alto, California 94303, U.S.A.
All rights reserved.

NOTICE

The Specification is protected by copyright and the information described 
therein may be protected by one or more U.S. patents, foreign patents, or pending 
applications. Except as provided under the following license, no part of the Speci-
fication may be reproduced in any form by any means without the prior written 
authorization of Sun Microsystems, Inc. ("Sun") and its licensors, if any. Any use 
of the Specification and the information described therein will be governed by the 
terms and conditions of this license and the Export Control Guidelines as set forth 
in the Terms of Use on Sun’s website. By viewing, downloading or otherwise 
copying the Specification, you agree that you have read, understood, and will 
comply with all of the terms and conditions set forth herein. 

Sun hereby grants you a fully-paid, non-exclusive, non-transferable, world-
wide, limited license (without the right to sublicense), under Sun’s intellectual 
property rights that are essential to practice the Specification, to internally prac-
tice the Specification for the purpose of designing and developing your Java 
applets and applications intended to run on the Java platform or creating a clean 
room implementation of the Specification that: (i) includes a complete implemen-
tation of the current version of the Specification, without subsetting or superset-
ting; (ii) implements all of the interfaces and functionality of the Specification 
without subsetting or supersetting; (iii) includes a complete implementation of 
any optional components (as defined by the Specification) which you choose to 
implement, without subsetting or supersetting; (iv) implements all of the inter-
faces and functionality of such optional components, without subsetting or super-
setting; (v) does not add any additional packages, classes or interfaces to the 
"java.*" or "javax.*" packages or subpackages or other packages defined by the 
Specification; (vi) satisfies all testing requirements available from Sun relating to 
the most recently published version of the Specification six (6) months prior to 
any release of the clean room implementation or upgrade thereto; (vii) does not 
derive from any Sun source code or binary code materials; and (viii) does not 



JSP 1.2

4

include any Sun source code or binary code materials without an appropriate and 
separate license from Sun. The Specification contains the proprietary information 
of Sun and may only be used in accordance with the license terms set forth herein. 
This license will terminate immediately without notice from Sun if you fail to 
comply with any provision of this license. Upon termination or expiration of this 
license, you must cease use of or destroy the Specification.

TRADEMARKS

No right, title, or interest in or to any trademarks, service marks, or trade 
names of Sun or Sun’s licensors is granted hereunder. Sun, Sun Microsystems, the 
Sun logo, Java, the Java Coffee Cup logo, JSP, and JavaServer Pages are trade-
marks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other 
countries. 

DISCLAIMER OF WARRANTIES

THE SPECIFICATION IS PROVIDED "AS IS". SUN MAKES NO REPRE-
SENTATIONS OR WARRANTIES, EITHER EXPRESS OR IMPLIED, 
INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANT-
ABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGE-
MENT THAT THE CONTENTS OF THE SPECIFICATION ARE SUITABLE 
FOR ANY PURPOSE OR THAT ANY PRACTICE OR IMPLEMENTATION 
OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PAT-
ENTS, COPYRIGHTS, TRADE SECRETS OR OTHER RIGHTS. This docu-
ment does not represent any commitment to release or implement any portion of 
the Specification in any product. 

THE SPECIFICATION COULD INCLUDE TECHNICAL INACCURA-
CIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY 
ADDED TO THE INFORMATION THEREIN; THESE CHANGES WILL BE 
INCORPORATED INTO NEW VERSIONS OF THE SPECIFICATION, IF 
ANY. SUN MAY MAKE IMPROVEMENTS AND/OR CHANGES TO THE 
PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THE SPECIFI-
CATION AT ANY TIME. Any use of such changes in the Specification will be 
governed by the then-current license for the applicable version of the Specifica-
tion. 

LIMITATION OF LIABILITY
TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL 

SUN OR ITS LICENSORS BE LIABLE FOR ANY DAMAGES, INCLUDING 



5

JSP 1.2

WITHOUT LIMITATION, LOST REVENUE, PROFITS OR DATA, OR FOR 
SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE 
DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY 
OF LIABILITY, ARISING OUT OF OR RELATED TO ANY FURNISHING, 
PRACTICING, MODIFYING OR ANY USE OF THE SPECIFICATION, EVEN 
IF SUN AND/OR ITS LICENSORS HAVE BEEN ADVISED OF THE POSSI-
BILITY OF SUCH DAMAGES. 

You will indemnify, hold harmless, and defend Sun and its licensors from any 
claims arising or resulting from: (i) your use of the Specification; (ii) the use or 
distribution of your Java application, applet and/or clean room implementation; 
and/or (iii) any claims that later versions or releases of any Specification furnished 
to you are incompatible with the Specification provided to you under this license. 

RESTRICTED RIGHTS LEGEND

U.S. Government: If this Specification is being acquired by or on behalf of the 
U.S. Government or by a U.S. Government prime contractor or subcontractor (at 
any tier), then the Government’s rights in the Software and accompanying docu-
mentation shall be only as set forth in this license; this is in accordance with 48 
C.F.R. 227.7201 through 227.7202-4 (for Department of Defense (DoD) acquisi-
tions) and with 48 C.F.R. 2.101 and 12.212 (for non-DoD acquisitions).

REPORT

You may wish to report any ambiguities, inconsistencies or inaccuracies you 
may find in connection with your use of the Specification ("Feedback"). To the 
extent that you provide Sun with any Feedback, you hereby: (i) agree that such 
Feedback is provided on a non-proprietary and non-confidential basis, and (ii) 
grant Sun a perpetual, non-exclusive, worldwide, fully paid-up, irrevocable 
license, with the right to sublicense through multiple levels of sublicensees, to 
incorporate, disclose, and use without limitation the Feedback for any purpose 
related to the Specification and future versions, implementations, and test suites 
thereof.

(LFI#95719/Form ID#011801)



JSP 1.2

6



7

Contents

Status  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
JSP.S.1 The Java Community Process . . . . . . . . . . . . . . . . . . . . . 15
JSP.S.2 The JCP and this Specification . . . . . . . . . . . . . . . . . . . . 15

Preface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
JSP.P.1 Relation To JSP 1.1  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
JSP.P.2 Licensing of Specification  . . . . . . . . . . . . . . . . . . . . . . . 18
JSP.P.3 Who should read this document  . . . . . . . . . . . . . . . . . . . 18
JSP.P.4 Related Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
JSP.P.5 Historical Note  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
JSP.P.6 Acknowledgments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

JSP.1 Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
JSP.1.1 The JavaServer Pages™ Technology . . . . . . . . . . . . . . . 23

JSP.1.1.1  General Concepts . . . . . . . . . . . . . . . . . . . . . . . . 23
JSP.1.1.2  Benefits of the JavaServer Pages Technology . . 24

JSP.1.2 Basic Concepts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
JSP.1.2.1  What is a JSP Page? . . . . . . . . . . . . . . . . . . . . . . 25
JSP.1.2.2  Web Applications  . . . . . . . . . . . . . . . . . . . . . . . 26
JSP.1.2.3  Components and Containers  . . . . . . . . . . . . . . . 26
JSP.1.2.4  Translation and Execution Steps  . . . . . . . . . . . . 27
JSP.1.2.5  Role in the Java 2 Platform, Enterprise Edition . 27

JSP.2 Core Syntax and Semantics . . . . . . . . . . . . . . . . . . . . . . . . 29
JSP.2.1 What is a JSP Page  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

JSP.2.1.1  Web Containers and Web Components . . . . . . . 29
JSP.2.1.2  XML Document for a JSP Page . . . . . . . . . . . . . 30
JSP.2.1.3  Translation and Execution Phases . . . . . . . . . . . 30
JSP.2.1.4  Events in JSP Pages . . . . . . . . . . . . . . . . . . . . . . 30
JSP.2.1.5  Compiling JSP Pages . . . . . . . . . . . . . . . . . . . . . 31

JSP.2.1.5.1  JSP Page Packaging . . . . . . . . . . . . . . . . 31
JSP.2.1.6  Debugging JSP Pages  . . . . . . . . . . . . . . . . . . . . 32
JSP.2.1.7  Naming Conventions for JSP Files  . . . . . . . . . . 32

JSP.2.2 Web Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
JSP.2.2.1  Relative URL Specifications . . . . . . . . . . . . . . . 33



JavaServer Pages 1.2 Specification

8

JSP.2.3 Syntactic Elements of a JSP Page  . . . . . . . . . . . . . . . . . .34
JSP.2.3.1  Elements and Template Data  . . . . . . . . . . . . . . .34
JSP.2.3.2  Element Syntax . . . . . . . . . . . . . . . . . . . . . . . . . .34
JSP.2.3.3  Start and End Tags  . . . . . . . . . . . . . . . . . . . . . . .35
JSP.2.3.4  Empty Elements  . . . . . . . . . . . . . . . . . . . . . . . . .36
JSP.2.3.5  Attribute Values  . . . . . . . . . . . . . . . . . . . . . . . . .36
JSP.2.3.6  Valid Names for Actions and Attributes . . . . . . .36
JSP.2.3.7  White Space  . . . . . . . . . . . . . . . . . . . . . . . . . . . .37

JSP.2.4 Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
JSP.2.4.1  Translation Time Processing Errors . . . . . . . . . .38
JSP.2.4.2  Request Time Processing Errors . . . . . . . . . . . . .38

JSP.2.5 Comments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39
JSP.2.5.1  Generating Comments in Output to Client . . . . .39
JSP.2.5.2  JSP Comments  . . . . . . . . . . . . . . . . . . . . . . . . . .39

JSP.2.6 Quoting and Escape Conventions  . . . . . . . . . . . . . . . . . .40
JSP.2.7 Overall Semantics of a JSP Page . . . . . . . . . . . . . . . . . . .41
JSP.2.8 Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43

JSP.2.8.1  Objects and Variables . . . . . . . . . . . . . . . . . . . . .43
JSP.2.8.2  Objects and Scopes . . . . . . . . . . . . . . . . . . . . . . .43
JSP.2.8.3  Implicit Objects . . . . . . . . . . . . . . . . . . . . . . . . . .44
JSP.2.8.4  The pageContext Object . . . . . . . . . . . . . . . . . . .46

JSP.2.9 Template Text Semantics . . . . . . . . . . . . . . . . . . . . . . . . .47
JSP.2.10 Directives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47

JSP.2.10.1  The page Directive . . . . . . . . . . . . . . . . . . . . . . .47
JSP.2.10.2  The taglib Directive  . . . . . . . . . . . . . . . . . . . . . .53
JSP.2.10.3  The include Directive . . . . . . . . . . . . . . . . . . . . .54
JSP.2.10.4  Including Data in JSP Pages . . . . . . . . . . . . . . . .55

JSP.2.11 Scripting Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
JSP.2.11.1  Declarations  . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
JSP.2.11.2  Scriptlets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
JSP.2.11.3  Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58

JSP.2.12 Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
JSP.2.13 Tag Attribute Interpretation Semantics  . . . . . . . . . . . . . .59

JSP.2.13.1  Request Time Attribute Values . . . . . . . . . . . . . .59
JSP.2.13.2  Type Conversions . . . . . . . . . . . . . . . . . . . . . . . .60

JSP.2.13.2.1  Conversions from String values  . . . . . . .60
JSP.2.13.2.3  Conversions from request-time expressions 

61



9

JavaServer Pages 1.2 Specification

JSP.3 Localization Issues  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
JSP.3.1 Page Character Encoding  . . . . . . . . . . . . . . . . . . . . . . . . 63
JSP.3.2 Static Content Type  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
JSP.3.3 Dynamic Content Type . . . . . . . . . . . . . . . . . . . . . . . . . . 64
JSP.3.4 Delivering Localized Content . . . . . . . . . . . . . . . . . . . . . 65

JSP.4 Standard Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
JSP.4.1 <jsp:useBean> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
JSP.4.2 <jsp:setProperty>  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
JSP.4.3 <jsp:getProperty>  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
JSP.4.4 <jsp:include>  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
JSP.4.5 <jsp:forward>  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
JSP.4.6 <jsp:param>  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

JSP.4.6.1  Syntax  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
JSP.4.7 <jsp:plugin>  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
JSP.4.8 <jsp:params> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
JSP.4.9 <jsp:fallback> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

JSP.5 JSP Documents  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
JSP.5.1 Uses for XML Syntax for JSP Pages  . . . . . . . . . . . . . . . 81
JSP.5.2 JSP Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

JSP.5.2.1  Semantic Model . . . . . . . . . . . . . . . . . . . . . . . . . 82
JSP.5.2.2  The jsp:root element  . . . . . . . . . . . . . . . . . . . . . 83
JSP.5.2.3  The jsp:directive.page element  . . . . . . . . . . . . . 84
JSP.5.2.4  The jsp:directive.include element  . . . . . . . . . . . 84
JSP.5.2.5  The jsp:declaration element . . . . . . . . . . . . . . . . 84
JSP.5.2.6  The jsp:scriptlet element  . . . . . . . . . . . . . . . . . . 84
JSP.5.2.7  The jsp:expression element  . . . . . . . . . . . . . . . . 85
JSP.5.2.8  Standard and custom action elements  . . . . . . . . 85
JSP.5.2.9  Request-Time Attributes  . . . . . . . . . . . . . . . . . . 86
JSP.5.2.10  The jsp:text element  . . . . . . . . . . . . . . . . . . . . . 86
JSP.5.2.11  Other XML elements . . . . . . . . . . . . . . . . . . . . . 86

JSP.5.3 XML View of a JSP Page . . . . . . . . . . . . . . . . . . . . . . . . 87
JSP.5.3.1  JSP Documents  . . . . . . . . . . . . . . . . . . . . . . . . . 87
JSP.5.3.2  JSP pages in JSP syntax . . . . . . . . . . . . . . . . . . . 87
JSP.5.3.3  JSP comments  . . . . . . . . . . . . . . . . . . . . . . . . . . 88
JSP.5.3.4  The page directive  . . . . . . . . . . . . . . . . . . . . . . . 88
JSP.5.3.5  The taglib directive  . . . . . . . . . . . . . . . . . . . . . . 89
JSP.5.3.6  The include directive . . . . . . . . . . . . . . . . . . . . . 89
JSP.5.3.7  Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89



JavaServer Pages 1.2 Specification

10

JSP.5.3.8  Scriptlets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90
JSP.5.3.9  Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90
JSP.5.3.10  Standard and Custom Actions . . . . . . . . . . . . . . .90
JSP.5.3.11  Request-Time Attribute Expressions  . . . . . . . . .90
JSP.5.3.12  Template Text and XML Elements  . . . . . . . . . .90
JSP.5.3.13  The jsp:id Attribute . . . . . . . . . . . . . . . . . . . . . . .90

JSP.5.4 Validating an XML View of a JSP page  . . . . . . . . . . . . .91
JSP.5.5 Examples  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91

JSP.5.5.1  A JSP page and its corresponding JSP document 91
JSP.5.5.2  A JSP document  . . . . . . . . . . . . . . . . . . . . . . . . .93

JSP.6 Scripting  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93
JSP.6.1 Overall Structure  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93

JSP.6.1.1  Valid JSP Page  . . . . . . . . . . . . . . . . . . . . . . . . . .93
JSP.6.1.2  Reserved Names . . . . . . . . . . . . . . . . . . . . . . . . .94
JSP.6.1.3  Implementation Flexibility . . . . . . . . . . . . . . . . .94

JSP.6.2 Declarations Section  . . . . . . . . . . . . . . . . . . . . . . . . . . . .95
JSP.6.3 Initialization Section  . . . . . . . . . . . . . . . . . . . . . . . . . . . .95
JSP.6.4 Main Section  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95

JSP.6.4.1  Template Data . . . . . . . . . . . . . . . . . . . . . . . . . . .95
JSP.6.4.2  Scriptlets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96
JSP.6.4.3  Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96
JSP.6.4.4  Actions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96

JSP.7 Tag Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97
JSP.7.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97

JSP.7.1.1  Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98
JSP.7.1.2  Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98

JSP.7.1.2.1  Tag Handlers . . . . . . . . . . . . . . . . . . . . . . . . .99
JSP.7.1.2.2  Event Listeners . . . . . . . . . . . . . . . . . . .100

JSP.7.1.3  Simple Examples  . . . . . . . . . . . . . . . . . . . . . . .100
JSP.7.1.3.1  Simple Actions  . . . . . . . . . . . . . . . . . . . . . .100
JSP.7.1.3.2  Actions with a Body . . . . . . . . . . . . . . .101
JSP.7.1.3.3  Conditionals  . . . . . . . . . . . . . . . . . . . . .101
JSP.7.1.3.4  Iterations . . . . . . . . . . . . . . . . . . . . . . . .101
JSP.7.1.3.5  Actions that Process their Body  . . . . . .101
JSP.7.1.3.6  Cooperating Actions . . . . . . . . . . . . . . .102
JSP.7.1.3.7  Actions Defining Scripting Variables . .102

JSP.7.2 Tag Libraries  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102
JSP.7.2.1  Packaged Tag Libraries  . . . . . . . . . . . . . . . . . .103



11

JavaServer Pages 1.2 Specification

JSP.7.2.2  Location of Java Classes  . . . . . . . . . . . . . . . . . 103
JSP.7.2.3  Tag Library directive . . . . . . . . . . . . . . . . . . . . 103

JSP.7.3 The Tag Library Descriptor  . . . . . . . . . . . . . . . . . . . . . 104
JSP.7.3.1  Identifying Tag Library Descriptors  . . . . . . . . 104
JSP.7.3.2  TLD resource path . . . . . . . . . . . . . . . . . . . . . . 105
JSP.7.3.3  Taglib map in web.xml  . . . . . . . . . . . . . . . . . . 105
JSP.7.3.4  Implicit Map entries from TLDs  . . . . . . . . . . . 106
JSP.7.3.5  Implicit Map entries from the Container . . . . . 106
JSP.7.3.6  Determining the TLD Resource Path . . . . . . . . 107

JSP.7.3.6.1  Computing TLD Locations  . . . . . . . . . 107
JSP.7.3.6.2  Computing the TLD Resource Path . . . 107
JSP.7.3.6.3  Usage Considerations  . . . . . . . . . . . . . 108

JSP.7.3.7  Translation-Time Class Loader . . . . . . . . . . . . 108
JSP.7.3.8  Assembling a Web Application . . . . . . . . . . . . 109
JSP.7.3.9  Well-Known URIs . . . . . . . . . . . . . . . . . . . . . . 109

JSP.7.4 The Tag Library Descriptor Format  . . . . . . . . . . . . . . . 109
JSP.7.5 Validation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

JSP.7.5.1  Translation-Time Mechanisms  . . . . . . . . . . . . 119
JSP.7.5.1.1  Attribute Information . . . . . . . . . . . . . . . . . 119
JSP.7.5.1.2  Validator Classes . . . . . . . . . . . . . . . . . 119
JSP.7.5.1.3  TagExtraInfo Class Validation  . . . . . . 119

JSP.7.5.2  Request-Time Errors  . . . . . . . . . . . . . . . . . . . . 120
JSP.7.6 Conventions and Other Issues . . . . . . . . . . . . . . . . . . . . 120

JSP.7.6.1  How to Define New Implicit Objects  . . . . . . . 120
JSP.7.6.2  Access to Vendor-Specific information . . . . . . 121
JSP.7.6.3  Customizing a Tag Library  . . . . . . . . . . . . . . . 121

JSP.8 JSP Container . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
JSP.8.1 JSP Page Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

JSP.8.1.1  Protocol Seen by the Web Server  . . . . . . . . . . 123
JSP.8.1.1.1  Protocol Seen by the JSP Page Author  . . . 124
JSP.8.1.1.2  The HttpJspPage Interface . . . . . . . . . . 124

JSP.8.2 JSP Page Implementation Class  . . . . . . . . . . . . . . . . . . 125
JSP.8.2.1  API Contracts . . . . . . . . . . . . . . . . . . . . . . . . . . 126
JSP.8.2.2  Request and Response Parameters . . . . . . . . . . 127
JSP.8.2.3  Omitting the extends Attribute  . . . . . . . . . . . . 127
JSP.8.2.4  Using the extends Attribute  . . . . . . . . . . . . . . . 131

JSP.8.3 Buffering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
JSP.8.4 Precompilation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

JSP.8.4.1  Request Parameter Names . . . . . . . . . . . . . . . . 133



JavaServer Pages 1.2 Specification

12

JSP.8.4.2  Precompilation Protocol . . . . . . . . . . . . . . . . . .133

JSP.9 Core API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135
JSP.9.1 JSP Page Implementation Object Contract  . . . . . . . . . .135

JSP.9.1.1  JspPage  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135
JSP.9.1.1.1  Methods  . . . . . . . . . . . . . . . . . . . . . . . .136

JSP.9.1.2  HttpJspPage  . . . . . . . . . . . . . . . . . . . . . . . . . . .137
JSP.9.1.2.2  Methods  . . . . . . . . . . . . . . . . . . . . . . . .137

JSP.9.1.3  JspFactory . . . . . . . . . . . . . . . . . . . . . . . . . . . . .138
JSP.9.1.3.3  Constructors  . . . . . . . . . . . . . . . . . . . . .138
JSP.9.1.3.4  Methods  . . . . . . . . . . . . . . . . . . . . . . . .138

JSP.9.1.4  JspEngineInfo . . . . . . . . . . . . . . . . . . . . . . . . . .139
JSP.9.1.4.5  Constructors  . . . . . . . . . . . . . . . . . . . . .140
JSP.9.1.4.6  Methods  . . . . . . . . . . . . . . . . . . . . . . . .140

JSP.9.2 Implicit Objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .140
JSP.9.2.1  PageContext  . . . . . . . . . . . . . . . . . . . . . . . . . . .140

JSP.9.2.1.7  Fields . . . . . . . . . . . . . . . . . . . . . . . . . . .141
JSP.9.2.1.8  Constructors  . . . . . . . . . . . . . . . . . . . . .142
JSP.9.2.1.9  Methods  . . . . . . . . . . . . . . . . . . . . . . . .143

JSP.9.2.2  JspWriter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .148
JSP.9.2.2.10  Fields . . . . . . . . . . . . . . . . . . . . . . . . . . .150
JSP.9.2.2.11  Constructors  . . . . . . . . . . . . . . . . . . . . .150
JSP.9.2.2.12  Methods  . . . . . . . . . . . . . . . . . . . . . . . .150

JSP.9.3 An Implementation Example . . . . . . . . . . . . . . . . . . . . .156
JSP.9.4 Exceptions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156

JSP.9.4.1  JspException . . . . . . . . . . . . . . . . . . . . . . . . . . .156
JSP.9.4.1.13  Constructors  . . . . . . . . . . . . . . . . . . . . .157
JSP.9.4.1.14  Methods  . . . . . . . . . . . . . . . . . . . . . . . .158

JSP.9.4.2  JspTagException . . . . . . . . . . . . . . . . . . . . . . . .158
JSP.9.4.2.15  Constructors  . . . . . . . . . . . . . . . . . . . . .158

JSP.10 Tag Extension API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159
JSP.10.1 Simple Tag Handlers . . . . . . . . . . . . . . . . . . . . . . . . . . .160

JSP.10.1.1  Tag  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .162
JSP.10.1.1.1  Fields . . . . . . . . . . . . . . . . . . . . . . . . . . .165
JSP.10.1.1.2  Methods  . . . . . . . . . . . . . . . . . . . . . . . .165

JSP.10.1.2  IterationTag . . . . . . . . . . . . . . . . . . . . . . . . . . . .167
JSP.10.1.2.3  Fields . . . . . . . . . . . . . . . . . . . . . . . . . . .169
JSP.10.1.2.4  Methods  . . . . . . . . . . . . . . . . . . . . . . . .169

JSP.10.1.3  TryCatchFinally  . . . . . . . . . . . . . . . . . . . . . . . .169



13

JavaServer Pages 1.2 Specification

JSP.10.1.3.5  Methods . . . . . . . . . . . . . . . . . . . . . . . . 170
JSP.10.1.4  TagSupport . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

JSP.10.1.4.6  Fields  . . . . . . . . . . . . . . . . . . . . . . . . . . 171
JSP.10.1.4.7  Constructors . . . . . . . . . . . . . . . . . . . . . 171
JSP.10.1.4.8  Methods . . . . . . . . . . . . . . . . . . . . . . . . 172

JSP.10.2 Tag Handlers that want Access to their Body Content . 174
JSP.10.2.1  BodyContent  . . . . . . . . . . . . . . . . . . . . . . . . . . 175

JSP.10.2.1.9  Constructors . . . . . . . . . . . . . . . . . . . . . 175
JSP.10.2.1.10  Methods . . . . . . . . . . . . . . . . . . . . . . . . 175

JSP.10.2.2  BodyTag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
JSP.10.2.2.11  Fields  . . . . . . . . . . . . . . . . . . . . . . . . . . 179
JSP.10.2.2.12  Methods . . . . . . . . . . . . . . . . . . . . . . . . 179

JSP.10.2.3  BodyTagSupport  . . . . . . . . . . . . . . . . . . . . . . . 180
JSP.10.2.3.13  Fields  . . . . . . . . . . . . . . . . . . . . . . . . . . 180
JSP.10.2.3.14  Constructors . . . . . . . . . . . . . . . . . . . . . 180
JSP.10.2.3.15  Methods . . . . . . . . . . . . . . . . . . . . . . . . 180

JSP.10.3 Annotated Tag Handler Management Example  . . . . . . 182
JSP.10.4 Cooperating Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
JSP.10.5 Translation-time Classes . . . . . . . . . . . . . . . . . . . . . . . . 186

JSP.10.5.1  TagLibraryInfo . . . . . . . . . . . . . . . . . . . . . . . . . 188
JSP.10.5.1.16  Fields  . . . . . . . . . . . . . . . . . . . . . . . . . . 188
JSP.10.5.1.17  Constructors . . . . . . . . . . . . . . . . . . . . . 188
JSP.10.5.1.18  Methods . . . . . . . . . . . . . . . . . . . . . . . . 189

JSP.10.5.2  TagInfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
JSP.10.5.2.19  Fields  . . . . . . . . . . . . . . . . . . . . . . . . . . 190
JSP.10.5.2.20  Constructors . . . . . . . . . . . . . . . . . . . . . 190
JSP.10.5.2.21  Methods . . . . . . . . . . . . . . . . . . . . . . . . 191

JSP.10.5.3  TagAttributeInfo  . . . . . . . . . . . . . . . . . . . . . . . 193
JSP.10.5.3.22  Fields  . . . . . . . . . . . . . . . . . . . . . . . . . . 193
JSP.10.5.3.23  Constructors . . . . . . . . . . . . . . . . . . . . . 193
JSP.10.5.3.24  Methods . . . . . . . . . . . . . . . . . . . . . . . . 194

JSP.10.5.4  PageData  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
JSP.10.5.4.25  Constructors . . . . . . . . . . . . . . . . . . . . . 195
JSP.10.5.4.26  Methods . . . . . . . . . . . . . . . . . . . . . . . . 195

JSP.10.5.5  TagLibraryValidator  . . . . . . . . . . . . . . . . . . . . 195
JSP.10.5.5.27  Constructors . . . . . . . . . . . . . . . . . . . . . 196
JSP.10.5.5.28  Methods . . . . . . . . . . . . . . . . . . . . . . . . 196

JSP.10.5.6  ValidationMessage . . . . . . . . . . . . . . . . . . . . . . 197
JSP.10.5.6.29  Constructors . . . . . . . . . . . . . . . . . . . . . 197



JavaServer Pages 1.2 Specification

14

JSP.10.5.6.30  Methods  . . . . . . . . . . . . . . . . . . . . . . . .197
JSP.10.5.7  TagExtraInfo . . . . . . . . . . . . . . . . . . . . . . . . . . .198

JSP.10.5.7.31  Constructors  . . . . . . . . . . . . . . . . . . . . .198
JSP.10.5.7.32  Methods  . . . . . . . . . . . . . . . . . . . . . . . .198

JSP.10.5.8  TagData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .199
JSP.10.5.8.33  Fields . . . . . . . . . . . . . . . . . . . . . . . . . . .199
JSP.10.5.8.34  Constructors  . . . . . . . . . . . . . . . . . . . . .200
JSP.10.5.8.35  Methods  . . . . . . . . . . . . . . . . . . . . . . . .200

JSP.10.5.9  VariableInfo  . . . . . . . . . . . . . . . . . . . . . . . . . . .201
JSP.10.5.9.36  Fields . . . . . . . . . . . . . . . . . . . . . . . . . . .203
JSP.10.5.9.37  Constructors  . . . . . . . . . . . . . . . . . . . . .203
JSP.10.5.9.38  Methods  . . . . . . . . . . . . . . . . . . . . . . . .203

JSP.10.5.10  TagVariableInfo  . . . . . . . . . . . . . . . . . . . . . . . .203
JSP.10.5.10.39  Constructors  . . . . . . . . . . . . . . . . . . . . .204
JSP.10.5.10.40  Methods  . . . . . . . . . . . . . . . . . . . . . . . .204

JSP.A Packaging JSP Pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . .207
A.1 A very simple JSP page . . . . . . . . . . . . . . . . . . . . . . . . .207
A.2 The JSP page packaged as source in a WAR file  . . . . .207
A.3 The Servlet for the compiled JSP page  . . . . . . . . . . . . .208
A.4 The Web Application Descriptor . . . . . . . . . . . . . . . . . .209
A.5 The WAR for the compiled JSP page  . . . . . . . . . . . . . .210

JSP.B DTD and Schemas for XML Syntax  . . . . . . . . . . . . . . . .207

B.1 DTD for JSP documents  . . . . . . . . . . . . . . . . . . . . . . . .207
B.2 XSchema Description of JSP documents . . . . . . . . . . . .212

JSP.C DTD for TagLibrary Descriptor, JSP 1.2  . . . . . . . . . . . .225
C.1 DTD for TagLibrary Descriptor Files  . . . . . . . . . . . . . .225

JSP.D DTD for TagLibrary Descriptor, JSP 1.1  . . . . . . . . . . . .237

D.1 DTD for TagLibrary Descriptor Files  . . . . . . . . . . . . . .237

JSP.E Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .243

E.1 Changes Between PFD 2 and Final Draft  . . . . . . . . . . .243
E.1.1 Added jsp:id mechanism  . . . . . . . . . . . . . . . . . .243
E.1.2 Other Small Changes . . . . . . . . . . . . . . . . . . . . .243
E.1.3 Clarification of role of id . . . . . . . . . . . . . . . . . .244
E.1.4 Clarifications on Multiple Requests and Threading 

244
E.1.5 Clarifications on JSP Documents  . . . . . . . . . . .244



15

JavaServer Pages 1.2 Specification

E.1.6 Clarifications on Well Know Tag Libraries . . . 244
E.1.7 Clarified Impact of Blocks  . . . . . . . . . . . . . . . . 245
E.1.8 Other Small Clarifications  . . . . . . . . . . . . . . . . 245

E.2 Changes Between 1.2 PFD 1b and PFD 2  . . . . . . . . . . 246
E.2.1 Added elements to Tag Library Descriptor  . . . 246
E.2.2 Changed the way version information is encoded into 

TLD 246
E.2.3 Assigning String literals to Object attributes  . . 246
E.2.4 Clarification on valid names for prefix, action and at-

tributes 246
E.2.5 Clarification of details of empty actions . . . . . . 247
E.2.6 Corrections related to XML syntax  . . . . . . . . . 247
E.2.7 Other changes . . . . . . . . . . . . . . . . . . . . . . . . . . 247

E.3 Changes Between 1.2 PFD and 1.2 PFD 1b . . . . . . . . . 248
E.4 Changes Between 1.2 PD1 and 1.2 PFD  . . . . . . . . . . . 248

E.4.1 Deletions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
E.4.2 Additions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
E.4.3 Clarifications . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
E.4.4 Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

E.5 Changes Between 1.1 and 1.2 PD1 . . . . . . . . . . . . . . . . 250
E.5.1 Organizational Changes  . . . . . . . . . . . . . . . . . . 250
E.5.2 New Document . . . . . . . . . . . . . . . . . . . . . . . . . 251
E.5.3 Additions to API . . . . . . . . . . . . . . . . . . . . . . . . 251
E.5.4 Clarifications . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
E.5.5 Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

E.6 Changes Between 1.0 and 1.1 . . . . . . . . . . . . . . . . . . . . 252
E.6.1 Additions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
E.6.2 Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

JSP.F Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249



JavaServer Pages 1.2 Specification

16



15

Status

This is the JSP 1.2 specification, developed by the expert group JSR053 under 
the Java Community Process (more details at http://jcp.org/jsr/detail/53.jsp).

JSP.S.1 The Java Community Process

The JCP produces a specification using three communities: an expert commu-
nity (the expert group), the participants of the JCP, and the public-at-large. The 
expert group is responsible for the authoring of the specification through a collec-
tion of drafts. Specification drafts move from the expert community, through the 
participants, to the public, gaining in detail and completeness, always feeding 
received comments back to the expert group; the final draft is submitted for 
approval by the Executive Committee. The expert group lead is responsible for 
facilitating the workings of the expert group, for authoring the specification, and for 
delivering the reference implementation and the conformance test suite.

JSP.S.2 The JCP and this Specification

The JCP is designed to be a very flexible process so each expert group can 
address the requirements of the specific communities it serves. The reference imple-
mentation for JSP 1.2 and Servlet 2.3 uses code that is being developed as an open 
source project under an agreement with the Apache Software Foundation.

This specification includes chapters that are derived directly from the javadoc 
comments in the API classes, but, were there to be any discrepancies, this 
specification has precedence over the javadoc comments.



JavaServer Pages 1.2 Specification

16

The JCP process provides a mechanism for updating the specification through 
a maintenance process using Erratas. If they are available, the erratas will have 
precedence over this specification.

Appendices C and D are normative; the other appendices are non-normative.



17

Preface

This document is the JavaServer Pages™ 1.2 Specification (JSP 1.2). 
This specification was  developed following the Java Community Process 

(JCP).  Comments from Experts, Participants, and the Public were  reviewed and 
imporvements were incorporated into the specification where applicable.

JSP.P.1 Relation To JSP 1.1

JSP 1.2 extends JavaServer Pages™ 1.1 Specification (JSP 1.1) in the following 
ways:

• Requiring the Java 2 platform, version 1.2 or later.

• Using Servlet 2.3 as the foundation for its semantics.

• Defining the XML syntax for JSP pages

• Providing for translation-time validation of JSP pages.

• Specifying refinements of tag library runtime support.

• Improving the tag handler contract.

• Providing improved support for page authoring.

• Improving character encoding and localization support.

• Fixing the infamous “flush before you include” limitation in JSP 1.1.



JavaServer Pages 1.2 Specification

18

JSP.P.2 Licensing of Specification

Details on the conditions under which this document is distributed are described 
in the license on page 2.

JSP.P.3 Who should read this document

This document is the authoritative JSP 1.2 specification. It is intended to pro-
vide requirements for implementations of JSP processing, and support by web con-
tainers in web servers and application servers. 

It is not intended to be a  user’s guide. We expect other documents will be 
created that will cater to different readerships.

JSP.P.4 Related Documents

Implementors of JSP containers and authors of JSP pages may find the follow-
ing documents worth consulting for additional information:

Table JSP.P-1  Some Related Web Sites

JSP home page http://java.sun.com/products/jsp

Servlet home page http://java.sun.com/products/servlet

Java 2 Platform, Standard Edition http://java.sun.com/products/jdk/1.3

Java 2 Platform, Enterprise Edition http://java.sun.com/j2ee

XML in the Java Platform home 
page

http://java.sun.com/xml

JavaBeans™ technology home page http://java.sun.com/beans

XML home page at W3C http://www.w3.org/XML

HTML home page at W3C http://www.w3.org/MarkUp

XML.org home page http://www.xml.org



19

JavaServer Pages 1.2 Specification

JSP.P.5 Historical Note

The following individuals were pioneers who did ground-breaking work in the 
Java platform areas related to this specification: James Gosling’s work on a Web 
Server in Java in 1994/1995, became the foundation for servlets. A larger project 
emerged in 1996 with Pavani Diwanji as lead engineer and with many other key 
members listed below. From this project came Sun’s Java Web Server product.

Things started to move quickly in 1999.  The servlet expert group, with James 
Davidson as lead, delivered the Servlet 2.1 specification in January and the 
Servlet 2.2 specification in December, while the JSP group, with Larry Cable and 
Eduardo Pelegri-Llopart as leads, delivered JSP 1.0 in June and JSP 1.1 in 
December.

The year 2000 saw a lot of activity, with many implementations of containers, 
tools, books, and training that target JSP 1.1, Servlet 2.2, and the Java 2 Enterprise 
Edition platform.  Tag libraries were an area of intense development, as were 
varying approaches to  organizing  all these features together. The adoption of JSP 
technology has continued in the year 2001, with many talks at the “Web, Services 
and beyond” track at JavaOne being dedicated to the technology.

Tracking  the industry in a printed document is at best difficult; the industry 
pages at the web site at http://java.sun.com/products/jsp do a better job.

JSP.P.6 Acknowledgments

Many people contributed to the JavaServer Pages specifications. The success of 
the Java Platform depends on the Java Community Process used to define and 
evolve it. This process, which involves many individuals and corporations, pro-
motes the development of high quality specifications in internet time.

Although it is impossible to list all the individuals who have contributed to 
this version of the specification, we would like to give thanks to all the members 
in our expert group.  We have the benefit of a very large, active and enthusiastic 
expert group, without which the JSP specifications would not have succeeded.

We want to thank:
Alex Yiu, Alex Chaffee, Allan Scott, Amit Kishnani, Bill dehOra, Bjorn 

Carlson, Bob Foster, Chris Hansen, Clement Wong, Craig McClanahan, Dano 
Ferrin, Danny Coward, Dave Brown, Edwin Smith, Francios Jouaux, Frank 
Biederich, Govind Seshadri, Hans Bergsten, Howard Melman, James Strachan, 
Jason McGeee, Jason Hunter, Jeff Mischkinsky, Jon Rousseau, Julie Basu, Karl 
Avedal, Kevin Jones, Larry Cable, Larry Isaas, Magnus Rydin, Magnus Stenman, 
Mark Wallace, Miles Sabin, Misha Davidson, Murty Chintalapati, Nathan 



JavaServer Pages 1.2 Specification

20

Abamson, Nic Ferrier, Olli Blackburn, Paul Bonfanti, Peter Petersen, Petr Jiricka, 
Pier Paolo Fumagalli, Pierre Delisle, Ramesh Mandava, Rod Magnuson, Sam 
Pullara, Satoshi Kikuchi, Scott Ferguson, Scott Snyder, Simeon Simeonov, 
Stephanie Bodoff, Stefano Mazzocchi, Tim Ampe, Tom Reilly, Vince Bonfanti.

We want to thank the community that implemented the reference 
implementation, and the vendors that have implemented the spec, the authoring 
tools, and the tag librarys. 

Special mention is due to Scott Ferguson, Bob Foster, Stefano Mazzocchi and 
Ricardo Rocha for their contributions to chapter 5.  Bob Foster deserves credit for 
for the DTD & XSchema, and  the Cocoon community for Cocoon & XSP. Our 
thanks to Jess Holle for insisting on the topics in Chapter JSP.3.

We want to thank all the authors of books on JSP, and the creators of the web 
sites that are tracking and facilitating the creation of the JSP community.

The editor wants to give special thanks to many individuals within the Java 
Platform Group, and especially to James, Jon, Mala, Jeff, Connie and Graham.

Lastly, we thank the software developers, web authors and members of the 
general public who have read this specification, used the reference 
implementation, and shared their experience. You are the reason the JavaServer 
Pages technology exists.



23

C H A P T E R JSP.1
Overview

This chapter provides an overview of the JavaServer Pages technology.

JSP.1.1 The JavaServer Pages™ Technology

JavaServer Pages™ is the Java™ 2 Platform, Enterprise Edition (J2EE) technol-
ogy for building applications for generating dynamic web content, such as HTML, 
DHTML, XHTML and XML. The JavaServer Pages technology enables the easy 
authoring of web pages that create dynamic content with maximum power and flex-
ibility.

JSP.1.1.1 General Concepts

The JavaServer Pages technology provides the means for textual specification 
of the creation of a dynamic response to a request. The technology builds on the fol-
lowing concepts:

• Template Data

A substantial portion of most dynamic content is fixed or template content. 
Text or XML fragments are typical template data. JSP technology supports 
natural manipulation of template data.

• Addition of Dynamic Data

JSP technology provides a simple, yet powerful, way to add dynamic data to 
template data.



OVERVIEW

JavaServer Pages 1.2 Specification

24

• Encapsulation of Functionality

JSP technology provides two related mechanisms for the encapsulation of 
functionality: JavaBeans component architecture, and tag libraries.

• Good Tool Support

Good tool support leads to significantly improved productivity. Accordingly, 
JSP technology has features that enable the creation of good authoring tools.

Careful development of these concepts yields a flexible and powerful server-
side technology. 

JSP.1.1.2 Benefits of the JavaServer Pages Technology

JavaServer Pages technology offers the following benefits:

• Write Once, Run Anywhere™ properties

JSP technology is platform independent in its dynamic web pages, its web 
servers, and its underlying server components. JSP pages may be authored on 
any platform, run on any web server or web enabled application server, and 
accessed from any web browser. Server components can be built on any plat-
form and run on any server.

• High quality tool support

Platform independence allows the JSP user to choose best-of-breed tools. 
Additionally, an explicit goal of the JavaServer Pages design is to enable the 
creation of high quality portable tools.

• Separation of Roles

JSP supports the separation of developer and author roles: Developers write 
components that interact with server-side objects. Authors put static data and 
dynamic content together to create presentations suited for their intended 
audiences. 
Each group may do their job without knowing the job of the other. Each role 
emphasizes different abilities and, although these abilities may be present in 
the same individual, they most commonly will not be. Separation allows a 
natural division of labor.
A subset of the developer community may be engaged in developing reusable 
components intended to be used by authors.



Basic Concepts 25

JavaServer Pages 1.2 Specification

• Reuse of components and tag libraries

The JavaServer Pages technology emphasizes the use of reusable components 
such as JavaBeans™ components, Enterprise JavaBeans™ components, and tag 
libraries. These components can be used with interactive tools for component 
development and page composition, yielding considerable development time 
savings. In addition, they provide the cross-platform power and flexibility of 
the Java programming language or other scripting languages.

• Separation of dynamic and static content

The JavaServer Pages technology enables the separation of static content in a 
template from dynamic content that is inserted into the static template. This 
greatly simplifies the creation of content. The separation is supported by 
beans specifically designed for the interaction with server-side objects, and by 
the tag extension mechanism.

• Support for scripting and actions

The JavaServer Pages technology supports scripting elements as well as 
actions. Actions encapsulate useful functionality in a convenient form that 
can be manipulated by tools. Scripts provide a mechanism to glue together 
this functionality in a per-page manner.

• Web access layer for N-tier enterprise application architecture(s)

The JavaServer Pages technology is an integral part of the Java 2 Platform 
Enterprise Edition (J2EE). The J2EE platform brings Java technology to 
enterprise computing. You can now develop powerful middle-tier server 
applications that include a web site using JavaServer Pages technology as a 
front end to Enterprise JavaBeans components in a J2EE compliant environ-
ment.

JSP.1.2 Basic Concepts

This section introduces basic concepts that will be defined formally later in the 
specification.

JSP.1.2.1 What is a JSP Page?

A JSP page is a text-based document that describes how to process a request to 
create a response. The description intermixes template data with dynamic actions 
and leverages on the Java 2 Platform. JSP technology supports a number of different 



OVERVIEW

JavaServer Pages 1.2 Specification

26

paradigms for authoring  dynamic content. The key features of JavaServer Pages 
are:

• Standard directives

• Standard actions

• Scripting elements

• Tag Extension mechanism

• Template content

JSP.1.2.2 Web Applications

The concept of a web application is inherited from the Servlet specification. A 
web application can be composed from:

• Java Runtime Environment(s) running in the server (required)

• JSP page(s) that handle requests and generate dynamic content

• Servlet(s) that handle requests and generate dynamic content

• Server-side JavaBeans components that encapsulate behavior and state

• Static HTML, DHTML, XHTML, XML and similar pages.

• Client-side Java Applets, JavaBeans components, and arbitrary Java class 
files

• Java Runtime Environment(s) running in client(s) (downloadable via the Plu-
gin and Java Web Start technology) 

The JavaServer Pages specification inherits from the Servlet specification the 
concepts of web applications, ServletContexts, sessions, requests and responses. 
See the Java Servlet 2.3 specification for more details.

JSP.1.2.3 Components and Containers

JSP pages and servlet classes are collectively referred to as web components. 
JSP pages are delivered to a Container that provides the services indicated in the 
JSP Component Contract.

The separation of components from containers allows reuse of components, 
with quality-of-service features provided by the container.



Basic Concepts 27

JavaServer Pages 1.2 Specification

JSP.1.2.4 Translation and Execution Steps

JSP pages are textual components. They go through two phases: a translation 
phase, and a request phase. Translation is done once per page. The request phase is 
done once per request.

The JSP page is translated to create a servlet class, the JSP page 
implementation class, that is instantiated at request time.  The instantiated JSP 
page object handles requests and creates responses.

JSP pages may be translated prior to their use, providing the web application, 
with a servlet class that can serve as the textual representation of the JSP page.

The translation may also be done by the JSP container at deployment time, or 
on-demand as the requests reach an untranslated JSP page.

JSP.1.2.5 Role in the Java 2 Platform, Enterprise Edition 

With a few exceptions, integration of JSP pages within the J2EE 1.3 platform is 
inherited from the Servlet 2.3 specification since translation turns JSPs into servlets.



OVERVIEW

JavaServer Pages 1.2 Specification

28



29

C H A P T E R JSP.2
Core Syntax and Semantics

This chapter describes the core syntax and semantics for the JavaServer Pages 
1.2 specification (JSP 1.2).

JSP.2.1 What is a JSP Page

A JSP page is a textual document that describes how to create a response object 
from a request object for a given protocol. The processing of the JSP page may 
involve creating and/or using other objects.

A JSP page defines a JSP page implementation class that implements the 
semantics of the JSP page. This class is a  subclass of Servlet (see Chapter JSP.8 
for details). At request time a request intended for the JSP page is delivered to the  
JSP page implementation object for processing.

HTTP is the default protocol for requests and responses. Additional request/
response protocols may be supported by JSP containers (See below). The default 
request and response objects are of type HttpServletRequest and HttpServletRe-

sponse respectively. 

JSP.2.1.1 Web Containers and Web Components

A JSP container is a system-level entity that provides life-cycle management 
and runtime support for JSP pages and Servlet components. Requests sent to a JSP 
page are delivered by the JSP container to the appropriate JSP page implementation 
object. The term web container is synonymous with JSP container.

A web component is either a servlet or a JSP page. The servlet element in a 
web.xml deployment descriptor is used to describe both types of web 
components. JSP page components are defined implicitly in the deployment 
descriptor through the use of an implicit .jsp extension mapping.



CORE SYNTAX AND SEMANTICS

JavaServer Pages 1.2 Specification

30

JSP.2.1.2 XML Document for a JSP Page

 JSP pages have an equivalent XML document. The XML view of a JSP page is 
exposed to the translation phase (see below).

A JSP page can be written directly as an XML document.  Beginning with JSP 
1.2, the XML document can be delivered to a JSP container for processing.

It is not valid to mix standard syntax and XML syntax in the same source file. 
However, a JSP page in either syntax can include a JSP page in either syntax via a 
directive.

JSP.2.1.3 Translation and Execution Phases

A JSP container manages two phases of a JSP page’s life. In the translation 
phase, the container determines a JSP page implementation class that corresponds to 
the JSP page. In the execution phase the container manages one or more instances of 
this class in response to requests and other events.

During the translation phase the container locates or creates the JSP page 
implementation class that corresponds to a given JSP page.  This  process is 
determined by the semantics of the JSP page. The container interprets the  
standard directives and actions, and the custom actions referencing tag libraries 
used in the page.  A tag library may optionally provide a validation method to 
validate that a JSP page is correctly using the library.

A JSP container has flexibility  in the details of the JSP page implementation 
class that can be used to address quality-of-service --most notably performance-- 
issues.

During the execution phase the JSP container delivers events to the JSP page 
implementation object.  The container is responsible for instantiating request and 
response objects and invoking the appropriate JSP page implementation object. 
Upon completion of processing, the response object is received by the container 
for communication to the client.  The details of the contract between the JSP page 
implementation class and the JSP container are described in Chapter JSP.8.

The translation of a JSP source page into its implementation class can occur at 
any time between initial deployment of the JSP page into the JSP container and 
the receipt and processing of a client request for the target JSP page.  
Section JSP.2.1.5 describes how to perform the translation phase ahead of 
deployment.

JSP.2.1.4 Events in JSP Pages

A JSP page may indicate how some events are to be handled.



What is a JSP Page 31

JavaServer Pages 1.2 Specification

In JSP 1.2 only init and destroy events can be described in the JSP page. 
When the first  request is delivered to a JSP page, a jspInit() method, if present, 
will be called to prepare the page. Similarly, a JSP container may invoke a JSP’s 
jspDestroy() method to reclaim the resources used by the  JSP page at any time 
when a request is not being serviced.  This is the same life-cycle as for servlets.

JSP.2.1.5 Compiling JSP Pages

A JSP page may be compiled into its implementation class plus deployment 
information during development. (A JSP page can also be compiled at deployment 
time.) In this way JSP page authoring tools and JSP tag libraries may be used for 
authoring servlets. The benefits of this approach include:

• Removal of the start-up lag that occurs when a container must translate a JSP 
page upon receipt of the first request.

• Reduction of the footprint needed to run a JSP container, as the java compiler 
is not needed.

Compilation of a  JSP page in the context of a web application provides 
resolution of relative URL specifications in include directives (and elsewhere), 
taglib references, and translation-time actions used in custom actions. 

A JSP page can also be compiled at deployment time.

JSP.2.1.5.1 JSP Page Packaging

When a JSP page implementation class depends on support classes (in addition 
to the JSP 1.2 and Servlet 2.3 classes), the support classes are included in the pack-
aged WAR (as defined in the Servlet 2.3 specification) for portability across  JSP 
containers..

Appendix JSP.A contains two examples of the packaging of JSP pages in 
WARs:

1.  A JSP page delivered in source form (probably the most common case). 

1. A JSP page translated into an implementation class plus deployment informa-
tion. The deployment information indicates support classes needed and the 
mapping between the original URL path to the JSP page and the URL for the 
JSP page implementation class for that page.



CORE SYNTAX AND SEMANTICS

JavaServer Pages 1.2 Specification

32

JSP.2.1.6 Debugging JSP Pages

In the past debugging tools provided by development environments have lacked 
a standard format for conveying source map information allowing the debugger of 
one vender to be used with the JSP container of another. A specification for debug-
ging support that overcomes this limitations is being worked on under JSR-045 of 
the JCP 2.0 process with the title “Debugging Support for Non-Java Languages”. 
Details can be obtained at http://jcp.org/jsr/detail/45.jsp.

JSP.2.1.7 Naming Conventions for JSP Files

A JSP page is packaged as one or more files, often in a web application, and 
delivered to a tool like a JSP container, a J2EE container, or an IDE. A complete JSP 
page may be contained in a single file. In other cases, the top file will include other 
files that contain complete JSP pages, or included fragments.

It is common for tools to need to differentiate JSP page files from other files.  
In some cases, the tools also need to differentiate between top JSP files and 
included fragments.  For example, a fragment may not be a legal JSP page and 
may not compile properly.  Determining the type of file is also very useful from a 
documentation and maintenance point of view, as people familiar with the “.c” 
and “.h” convention in the C language know.

The Servlet 2.3 specification wires-in the extension “.jsp” to mean a JSP page, 
but does not differentiate top JSP files from included fragments.  We recommend, 
but do not mandate, that:

• “.jsp” files correspond to top level JSP files containing a JSP page.

• Included fragments not use the “.jsp” extension. Any other extension will do, 
although “.jspf” and “.jsf” seem reasonable extensions and are offered as sug-
gestions.

JSP.2.2 Web Applications

A web application is a collection of resources that are available at designated 
URLs. A web application is made up of some of the following:

• Java runtime environment(s) running in the server (required)

• JSP page(s) that handle requests and generate dynamic content

• Servlet(s) that handle requests and generate dynamic content



Web Applications 33

JavaServer Pages 1.2 Specification

• Server-side JavaBeans components that encapsulate behavior and state

• Static HTML, DHTML, XHTML, XML and similar pages.

• Resource files used by Java classes.

• Client-side Java Applets, JavaBeans components, and Java class files

• Java runtime environment(s) (downloadable via the Plugin and Java Web 
Start) running in client(s)

Web applications are described in more detail in the Servlet 2.3 specification.
A web application contains a deployment descriptor web.xml that contains 

information about the JSP pages, servlets, and other resources used in the web 
application. The deployment descriptor is described in detail in the Servlet 2.3 
specification.

JSP 1.2 requires that these resources be implicitly associated with and 
accessible through a unique ServletContext instance available as the implicit  appli-

cation object (Section JSP.2.8).
The application to which a JSP page belongs is reflected in the application 

object, and has impact on the semantics of the following elements:

• The include directive (Section JSP.2.10.3).

• The jsp:include action element (Section JSP.4.4).

• The jsp:forward action (Section JSP.4.5).

JSP 1.2 supports portable packaging and deployment of web applications 
through the Servlet 2.3 specification. The JavaServer Pages specification inherits 
from the Servlet specification the concepts of applications, ServletContexts, 
Sessions, Requests and Responses.

JSP.2.2.1 Relative URL Specifications 

Elements may use relative URL specifications, called “URI paths” in the Servlet 
2.3 specification. These paths are as described in the RFC 2396 specification. We 
refer to the path part of that specification, not the scheme nor authority parts. Some 
examples are:

A context-relative path is a path that starts with a “/”. It is to be interpreted 
as relative to  the application to which the JSP page belongs, that is to say that  its 
ServletContext object provides the base context URL. 



CORE SYNTAX AND SEMANTICS

JavaServer Pages 1.2 Specification

34

A page relative path is a path that does not start with a “/”. It is to be 
interpreted as relative to the current JSP page or the current JSP file depending on 
where the path is being used: for an include directive (Section JSP.2.10.3) where 
the path is used in a file attribute, the interpretation is relative to the JSP file; for an 
jsp:include action (Section JSP.4.4) where the path is used in a page attribute, the 
interpretation is relative to the JSP page. In both cases the current page (or file) is 
denoted by some path starting with “/” that is then modified by the new 
specification to produce a path starting with  “/”.  The new path is interpreted 
through the ServletContext object. See Section JSP.2.10.4 for exact details on this 
interpretation.

The JSP specification uniformly interprets paths in the context of the web 
server where the JSP page is deployed.  The specification goes through a mapping 
translation. The semantics outlined here apply to the translation-time phase, and to 
the request-time phase.

JSP.2.3 Syntactic Elements of a JSP Page

This section describes the basic syntax rules of JSP pages.

JSP.2.3.1 Elements and Template Data

A JSP page has elements and template data. An element is an instance of an ele-
ment type known to the JSP container. Template data is everything else: anything 
that the JSP translator does not know about.

The type of an element describes its syntax and its semantics. If the element 
has attributes, the type describes the attribute names, their valid types, and their 
interpretation. If the element defines objects, the semantics includes what objects 
it defines and their types.

JSP.2.3.2 Element Syntax

There are three types of elements: directive elements, scripting elements, and 
action elements.

Directives

Directives provide global information that is conceptually valid independent 
of any specific request received by the JSP page. They provide information 
for the translation phase.



Syntactic Elements of a JSP Page 35

JavaServer Pages 1.2 Specification

Directive elements have a syntax of the form <%@ directive...%>

Actions

Actions provide information for the request processing phase. The interpreta-
tion of an action may, and often will, depend on the details of the specific 
request received by the JSP page. An Actions can either be standard, that is. 
defined in this specification, or custom, that is provided via the portable tag 
extension mechanism.
Action elements follow the syntax of an XML element.: They have a start tag 
including the element name, and may have attributes, an optional body, and a 
matching end tag, or they be an empty tag possibly with attributes:

<mytag attr1=”attribute value”...>body</mytag>

and

<mytag attr1=”attribute value”.../>
<mytag attr1=”attribute value” ...></mytag>

An element has an element type describing its tag name, its valid attributes 
and its semantics. We refer to the type by its tag name.
JSP tags are case-sensitive, as in XML and XHTML.
An action may create objects and may make them available to the scripting 
elements through scripting-specific variables.

Scripting Elements

Scripting elements provide glue around template text and actions. There are 
three types of scripting elements: declarations, scriptlets and expressions. 
Declarations follow the syntax <%! ... %>; scriptlets follow the syntax 
<% ... %>; expressions follow the syntax <%= ... %>.

JSP.2.3.3 Start and End Tags

Elements that have distinct start and end tags (with enclosed body) must start 
and end in the same file. The start tag cannot be on one file while the end tag is in 
another.

The same rule applies to elements in the alternate syntax. For example, a 
scriptlet has the syntax <% scriptlet %>. Both the opening <% characters and the 
closing %> characters must be in the same physical file.



CORE SYNTAX AND SEMANTICS

JavaServer Pages 1.2 Specification

36

A scripting language may also impose constraints on the placement of start 
and end tags relative to specific scripting constructs. For example, Chapter 6 
shows that Java language blocks cannot separate a start and an end tag; see 
Section JSP.6.4 for details.

JSP.2.3.4 Empty Elements

Following the XML specification, an element described using an empty tag is 
indistinguishable from one using a start tag, an empty body, and an end tag

As examples, the following are all empty tags:

<x:foo></x:foo>
<x:foo />
<x:foo/>
<x:foo><%-- any comment --%></x:foo>

While the following are all non-empty tags:

<foo> </foo>
<foo><%= expression %></foo>
<foo><% scriptlet %></foo>
<foo><bar/></foo>
<foo><!-- a comment --></foo>

JSP.2.3.5 Attribute Values

Following the XML specification, attribute values always appear quoted. Either 
single or double quotes can be used to reduce the need for quoting quotes; the quota-
tion conventions available are described in Section JSP.2.6. There are two types of 
attribute values, literals and request-time expressions (Section JSP.2.13.1) but the 
quotation rules are the same.

JSP.2.3.6 Valid Names for Actions and Attributes

The names for actions must follow the XML convention (ie. must be an 
NMTOKEN as indicated in the XML 1.0 specification). The names for attributes 
must be follow the conventions described in the JavaBeans specification.

Attribute names that start with jsp, _jsp, java, or sun are reserved to this 
specification.



Syntactic Elements of a JSP Page 37

JavaServer Pages 1.2 Specification

JSP.2.3.7 White Space

In HTML and XML white space is usually not significant, but there are excep-
tions. For example, an XML file may start with the characters <?xml, and, when it 
does, it must do so with no leading whitespace characters.

This specification follows the whitespace behavior defined for XML. White 
space within the body text of a document is not significant, but is preserved. 

Next are two examples of JSP fragments with their associated output. Note 
that directives generate no data and apply globally to the JSP page. 

The result is

The next two tables show another example, with input and output.,

The result is

Table 2.1:  Example 1 - Input

LineNo Source Text

1 <?xml version=”1.0” ?>

2 <%@ page buffer=”8kb” %>

3 The rest of the document goes here

Table 2.2:  Example 1 - Output

LineNo Output Text

1 <?xml version=”1.0” ?>

2
3 The rest of the document goes here

Table 2.3:  Example 2 - Input

LineNo Source Text

1 <% response.setContentType(“....”);

2 whatever... %><?xml version=”1.0” ?>

3 <%@ page buffer=”8kb” %>

4 The rest of the document goes here

Table 2.4:  Example 2 - Output

LineNo Output Text

1 <?xml version=”1.0” ?>

2



CORE SYNTAX AND SEMANTICS

JavaServer Pages 1.2 Specification

38

JSP.2.4 Error Handling

Errors may occur at translation time or at request time. This section describes 
how errors are treated by a compliant implementation.

JSP.2.4.1 Translation Time Processing Errors

The translation of a JSP page source into a corresponding JSP page implemen-
tation class by a JSP container can occur at any time between initial deployment of 
the JSP page into the JSP container and the receipt and processing of a client request 
for the target JSP page. If translation occurs prior to the receipt of a client request for 
the target JSP page, error processing and notification is implementation dependent 
and not covered by this specification. Fatal translation failures shall result in the fail-
ure of subsequent client requests for the translation target with the appropriate error 
specification: For HTTP protocols the error status code 500 (Server Error) is 
returned.

JSP.2.4.2 Request Time Processing Errors

During the processing of client requests, errors can occur in either the body of 
the JSP page implementation class, or in some other code (Java or other implemen-
tation programming language) called from the body of the JSP page implementation 
class. Runtime errors occurring are realized in the page implementation, using the 
Java programming language exception mechanism to signal their occurrence to 
caller(s) of the offending behavior1. 

These exceptions may be caught and handled (as appropriate) in the body of 
the JSP page implementation class. 

Any uncaught exceptions thrown in the body of the JSP page implementation 
class result in the forwarding of the client request and uncaught exception to the 

4 The rest of the document goes here

1. Note that this is independent of scripting language. This specification re-
quires that unhandled errors occurring in a scripting language environ-
ment used in a JSP container implementation to be signalled to the JSP
page implementation class via the Java programming language exception
mechanism.

Table 2.4:  Example 2 - Output



Comments 39

JavaServer Pages 1.2 Specification

errorPage URL specified by the JSP page (or the implementation default behavior, 
if none is specified).

The offending java.lang.Throwable describing the error that occurred is stored 
in the javax.ServletRequest instance for the client request using the setAttribute() 
method, using the name “javax.servlet.jsp.jspException”.  Names starting with the 
prefixes “java” and “javax” are reserved by the different specifications of the Java 
platform.  The “javax.servlet” prefix is reserved and used by the Servlet and JSP 
specifications.

If the errorPage attribute of a page directive names a URL that refers to 
another JSP, and that JSP indicates that it is an error page (by setting the page 
directive’s isErrorPage attribute to true) then the “exception” implicit scripting 
language variable of that page is initialized to the offending Throwable reference

JSP.2.5 Comments

There are two types of comments in a JSP page: comments to the JSP page 
itself, documenting what the page is doing; and comments that are intended to 
appear in the generated document sent to the client.

JSP.2.5.1 Generating Comments in Output to Client

In order to generate comments that appear in the response output stream to the 
requesting client, the HTML and XML comment syntax is used, as follows:

<!-- comments ... -->

These comments are treated as uninterpreted template text by the JSP 
container. If the generated comment is to have dynamic data, this can be obtained 
through an expression syntax, as in:

<!-- comments <%= expression %> more comments ... -->

JSP.2.5.2 JSP Comments

A JSP comment is of the form

<%-- anything but a closing --%> ... --%>



CORE SYNTAX AND SEMANTICS

JavaServer Pages 1.2 Specification

40

The body of the content is ignored completely. Comments are useful for 
documentation but also are used to  “comment out” some portions of a JSP page. 
Note that JSP comments do not nest.

An alternative way to place a “comment” in JSP is to use the comment 
mechanism of the scripting language. For example:

<% /** this is a comment ... **/ %>

JSP.2.6 Quoting and Escape Conventions

The following quoting conventions apply to JSP pages.

Quoting in Scripting Elements

■ A literal %> is quoted by %\>

Quoting in Template Text

■ A literal <% is quoted by <\%

Quoting in Attributes

Quotation is done consistently regardless of whether the attribute value is a 
literal or a request-time attribute expression. Quoting can be used in attribute 
values regardless of whether they are delimited using single or double quotes. It is 
only required as described below.

■ A ‘ is quoted as \’. This is required within a single quote-delimited attribute 
value.

■ A “ is quoted as \”. This is required within a double quote-delimited attribute 
value.

■ A \ is quoted as \\

■ A %> is quoted as %\>

■ A <% is quoted as <\%

■ The entities &apos; and &quot; are available to describe single and double 
quotes.



Overall Semantics of a JSP Page 41

JavaServer Pages 1.2 Specification

Examples

The following line shows an illegal attribute values.

• <mytags:tag value="<%= "hi!" %>" />

The following line shows a legal scriptlet, but perhaps with an intended value. 
The result is “Joe said %\>” not “Joe said %>”.

• <%= "Joe said %\\>" %>

The next lines are all legal quotations.

• <%= "Joe said %/>" %>

• <%= "Joe said %\>" %>

• <% String joes_statement = "hi!"; %>
<%= "Joe said \"" + joes_statement + "\"." %>
<x:tag value='<%="Joe said \\"" + joes_statement + "\\"."%>'/>

• <x:tag value='<%= "hi!" %>' />

• <x:tag value="<%= \"hi!\" %>" />

• <x:tag value='<%= \"name\" %>' />

• <x:tag value="<%= \"Joe said 'hello'\" %>"/>

• <x:tag value="<%= \"Joe said \\\"hello\\\" \" %>"/>

• <x:tag value="end expression %\>"/>

• <% String s="abc"; %>
<x:tag value="<%= s + \"def\" + \"jkl\" + 'm' + \'n\' %>" />
<x:tag value='<%= s + \"def\" + "jkl" + \'m\' + \'n\' %>' />

XML Representation

The quoting conventions are different from those of XML. See Chapter JSP.5.

JSP.2.7 Overall Semantics of a JSP Page

A JSP page implementation class defines a _jspService() method mapping from 
the request to the response object. Some details of this transformation are specific to 



CORE SYNTAX AND SEMANTICS

JavaServer Pages 1.2 Specification

42

the scripting language used (see Chapter JSP.6). Most details are not language spe-
cific and are described in this chapter.

The content of a JSP page is  devoted largely to describing the  data that is 
written into the output stream of the response.  (The JSP container usually sends 
this data back to the client.)  The description is based on a JspWriter object that is 
exposed through the implicit object out (see Section JSP.2.8.3, “Implicit Objects). 
Its value varies:

• Initially, out is a new JspWriter object. This object may be different from the 
stream object returned from response.getWriter(), and may be considered to be 
interposed on the latter in order to implement buffering (see 
Section JSP.2.10.1, “The page Directive”). This is the initial out object. JSP 
page authors are prohibited from writing directly to either the PrintWriter or 
OutputStream associated with the ServletResponse.

• The JSP container should not invoke response.getWriter() until the time when 
the first portion of the content is to be sent to the client. This enables a number 
of uses of JSP, including using JSP as a language to ‘glue’ actions that deliver 
binary content, or reliably forwarding to a servlet, or change dynamically the 
content type of the respose before generating content. See Chapter JSP.3.

• Within the body of some actions, out may be temporarily re-assigned to a dif-
ferent (nested) instance of JspWriter object. Whether this is the case depends 
on the details of the action’s semantics. Typically the content of these tempo-
rary streams is appended to the stream previously referred to by out, and out is 
subsequently re-assigned to refer to the previous (nesting) stream. Such nest-
ed streams are always buffered, and require explicit flushing to a nesting 
stream or their contents will be discarded.

• If the initial out JspWriter object is buffered, then depending upon the value of 
the autoFlush attribute of the page directive, the content of that buffer will ei-
ther be automatically flushed out to the ServletResponse output stream to ob-
viate overflow, or an exception shall be thrown to signal buffer overflow. If the 
initial out JspWriter is unbuffered, then content written to it will be passed di-
rectly through to the ServletResponse output stream.

A JSP page can also describe what should happen when some specific events 
occur. In JSP 1.2, the only events that can be described are the initialization and 
the destruction of the page. These events are described using “well-known method 
names” in declaration elements. (See Section JSP.8.1.1.1). 



Objects 43

JavaServer Pages 1.2 Specification

JSP.2.8 Objects

A JSP page can access, create, and modify server-side objects. Objects can be 
made visible to actions and to scripting elements. An object has a scope describing 
what entities can access the object.

Actions can access objects using a name in the PageContext object.  
An object exposed through a scripting variable has a scope within the page. 

Scripting elements can access some objects directly via a scripting variable.  
Some implicit objects are visible via scripting variables in any JSP page. 

JSP.2.8.1 Objects and Variables

An object may be made accessible to code in the scripting elements through a 
scripting language variable. An element can define scripting variables that will con-
tain, at process request-time, a reference to the object defined by the element, 
although other references may exist depending on the scope of the object.

An element type indicates the name and type of such variables although 
details on the name of the variable may depend on the Scripting Language. The 
scripting language may also affect how different features of the object are 
exposed. For example, in the JavaBeans specification, properties are exposed via 
getter and setter methods, while these properties are available directly as variables 
in the JavaScript™ programming language.

The exact rules for the visibility of the variables are scripting language 
specific. Chapter JSP.2.1 defines the rules for when the language attribute of the 
page directive is “java”.

JSP.2.8.2 Objects and Scopes

A JSP page can create and/or access some Java objects when processing a 
request.  The JSP specification indicates that some objects are created implicitly, 
perhaps as a result of a directive (see Section JSP.2.8.3, “Implicit Objects). Other 
objects are created explicitly through actions, or created directly using scripting 
code. Created objects have a scope attribute defining where there is a reference to 
the object and when that reference is removed.

The created objects may also be visible directly to scripting elements through 
scripting-level variables (see Section JSP.2.8.3, “Implicit Objects).

Each action and declaration defines, as part of its semantics, what objects it 
creates, with what scope attribute, and whether they are available to the scripting 
elements.



CORE SYNTAX AND SEMANTICS

JavaServer Pages 1.2 Specification

44

Objects are created within a JSP page instance that is responding to a request 
object. There are several scopes:

• page - Objects with page scope are accessible only within the page where they 
are created. All references to such an object shall be released after the response 
is sent back to the client from the JSP page or the request is forwarded some-
where else. References to objects with page scope are stored in the pageCon-
text object.

• request - Objects with request scope are accessible from pages processing the 
same request where they were created. References to the object shall be re-
leased after the request is processed. In particular, if the request is forwarded 
to a resource in the same runtime, the object is still reachable. References to 
objects with request scope are stored in the request object.

• session - Objects with session scope are accessible from pages processing re-
quests that are in the same session as the one in which they were created. It is 
not legal to define an object with session scope from within a page that is not 
session-aware (see Section JSP.2.10.1, “The page Directive). All references to 
the object shall be released after the associated session ends. References to 
objects with session scope are stored in the session object associated with the 
page activation.

• application - Objects with application scope are accessible from pages pro-
cessing requests that are in the same application as they one in which they were 
created. Objects with application scope can be defined (and reached) from pag-
es that are not session-aware. References to objects with application scope are 
stored in the application object associated with a page activation. The 
application object is the servlet context obtained from the servlet configuration 
object. All references to the object shall be released when the runtime environ-
ment reclaims the ServletContext. 

A name should refer to a unique object at all points in the execution, that is all 
the different scopes really should behave as a single name space. A JSP container 
implementation may or may not enforce this rule explicitly due to performance 
reasons.

JSP.2.8.3 Implicit Objects

JSP page authors have access to certain implicit objects that are always avail-
able for use within scriptlets and expressions through scripting variables that are 



Objects 45

JavaServer Pages 1.2 Specification

declared implicitly at the beginning of the page. All scripting languages are required 
to provide access to these objects. Implicit objects are available to tag handlers 
through the pageContext object, see below.

Each implicit object has a class or interface type defined in a core Java 
technology or Java Servlet API package, as shown in Table JSP.2-1.

Table JSP.2-1  Implicit Objects Available in JSP Pages

Variable 
Name Type Semantics & Scope

request protocol dependent subtype of: 
javax.servlet.ServletRequest
e.g:
javax.servlet.http.HttpServletRequest

The request triggering 
the service invocation.
request scope.

response protocol dependent subtype of: 
javax.servlet.ServletResponse, e.g:
javax.servlet.http.HttpServletResponse

The response to the 
request.
page scope.

pageContext javax.servlet.jsp.PageContext The page context for this 
JSP page.
page scope.

session javax.servlet.http.HttpSession The session object 
created for the requesting 
client (if any).
This variable is only 
valid for Http protocols.
session scope

application javax.servlet.ServletContext The servlet context 
obtained from the servlet 
configuration object
(as in the call 
getServletConfig().
getContext() )
application scope

out javax.servlet.jsp.JspWriter An object that writes into 
the output stream.
page scope



CORE SYNTAX AND SEMANTICS

JavaServer Pages 1.2 Specification

46

In addition, the exception implicit object can be accessed in an error page, as 
described in Table JSP.2-2.

Object names with prefixes jsp, _jsp, jspx and _jspx, in any combination of 
upper and lower case, are reserved by the JSP specification.

See Section JSP.7.6.1 for some non-normative conventions for the 
introduction of new implicit objects.

JSP.2.8.4 The pageContext Object

A PageContext is an object that provides a context to store references to objects 
used by the page, encapsulates implementation-dependent features, and provides 
convenience methods. A JSP page implementation class can use a PageContext to 
run unmodified in any compliant JSP container while taking advantage of imple-
mentation-specific improvements like high performance JspWriters.

See Chapter JSP.9 for more details.

config javax.servlet.ServletConfig The ServletConfig 
for this JSP page
page scope

page java.lang.Object The instance of this 
page’s implementation 
class processing the 
current requesta

page scope

a. When the scripting language is “java” then “page” is a synonym for “this” in 
the body of the page.

Table JSP.2-2  Implicit Objects Available in Error Pages

Variable 
Name Type Semantics & Scope

exception java.lang.Throwable The uncaught Throwable 
that resulted in the error 
page being invoked.
page scope.

Table JSP.2-1  Implicit Objects Available in JSP Pages

Variable 
Name Type Semantics & Scope



Template Text Semantics 47

JavaServer Pages 1.2 Specification

JSP.2.9 Template Text Semantics

The semantics of template (or uninterpreted) Text is very simple: the template 
text is passed through to the current out JspWriter implicit object, after applying the 
substitutions of Section JSP.2.6, “Quoting and Escape Conventions.

JSP.2.10 Directives

Directives are messages to the JSP container. Directives have this syntax:

<%@ directive { attr=”value” }* %>

There may be optional white space after the “<%@” and before “%>”.
This syntax is easy to type and concise but it is not XML-compatible. 

Chapter JSP.5 describes the mapping of directives into XML elements.
Directives do not produce any output into the current out stream.
There are three directives: the page and the taglib directives are described 

next, while the include directive is described in the next chapter.

JSP.2.10.1 The page Directive

The page directive defines a number of page dependent properties and commu-
nicates these to the JSP container.

A translation unit (JSP source file and any files included via the include 
directive) can contain more than one instance of the page directive, all the 
attributes will apply to the complete translation unit (i.e. page directives are 
position independent). However, there shall be only one occurrence of any 
attribute/value defined by this directive in a given translation unit with the 
exception of the “import” attribute; multiple uses of this attribute are cumulative 
(with ordered set union semantics). Other such multiple attribute/value 
(re)definitions result in a fatal translation error.

The attribute/value namespace is reserved for use by this, and subsequent, JSP 
specification(s).

Unrecognized attributes or values result in fatal translation errors.

Examples

The following directive provides some user-visible information on this JSP 
page:



CORE SYNTAX AND SEMANTICS

JavaServer Pages 1.2 Specification

48

<%@ page info=”my latest JSP Example” %>

The following directive requests no buffering, indicates that the page is thread 
safe, and provides an error page.

<%@ page buffer=”none” isThreadSafe=”yes” errorPage=”/oops.jsp” %>

The following directive indicates that the scripting language is based on Java, 
that the types declared in the package com.myco are directly available to the 
scripting code, and that a buffering of 16KB should be used.

<%@ page language=”java” import=”com.myco.*” buffer=”16kb” %>

Syntax

<%@ page page_directive_attr_list %>

page_directive_attr_list ::= { language=”scriptingLanguage”}
{ extends=”className” }
{ import=”importList” }
{ session=”true|false” }
{ buffer=”none|sizekb” }
{ autoFlush=”true|false” }
{ isThreadSafe=”true|false” }
{ info=”info_text” }
{ errorPage=”error_url” }
{ isErrorPage=”true|false” }
{ contentType=”ctinfo” }
{ pageEncoding=”peinfo” }



Directives 49

JavaServer Pages 1.2 Specification

The details of the attributes are as follows:

Table JSP.2-1  

language Defines the scripting language to be used in the scriptlets, 
expression scriptlets, and declarations within the body of the 
translation unit (the JSP page and any files included using 
the include directive below).
In JSP 1.2, the only defined and required scripting language 
value for this attribute is “java”. 
This specification only describes the semantics of scripts for 
when the value of the language attribute is “java”.
When “java” is the value of the scripting language, the Java 
Programming Language source code fragments used within 
the translation unit are required to conform to the Java 
Programming Language Specification in the way indicated 
in Chapter JSP.6.
All scripting languages must provide some implicit objects 
that a JSP page author can use in declarations, scriptlets, and 
expressions. The specific objects that can be used are defined 
in Section JSP.2.8.3, “Implicit Objects.”
All scripting languages must support the Java Runtime 
Environment (JRE). All scripting languages must expose the 
Java technology object model to the script environment, 
especially implicit variables, JavaBeans component 
properties, and public methods.
Future versions of the JSP specification may define 
additional values for the language attribute and all such 
values are reserved.
It is a fatal translation error for a directive with a non-”java” 
language attribute to appear after the first scripting element 
has been encountered.

extends The value is a fully qualified Java programming language 
class name, that names the superclass of the class to which 
this JSP page is transformed (see Chapter JSP.8).
This attribute should not be used without careful 
consideration as it restricts the ability of the JSP container to 
provide specialized superclasses that may improve on the 
quality of rendered service. See Section JSP.7.6.1 for an 
alternate way to introduce objects into a JSP page that does 
not have this drawback.



CORE SYNTAX AND SEMANTICS

JavaServer Pages 1.2 Specification

50

import An import attribute describes the types that are available to 
the scripting environment. The value is as in an import 
declaration in the Java programming language, i.e. a (comma 
separated) list of either a fully qualified Java programming 
language type name denoting that type, or of a package name 
followed by the “.*” string, denoting all the public types 
declared in that package. The import list shall be imported by 
the translated JSP page implementation and is thus available 
to the scripting environment.
The default import list is java.lang.*, javax.servlet.*, 
javax.servlet.jsp.* and javax.servlet.http.*.
This value is currently only defined when the value of the 
language directive is “java”.

session Indicates that the page requires participation in an (http) 
session.
If “true” then the implicit script language variable named 
“session” of type javax.servlet.http.HttpSession references the 
current/new session for the page. 
If “false” then the page does not participate in a session; the 
“session” implicit variable is unavailable, and any reference 
to it within the body of the JSP page is illegal and shall result 
in a fatal translation error.
Default is “true”.

buffer Specifies the buffering model for the initial “out” JspWriter to 
handle content output from the page.
If “none”, then there is no buffering and all output is written 
directly through to the ServletResponse PrintWriter. 
The size can only be specified in kilobytes, and the suffix 
“kb” is mandatory.
If a buffer size is specified then output is buffered with a 
buffer size not less than that specified.
Depending upon the value of the “autoFlush” attribute, the 
contents of this buffer is either automatically flushed, or an 
exception is raised, when overflow would occur.
The default is buffered with an implementation buffer size of 
not less than 8kb.

Table JSP.2-1  



Directives 51

JavaServer Pages 1.2 Specification

autoFlush Specifies whether the buffered output should be flushed 
automatically (“true” value) when the buffer is filled, or 
whether an exception should be raised (“false” value) to 
indicate buffer overflow.
The default is “true”.
Note: it is illegal to set autoFlush to “false” when 
“buffer=none”.

isThreadSafe Indicates the level of thread safety implemented in the page.
If “false” then the JSP container shall dispatch multiple 
outstanding client requests, one at a time, in the order they 
were received, to the page implementation for processing.
If “true” then the JSP container may choose to dispatch 
multiple outstanding client requests to the page 
simultaneously.
Page authors using “true” must ensure that they properly 
synchronize access to the shared state of the page.
Default is “true”.
Note that even if the isThreadSafe attribute is “false” the JSP 
page author must ensure that accesses to any shared objects 
are properly synchronized., The objects may be shared in 
either the ServletContext or the HttpSession.

info Defines an arbitrary string that is incorporated into the 
translated page, that can subsequently be obtained from the 
page’s implementation of Servlet.getServletInfo() method.

isErrorPage Indicates if the current JSP page is intended to be the URL 
target of another JSP page’s errorPage.
If “true”, then the implicit script language variable 
“exception” is defined and its value is a reference to the 
offending Throwable from the source JSP page in error.
If “false” then the “exception” implicit variable is 
unavailable, and any reference to it within the body of the 
JSP page is illegal and shall result in a fatal translation error.
Default is “false”

Table JSP.2-1  



CORE SYNTAX AND SEMANTICS

JavaServer Pages 1.2 Specification

52

errorPage Defines a URL to a resource to which any Java programming 
language Throwable object(s) thrown but not caught by the 
page implementation are forwarded for error processing.
The provided URL spec is as in Section JSP.2.2.1.
If the URL names another JSP page then, when invoked that 
JSP page’s exception implicit script variable shall contain a 
reference to the originating uncaught Throwable.
The default URL is implementation dependent.
Note the Throwable object is transferred by the throwing 
page implementation to the error page implementation by 
saving the object reference on the common ServletRequest 
object using the setAttribute() method, with a name of
“javax.servlet.jsp.jspException”.
Note: if autoFlush=true then if the contents of the initial Jsp-
Writer has been flushed to the ServletResponse output stream 
then any subsequent attempt to dispatch an uncaught 
exception from the offending page to an errorPage may fail.
When an error page is also indicated in the web.xml 
descriptor, the JSP error page applies first, then the web.xml 
page.

contentType Defines the character encoding for the JSP page and for the 
response of the JSP page and the MIME type for the 
response of the JSP page.
Values are either of the form “TYPE” or “TYPE; 
charset=CHARSET” with an optional white space after the 
“;”. CHARSET, if present, must be the IANA value for a 
character encoding. TYPE is a MIME type, see the IANA 
registry for useful values.
The default value for TYPE is “text/html”; the default value 
for the character encoding is ISO-8859-1.
See Chapter 3 for complete details on character encodings.

pageEncoding Defines the character encoding for the JSP page.
Values is of the form “CHARSET” which must be the IANA 
value for a character encoding.
The CHARSET value of contentType is used as default if 
present, or ISO-8859-1 otherwise.
See Chapter 3 for complete details on character encodings.

Table JSP.2-1  



Directives 53

JavaServer Pages 1.2 Specification

JSP.2.10.2 The taglib Directive

The set of significant tags a JSP container interprets can be extended through a 
“tag library”.

The taglib directive in a JSP page declares that the page uses a tag library, 
uniquely identifies the tag library using a URI and associates a tag prefix that will 
distinguish usage of the actions in the library.

If a JSP container implementation cannot locate a tag library description, a 
fatal translation error shall result.

It is a fatal translation error for the taglib directive to appear after actions 
using the prefix.

A tag library may include a validation method that will be consulted to 
determine if a JSP page is correctly using the tag library functionality.

See Chapter JSP.7 for more specification details. And see Section JSP.7.2.3 
for an implementation note.

Examples

In the following example, a tag library is introduced and made available to 
this page using the super prefix; no other tag libraries should be introduced 
in this page using this prefix. In this particular case, we assume the tag library 
includes a doMagic element type, which is used within the page.

<%@ taglib uri=”http://www.mycorp/supertags” prefix=”super” />
...
<super:doMagic>
...
</super:doMagic>

Syntax 

<%@ taglib uri=”tagLibraryURI” prefix=”tagPrefix” %>

where the attributes are:

Table JSP.2-1  

uri Either an absolute URI or a relative URI specification that 
uniquely identifies the tag library descriptor associated with 
this prefix.
The URI is used to locate a description of the tag library as 
indicated in Chapter 7.



CORE SYNTAX AND SEMANTICS

JavaServer Pages 1.2 Specification

54

A fatal translation-time error will result if the JSP page translator encounters a 
tag with name prefix: Name using a prefix is introduced using the taglib directive, 
and Name is not recognized by the corresponding tag library.

JSP.2.10.3 The include Directive

The include directive is used to substitute text and/or code at JSP page transla-
tion-time. The <%@ include file=”relativeURLspec” %> directive inserts the text of 
the specified resource into the .jsp file. The included file is subject to the access con-
trol available to the JSP container. The file attribute is as in Section JSP.2.2.1.

A JSP container can include a mechanism for being notified if an included file 
changes, so the container can recompile the JSP page. However, the JSP 1.2 
specification does not have a way of directing the JSP container that included files 
have changed.

Examples

The following example requests the inclusion, at translation time, of a copy-
right file. The file may have elements which will be processed too.

<%@ include file=”copyright.html” %>

Syntax

<%@ include file="relativeURLspec" %>

tagPrefix Defines the prefix string in <prefix>:<tagname> that is 
used to distinguish a custom action, e.g <myPrefix:myTag>.
Prefixes starting with jsp:, jspx:, java:, javax:, servlet:, sun:, 
and sunw: are reserved.
A prefix must follow the naming convention specified in the 
XML namespaces specification.
Empty prefixes are illegal in this version of the specification.

Table JSP.2-1  



Scripting Elements 55

JavaServer Pages 1.2 Specification

JSP.2.10.4 Including Data in JSP Pages

Including data is a significant part of the tasks in a JSP page. Accordingly, the 
JSP 1.2 specification has two include mechanisms suited to different tasks. A sum-
mary of their semantics is shown in Table JSP.2-1.

The Spec column describes what type of specification is valid to appear in the 
given element. The JSP specification requires a relative URL spec. The reference 
is resolved by the web/application server and its URL map is involved. Include 
directives are interpreted relative to the current JSP file; jsp:include actions are 
interpreted relative to the current JSP page.

An include directive regards a resource like a JSP page as a static object; i.e. 
the bytes in the JSP page are included. An include action regards a resource like a 
JSP page as a dynamic object; i.e. the request is sent to that object and the result of 
processing it is included.

JSP.2.11 Scripting Elements

Scripting elements are commonly used to manipulate objects and to perform 
computation that affects the content generated. 

There are three classes of scripting elements: declarations, scriptlets and 
expressions. The scripting language used in the current page is given by the value 
of the language directive (see Section JSP.2.10.1, “The page Directive). In JSP 
1.2, the only value defined is “java”. 

Declarations are used to declare scripting language constructs that are 
available to all other scripting elements. Scriptlets are used to describe actions to 
be performed in response to some request. Scriptlets that are program fragments 

Table JSP.2-1  Summary of Include Mechanisms in JSP 1.2

Syntax Spec Object Description Section

Include Directive - Translation-time

<%@ include file=... %> file-
relative

static Content is parsed 
by JSP container.

JSP.2.10.3

Include Action - Request-time

<jsp:include page= /> page-
relative

static
and dynamic

Content is not 
parsed; it is 
included in place.

JSP.4.4



CORE SYNTAX AND SEMANTICS

JavaServer Pages 1.2 Specification

56

can also be used to do things like iterations and conditional execution of other 
elements in the JSP page. Expressions are complete expressions in the scripting 
language that get evaluated at response time; commonly, the result is converted 
into a string and inserted into the output stream.

All JSP containers must support scripting elements based on the Java 
programming language. Additionally, JSP containers may also support other 
scripting languages. All such scripting languages must support:

• Manipulation of Java objects.

• Invocation of methods on Java objects.

• Catching of Java language exceptions.

The precise definition of the semantics for scripting done using elements 
based on the Java programming language is given in Chapter JSP.6.

The semantics for other scripting languages are not precisely defined in this 
version of the specification, which means that portability across implementations 
cannot be guaranteed. Precise definitions may be given for other languages in the 
future.

Each scripting element has a “<%”-based syntax as follows:

<%! this is a declaration %> 
<% this is a scriptlet %> 
<%= this is an expression %>

White space is optional after “<%!”, “<%”, and “<%=”, and before “%>”.
The equivalent XML elements for these scripting elements are described in 

Section JSP.5.2.

JSP.2.11.1 Declarations

Declarations are used to declare variables and methods in the scripting language 
used in a JSP page. A declaration should be a complete declarative statement, or 
sequence thereof, according to the syntax of the scripting language specified.

Declarations do not produce any output into the current out stream.
Declarations are initialized when the JSP page is initialized and are made 

available to other declarations, scriptlets, and expressions.

Examples

For example, the first declaration below declares an integer, global to the 



Scripting Elements 57

JavaServer Pages 1.2 Specification

page. The second declaration does the same and initializes it to zero. This type 
of initialization should be done with care in the presence of multiple requests 
on the page. The third declaration declares a method global to the page.

<%! int i; %>

<%! int i = 0; %>

<%! public String f(int i) { if (i<3) return(“...”); ... } %>

Syntax

<%! declaration(s) %>

JSP.2.11.2 Scriptlets

Scriptlets can contain any code fragments that are valid for the scripting lan-
guage specified in the language directive. Whether the code fragment is legal 
depends on the details of the scripting language (see Chapter JSP.6).

Scriptlets are executed at request-processing time. Whether or not they 
produce any output into the out stream depends on the code in the scriptlet. 
Scriptlets can have side-effects, modifying the objects visible to them.

When all scriptlet fragments in a given translation unit are combined in the 
order they appear in the JSP page, they must yield a valid statement, or sequence 
of statements, in the specified scripting language.

To use the %> character sequence as literal characters in a scriptlet, rather 
than to end the scriptlet, escape them by typing %\>.

Examples

Here is a simple example where the page changed dynamically depending on 
the time of day.

<% if (Calendar.getInstance().get(Calendar.AM_PM) == Calendar.AM) {%>
Good Morning
<% } else { %>
Good Afternoon
<% } %>

A scriptlet can also have a local variable declaration, for example the following 
scriptlet just declares and initializes an integer, and later displays its value and incre-
ments it.



CORE SYNTAX AND SEMANTICS

JavaServer Pages 1.2 Specification

58

<% int i; i= 0; %>
Hi, the value of i is <% i++ %>

Syntax

<% scriptlet %>

JSP.2.11.3 Expressions

An expression element in a JSP page is a scripting language expression that is 
evaluated and the result is coerced to a String. The result is subsequently emitted 
into the current out JspWriter object.

If the result of the expression cannot be coerced to a String the following 
must happen: If the problem is detected at translation time, a translation time error 
shall occur. If the coercion cannot be detected during translation, a ClassCastEx-

ception shall be raised at request time.
A scripting language may support side-effects in expressions when the 

expression is evaluated. Expressions are evaluated left-to-right in the JSP page. If 
an expression appears in more than one run-time attribute, they are evaluated left-
to-right in the tag. An expression might change the value of the out object, 
although this is not something to be done lightly.

The expression must be a complete expression in the scripting language in 
which it is written. 

Expressions are evaluated at HTTP processing time. The value of an 
expression is converted to a String and inserted at the proper position in the .jsp 
file. 

Examples

This example inserts the current date.

<%= (new java.util.Date()).toLocaleString() %>

Syntax

<%= expression %>



Actions 59

JavaServer Pages 1.2 Specification

JSP.2.12 Actions

Actions may affect the current out stream and use, modify and/or create objects. 
Actions may depend on the details of the specific request object received by the JSP 
page.

The JSP specification includes some actions that are standard and must be 
implemented by all conforming JSP containers; these actions are described in 
Chapter 4.

New actions are defined according to the mechanisms described in Chapters 7 
and 10 and are introduced using the taglib directive. 

The syntax for action elements is based on XML. Actions can be empty or 
non-empty.

JSP.2.13 Tag Attribute Interpretation Semantics

The interpretation of all actions start by evaluating the values given to its 
attributes left to right, and assigning the values to the attributes. In the process some 
conversions may be applicable; the rules for them are described in 
Section JSP.2.13.2.

Many values are fixed ‘translation-time values’, but JSP 1.2 also provides a 
mechanism for describing values that are computed at request time, the rules are 
described in Section JSP.2.13.1.

JSP.2.13.1 Request Time Attribute Values

An attribute value of the form “<%= scriptlet_expr %>” or 
‘<%= scriptlet_expr %>’ denotes a request-time attribute value. The value denoted 
is that of the scriptlet expression involved. Request-time attribute values can only 
be used in actions and cannot be used in directives. If there are more than one such 
attribute in a tag, the expressions are evaluated left-to-right.

Quotation is done as in any other attribute value (Section JSP.2.6).
Only attribute values can be denoted this way ( the name of the attribute is 

always an explicit name). The expression must appear by itself (multiple 
expressions, and mixing of expressions and string constants are not permitted). 
Multiple operations must be performed within the expression. Type conversions 
are described in Section JSP.2.13.2.

By default, all attributes have page translation-time semantics. Attempting to 
specify a scriptlet expression as the value for an attribute that (by default or 
otherwise) has page translation time semantics is illegal, and will result in a fatal 



CORE SYNTAX AND SEMANTICS

JavaServer Pages 1.2 Specification

60

translation error. The type of an action element indicates whether a given attribute 
will accept request-time attribute values.

Most attributes in the standard actions from Chapter 4 have page translation-
time semantics, but the following attributes accept request-time attribute 
expressions:

• The value attribute of jsp:setProperty (Section JSP.4.2).

• The beanName attribute of jsp:useBean (Section JSP.4.1). 

• The page attribute of jsp:include (Section JSP.4.4). 

• The page attribute of jsp:forward (Section JSP.4.5). 

• The value attribute of jsp:param (Section JSP.4.6). 

• The height and width attributes of jsp:plugin (Section JSP.4.7).

JSP.2.13.2 Type Conversions

We describe two cases for type conversions

JSP.2.13.2.1 Conversions from String values

A string value can be used to describe a value of a non-String type through a 
conversion. Whether the conversion is possible, and, if so, what is it, depends on 
a target type.

String values can be used to assign values to a type that has a PropertyEditor 
class as indicated in the JavaBeans specification.  When that is the case, the setAs-

Text(String) method is used.  A conversion failure arises if the method throws an 
IllegalArgumentException.

String values can also be used to assign to the types as listed in Table JSP.2-2.  
The conversion applied is that shown in the table.

A conversion failure leads to an error, whether at translation time or  request-
time.

Table JSP.2-2  Conversions from string values to target type

Target Type Source String Value

Bean Property Use setAsText(string-literal)

boolean or 
Boolean

As indicated in java.lang.Boolean.valueOf(String)



Tag Attribute Interpretation Semantics 61

JavaServer Pages 1.2 Specification

These conversions are part of the generic mechanism used to assign values 
to attributes of actions: when an attribute value that is not a request-time 
attribute is assigned to a given attribute, the conversion described here is used, 
using the type of the attribute as the target type. The type of each attribute of the 
standard actions is described in this specification, while the types of the 
attributes of a custom action are described in its associated Tag Library Descrip-
tor.

A given action may also define additional ways where type/value conver-
sions are used. In particular, Section JSP.4.2 describes the mechanism used for 
the setProperty standard action.

JSP.2.13.2.3 Conversions from request-time expressions

Request-time expressions can be assigned to properties of any type.  No 
automatic conversions will be performed.

byte or Byte As indicated in java.lang.Byte.valueOf(String)

char or Character As indicated in String.charAt(0)

double or Double As indicated in java.lang.Double.valueOf(String)

int or Integer As indicated in java.lang.Integer.valueOf(String)

float or Float As indicated in java.lang.Float.valueOf(String)

long or Long As indicated in java.lang.Long.valueOf(String)

short of Short As indicated in java.lang.Short.valueOf(String)

Object As if new String(string-literal)

Table JSP.2-2  Conversions from string values to target type



CORE SYNTAX AND SEMANTICS

JavaServer Pages 1.2 Specification

62



63

C H A P T E R JSP.3
Localization Issues

This chapter describes requirements for localization with JavaServer Pages 
1.2 (JSP 1.2).

JSP.3.1 Page Character Encoding

The Java Platform support for localized content is based on a uniform represen-
tation of text internally as Unicode 2.0 (ISO010646) characters and the support for a 
number of character encodings to and from Unicode.

A Java Virtual Machine (JVM) must support Unicode and Latin-1 encodings 
but most support many more. The character encodings supported by the JVM 
from Sun are described at:

http://java.sun.com/products/jdk/1.1/docs/guide/intl/encoding.doc.html

A JSP page uses a character encoding.  The encoding can be described 
explicitly using the pageEncoding attribute of the page directive.  The character 
encoding defaults to the encoding indicated in the contentType attribute of the 
page directive if it is given, or to ISO-8859-1 otherwise. ISO-8859-1 is also 
known as latin-1.

The valid names for  describing  character encodings in JSP 1.2 are those of 
IANA. They are described at:

ftp://venera.isi.edu/in-notes/iana/assignments/character-sets

The pageEncoding attribute should be used only when the character encoding 
of a JSP page  is organized so that ASCII characters stand for themselves. The 



LOCALIZATION ISSUES

JavaServer Pages 1.2 Specification

64

directive containing the pageEncoding attribute should appear as early as possible 
in the JSP page.

A JSP container may use some implementation-dependent heuristics and/or 
structure to determine what the expected character encoding of a JSP page is and 
verify that the contentType attribute is as expected.

A JSP container will raise a translation-time error if an unsupported character 
encoding is requested.

JSP.3.2 Static Content Type

Most JSP pages are written to deliver a response using a specific content type 
and character encoding. A JSP page can use the contentType attribute of the page 
directive to indicate the content type of the response it provides to requests.

When used this way, a given page will always provide the same content type. 
If a page determines that the response should be of a different content type, it 
should do so “early”,  determine what other JSP page or servlet will handle this 
request, and forward the request to the other JSP page or servlet.

The default value for TYPE is “text/html” and  the default value for the 
character encoding is ISO-8859-1.

A registry of content type names is kept by IANA. See:

ftp://venera.isi.edu/in-notes/iana/assignments/media-types/media-types

The contentType attribute must only be used when the character encoding is 
organized such that ASCII characters stand for themselves, at least until the con-
tentType attribute is found. The directive containing the contentType attribute 
should appear as early as possible in the JSP page.

JSP.3.3 Dynamic Content Type

Some JSP pages are designed so they can deliver content using different content 
types and character encodings depending on request time input. These pages may be 
organized as custom actions or scriptlets that determine the response content type 
and provide ‘glue’ into other code actually generating the content of the response.

Dynamic setting of content type relies on an underlying invocation on 
response.setContentType().  That method can be invoked as long as no content has 
been been sent to the response stream.  Data is sent to the response stream  on 



Delivering Localized Content 65

JavaServer Pages 1.2 Specification

buffer flushes for buffered pages, or on encountering the first content (beware of 
whitespace) on unbuffered pages.

Whitespace is notoriously tricky for JSP pages in JSP syntax, but much more 
manageable for JSP pages in XML syntax.

JSP.3.4 Delivering Localized Content

The JSP specification does not mandate any specific approach for structuring 
localized content, and different approaches are possible. Two common approaches 
are to use a template taglib and pull localized strings from a resource repository, or 
to use-per-locale JSP pages. Each approach has benefits and drawbacks. Some users 
have been using transformations on JSP documents to do simple replacement of ele-
ments by localized strings, thus maintaining JSP syntax with no performance cost at 
run-time. Combinations of these approaches also make sense.

There are a number of different efforts that are exploring how to best do 
localization.  We expect JSR-052, the standard JSP tag library, to address some of 
these issues.



LOCALIZATION ISSUES

JavaServer Pages 1.2 Specification

66



67

C H A P T E R JSP.4
Standard Actions

This chapter describes the standard actions of JavaServer Pages 1.2 (JSP 1.2).

JSP.4.1 <jsp:useBean>

A jsp:useBean action associates an instance of a Java programming language 
object defined within a given scope and available with a given id with a newly 
declared scripting variable of the same id.

The jsp:useBean action is quite flexible; its exact semantics depends on the 
attributes given.  The basic semantic tries to find an existing object using id and 
scope.  If the object  is not found it will attempt to create the object using the other 
attributes.  

It is also possible to use this action to give a local name to an object defined 
elsewhere, as in another JSP page or in a Servlet. This can be done by using the 
type attribute and not providing class or beanName attributes.

At least one of type and class must be present, and it is not valid to provide 
both class and beanName. If type and class are present, class must be assignable 
to type (in the Java platform sense). For it not to be assignable  is a translation-
time error.

The attribute beanName specifies the name of a Bean, as specified in the 
JavaBeans specification. It is used  as an argument to the instantiate() method in 
the java.beans.Beans class. It must be  of the form “a.b.c”, which may be either a 
class, or the name of a resource of the form “a/b/c.ser” that will be resolved in the 
current ClassLoader. If this is not true, a request-time exception, as indicated in 
the semantics of instantiate() will be raised. The value of this attribute can be a 
request-time attribute expression.

More detail on the role of id and scope is given next.



STANDARD ACTIONS

JavaServer Pages 1.2 Specification

68

The id Attribute

The id=”name” attribute/value tuple in a jsp:useBean element has special mean-
ing to a JSP container, at page translation time and at client request processing time. 
In particular:

•the name must be unique within the translation unit, and identifies the particular 
element in which it appears to the JSP container and page.
Duplicate id’s found in the same translation unit shall result in a fatal transla-
tion error.

•The JSP container will associate an object (a JavaBean component) with the 
named value and accessed via that name in various contexts through the page-

context object described later in this specification. 
The name is also used to expose a variable (name) in the page’s scripting lan-
guage environment. The scope of the scripting language variable is dependent 
upon the scoping rules and capabilities of the scripting language used in the 
page. 
Note that this implies the name value syntax must comply with the variable 
naming syntax rules of the scripting language used in the page. Chapter JSP.6 
provides details for the case where the language attribute is ”java”.

An example of the scope rules just mentioned is shown next:



<jsp:useBean> 69

JavaServer Pages 1.2 Specification

<% { // introduce a new block %>
...
<jsp:useBean id=”customer” class=”com.myco.Customer” />

<% 
/* 
 * the tag above creates or obtains the Customer Bean
 * reference, associates it with the name “customer” in the

 * PageContext, and declares a Java programming language 
 * variable of the same name initialized to the object reference 
 * in this block’s scope.
 */

%>
...
<%= customer.getName(); %>
...

<% } // close the  block %> 

<% 
// the variable customer is out of scope now but

// the object is still valid (and accessible via pageContext)
%>

The scope Attribute

The scope=”page|request|session|application” attribute/value tuple is associ-
ated with, and modifies the behavior of the id attribute described above (it has 
both translation time and client request processing time semantics). In particu-
lar it describes the namespace, the implicit lifecycle of the object reference 
associated with the name, and the APIs used to access this association, as fol-
lows:

Table JSP.4-1  

page The named object is available from the javax.serv-
let.jsp.PageContext for the current page.
This reference must be discarded upon completion of the 
current request by the page body.
It is illegal to change the instance object associated so that 
its runtime type is a subset of the type of the current object 
previously associated.



STANDARD ACTIONS

JavaServer Pages 1.2 Specification

70

Semantics

The actions performed in a jsp:useBean action are:

1. An attempt to locate an object based on the attribute values id and  scope. The 
inspection is done synchronized per scope namespace to avoid non-determin-
istic behavior.

1. A scripting language variable of the specified type (if given) or class (if type
is not given) is defined with the given id in the current lexical scope of the
scripting language.

2. If the object is found, the variable’s value is initialized with a reference to the

request The named object is available from the current page’s Serv-
letRequest object using the getAttribute(name) method.
This reference must be discarded upon completion of the 
current client request.
It is illegal to change the value of an instance object so asso-
ciated so that its runtime type is a subset of the type(s) of 
the object previously so associated.

session The named object is available from the current page’s 
HttpSession object (which can in turn be obtained from the 
ServletRequest object) using the getAttribute(name) method.
This reference must be discarded upon invalidation of the 
current session.
It is Illegal to change the value of an instance object so 
associated so that its new runtime type is a subset of the 
type(s) of the object previously so associated.
Note it is a fatal translation error to attempt to use session 
scope when the JSP page so attempting has declared, via the 
<%@ page ... %> directive (see later) that it does not partic-
ipate in a session.

application The named object is available from the current page’s Serv-
letContext object using the getAttribute(name) method.
This reference shall be discarded upon reclamation of the 
ServletContext.
It is Illegal to change the value of an instance object so 
associated, such that its new runtime type is a subset of the 
type(s) of the object previously so associated.

Table JSP.4-1  



<jsp:useBean> 71

JavaServer Pages 1.2 Specification

located object, cast to the specified type. If the cast fails, a java.lang.ClassCas-
tException shall occur. This completes the processing of this jsp:useBean ac-
tion.

3. If the jsp:useBean element had a non-empty body it is ignored. This completes
the processing of this jsp:useBean action.

4. If the object is not found in the specified scope and neither class nor beanName
are given, a java.lang.InstantiationException shall occur. This completes the
processing of this jsp:useBean action.

5. If the object is not found in the specified scope, and the class specified names
a non-abstract class that defines a public no-args constructor, then the class is
instantiated. The new object reference is associated with the scripting variable
and with the specified name in the specified scope using the appropriate scope
dependent association mechanism (see PageContext). After this, step 7 is per-
formed.

If the object is not found, and the class is either abstract, an interface, or no
public no-args constructor is defined therein, then a java.lang.InstantiationEx-
ception shall occur. This completes the processing of this jsp:useBean action.

6. If the object is not found in the specified scope; and beanName is given, then
the method instantiate() of java.beans.Beans will be invoked with the Class-
Loader of the Servlet object and the beanName as arguments. If the method
succeeds, the new object reference is associated the with the scripting variable
and with the specified name in the specified scope using the appropriate scope
dependent association mechanism (see PageContext). After this, step 7 is per-
formed.

7. If the jsp:useBean element has a non-empty body, the body is processed. The
variable is initialized and available within the scope of the body. The text of
the body is treated as elsewhere. Any template text will be passed through to
the out stream. Scriptlets and action tags will be evaluated.

A common use of a non-empty body is to complete initializing the created in-
stance. In that case the body will likely contain jsp:setProperty actions and
scriptlets that are evaluated. This completes the processing of this useBean ac-
tion.

Examples

In the following example, a Bean with name “connection” of type 
“com.myco.myapp.Connection” is available after actions on this element, 
either because it was already created and found, or because it is newly cre-
ated.



STANDARD ACTIONS

JavaServer Pages 1.2 Specification

72

<jsp:useBean id=”connection” class=”com.myco.myapp.Connection” />

In the next example, the timeout property is set to 33 if the Bean was instanti-
ated.

<jsp:useBean id=”connection” class=”com.myco.myapp.Connection”>
<jsp:setProperty name=”connection” property=”timeout” value=”33”>

</jsp:useBean>

In the final example, the object should have been present in the session. If so, 
it is given the local name wombat with WombatType. A ClassCastException 
may be raised if the object is of the wrong class, and an InstantiationException 
may be raised if the object is not defined.

<jsp:useBean id=”wombat” type=”my.WombatType” scope=”session”/>

Syntax

This action may or not have a body. If the action has no body, it is of the form:

<jsp:useBean id="name" scope="page|request|session|application" typeSpec />

typeSpec ::= class=”className” |
class=”className” type=”typeName” |
type=”typeName” class=”className” |
beanName=”beanName” type=”typeName” |
type=”typeName” beanName=”beanName” |
type=”typeName”

If the action has a body, it is of the form:

<jsp:useBean id="name" scope="page|request|session|application" typeSpec >
body

</jsp:useBean>

In this case, the body will be invoked if the Bean denoted by the action is 
created. Typically, the body will contain either scriptlets or jsp:setProperty tags 
that will be used to modify the newly created object, but the contents of the body 
are  not restricted.



<jsp:useBean> 73

JavaServer Pages 1.2 Specification

The <jsp:useBean> tag has the following attributes:

Table JSP.4-1  

id The name used to identify the object instance in the 
specified scope’s namespace, and also the scripting variable 
name declared and initialized with that object reference. 
The name specified is case sensitive and shall conform to 
the current scripting language variable-naming 
conventions.

scope The scope within which the reference is available. The 
default value is page. See the description of the scope 
attribute defined earlier herein

class The fully qualified name of the class that defines the 
implementation of the object. The class name is case 
sensitive.
If the class and beanName attributes are not specified the 
object must be present in the given scope.

beanName The name of a Bean, as expected by the instantiate() method 
of the java.beans.Beans class.
This attribute can accept a request-time attribute expression 
as a value.

type If specified, it defines the type of the scripting variable 
defined.
This allows the type of the scripting variable to be distinct 
from, but related to, the type of the implementation class 
specified.
The type is required to be either the class itself, a superclass 
of the class, or an interface implemented by the class 
specified. 
The object referenced is required to be of this type, 
otherwise a java.lang.ClassCastException shall occur at 
request time when the assignment of the object referenced 
to the scripting variable is attempted.
If unspecified, the value is the same as the value of the 
class attribute.



STANDARD ACTIONS

JavaServer Pages 1.2 Specification

74

JSP.4.2 <jsp:setProperty>

The jsp:setProperty action sets the values of properties in a Bean. The name 
attribute that denotes the Bean must be defined before this action appears.

There are two variants of the jsp:setProperty action. Both variants set the 
values of one or more properties in the Bean based on the type of the properties. 
The usual Bean introspection is done to discover what properties are present, and, 
for each, its name, whether it is simple or indexed, its type, and the setter and 
getter methods. Introspection also indicates if a given property type has a Proper-

tyEditor class.
Properties in a Bean can be set from one or more parameters in the request 

object, from a String constant, or from a computed request-time expression. 
Simple and indexed properties can be set using jsp:setProperty. 

When assigning from a parameter in the request object, the conversions 
described in Section JSP.2.13.2.1 are applied, using the target property to 
determine the target type.

When assigning from a value given as a String constant, the conversions 
described in Section JSP.2.13.2.1 are applied, using the target property to 
determine the target type.

When assigning from a value given as a request-time attribute, no type 
conversions are applied, as indicated in Section JSP.2.13.2.3.

When assigning values to indexed properties the value must be an array; the 
rules described in the previous paragraph apply to the elements.

A conversion failure leads to an error, whether at translation time or  request-
time.

Examples

The following two elements set a value from the request parameter values.

<jsp:setProperty name=”request” property=”*” />
<jsp:setProperty name=”user” property=”user” param=”username” />

The following element sets a property from a value

<jsp:setProperty name=”results” property=”row” value=”<%= i+1 %>” />

Syntax

<jsp:setProperty name="beanName" prop_expr />



<jsp:setProperty> 75

JavaServer Pages 1.2 Specification

prop_expr ::=
property="*" |
property=”propertyName”|
property=”propertyName” param="parameterName"|
property=”propertyName” value=”propertyValue”

propertyValue ::= string

The value propertyValue can also be a request-time attribute value, as 
described in Section JSP.2.13.1.

propertyValue ::= expr_scriptlet1 

The <jsp:setProperty> element has the following attributes:

1. See syntax for expression scriptlet “<%= ... %>”

Table JSP.4-2  

name The name of a Bean instance defined by a <jsp:useBean> 
element or some other element. The Bean instance must 
contain the property you want to set. The defining element 
must appear before the <jsp:setProperty> element in the 
same file.

property The name of the Bean property whose value you want to set
If you set propertyName to * then the tag will iterate over 
the current ServletRequest parameters, matching parameter 
names and value type(s) to property names and setter 
method type(s), setting each matched property to the value 
of the matching parameter. If a parameter has a value of "", 
the corresponding property is not modified.

param The name of the request parameter whose value you want to 
give to a Bean property. The name of the request parameter 
usually comes from a web form
If you omit param, the request parameter name is assumed 
to be the same as the Bean property name
If the param is not set in the Request object, or if it has the 
value of ““, the jsp:setProperty element has no effect (a 
noop).
An action may not have both param and value attributes.



STANDARD ACTIONS

JavaServer Pages 1.2 Specification

76

JSP.4.3 <jsp:getProperty>

An <jsp:getProperty> action places the value of a Bean instance property, con-
verted to a String, into the implicit out object, from which you can display the value 
as output. The Bean instance must be defined as indicated in the name attribute 
before this point in the page (usually via a jsp:useBean action).

The conversion to String is done as in the println() methods, i.e. the toString() 
method of the object is used for Object instances, and the primitive types are 
converted directly.

If the object is not found, a request-time exception is raised.
The value of the name attribute in jsp:setProperty and jsp:getProperty will 

refer to an object that is obtained from the pageContext object through its findAt-

tribute() method. 
The object named by the name must have been “introduced” to the JSP 

processor using either the jsp:useBean action or a custom action with an 
associated VariableInfo entry for this name.

Note: a consequence of the previous paragraph is that objects that are stored 
in, say, the session by a front component are not automatically visible to jsp:set-

Property and jsp:getProperty actions in that page unless a jsp:useBean action, or 
some other action, makes them visible.

If the JSP processor can ascertain that there is an alternate way guaranteed to 
access the same object, it can use that information. For example it may use a 
scripting variable, but it must guarantee that no intervening code has invalidated 
the copy held by the scripting variable. The truth is always the value held by the 
pageContext object.

Examples

<jsp:getProperty name=”user” property=”name” />

Syntax

<jsp:getProperty name=”name” property=”propertyName” />

value The value to assign to the given property.
This attribute can accept a request-time attribute expression 
as a value.
An action may not have both param and value attributes.

Table JSP.4-2  



<jsp:include> 77

JavaServer Pages 1.2 Specification

The attributes are:

JSP.4.4 <jsp:include>

A <jsp:include .../> element provides for the inclusion of static and dynamic 
resources in the same context as the current page. See Table JSP.2-1 for a summary 
of include facilities.

Inclusion is into the current value of out. The resource is specified using a 
relativeURLspec that is interpreted in the context of the web server (i.e. it is 
mapped).

The page attribute of both the jsp:include and the jsp:forward actions are 
interpreted relative to the current JSP page, while the file attribute in an include 
directive is interpreted relative to the current JSP file. See below for some 
examples of combinations of this.

An included page only has access to the JspWriter object and it cannot set 
headers. This precludes invoking methods like setCookie(). Attempts to invoke 
these methods will be ignored. The constraint is equivalent to the one imposed on 
the include() method of the RequestDispatcher class.

A jsp:include action may have jsp:param subelements that can provide values 
for some parameters in the request to be used for the inclusion.

Request processing resumes in the calling JSP page, once the inclusion is 
completed.

The flush attribute controls flushing.  If true, then, if the page output is 
buffered and the flush attribute is given a ’true’ value, then the buffer is flushed 
prior to the inclusion, otherwise the buffer is not flushed.  The default value for 
the flush attribute is ’false’

Examples

<jsp:include page=”/templates/copyright.html”/>

Table JSP.4-3  

name The name of the object instance from which the property is 
obtained.

property Names the property to get.



STANDARD ACTIONS

JavaServer Pages 1.2 Specification

78

The above example is a simple inclusion of an object. The path is interpreted 
in the context of the Web Application. It is likely a static object, but it could be 
mapped into, for instance, a Servlet via web.xml.

For an example of a more complex set of inclusions, consider the following 
four situations built using four JSP files: A.jsp, C.jsp, dir/B.jsp and dir/C.jsp:

• A.jsp says <%@ include file=”dir/B.jsp”%> and dir/B.jsp says <%@ include 

file=”C.jsp”%>. In this case the relative specification “C.jsp” resolves to “dir/
C.jsp”

• A.jsp says <jsp:include page=”dir/B.jsp”/> and dir/B.jsp says <jsp:include 
page=”C.jsp” />. In this case the relative specification “C.jsp” resolves to 
“dir/C.jsp”.

• A.jsp says <jsp:include page=”dir/B.jsp”/> and dir/B.jsp says <%@ include 
file=”C.jsp” %>. In this case the relative specification “C.jsp” resolves to 
“dir/C.jsp”.

• A.jsp says <%@ include file=”dir/B.jsp”%> and dir/B.jsp says <jsp:include 
page=”C.jsp”/>. In this case the relative specification “C.jsp” resolves to 
“C.jsp”.

Syntax

<jsp:include page=”urlSpec” flush="true|false"/>

and

<jsp:include page=”urlSpec” flush="true|false">
{ <jsp:param .... /> }*

</jsp:include>

The first syntax just does a request-time inclusion.  In the second case, the 
values in the param subelements are used to augment the request for the purposes 
of the inclusion.



<jsp:forward> 79

JavaServer Pages 1.2 Specification

The valid attributes are:

JSP.4.5 <jsp:forward>

A <jsp:forward page=”urlSpec” /> element allows the runtime dispatch of the 
current request to a static resource, a JSP page or a Java servlet class in the same 
context as the current page. A jsp:forward effectively terminates the execution of the 
current page. The relative urlSpec is as in Section JSP.2.2.1.

The request object will be adjusted according to the value of the page 
attribute.

A jsp:forward action may have jsp:param subelements that can provide values 
for some parameters in the request to be used for the forwarding.

If the page output is buffered, the buffer is cleared prior to forwarding.
If the page output is buffered and the buffer was flushed, an attempt to 

forward the request will result in an IllegalStateException.

If the page output was unbuffered and anything has been written to it, an 
attempt to forward the request will result in an IllegalStateException.

Examples

The following element might be used to forward to a static page based on 
some dynamic condition.

<% String whereTo = “/templates/”+someValue; %>
<jsp:forward page=’<%= whereTo %>’ />

Syntax

<jsp:forward page=”relativeURLspec” />

Table JSP.4-4  

page The URL is a relative urlSpec is as in Section JSP.2.2.1. 
Relative paths are interpreted relative to the current JSP 
page.

Accepts a request-time attribute value (which must 
evaluate to a String that is a relative URL specification).

flush Optional boolean attribute. If the value is “true”, the 
buffer is flushed now. The default value is “false”.



STANDARD ACTIONS

JavaServer Pages 1.2 Specification

80

and

<jsp:forward page=”urlSpec”>
{ <jsp:param .... /> }*

</jsp:forward>

This tag allows the page author to cause the current request processing to be 
effected by the specified attributes as follows:

JSP.4.6 <jsp:param>

The jsp:param element is used to provide key/value information. This element 
is used in the jsp:include, jsp:forward and jsp:params elements. A translation error 
shall occur if the element is used elsewhere.

When doing jsp:include or jsp:forward, the included page or forwarded page 
will see the original request object, with the original parameters augmented with 
the new parameters, with new values taking precedence over existing values when 
applicable.  The scope of the new parameters is the jsp:include or jsp:forward call; 
i.e. in the case of an jsp:include the new parameters (and values) will not apply 
after the include. This is the same behavior as in the ServletRequest include and 
forward methods (see Section 8.1.1 in the Servlet 2.2 specification). 

For example, if the request has a parameter A=foo and a parameter A=bar is 
specified for forward, the forwarded request shall have A=bar,foo. Note that the 
new param has precedence.

JSP.4.6.1 Syntax

<jsp:param name="name" value="value" />

This action has two mandatory attributes: name and value.  Name indicates 
the name of the parameter, and value, which may be a request-time expression, 
indicates its value.

Table JSP.4-5  

page The URL is a relative urlSpec is as in Section JSP.2.2.1. 
Relative paths are interpreted relative to the current JSP 
page.
Accepts a request-time attribute value (which must evaluate 
to a String that is a relative URL specification).



<jsp:plugin> 81

JavaServer Pages 1.2 Specification

JSP.4.7 <jsp:plugin>

The plugin action enables a JSP page author to generate HTML that contains 
the appropriate client browser dependent constructs (OBJECT or EMBED) that will 
result in the download of the Java Plugin software (if required) and subsequent exe-
cution of the Applet or JavaBeans component specified therein.

The <jsp:plugin> tag is replaced by either an <object> or <embed> tag, as 
appropriate for the requesting user agent, and emitted into the output stream of the 
response. The attributes of the <jsp:plugin> tag provide configuration data for the 
presentation of the element, as indicated in the table below.

The <jsp:param> elements indicate the parameters to the Applet or JavaBeans 
component.

The <jsp:fallback> element indicates the content to be used by the client 
browser if the plugin cannot be started (either because OBJECT or EMBED is not 
supported by the client browser or due to some other problem).  If the plugin can 
start but the Applet or JavaBeans component cannot be found or started, a plugin 
specific message will be presented to the user, most likely a popup window 
reporting a ClassNotFoundException.

The actual plugin code need not be bundled with the JSP container and a 
reference to Sun’s plugin location can be used instead, although some vendors 
will choose to include the plugin for the benefit of their customers.

Examples

<jsp:plugin type=applet code=”Molecule.class” codebase=”/html” >
<jsp:params>

<jsp:param
name=”molecule”
value=”molecules/benzene.mol”/>

</jsp:params>
<jsp:fallback>
 <p> unable to start plugin </p>
</jsp:fallback>

</jsp:plugin>



STANDARD ACTIONS

JavaServer Pages 1.2 Specification

82

Syntax

<jsp:plugintype="bean|applet"
code="objectCode"
codebase="objectCodebase"
{ align="alignment" }
{ archive="archiveList" }
{ height="height"         }
{ hspace="hspace"         }
{ jreversion="jreversion" }
{ name="componentName"   }
{ vspace="vspace" } 
{ width="width"           }
{ nspluginurl="url"       }
{ iepluginurl="url"       } >

{ <jsp:params>
{ <jsp:param name="paramName" value=”paramValue" /> }+

 </jsp:params> }

{ <jsp:fallback> arbitrary_text </jsp:fallback> }
</jsp:plugin>

Table JSP.4-1  

type Identifies the type of the component; a Bean, or an Applet.

code As defined by HTML spec

codebase As defined by HTML spec

align As defined by HTML spec

archive As defined by HTML spec

height As defined by HTML spec.
Accepts a run-time expression value.

hspace As defined by HTML spec.

jreversion Identifies the spec version number of the JRE the 
component requires in order to operate; the default is: “1.2”

name As defined by HTML spec



<jsp:params> 83

JavaServer Pages 1.2 Specification

JSP.4.8 <jsp:params>

The jsp:params action is part of the jsp:plugin action and can only occur as a 
direct child of a <jsp:plugin> element. Using the jsp:params element in any other 
context shall result in a translation-time error.

The semantics and syntax of jsp:params are described in Section JSP.4.7.

JSP.4.9 <jsp:fallback>

The jsp:fallback action is part of the jsp:plugin action and can only occur as a 
direct child of a <jsp:plugin> element. Using the jsp:fallback element in any other 
context shall result in a translation-time error.

The semantics and syntax of jsp:fallback are described in Section JSP.4.7.

vspace As defined by HTML spec

title As defined by the HTML spec

width As defined by HTML spec.
Accepts a run-time expression value.

nspluginurl URL where JRE plugin can be downloaded for Netscape 
Navigator, default is implementation defined.

iepluginurl URL where JRE plugin can be downloaded for IE, default 
is implementation defined.

Table JSP.4-1  



STANDARD ACTIONS

JavaServer Pages 1.2 Specification

84



81

C H A P T E R JSP.5
JSP Documents

This chapter defines an XML syntax for JSP pages and the interpretation of 
the pages written in this syntax. We use the term JSP document to refer to a JSP 
page in XML syntax.

This chapter also defines a mapping between any JSP page and an XML 
description of the page, its XML view. The XML view is defined for JSP pages 
written in JSP and in XML syntax.

JSP.5.1 Uses for XML Syntax for JSP Pages

The XML syntax for JSP pages can be used in a number of ways, including:

• JSP documents can be passed directly to the JSP container; this will become 
more important as more and more content is authored as XML.

• The XML view of a JSP page can be used for validating the JSP page against 
some description of the set of valid pages.

• JSP documents can be manipulated by XML-aware tools.

• A JSP document can be generated from a textual representation by applying 
an XML transformation, like XSLT.

• A JSP document can be generated automatically, say by serializing some ob-
jects

Validation of the JSP page  is supported in the JSP 1.2 specification through a 
TagLibraryValidator class associated with a tag library. The validator class acts on 
a PageData object that represents the XML view of the JSP page (see, for 
example, Section JSP.7.5.1.2). 



JSP DOCUMENTS

JavaServer Pages 1.2 Specification

82

A JSP page in either syntax can include via a directive a JSP page in either 
syntax.  It is not valid, however, to intermix standard JSP syntax and XML syntax 
inside the same source file.

JSP.5.2 JSP Documents

A JSP document is a namespace-aware XML document. Namespaces are used 
to identify the core syntax and the tag libraries used in the page and all JSP-related 
namespaces are introduced in the root of the XML document.

The core syntax is identified through its own URI. Although in this chapter 
the prefix jsp is used, any prefix is valid as long as the correct URI identifying the 
core syntax is used.

A JSP document uses the same file extension (.jsp) as a JSP page in JSP 
syntax. The container can distinguish the two because a JSP document is an XML 
document with a jsp:root top element, and a jsp:root cannot appear in a JSP page 
in JSP syntax.

Many XML elements in a JSP document correspond to JSP language elements, 
but it is possible to include XML elements that describe template directly. Those 
elements may have qualified names (and thus be in a namespace), or be unqualified.

A JSP page in XML syntax can use the following elements:

• a jsp:root element that is used to introduce the namespace for custom tags in the 
page.

• JSP directive elements

• JSP scripting elements

• JSP standard action elements

• JSP custom action elements

• jsp:text elements corresponding to template data.

• other XML fragments also corresponding to template data.

JSP.5.2.1 Semantic Model

The semantic model of a JSP document is unchanged from that of a JSP page 
in JSP syntax: JSP pages generate a response stream of characters from template 
data and dynamic elements. Template data can be described explicitly through a 
jsp:text element, or implicitly through an XML fragment. Dynamic elements are 



JSP Documents 83

JavaServer Pages 1.2 Specification

scripting elements, standard actions or custom actions. Scripting elements are 
represented as XML elements with the exception of request-time expressions, 
which are represented through special attribute syntax.

To clearly explain the processing of whitespace, we follow the structure of the 
XSLT specification. The first step in processing a JSP document is to identify the 
nodes of the document.  Then, all textual nodes that have only white space are 
dropped from the document; the only exception are nodes in a jsp:text element, 
which are kept verbatim. The resulting nodes are interpreted as described in the 
following sections. Template data is either passed directly to the response or it is 
mediated through (standard or custom) actions.

Following the XML specification (and the XSLT specification), whitespace 
characters are #x20, #x9, #xD or #xA..

JSP.5.2.2 The jsp:root element

A JSP document has jsp:root as its root element. The root element has a xmlns 
attribute that enables the use of the standard elements defined in the JSP 1.2 specifi-
cation.

In addition, the root is where namespace attributes of taglibs will be inserted. 
All tag libraries used within the JSP document are represented in the root element 
through additional xmlns attributes.  The root element has one mandatory 
attribute, the version of the JSP specification the page is using. No other attributes 
are defined in this element.

<jsp:root
xmlns:jsp=”http://java.sun.com/JSP/Page”
xmlns:prefix1=”URI-for-taglib1”
xmlns:prefix2=”URI-for-taglib2”... >
version="1.2">

JSP page
</jsp:root>

An xmlns attribute for a custom tag library of the form xml:prefix=’uri’ 
identifies the tag library through the uri value.  The uri value may be of one of two 
forms, either a “uri” or of the form “urn:jsptld:path”.

If the uri value is of the form “urn:jsptld:path”, then the TLD is determined 
following the mechanism described in Section JSP.7.3.2.

If the uri value is a plain “uri”, then a path is determined by consulting the 
mapping indicated in web.xml extended using the implicit maps in the packaged 
tag libraries (Sections JSP.7.3.3 and JSP.7.3.4), as indicated in Section JSP.7.3.6.



JSP DOCUMENTS

JavaServer Pages 1.2 Specification

84

JSP.5.2.3 The jsp:directive.page element

The jsp:directive.page element defines a number of page dependent properties 
and communicates these to the JSP container. This element must be a child of the 
root element and appear at the beginning of the JSP document. Its syntax is:

<jsp:directive.page page_directive_attr_list />

Where page_directive_attr_list is as described in Section JSP.2.10.1.
The interpretation of a jsp:directive.page element is as described in 

Section JSP.2.10.1, and its scope is the JSP document and any fragments included 
through an include directive.

JSP.5.2.4 The jsp:directive.include element

The jsp:directive.include element is used to substitute text and/or code at JSP 
page translation-time. This element can appear anywhere within a JSP document. Its 
syntax is:

<jsp:directive.include file="relativeURLspec” />

The interpretation of a jsp:directive.include element is as in Section JSP.2.10.3.
The XML view of a JSP page does not contain jsp:directive.include elements, 

rather the included file is expanded in-place. This is done to simplify validation.

JSP.5.2.5 The jsp:declaration element

The jsp:declaration element is used to declare scripting language constructs that 
are available to all other scripting elements. A jsp:declaration element has no 
attributes and its body is the declaration itself. Its syntax is:

<jsp:declaration> declaration goes here </jsp:declaration>

The interpretation of a jsp:declaration element is as in Section JSP.2.11.1.

JSP.5.2.6 The jsp:scriptlet element

The jsp:scriptlet element is used to describe actions to be performed in response 
to some request. Scriptlets that are program fragments. A jsp:scriptlet element has 
no attributes and its body is the program fragment that comprises the scriptlet. Its 
syntax is:



JSP Documents 85

JavaServer Pages 1.2 Specification

<jsp:scriptlet> code fragment goes here </jsp:scriptlet>

The interpretation of a jsp:scriptlet element is as in Section JSP.2.11.2.

JSP.5.2.7 The jsp:expression element

The jsp:expression element is used to describe complete expressions in the 
scripting language that get evaluated at response time. A jsp:expression element has 
no attributes and its body is the expression. Its syntax is:

<jsp:expression> expression goes here </jsp:expression>

The interpretation of a jsp:expression element is as in Section JSP.2.11.3.

JSP.5.2.8 Standard and custom action elements

A JSP document may use the standard actions described in Chapter JSP.4. Since 
the syntax of those actions is already based on XML, the description in that chapter 
suffices, except that in a JSP document template text can be described either 
through a jsp:text element or through an XML element that is neither a standard 
nor a custom action (see Section JSP.5.2.11). For completeness, the action ele-
ments are:

• jsp:useBean

• jsp:setProperty

• jsp:getProperty

• jsp:include

• jsp:forward

• jsp:param

• jsp:params

• jsp:plugin

• jsp:text

The semantics and constraints are as in Chapter JSP.4, and the interpretation 
of the scripting elements is as in Chapter JSP.6. Tag libraries introduce new 
elements through an xmlns attribute on a jsp:root element and their syntax and 
semantics are as in Chapter JSP.7.



JSP DOCUMENTS

JavaServer Pages 1.2 Specification

86

JSP.5.2.9 Request-Time Attributes

An action element that can accept a request time attribute (Section JSP.2.13.1) 
can accept an argument for that attribute of the form “%= text %” (white space 
around text is not needed, and note the missing ‘<‘ and ‘>’). The text, after any 
applicable quoting as in any other XML document, is an expression to be evaluated 
as in Section JSP.2.13.1.

JSP.5.2.10 The jsp:text element

A jsp:text element can be used to enclose template data in the XML representa-
tion. A jsp:text element has no attributes and can appear anywhere that template data 
can. Its syntax is:

<jsp:text> template data </jsp:text>

The interpretation of a jsp:text element is to pass its content through to the 
current value of out. This is very similar to the XSLT xsl:text element.

JSP.5.2.11 Other XML elements

The XML syntax for JSP pages also allows an XML element that does not rep-
resent neither a standard action nor a custom actionto appear anywhere where a 
jsp:text may appear.

The interpretation of such an XML element is to pass its textual 
representation to the current value of out, after the whitespace processing 
described in Section JSP.5.2.1.

As an example, if the relevant fragment of the JSP document is. 

Table 5.1:  Example 1 - Input

LineNo Source Text

1 <hello><jsp:scriptlet>i=3;</jsp:scriptlet>

2  <hi>

3  <jsp:text> hi you all

4  </jsp:text><jsp:expression>i</jsp:expression>

5  </hi>

6 </hello>



XML View of a JSP Page 87

JavaServer Pages 1.2 Specification

The result is

Note the treatment of whitespace.

JSP.5.3 XML View of a JSP Page

This section describes the XML view of a JSP page: the mapping between a JSP 
page, written in either XML syntax or in JSP syntax, and an XML document 
describing it.

JSP.5.3.1 JSP Documents

The XML view of a JSP page written in XML syntax is very close to the 
original JSP page. Only two transformations are performed:

• Expand all include directives into the JSP fragments they include.

• If the JSP container supports the jsp:id attribute, add the attribute. See 
Section JSP.5.3.13.

JSP.5.3.2 JSP pages in JSP syntax

The XML view of a JSP page written in XML syntax is defined by the 
following transformation:

• Expand all include directives into the JSP fragments they include.

• Add a jsp:root element as the root, with appropriate xmlns:jsp attribute, and 
convert the taglib directive into xmlns: attributes of the jsp:root element.

• Convert declarations, scriptlets and expressions into valid XML elements as 
described in Section JSP.5.2.2 and following sections.

• Convert request-time attribute expressions as in Section JSP.5.3.11.

• Convert JSP quotations to XML quotations.

Table 5.2:  Example 1 - Output

LineNo Output Text

1 <hello> <hi> hi you all

2 3 </hi></hello>



JSP DOCUMENTS

JavaServer Pages 1.2 Specification

88

• Create jsp:text elements for all template text.

• If the JSP container supports the jsp:id attribute, add the attribute. See 
Section JSP.5.3.13.

Note that the XML view of a JSP page has no DOCTYPE information; see 
Section JSP.5.4.

A quick overview of the transformation is shown in Table JSP.5-1:

In more detail:

JSP.5.3.3 JSP comments

JSP comments (of the form <%-- comment --%>) are not passed through to the 
XML view of a JSP page.

JSP.5.3.4 The page directive

A page directive of the form

Table JSP.5-1  XML view transformations

JSP page element XML view

<%-- comment --%> removed

<%@ page ... %> <jsp:directive.page ... />. Optionally add jsp:id

<%@ taglib ... %> jsp:root element is annotated with namespace 
information. Optionally add jsp:id.

<%@ include ... %> expanded in place

<%! ... %> <jsp:declaration> .... </jsp:declaration>. Optionally add 
jsp:id.

<% ... %> <jsp:scriptlet> ... </jsp:scriptlet>. Optionally add jsp:id.

<%= ... %> <jsp:expression> ... </jsp:expression>. Optionally add 
jsp:id.

Standard action Replace with XML syntax (adjust request-time 
expressions; optionally add jsp:id)

Custom action As is (adjust request-time expressions; optionally add 
jsp:id)

template Replace with jsp:text. Optionally add jsp:id.



XML View of a JSP Page 89

JavaServer Pages 1.2 Specification

<%@ page { attr=”value” }* %>

is translated into an element of the form:

<jsp:directive.page { attr=”value” }* />

JSP.5.3.5 The taglib directive

A taglib directive of the form

<%@ taglib uri=”uriValue” prefix=”prefix” %>

is translated into an xmlns:prefix attribute on the root of the JSP document, with 
a value that depends on uriValue. If uriValue is a relative path, then the value used is 
“urn:jsptld:uriValue”; otherwise, the uriValue is used directly.

JSP.5.3.6 The include directive

An include directive of the form

<%@ include file=”value”  %>

is expanded into the JSP fragment indicated by value. This is done to allow for 
validation of the page.

JSP.5.3.7 Declarations

Declarations are translated into a jsp:declaration element. For example, the sec-
ond example from Section JSP.2.11.1:

<%! public String f(int i) { if (i<3) return(“...”); ... } %>

is translated into the following.

<jsp:declaration> <![CDATA[ public String f(int i) { if (i<3) return(“...”); } ]]> </
jsp:declaration>

Alternatively, we could use an &lt; and instead say:

<jsp:declaration> public String f(int i) { if (i&lt;3) return(“...”); } </jsp:declaration>



JSP DOCUMENTS

JavaServer Pages 1.2 Specification

90

JSP.5.3.8 Scriptlets

Scriptlets are translated into a jsp:scriptlet element. In the XML document cor-
responding to JSP pages, directives are represented using the syntax:

<jsp:scriptlet> code fragment goes here </jsp:scriptlet>

JSP.5.3.9 Expressions

In the XML document corresponding to JSP pages, directives are represented 
using the jsp:expression element:

<jsp:expression> expression goes here </jsp:expression>

JSP.5.3.10 Standard and Custom Actions

The syntax for both standard and action elements is based on XML. The trans-
formations needed are due to quoting conventions and the syntax of request-time 
attribute expressions.

JSP.5.3.11 Request-Time Attribute Expressions

Request-time attribute expressions are of the form “<%= expression %>”. 
Although this syntax is consistent with the syntax used elsewhere in a JSP page, it is 
not a legal XML syntax. The XML mapping for these expressions is into values of 
the form “%= expression’ %”, where the JSP specification quoting convention has 
been converted to the XML quoting convention.

JSP.5.3.12 Template Text and XML Elements

All text that is uninterpreted by the JSP translator is converted into the body for 
a jsp:text element. As a consequence no XML elements of the form described in 
Section JSP.5.2.11 will appear in the XML view of a JSP page written in JSP syntax.

JSP.5.3.13 The jsp:id Attribute

A JSP container may, optionally, support a jsp:id attribute. This attribute can 
only be present in the XML view of a JSP page and can be used to improve the qual-
ity of translation time error messages. It is optional, and a conforming JSP container 
may choose not to support it.



Validating an XML View of a JSP page 91

JavaServer Pages 1.2 Specification

In a JSP container that supports the jsp:id attribute, the XML view of any JSP 
page will have an additional jsp:id attribute added to all XML elements. This 
attribute is given a value that is unique over all elements in the XML view. See 
Chapter 10 for more details.

JSP.5.4 Validating an XML View of a JSP page

The XML view of a JSP page is a namespace-aware document and it cannot be 
validated against a DTD except in the most simple cases. To reduce confusions and 
possible unintended performance consequences, the XML view of a JSP page will 
not include a DOCTYPE. Still, since DTDs can have some value as documentation, 
Appendix JSP.C contains both a DTD and an XSchema description of JSP docu-
ments.

There are several mechanisms that are aware of namespaces that can be used 
to do validation of XML views of JSP pages. The most popular mechanism is the 
W3C XML Schema language, but others are also suited, including some very 
simple ones that may check, for example, that only some elements are being used, 
or, inversely, that they are not used. The TagLibraryValidator for a tag library 
permits encapsulating this knowledge with a tag library.

The TagLibraryValidator acts on the XML view of the JSP page. If the page 
was authored in JSP syntax, that view does not provide any detail on template data 
(all being grouped inside jsp:text elements), but fine detail can be described when 
using JSP documents1.

JSP.5.5 Examples

This section presents two examples of JSP documents. The first shows a JSP 
page in JSP syntax and its mapping to XML syntax.   The second shows a JSP page 
in XML syntax that includes XML fragments.

JSP.5.5.1 A JSP page and its corresponding JSP document

Here is an example of mapping between JSP and XML syntax. 

1. Similarly, when applying an XSLT transformation to a JSP document,
XML fragments will be plainly visible, while the content of jsp:text
elements will not



JSP DOCUMENTS

JavaServer Pages 1.2 Specification

92

JSP PAGE IN JSP SYNTAX

<html>
<title>positiveTagLib</title>
<body>

<%@ taglib uri="http://java.apache.org/tomcat/examples-taglib" prefix="eg" %>
<%@ taglib uri="/tomcat/taglib" prefix="test" %>
<%@ taglib uri="WEB-INF/tlds/my.tld" prefix="temp" %>

<eg:test toBrowser="true" att1="Working">
Positive Test taglib directive </eg:test>
</body>
</html>

XML VIEW OF JSP PAGE:

<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page"
     xmlns:eg="http://java.apache.org/tomcat/examples-taglib"
     xmlns:test="urn:jsptld:/tomcat/taglib"
     xmlns:temp="urn:jsptld:/WEB-INF/tlds/my.tld"

version="1.2">

<jsp:text><![CDATA[<html>
<title>positiveTagLig</title>
<body>

]]></jsp:text>
<eg:test toBrowser="true" att1="Working>
<jsp:text>Positive test taglib directive</jsp:text>
</eg:test>
<jsp:text><![CDATA[
</body>
</html>
]]></jsp:text>
</jsp:root>



Examples 93

JavaServer Pages 1.2 Specification

JSP.5.5.2 A JSP document

This is an example of a very simple JSP document that has some template XML 
elements.

<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page"
   xmlns:mytags="prefix1-URL"

version="1.2">
  <mytags:iterator count="4">
     <foo> </foo>
   </mytags:iterator>
</jsp:root>



JSP DOCUMENTS

JavaServer Pages 1.2 Specification

94



93

C H A P T E R JSP.6
Scripting

This chapter describes the details of the Scripting Elements when the lan-
guage directive value is “java”. 

The scripting language is based on the Java programming language (as 
specified by “The Java Language Specification”), but note that there is no valid 
JSP page, or a subset of a page, that is a valid Java program.

The following sections describe the details of the relationship between the 
scripting declarations, scriptlets, and scripting expressions, and the Java 
programming language. The description is in terms of the structure of the JSP 
page implementation class. A JSP container need not generate the JSP page 
implementation class, but it must behave as if one exists.

JSP.6.1 Overall Structure

Some details of what makes a JSP page legal are very specific to the scripting 
language used in the page. This is especially complex since scriptlets are language 
fragments, not complete language statements.

JSP.6.1.1 Valid JSP Page

A JSP page is valid for a Java Platform if and only if the JSP page implementa-
tion class defined by  Table JSP.6-1 (after applying all include directives), together 
with any other classes defined by the JSP container, is a valid program for the given 
Java Platform, and if it passes the validation methods for all the tag libraries associ-
ated with the JSP page.



SCRIPTING

JavaServer Pages 1.2 Specification

94

JSP.6.1.2 Reserved Names

Sun Microsystems reserves all names of the form {_}jsp_* and {_}jspx_*, in 
any combination of upper and lower case, for the JSP specification. Names of this 
form that are not defined in this specification are reserved by Sun for future 
expansion.

JSP.6.1.3 Implementation Flexibility

The transformations described in this chapter need not be performed literally. 
An implementation may implement things differently to provide better perfor-
mance, lower memory footprint, or other implementation attributes.

Table JSP.6-1  Structure of the JavaProgramming Language Class

Optional imports 
clause as indicated 
via jsp directive

import name1

SuperClass is either 
selected by the JSP 
container or by the 
JSP author via jsp 
directive.

Name of class 
(_jspXXX) is 
implementation 
dependent.

class _jspXXX extends SuperClass 

Start of body of JSP 
page implementation 
class

{

(1) Declaration 
Section

// declarations...

signature for 
generated method

public void _jspService(<ServletRequestSubtype> 
request,
<ServletResponseSubtype> response)

throws ServletException, IOException {



Declarations Section 95

JavaServer Pages 1.2 Specification

JSP.6.2 Declarations Section

The declarations section corresponds to the declaration elements.
The contents of this section is determined by concatenating all the 

declarations in the page in the order in which they appear.

JSP.6.3 Initialization Section

This section defines and initializes the implicit objects available to the JSP page. 
See Section JSP.2.8.3, “Implicit Objects.

JSP.6.4 Main Section

This section provides the main mapping between a request and a response 
object.

The content of code segment 2 is determined from scriptlets, expressions, and 
the text body of the JSP page. The elements are processed sequentially in the 
order in which they appear in the page. The translation for each one is determined 
as indicated below, and its translation is inserted into this section. The translation 
depends on the element type:

JSP.6.4.1 Template Data

Template data is transformed into code that will place the template data into the 
stream named by the implicit variable out when the code is executed. White space 
is preserved.

(2) Implicit Objects 
Section

// code that defines and initializes request, response, 
page, pageContext etc.

(3) Main Section // code that defines request/response mapping

close of _jspService 
method

}

close of _jspXXX }

Table JSP.6-1  Structure of the JavaProgramming Language Class



SCRIPTING

JavaServer Pages 1.2 Specification

96

Ignoring quotation issues and performance issues, this corresponds to a 
statement of the form:

JSP.6.4.2 Scriptlets

A scriptlet is transformed into its code fragment.:

JSP.6.4.3 Expressions

An expression is transformed into a Java statement to insert the value of the 
expression, converted to java.lang.String if needed, into the stream curnamed by the 
implicit variable out. No additional newlines or space is included.

Ignoring quotation and performance issues, this corresponds to a statement of 
the form:

JSP.6.4.4 Actions

An action defining one or more objects is transformed into one or more variable 
declarations for those objects, together with code that initializes the variables. Their 
visibility is affected by other constructs, for example scriptlets.

The semantics of the action type determines the names of the variables 
(usually the name of an id attribute, if present) and their type. The only standard 
action in the JSP specification that defines objects is the jsp:usebean action. The 
name of the variable introduced is the name of the id attribute and its type is the 
type of the class attribute.

Original Equivalent Text
template out.print(template)

Original Equivalent Text
<% fragment %> fragment

Original Equivalent Text
<%= expression %> out.print(expression)

Original Equivalent Text
<x:tag>

foo
</x:tag>

declare AT_BEGIN variables
{

declare NESTED variables
transformation of foo

}
declare AT_END variables



Main Section 97

JavaServer Pages 1.2 Specification

Note that the value of the scope attribute does not affect the visibility of the 
variables within the generated program. It affects where and thus for how long 
there will be additional references to the object denoted by the variabl



SCRIPTING

JavaServer Pages 1.2 Specification

98



97

C H A P T E R JSP.7
Tag Extensions

This chapter describes the tag library facility for introducing new actions into 
a JSP page. The tag library facility includes portable run-time support, a validation 
mechanism, and authoring tool support. 

This chapter provides an overview of the tag library concept. It describes the 
Tag Library Descriptor, and the taglib directive.  A detailed description of the 
APIs involved follows in Chapter JSP.10.

JSP.7.1 Introduction

A Tag Library abstracts functionality used by a JSP page by defining a special-
ized (sub)language that enables a more natural use of that functionality within JSP 
pages. 

The actions introduced by the Tag Library can be used by the JSP page author 
in JSP pages explicitly, when authoring the page manually, or implicitly, when 
using an authoring tool.  Tag Libraries are particularly useful to authoring tools 
because they make intent explicit and the parameters expressed  in the action 
instance provide information to the tool.

Actions that are delivered as tag libraries are imported into a JSP page using 
the taglib directive.  They are available for use in the page using the prefix given 
by the directive. An action can create new objects that can be passed to other 
actions, or can be manipulated programmatically through a scripting element in 
the JSP page.

Tag libraries are portable: they can be used in any legal JSP page regardless of 
the scripting language used in that page.

The tag extension mechanism includes information to:



TAG EXTENSIONS

JavaServer Pages 1.2 Specification

98

• Execute a JSP page that uses the tag library.

• Author or modify a JSP page.

• Validate the JSP page.

• Present the JSP page to the end user.

A Tab Library is described via the  Tag Library Descriptor ( TLD), an XML 
document that is described below.

JSP.7.1.1 Goals

The tag extension mechanism described in this chapter addresses the following 
goals. It is designed to be:

Portable - An action described in a tag library must be usable in any JSP con-
tainer.
Simple - Unsophisticated users must be able to understand and use this mech-
anism. Vendors of JSP functionality must find it easy to make it available to 
users as actions.
Expressive - The mechanism must support a wide range of actions, including 
nested actions, scripting elements inside action bodies, and creation, use and 
updating of scripting variables.
Usable from different scripting languages - Although the JSP specification 
currently only defines the semantics for scripts in the Java programming lan-
guage, we want to leave open the possibility of other scripting languages.
Built upon existing concepts and machinery- We do not want to reinvent what 
exists elsewhere. Also, we want to avoid future conflicts whenever we can 
predict them. 

JSP.7.1.2 Overview

The processing of a JSP page conceptually follows these steps:

Parsing

JSP pages can be authored using two different syntaxes: a JSP syntax and an 
XML syntax. The semantics and validation of a JSP syntax page is described 
with reference to the semantics and validation of an equivalent document in 
the XML syntax. 
The first step is to parse the JSP page. The page that is parsed is as expanded 
by the processing of include directives. Information in the TLD is used in this 
step, including the identification of custom tags, so there is some processing 



Introduction 99

JavaServer Pages 1.2 Specification

of the taglib directives in the JSP page.

Validation

The tag libraries in the XML document are processed in the order in which 
they appear in the page. 
Each library is checked for a validator class. If one is present, the whole docu-
ment is made available to its validate() method as a PageData object. If the 
JSP container supports jsp:id, then this information can be used to provide 
location information on errors.
Each custom tag in the library is checked for a TagExtraInfo class. If one is 
present, its isValid() method is invoked.

Translation

Finally, the XML document is processed to create a JSP page implementation 
class. This process may involve creating scripting variables. Each custom 
action will provide information about variables, either statically in the TLD, 
or more flexibly by using the getVariableInfo method of a TagExtraInfo class.

Execution

Once a JSP page implementation class has been associated with a JSP page, 
the class will be treated as any other Servlet class: Requests will be directed to 
instances of the class. At run-time, tag handler instances will be created and 
methods will be invoked in them.

JSP.7.1.2.1 Tag Handlers

The semantics of a specific custom action in a tag library is described via a tag 
handler class which is usually instantiated at runtime by the JSP page implementa-
tion class. When the tag library is well known to the JSP container 
(Section JSP.7.3.9), the container can use alternative implementations as long as the 
semantics are preserved.

A tag handler is a Java class that implements the Tag, IterationTag, or BodyTag 
interface, and  is the run-time representation of a custom action.

The JSP page implementation class instantiates a tag handler object, or reuses 
an existing tag handler object, for each action in the JSP page.  The handler object 
is a Java object that implements the javax.servlet.jsp.tagext.Tag interface.  The 
handler object is responsible for the interaction between the JSP page and 
additional server-side objects.



TAG EXTENSIONS

JavaServer Pages 1.2 Specification

100

There are three main interfaces: Tag, IterationTag,  and BodyTag. 

• The Tag interface defines the basic methods needed in all tag handlers. These 
methods include setter methods to initialize a tag handler with context data and 
attribute values of the action, and the doStartTag() and doEndTag() methods. 

• The IterationTag interface is an extension to Tag that provides the additional 
method, doAfterBody(), invoked for the reevaluation of the body of the tag. 

• The BodyTag interface is an extension of IterationTag with two new methods 
for when the tag handler wants to manipulate the tag body: setBodyContent() 
passes a buffer, the BodyContent  object, and doInitBody() provides an opportu-
nity to process the buffer before the first evaluation of the body into the buffer.

The use of interfaces simplifies making an existing Java object a tag handler.  
There are also two support classes that can be used as base classes: TagSupport 
and BodyTagSupport.

JSP 1.2 has a new interface designed to help maintain data integrity and 
resource management in the presence of exceptions.  The TryCatchFinally interface 
is a “mix-in” interface that can be added to a class implementing any of Tag, Itera-

tionTag or BodyTag.

JSP.7.1.2.2 Event Listeners

A tag library may include classes that are event listeners (see the Servlet 2.3 
specification). The listeners classes are listed in the tag library descriptor and the 
JSP container automatically instantiates them and registers them. A container is 
required to locate all TLD files (see Section JSP.7.3.1 for details on how they are 
identified), read their listener elements, and treat the event listeners as extensions of 
those listed in web.xml.

The order in which the listeners are registered is undefined, but they are 
registered before application start.

JSP.7.1.3 Simple Examples

As examples, we describe prototypical uses of tag extensions, briefly sketching 
how they take advantage of these mechanisms.

JSP.7.1.3.1 Simple Actions

The simplest type of action just does something, perhaps with parameters to 
modify what the “something” is, and improve reusability.



Introduction 101

JavaServer Pages 1.2 Specification

This type of action can be implemented with a tag handler that implements the 
Tag interface.  The tag handler needs to use only the doStartTag() method which  
is invoked when the start tag is encountered. It  can access the attributes of the tag 
and information about the state of the JSP page.  The information is passed to the 
Tag object through setter method calls, prior to the call to doStartTag().

Since simple actions with  empty tag bodies are common, the Tag Library 
Descriptor can be used to indicate that the tag is always intended to be empty.  
This indication leads to better error checking at translation time, and to better code 
quality in the JSP page implementation class.

JSP.7.1.3.2 Actions with a Body

Another set of simple actions require something to happen when the start tag is 
found, and when the end tag is found. The Tag interface can also be used for these 
actions. The doEndTag() is similar to the doStartTag() method except that it is 
invoked when the end tag of the action is encountered. The result of the doEndTag 
invocation indicates whether the remainder of the page is to be evaluated or not.

JSP.7.1.3.3 Conditionals

In some cases, a body needs to be invoked only when some (possibly complex) 
condition happens. Again, this type of action is supported by the basic Tag interface 
through the use of return values in the doStartTag() method.

JSP.7.1.3.4 Iterations

For iteration the IterationTag interface is needed. The doAfterBody() method is 
invoked to determine whether to reevaluate the body or not.

JSP.7.1.3.5 Actions that Process their Body

Consider an action that evaluates its body many times, creating a stream of 
response data. The IterationTag protocol is used for this. 

If the result of the reinterpretation is to be further manipulated for whatever 
reason, including just discarding it, we need a way to divert the output of 
reevaluations.  This is done through the creation of a BodyContent object and use 
of the setBodyContent() method, which is part of the BodyTag interface.  BodyTag 
also provides the doInitBody() method  which is invoked after setBodyContent() 
and before the first body evaluation provides an opportunity to interact with the 
body.



TAG EXTENSIONS

JavaServer Pages 1.2 Specification

102

JSP.7.1.3.6 Cooperating Actions

Cooperating actions may offer the best way to describe a desired functionality. 
For example, one action may be used to describe information leading to the creation 
of a server-side object, while another action may use that object elsewhere in the 
page. These actions may cooperate explicitly, via scripting variables: one action cre-
ates an object and gives it a name; the other refers to the object through the name. 
Scripting variables are discussed briefly below.

Two actions can also cooperate implicitly.  A flexible and convenient 
mechanism for action cooperation uses the nested structure of the actions to 
describe scoping. This is supported in the specification by providing each tag 
handler with its parent tag handler (if any) through the setParent() method. The 
findAncestorWithClass static method in TagSupport can then be used to locate a tag 
handler, and, once located, to perform valid operations on the tag handler.

JSP.7.1.3.7 Actions Defining Scripting Variables

A custom action may create server-side objects and make them available to 
scripting elements by creating or updating the scripting variables. The variables thus 
affected are part of the semantics of the custom action and are the responsability of 
the tag library author. 

This information is used at JSP page translation time and can be described in 
one of two ways: directly in the TLD for simple cases, or through subclasses of 
TagExtraInfo.  Either mechanism will indicate the names and types of the scripting 
variables. 

At request time the tag handler will associate objects with the scripting 
variables through the pageContext object.  

It is the responsibility of the JSP page translator to automatically supply the 
code required to do the “synchronization” between the pageObject values and the 
scripting variables.

JSP.7.2 Tag Libraries

A tag library is a collection of actions that encapsulate some functionality to be 
used from within a JSP page. A tag library is made available to a JSP page through a 
taglib directive that identifies the tag library via a URI (Universal Resource Identi-
fier).

The URI identifying a tag library may be any valid URI as long as it can be 
used to uniquely identify the semantics of the tag library.



Tag Libraries 103

JavaServer Pages 1.2 Specification

The URI identifying the tag library is associated with a Tag Library 
Description (TLD) file and with tag handler classes as indicated in 
Section JSP.7.3 below.

JSP.7.2.1 Packaged Tag Libraries

JSP page authoring tools and JSP containers are required to accept a tag library 
that is packaged as a JAR file. When deployed in a JSP container, the standard JAR 
conventions described in the Servlet 2.3 specification apply, including the conven-
tions for dependencies on extensions. 

Packaged tag libraries must have at least one tag library descriptor file.  The 
JSP 1.1 specification allowed only a single TLD, in META-INF/taglib.tld, but in 
JSP 1.2 multiple tag libraries are allowed. See Section JSP.7.3.1 for how TLDs are 
identified.

JSP.7.2.2 Location of Java Classes

A tag library contains classes for instantiation at translation time and classes for 
instantiation at request time. The former include TagLibraryValidator and TagEx-

traInfo classes. The later include tag handler and event listener classes. 
The usual conventions for Java classes apply: as part of a web application, 

they must reside either in a JAR file in the WEB-INF/lib directory, or in a 
directory in the WEB-INF/classes directory.

A JAR containing a packaged tag libraries can be dropped into the WEB-INF/
lib directory to make its classes available at request time (and also at translation 
time, see Section JSP.7.3.7).  The mapping between the URI and the TLD is 
explained further below.

JSP.7.2.3 Tag Library directive

The taglib directive in a JSP page declares that the page uses a tag library, 
uniquely identifies the tag library using a URI, and associates a tag prefix with usage 
of the actions in the library.

A JSP container maps the URI used in the taglib directive into a Tag Library 
Descriptor in two steps: it resolves the URI into a TLD resource path, and then 
derives the TLD object from the TLD resource path.

If the JSP container cannot locate a TLD resource path for a given URI, a fatal 
translation error shall result.  Similarly, it is a fatal translation error for a uri 
attribute value to resolve to two different TLD resource paths.



TAG EXTENSIONS

JavaServer Pages 1.2 Specification

104

It is a fatal translation error for the taglib directive to appear after actions 
using the prefix introduced by it.

JSP.7.3 The Tag Library Descriptor

The Tag Library Descriptor (TLD) is an XML document that describes a tag 
library. The TLD for a tag library is used by a JSP container to interpret pages that 
include taglib directives referring to that tag library. The TLD is also used by JSP 
page authoring tools that will generate JSP pages that use a library, and by authors 
who do the same manually.

The TLD includes documentation on the library as a whole and on its 
individual tags, version information on the JSP container and on the tag library, 
and information on each of the actions defined in the tag library.

The TLD may name a TagLibraryValidator class that can validate that a JSP 
page conforms to a set of constraints expected by the tag library.

Each action in the library is described by giving its name, the class of its tag 
handler, information on any scripting variables created by the action, and 
information on attributes of the action.  Scripting variable information can be 
given directly in the TLD or through a TagExtraInfo class. For each valid attribute 
there is an indication about whether it is mandatory, whether it can accept request-
time expressions, and additional information.

A TLD file is useful for providing information on a tag library.  It can be read 
by tools without instantiating objects or loader classes. Our approach conforms to 
the conventions used in other J2EE technologies.

The DTD for the tag library descriptor is organized so that interesting 
elements have an optional ID attribute.  This attribute can be used by other 
documents, like vendor-specific documents, to provide annotations of the TLD 
information.

JSP.7.3.1 Identifying Tag Library Descriptors

Tag library descriptor files have names that use the extension “.tld”, and the 
extension indicates a tag library descriptor file. When deployed inside a JAR file, 
the tag library descriptor files must be in the META-INF directory, or a 
subdirectory of it.  When deployed directly into a web application, the tag library 
descriptor files must always be in the WEB-INF directory, or some subdirectory 
of it.

The DTD for a TLD document is "http://java.sun.com/dtd/web-
jsptaglibrary_1_2.dtd"



The Tag Library Descriptor 105

JavaServer Pages 1.2 Specification

JSP.7.3.2 TLD resource path

A URI in a taglib directive is mapped into a context relative path (as discussed 
in Section JSP.2.2.1). The context relative path is a URL without a protocol and host 
components that starts with “/” and is called the TLD resource path.

The TLD resource path is interpreted relative to the root of the web 
application and should resolve to a TLD file directly, or to a JAR file that has a 
TLD file at location META-INF/taglib.tld.  If the TLD resource path is not one of 
these two cases, a fatal translation error will occur.

The URI describing a tag library is mapped to a TLD resource path though a 
taglib map, and a fallback interpretation that is to be used if the map does not 
contain the URI. The taglib map is built from an explicit taglib map in web.xml 
(described in Section JSP.7.3.3) that is extended with implicit entries deduced 
from packaged tag libraries in the web application (described in 
Section JSP.7.3.4), and implicit entries known to the JSP container. The fallback 
interpretation is targetted to a casual use of the mechanism, as in the development 
cycle of the Web Application; in that case the URI is interpreted as a direct path to 
the TLD (see Section JSP.7.3.6.2).

JSP.7.3.3 Taglib map in web.xml

The web.xml file can include an explicit taglib map between URIs and TLD 
resource paths described using the taglib elements of the Web Application Deploy-
ment descriptor in WEB-INF/web.xml, as described in the Servlet 2.3 spec and in 
“http://java.sun.com/j2ee/dtds/web-app_2_3.dtd”.

A taglib element has two subelements: taglib-uri and taglib-location.

<taglib>

A taglib is a subelement of web-app:

<!ELEMENT web-app .... taglib* .... >

The taglib element provides information on a tag library that is used by a JSP 
page within the Web Application.
A taglib element has two subelements and one attribute:

<!ELEMENT taglib ( taglib-uri, taglib-location ) >
<!ATTLIST taglib id ID #IMPLIED>

<taglib-uri>
A taglib-uri element describes a URI identifying a tag library used in the web 



TAG EXTENSIONS

JavaServer Pages 1.2 Specification

106

application.

<!ELEMENT taglib-uri (#PCDATA) >
PCDATA ::= a URI spec. 

The body of the taglib-uri element may be either an absolute URI specifica-
tion, or a relative URI as in Section JSP.2.2.1. There should be no entries in 
web.xml with the same taglib-uri value.

<taglib-location>
A taglib-location contains the location (as a resource) of the Tag Library 
Description File for the tag library.

<!ELEMENT taglib-location (#PCDATA) >

PCDATA ::= a resource location, as indicated in Section JSP.2.2.1, where to 
find the Tag Library Descriptor file.

JSP.7.3.4 Implicit Map entries from TLDs

The taglib map described in web.xml is extended with new entries extracted 
from TLD files in the Web Application. The new entries are computed as follows:

• Each TLD file is examined. If it has a <uri> element, then a new <taglib> ele-
ment is created, with a <taglib-uri> subelement whose value is that of the <uri> 
elemement, and with a <taglib-location> subelement that refers to the TLD file.

• If the created <taglib> element has a different <taglib-uri> to any in the taglib 
map, it is added.

This mechanism provides an automatic URI to TLD mapping as well as 
supporting multiple TLDs within a packaged JAR.  Note that this functionality 
does not require explicitly naming the location of the TLD file, which would 
require a mechanism like the jar: protocol.

Note also that the mechanism does not add duplicated entries.

JSP.7.3.5 Implicit Map entries from the Container

The container may also add additional entries to the taglib map. As in the previ-
ous case, the entries are only added for URIs that are not present in the map. Con-
ceptually the entries correspond to TLD describing these tag libraries.



The Tag Library Descriptor 107

JavaServer Pages 1.2 Specification

These implicit map entries correspond to libraries that are known to the 
container, who is responsible for providing their implementation, either through 
tag handlers, or via the mechanism described in Section JSP.7.3.9.

JSP.7.3.6 Determining the TLD Resource Path

The TLD resource path can be determined from the uri attribute of a taglib 
directive as described below. In the explanation below an “absolute URI” is one that 
starts with a protocol and host, while a“relative URI specification” is as in section 
2.5.2, i.e. one without the protocol and host part.

All steps are described as if they were taken, but an implementation can use a 
different implementation strategy as long as the result is preserved. 

JSP.7.3.6.1 Computing TLD Locations

The taglib map generated in Sections JSP.7.3.3, JSP.7.3.4 and JSP.7.3.5 may 
contain one or more <taglib></taglib> entries. Each entry is identified by a 
TAGLIB_URI, which is the value of the <taglib-uri> subelement. This TAGLIB_URI may 
be an absolute URI, or a relative URI spec starting with “/” or one not starting with 
“/”. Each entry also defines a TAGLIB_LOCATION as follows:

• If the <taglib-location> subelement is some relative URI specification that 
starts with a “/” the TAGLIB_LOCATION is this URI.

• If the <taglib-location> subelement is some relative URI specification that does 
not start with “/”, the TAGLIB_LOCATION is the resolution of the URI relative to 
/WEB-INF/web.xml (the result of this resolution is a relative URI specification 
that starts with “/”).

JSP.7.3.6.2 Computing the TLD Resource Path

The following describes how to resolve a taglib directive to compute the TLD 
resource path. It is based on the value of the uri attribute of the taglib directive. 

• If uri is ABS_URI, an absolute URI

Look in the taglib map for an entry whose TAGLIB_URI is ABS_URI. If found, the 
corresponding TAGLIB_LOCATION is the TLD resource path.  If not found, a 
translation error is raised.



TAG EXTENSIONS

JavaServer Pages 1.2 Specification

108

• If uri is ROOT_REL_URI, a relative URI that starts with “/”

Look in the taglib map for an entry whose TAGLIB_URI is ROOT_REL_URI.  If 
found, the corresponding TAGLIB_LOCATION is the TLD resource path. If no such 
entry is found, ROOT_REL_URI is the TLD resource path.

• If uri is NOROOT_REL_URI, a relative URI that does not start with “/”

Look in the taglib map for an entry whose TAGLIB_URI is NOROOT_REL_URI. If 
found, the corresponding TAGLIB_LOCATION is the TLD resource path.  If no such 
entry is found, resolve NOROOT_REL_URI relative to the current JSP page where the 
directive appears; that value (by definition, this is a relative URI specification that 
starts with “/”) is the TLD resource path.

JSP.7.3.6.3 Usage Considerations

The explicit web.xml map provides a explicit description of the tag libraries that 
are being used in a web application.

The implicit map from TLDs means that a JAR file implementing a tag library 
can be dropped in and used immediatedly through its stable URIs.

The use of relative URI specifications in the taglib map enables very short 
names in the taglib directive. For example, if the map is:

<taglib>
  <taglib-uri>/myPRlibrary</taglib-uri>
  <taglib-location>/WEB-INF/tlds/PRlibrary_1_4.tld</taglib-location>
</taglib>

then it can be used as:

<%@ taglib uri=”/myPRlibrary” prefix=”x” %>

Finally, the fallback rule allows a taglib directive to refer directly to the TLD.  
This arrangement is very convenient for quick development at the expense of less 
flexibility and accountability.  For example, in the case above, it enables:

<%@ taglib uri=”/WEB-INF/tlds/PRlibrary_1_4.tld” prefix=”x” %>

JSP.7.3.7 Translation-Time Class Loader

The set of classes available at translation time is the same as that available at 
runtime: the classes in the underlying Java platform, those in the JSP container, and 
those in the class files in WEB-INF/classes, in the JAR files in WEB-INF/lib, and, 



The Tag Library Descriptor Format 109

JavaServer Pages 1.2 Specification

indirectly those indicated through the use of the class-path attribute in the META-
INF/MANIFEST file of these JAR files.

JSP.7.3.8 Assembling a Web Application

As part of the process of assembling a web application, the Application Assem-
bler will create a WEB-INF/ directory, with appropriate lib/ and classes/ subdirecto-
ries, place JSP pages, Servlet classes, auxiliary classes, and tag libraries in the 
proper places, and create a WEB-INF/web.xml that ties everything together.

Tag libraries that have been delivered in the standard JAR format can be 
dropped directly into WEB-INF/lib.  This automatically adds all the TLDs inside 
the JAR, making their URIs advertised in their <uri> elements visible to the URI 
to TLD map. The assembler may create taglib entries in web.xml for each of the 
libraries that are to be used.

Part of the assembly (and later the deployment) may create and/or change 
information that customizes a tag library; see Section JSP.7.6.3.

JSP.7.3.9 Well-Known URIs

A JSP container may “know of” some specific URIs and may provide alternate 
implementations for the tag libraries described by these URIs, but the user must see 
the behavior as that described by the required, portable tag library description 
described by the URI.

A JSP container must always use the mapping specified for a URI in the 
web.xml deployment descriptor if present.  If the deployer wants to use the 
platform-specific implementation of the well-known URI, the mapping for that 
URI should be removed at deployment time.

JSP.7.4 The Tag Library Descriptor Format

This section describes the DTD for the JSP 1.2 version of the Tag Library 
Descriptor. The JSP 1.2 version has information added from the JSP 1.1 version, as 
well as a few changes to element names made to improve consistency with other 
specifications.

TLDs in the 1.1 format must be accepted by JSP 1.2 containers.



TAG EXTENSIONS

JavaServer Pages 1.2 Specification

110

Notation

<!NOTATION WEB-JSPTAGLIB.1_2 PUBLIC “-//Sun Microsystems, Inc.//DTD 
JSP Tag Library 1.2//EN”>

<taglib>
The taglib element is the document root. A taglib has two attributes.

<!ATTLIST taglib
id

ID
#IMPLIED

xmlns
CDATA
#FIXED
"http://java.sun.com/JSP/TagLibraryDescriptor"

>

A taglib element also has several subelements that define:

tlib-version the version of the tag library implementation

jsp-version the mandatory version of JSP specification the tag library 
depends upon

short-name a simple default short name that could be used by a JSP page 
authoring tool to create names with a mnemonic value; for 
example, the it may be used as the preferred prefix value in taglib 
directives.

uri a uri uniquely identifying this taglib.

display-name The display-name element contains a short name that is intended 
to be displayed by tools.

small-icon Optional small-icon that can be used by tools.

large-icon Optional large-icon that can be used by tools.

description a string describing the “use” of this taglib.

validator Optional TagLibraryValidator information.

listener Optional event listener specification

<!ELEMENT taglib
(tlib-version, jsp-version,
 short-name, uri?, display-name?, small-icon?, large-icon?
 description?, validator?, listener*, tag+) >



The Tag Library Descriptor Format 111

JavaServer Pages 1.2 Specification

<tlib-version>
Describes the version (number) of the tag library.
The syntax is:

<!ELEMENT tlib-version (#PCDATA) >

#PCDATA ::= [0-9]*{ “.”[0-9] }0..3

<jsp-version>
Describes the JSP specification version (number) this tag library requires in 
order to function. This element is mandatory
The syntax is:

<!ELEMENT jsp-version  (#PCDATA) >
#PCDATA ::= [0-9]*{ “.”[0-9] }0..3.

<short-name>
Defines a simple default short name that could be used by a JSP page author-
ing tool to create names with a mnemonic value; for example, the it may be 
used as the preferred prefix value in taglib directives and/or to create prefixes 
for IDs. Do not use white space, and do not start with digits or underscore.
The syntax is 

<!ELEMENT short-name (#PCDATA) >
#PCDATA ::= NMTOKEN

<uri>
Defines a public URI that uniquely identifies this version of the tag library.

<!ELEMENT uri (#PCDATA) >

<description>
Defines an arbitrary text string describing the tag library, variable, attribute or 
validator.

<!ELEMENT description  (#PCDATA) >

<validator>
Defines an optional TagLibraryValidator that can be used to validate the con-
formance of a JSP page to using this tag library. A validator may have some 
optional initialization parameters.
The validator may have several subelements defining:



TAG EXTENSIONS

JavaServer Pages 1.2 Specification

112

validator-class the class implementing 
javax.servlet.jsp.tagext.TagLibraryValidator

init-param optional initialization parameters

description an optional description of the validator.

The element syntax is as follows:

<!ELEMENT validator (validator-class, init-param*, description?) >

<validator-class>
Defines the class of the optional TagLibraryValidator.

<!ELEMENT validator-class        (#PCDATA) >

<init-param>
Defines an initialization parameter.
The init-param may have several subelements defining:

param-name the name of the parameter

param-value the value of the parameter

description optional description of the parameter

The element syntax is as follows:

<!ELEMENT init-param (param-value, param-value, description?) >

<param-name>
The name of a parameter.

<!ELEMENT param-name        (#PCDATA) >

<param-value>
The value of a parameter.

<!ELEMENT param-value        (#PCDATA) >

<listener>
Defines an optional event listener object to be instantiated and registered 
automatically.

<!ELEMENT listener        (listener-class) >



The Tag Library Descriptor Format 113

JavaServer Pages 1.2 Specification

<listener-class>
The listener-class element declares a class in the application that must be reg-
istered as a web application listener bean. See the Servlet 2.3 specification for 
details.

<!ELEMENT listener-class        (#PCDATA) >

<tag>
The tag defines an action in this tag library.
The common way to describe the semantics of a specific custom action that 
are observable by other custom actions is the implementation class of the tag 
handler in the tag-class element. But the description element can also be used 
to indicate a type that further constraints those operations. The type can be 
either void or a subtype of the tag handler implementation class. This infor-
mation can be used by a specialized container for a specific well known tag 
libraries; see Section JSP.7.3.9.
The tag element has one attribute:

<!ATTLIST tag id ID #IMPLIED >

The tag may have several subelements defining:

name the unique action name

tag-class the tag handler class implementing 
javax.servlet.jsp.tagext.Tag

tei-class an optional subclass of 
javax.servlet.jsp.tagext.TagExtraInfo

body-content the body content type

display-name A short name that is intended to be displayed by tools.

small-icon Optional large-icon that can be used by tools.

large-icon Optional large-icon that can be used by tools.

description Optional tag-specific information.

variable Optional scripting variable information.

attribute all attributes of this action

example optional example of the use of this tag.

The element syntax is as follows:



TAG EXTENSIONS

JavaServer Pages 1.2 Specification

114

<!ELEMENT tag
(name, tag-class, tei-class?,
body-content?, display-name?, small-icon?, large-icon?,
description?, variable*, attribute*, example?) >

<tag-class>
Defines the tag handler implementation class for this custom action. The class 
must implement the javax.serlvet.jsp.tagext.Tag interface. This element is 
required.
The syntax is:

<!ELEMENT tag-class (#PCDATA) >

#PCDATA ::= fully qualified Java class name.

<tei-class>
Defines the subclass of javax.servlet.jsp.tagext.TagExtraInfo for this tag. This 
element is optional.
The syntax is:

<!ELEMENT tei-class (#PCDATA) >
 #PCDATA ::= fully qualified Java class name

<body-content>
Provides a hint as to the content of the body of this action. Primarily intended 
for use by page composition tools.
There are currently three values specified:

tagdependent The body of the action is passed verbatim to be interpreted by the 
tag handler itself, and is most likely in a different “language”, e.g. 
embedded SQL statements. The body of the action may be empty. 
No quoting is performed.

JSP The body of the action contains elements using the JSP syntax. 
The body of the action may be empty.

empty The body must be empty

The default value is “JSP”.
The syntax is:

<!ELEMENT body-content (#PCDATA) >

#PCDATA ::=  tagdependent | JSP | empty.

Values are case dependent.



The Tag Library Descriptor Format 115

JavaServer Pages 1.2 Specification

<display-name>
The display-name elements contains a short name that is intended to be displayed by 

tools.
The syntax is:

<!ELEMENT display-name (#PCDATA) >

<large-icon>
The large-icon element contains the name of a file containing a large (32 x 32) 
icon image. The file name is a path within the tag library relative to the loca-
tion of the TLD. The image must be either in the JPEG or GIF format, and the 
file name must end with the suffix ".jpg" or ".gif" respectively. The icon can 
be used by tools.
The syntax is:

<!ELEMENT large-icon (#PCDATA) >

<small-icon>
The small-icon element contains the name of a file containing a small (16 x 
16) icon image. The file name is a path within the tag library relative to the 
location of the TLD. The image must be either in the JPEG or GIF format, and 
the file name must end with the suffix ".jpg" or ".gif" respectively. The icon 
can be used by tools.
The syntax is:

<!ELEMENT small-icon (#PCDATA) >

<variable>
Provides information on the scripting variables defined by this tag.  It is a 
(translation-time) error for a tag that has one or more variable subelements to 
have a TagExtraInfo class that returns a non-null object.
The subelements of variable are of the form:

name-given the variable name as a constant.

name-from-attribute
the name of an attribute whose (translation-time) value will give 
the name of the variable. One of name-given or name-from-
attribute is required.

variable-class name of the class of the variable.  java.lang.String is default.

declare whether the variable is declared or not.  True is thedefault.

scope the scope of the scripting variable defined.  NESTED is default.



TAG EXTENSIONS

JavaServer Pages 1.2 Specification

116

description optional description of the variable.

The syntax is:

<!ELEMENT variable
((name-given | name-from-attribute), variable-class?,
declare?, scope?, description?) >

<name-given>
The name for the scripting variable.  One of name-given or name-from-attribute is 

required.
The syntax is:

<!ELEMENT name-given (#PCDATA) >

<name-from-attribute>
The name of an attribute whose (translation-time) value will give the name of 
the variable. One of name-given or name-from-attribute is required.
The syntax is:

<!ELEMENT name-from-attribute (#PCDATA) >

<variable-class>
The optional name of the class for the scripting variable.  The default is 
java.lang.String.
The syntax is:

<!ELEMENT class (#PCDATA) >

<declare>
Whether the scripting variable is to be defined or not.  See TagExtraInfo for 
details.  This element is optional and “true” is the default.
The syntax is:

<!ELEMENT declare #PCDATA) >

#PCDATA ::= true | false | yes | no

<scope>
The scope of the scripting variable.  See TagExtraInfo for details.  This ele-
ment is optional and “NESTED” is the default..
The syntax is:



The Tag Library Descriptor Format 117

JavaServer Pages 1.2 Specification

<!ELEMENT scope #PCDATA) >
#PCDATA ::= NESTED | AT_BEGIN | AT_END

<attribute>
Provides information on an attribute of this action.  Attribute defines an id 
attribute for external linkage.

<!ATTLIST attribute id     ID#IMPLIED>

The subelements of attribute are of the form:

name the attributes name (required)

required if the attribute is required or optional (optional)

rtexprvalue if the attributes value may be dynamically calculated at runtime 
by a scriptlet expression (optional)

type the type of the attributes value (optional)

description optional description of the attribute

The syntax is:

<!ELEMENT attribute (name, required?,rtexprvalue?, type?, description?) >

<name>
Defines the canonical name of a tag or attribute being defined
The syntax is:

<!ELEMENT name        (#PCDATA) >

#PCDATA ::= NMTOKEN

<required>
Defines if the nesting attribute is required or optional.
The syntax is:

<!ELEMENT required    (#PCDATA) >
#PCDATA ::= true | false | yes | no

If not present then the default is “false”, i.e the attribute is optional.

<rtexprvalue>
Defines if the nesting attribute can have scriptlet expressions as a value, i.e 
the value of the attribute may be dynamically calculated at request time, as 
opposed to a static value determined at translation time.



TAG EXTENSIONS

JavaServer Pages 1.2 Specification

118

The syntax is:

<!ELEMENT rtexprvalue (#PCDATA) >
#PCDATA ::= true | false | yes | no

If not present then the default is “false”, i.e the attribute has a static value

<type>
Defines the Java type of the attribute’s value. For literal values (rtexprvalue is 
false) the type is always java.lang.String.
If the rtexprvalue element is true, then the type defines the return type 
expected from any scriptlet expression specified as the value of this attribute.
The value of this attribute should match that of the underlying JavaBean com-
ponent property.
The syntax is:

<!ELEMENT type (#PCDATA) >
#PCDATA ::= fully qualified Java class name of result type

An example is:

<type> java.lang.Object </type>

<example>
The content of this element is intended to be an example of how to use the tag. 
This element is not intepreted by the JSP container and has no effect on the 
semantics of the tag.

<!ELEMENT example (#PCDATA) >

JSP.7.5 Validation

There are a number of reasons why the structure of a JSP page should conform 
to some validation rules:

• Request-time semantics; e.g. a subelement may require the information from 
some enclosing element at request-time .

• Authoring-tool support; e.g. a tool may require an ordering in the actions.

• Methodological constraints; e.g. a development group may want to constrain 
the way some features are used.



Validation 119

JavaServer Pages 1.2 Specification

Validation can be done either at translation-time or at request-time.  In general 
translation-time validation provides a better user experience, and the JSP 1.2 
specification provides a very flexible translation-time validation mechanism.

JSP.7.5.1 Translation-Time Mechanisms

Some translation-time validation is represented in the Tag Library Descriptor.  
In some cases a TagExtraInfo class needs to be provided to supplement this informa-
tion.

JSP.7.5.1.1 Attribute Information

The Tag Library Descriptor contains the basic syntactic information.  In particu-
lar, the attributes are described including their name, whether they are optional or 
mandatory, and whether they accept request-time expressions.  Additionally the 
bodycontent element can be used to indicate that an action must be empty.

All constraints described in the TLD must be enforced.  A tag library author 
can assume that the tag handler instance corresponds to an action that satisfies all 
constraints indicated in the TLD.

JSP.7.5.1.2 Validator Classes

A TagLibraryValidator class may be listed in the TLD for a tag library to request 
that a JSP page be validated.  The XML view of a JSP page is exposed through a 
PageData class, and the validator class can do any checks the tag library author may 
have found appropriate.

The JSP container may optionally uniquely identify all XML elements in the 
XML view of a JSP page through a jsp:id attribute. This attribute can be used to 
provide better information on the location of an error.

The validator class mechanism is new to the JSP 1.2 specification.  A 
TagLibraryValidator can be passed some initialization parameters in the TLD. This 
eases the reuse of validator classes.  We expect that validator classes will be 
written based on different XML schema mechanisms (DTDs, XSchema, Relaxx, 
others).  Standard validator classes may be incorporated into a later version of the 
JSP specification if  a clear schema standard appears at some point.

JSP.7.5.1.3 TagExtraInfo Class Validation

Additional translation-time validation can be done using the isValid method in 
the TagExtraInfo class. The isValid method is invoked at translation-time and is 
passed a TagData instance as its argument.



TAG EXTENSIONS

JavaServer Pages 1.2 Specification

120

The isValid mechanism was the original validation mechanism introduced in 
JSP 1.1 with the rest of the Tag Extension machinery.  Tag libraries that are 
designed to run in JSP 1.2 containers should use the validator class mechanism.

JSP.7.5.2 Request-Time Errors

In some cases, additional request-time validation will be done dynamically 
within the methods in the tag handler. If an error is discovered, an instance of 
JspException can be thrown. If uncaught, this object will invoke the errorpage 
mechanism of the JSP specification.

JSP.7.6 Conventions and Other Issues

This section is not normative, although it reflects good design practices.

JSP.7.6.1 How to Define New Implicit Objects

We advocate the following style for the introduction of implicit objects:

• Define a tag library.

• Add an action called defineObjects to define the desired objects.

The JSP page can make these objects available as follows:

<%@ tablig prefix="me" uri="......" %>
<me:defineObjects />
.... start using the objects....

This approach has the advantage of requiring no new machinery and of 
making very explicit the dependency.

In some cases there may be an implementation dependency in making these 
objects available. For example, they may be providing access to some 
functionality that exists only in a particular implementation.  This can be done by 
having the tag extension class test at run-time for the existence of some 
implementation dependent feature and raise a run-time error (this, of course, 
makes the page not J2EE compliant). 

This mechanism, together with the access to metadata information allows for 
vendors to innovate within the standard.



Conventions and Other Issues 121

JavaServer Pages 1.2 Specification

Note: if a feature is added to a JSP specification, and a vendor also provides 
that feature through its vendor-specific mechanism, the standard mechanism, as 
indicated in the JSP specification will “win”.  This means that vendor-specific 
mechanisms can slowly migrate into the specification as they prove their 
usefulness.

JSP.7.6.2 Access to Vendor-Specific information

If a vendor wants to associate some information that is not described in the cur-
rent version of the TLD with some tag library, it can do so by inserting the informa-
tion in a document it controls, inserting the document in the WEB-INF portion of 
the JAR file where the Tab Library resides, and using the standard Servlet 2.2 mech-
anisms to access that information.

The vendor can now use the ID machinery to refer to the element within the 
TLD.

JSP.7.6.3 Customizing a Tag Library

A tag library can be customized at assembly and deployment time.  For exam-
ple, a tag library that provides access to databases may be customized with login and 
password information.

There is no convenient place in web.xml in the Servlet 2.2 spec for customiza-
tion information A standardized mechanism is probably going to be part of a forth-
coming JSP specification, but in the meantime the suggestion is that a tag library 
author place this information in a well-known location at some resource in the 
WEB-INF/ portion of the Web Application and access it via the getResource() call 
on the ServletContext.



TAG EXTENSIONS

JavaServer Pages 1.2 Specification

122



123

C H A P T E R JSP.8
JSP Container

This chapter describes the contracts between a JSP container and a JSP page. 
The precompilation protocol (see Section JSP.8.4) is also presented here.

The information in this chapter is independent of the Scripting Language used 
in the JSP page. Chapter JSP.6 describes information specific to when the lan-

guage attribute of the page directive has “java” as its value.).
JSP page implementation classes should use the JspFactory and PageContext 

classes to take advantage of platform-specific implementations.

JSP.8.1 JSP Page Model

A JSP page is represented at execution time by a JSP page implementation 
object and is executed by a JSP container. The JSP page implementation object is a 
servlet.  The JSP container delivers requests from a client to a JSP page implementa-
tion object and responses from the JSP page implementation object to the client.

The JSP page describes how to create a response object from a request object 
for a given protocol, possibly creating and/or using some other objects in the 
process . A JSP page may also indicate how some events are to be handled. In JSP 
1.2 only init and destroy events are allowed events.

JSP.8.1.1 Protocol Seen by the Web Server

The JSP container locates the appropriate instance of the JSP page implementa-
tion class and delivers requests to it using the Servlet protocol. A JSP container may 
need to create such a class dynamically from the JSP page source before delivering 
request and response objects to it.

The Servlet class defines the contract between the JSP container and the JSP 
page implementation class. When the HTTP protocol is used, the contract is 



JSP CONTAINER

JavaServer Pages 1.2 Specification

124

described by the HttpServlet class. Most JSP pages use the HTTP protocol, but 
other protocols are allowed by this specification.

The JSP container automatically makes a number of server-side objects 
available to the JSP page implementation object .  See Section JSP.2.8.3.

JSP.8.1.1.1 Protocol Seen by the JSP Page Author

The JSP specification defines the contract between the JSP container and the 
JSP page author. This contract defines the assumptions an author can make for the 
actions described in the JSP page.

The main portion of this contract is the _jspService() method that is generated 
automatically by the JSP container from the JSP page. The details of this contract 
are provided in Chapter JSP.6.

The contract also describes how a JSP author can indicate what actions will be 
taken when the init() and destroy() methods of the page implementation occur. In 
JSP 1.2 this is done by defining methods with names jspInit() and jspDestroy() in 
a declaration scripting element in the JSP page. The jspInit() method, if present, 
will be called to prepare the page before the first request is delivered. Similarly a 
JSP container can reclaim resources used by a JSP page when a request is not 
being serviced by the JSP page by invoking its jspDestroy() method, if present.

A JSP page author may not (re)define Servlet methods through a declaration 
scripting element.

The JSP specification reserves names for methods and variables starting with 
jsp, _jsp, jspx and _jspx, in any combination of upper and lower case.

JSP.8.1.1.2 The HttpJspPage Interface

The enforcement of the contract between the JSP container and the JSP page 
author is aided by the requirement that the Servlet class corresponding to the JSP 
page must implement the HttpJspPage interface (or the JspPage interface if the 
protocol is not HTTP).
Figure J2EE.8.1  Contracts between a JSP Page and a JSP Container. 



JSP Page Implementation Class 125

JavaServer Pages 1.2 Specification

The involved contracts are shown in Figure J2EE.8.1. We now revisit this 
whole process in more detail.

JSP.8.2 JSP Page Implementation Class

The JSP container creates a JSP page implementation class for each JSP page.
The name of the JSP page implementation class is implementation dependent. 
The JSP Page implementation object belongs to an implementation-dependent 

named package. The package used may vary between one JSP and another, so 
minimal assumptions should be made.  The unnamed package should not be used 
without an explicit “import” of the class.

The JSP container may create the implementation class for a JSP page, or a 
superclass may be provided by the JSP page author through the use of the extends 
attribute in the page directive.

The extends mechanism is available for sophisticated users. It should be used 
with extreme care as it restricts decisions that a JSP container can make. It may 
restrict efforts to emprove performance, for example.

The JSP page implementation class will implement Servlet and the Servlet 
protocol will be used to deliver requests to the class.

JSP Container JSP Page

jspInit

jspDestroy

_jspService

init event

stroy event

request

response

<%!
public void jspInit()...

public void
jspDestroy()...

%>
<html>
This is the response..
</html>

REQUEST PROCESSING TRANSLATION PHASE
PHASE



JSP CONTAINER

JavaServer Pages 1.2 Specification

126

A JSP page implementation class may depend on support classes. If the JSP 
page implementation class is packaged into a WAR, any dependant classes will 
have to be included so it will be portable across all JSP containers.

A JSP page author writes a JSP page expecting that the client and the server 
will communicate using a certain protocol. The JSP container must guarantee that 
requests from and responses to the page use that protocol. Most JSP pages use 
HTTP, and their implementation classes must implement the HttpJspPage 
interface, which extends JspPage. If the protocol is not HTTP, then the class will 
implement an interface that extends JspPage.

JSP.8.2.1 API Contracts

The contract between the JSP container and a Java class implementing a JSP 
page corresponds to the Servlet interface. Refer to the Servlet 2.3 specification for 
details.

The responsibility for adhering to this contract rests on the JSP container 
implementation if the JSP page does not use the extends attribute of the jsp 
directive. If the extends attribute of the jsp directive is used, the JSP page author 
must guarantee that the superclass given in the extends attribute supports this 
contract.

Table JSP.8-1  How the JSP Container Processes JSP Pages

Comments Methods the JSP Container Invokes

Method is optionally defined in JSP 
page.
Method is invoked when the JSP page 
is initialized.
When method is called all the methods 
in servlet, including 
getServletConfig() are available

void jspInit()

Method is optionally defined in JSP 
page.
Method is invoked before destroying 
the page.

void jspDestroy()



JSP Page Implementation Class 127

JavaServer Pages 1.2 Specification

JSP.8.2.2 Request and Response Parameters

As shown in Table JSP.8-1, the methods in the contract between the JSP con-
tainer and the JSP page require request and response parameters.

The formal type of the request parameter (which this specification calls 
<ServletRequestSubtype>) is an interface that extends 
javax.servlet.ServletRequest. The interface must define a protocol-dependent 
request contract between the JSP container and the class that implements the JSP 
page.

Likewise, the formal type of the response parameter (which this specification 
calls <ServletResponseSubtype>) is an interface that extends javax.servlet.Servlet-

Response. The interface must define a protocol-dependent response contract 
between the JSP container and the class that implements the JSP page.

The request and response interfaces together describe a protocol-dependent 
contract between the JSP container and the class that implements the JSP page. 
The HTTP contract is defined by the javax.servlet.http.HttpServletRequest and 
javax.servlet.http.HttpServletResponse interfaces.

The JspPage interface refers to these methods, but cannot describe 
syntactically the methods involving the Servlet(Request,Response) subtypes. 
However, interfaces for specific protocols that extend JspPage can, just as 
HttpJspPage describes them for the HTTP protocol.

JSP containers that conform to this specification (in both JSP page 
implementation classes and JSP container runtime) must implement the request 
and response interfaces for the HTTP protocol as described in this section.

JSP.8.2.3 Omitting the extends Attribute

If the extends attribute of the page directive (seeSection 2.10.1) in a JSP page is 
not used, the JSP container can generate any class that satisfies the contract 
described in Table JSP.8-1, when it transforms the JSP page.

Method may not be defined in JSP 
page.
The JSP container automatically 
generates this method, based on the 
contents of the JSP page.
Method invoked at each client request.

void 
_jspService(<ServletRequestSubtype>
, <ServletResponseSubtype>) throws 
IOException, ServletException

Table JSP.8-1  How the JSP Container Processes JSP Pages



JSP CONTAINER

JavaServer Pages 1.2 Specification

128

In the following code examples, Code Example 8.1 illustrates a generic HTTP 
superclass named ExampleHttpSuper. Code Example 8.2 shows a subclass named 
_jsp1344 that extends ExampleHttpSuper and is the class generated from the JSP 
page. By using separate _jsp1344 and ExampleHttpSuper classes, the JSP page 
translator does not need to discover whether the JSP page includes a declaration 
with jspInit() or jspDestroy(). This significantly simplifies the implementation.

Code Example 8.1 A Generic HTTP Superclass

imports javax.servlet.*;
imports javax.servlet.http.*;
imports javax.servlet.jsp.*;

/**
* An example of a superclass for an HTTP JSP class
*/

abstract class ExampleHttpSuper implements HttpJspPage {
private ServletConfig config;

final public void init(ServletConfig config) throws ServletException {
this.config = config;
jspInit();

public void jspInit() {
}

public void jspDestroy() {
}

}

final public ServletConfig getServletConfig() {
return config;

}

// This one is not final so it can be overridden by a more precise method
public String getServletInfo() {

return “A Superclass for an HTTP JSP”; // maybe better?
}



JSP Page Implementation Class 129

JavaServer Pages 1.2 Specification

final public void destroy() {
jspDestroy();

}

/**
* The entry point into service.
*/

final public void service(ServletRequest req, ServletResponse res)
throws ServletException, IOException {

// casting exceptions will be raised if an internal error.
HttpServletRequest request = (HttpServletRequest) req;
HttpServletResponse response = (HttpServletResponse) res;

_jspService(request, resonse);

/**
* abstract method to be provided by the JSP processor in the subclass
* Must be defined in subclass.
*/

abstract public void _jspService(HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException;

}

Code Example 8.2 The Java Class Generated From a JSP Page



JSP CONTAINER

JavaServer Pages 1.2 Specification

130

imports javax.servlet.*;
imports javax.servlet.http.*;
imports javax.servlet.jsp.*;

/**
* An example of a class generated for a JSP.
*
* The name of the class is unpredictable.
* We are assuming that this is an HTTP JSP page (like almost all are)
*/

class _jsp1344 extends ExampleHttpSuper {

// Next code inserted directly via declarations.
// Any of the following pieces may or not be present
// if they are not defined here the superclass methods
// will be used.

public void jspInit() {....}
public void jspDestroy() {....}

// The next method is generated automatically by the 
// JSP processor.
// body of JSP page

public void _jspService(HttpServletRequest request,
HttpServletResponse response) 
throws ServletException, IOException { 

// initialization of the implicit variables 

HttpSession session = request.getSession(); 
ServletContext context =

getServletConfig().getServletContext();



JSP Page Implementation Class 131

JavaServer Pages 1.2 Specification

// for this example, we assume a buffered directive

JSPBufferedWriter out = new
JSPBufferedWriter(response.getWriter());

// next is code from scriptlets, expressions, and static text.

}

}

JSP.8.2.4 Using the extends Attribute

If the JSP page author uses extends, the generated class is identical to the one 
shown in Code Example 8.2, except that the class name is the one specified in the 
extends attribute.

The contract on the JSP page implementation class does not change. The JSP 
container should check (usually through reflection) that the provided superclass:

• Implements HttpJspPage if the protocol is HTTP, or JspPage otherwise.

• All of the methods in the Servlet interface are declared final.

• Additionally, it is the responsibility of the JSP page author that the provided 
superclass satisfies:

• The service() method of the Servlet API invokes the _jspService() method.

• The init(ServletConfig) method stores the configuration, makes it available as 
getServletConfig, then invokes jspInit.

• The destroy method invokes jspDestroy.

A JSP container may give a fatal translation error if it detects that the 
provided superclass does not satisfy these requirements, but most JSP containers 
will not check them.



JSP CONTAINER

JavaServer Pages 1.2 Specification

132

JSP.8.3 Buffering

The JSP container buffers data (if the jsp directive specifies it using the buffer 
attribute) as it is sent from the server to the client. Headers are not sent to the client 
until the first flush method is invoked. Therefore, none of the operations that rely on 
headers, such as the setContentType, redirect, or error methods are valid once the 
flush method is executed and the headers are sent.

The javax.servlet.jsp.JspWriter class  buffers and sends output. The JspWriter 
class is used in the _jspService method as in the following example:

import javax.servlet.jsp.JspWriter;

static JspFactory _jspFactory = JspFactory.getDefaultFactory();

_jspService(<SRequest> request, <SResponse> response) {

// initialization of implicit variables...
PageContext pageContext = _jspFactory.createPageContext(

this,
request,
response,
false,
PageContext.DEFAULT_BUFFER,
false

 );
JSPWriter out = pageContext.getOut();
// ....
// .... the body goes here using "out"
// ....
out.flush();

}

You can find the complete listing of javax.servlet.jsp.JspWriter in 
Chapter JSP.9.

With buffering turned on, you can still use a redirect method in a scriptlet in a 
.jsp file, by invoking response.redirect(someURL) directly.

JSP.8.4 Precompilation

A JSP page that is using the HTTP protocol will receive HTTP requests.  JSP 
1.2 compliant containers must support a simple precompilation protocol, as well as 



Precompilation 133

JavaServer Pages 1.2 Specification

some basic reserved parameter names.  Note that the precompilation protocol is 
related but not the same as the notion of compiling a JSP page into a Servlet class 
(Appendix JSP.A).

JSP.8.4.1 Request Parameter Names

All request parameter names that start with the prefix "jsp" are reserved by the 
JSP specification and should not be used by any user or implementation except as 
indicated by the specification.

All JSPs pages should ignore (not depend on) any parameter that starts with 
"jsp_"

JSP.8.4.2 Precompilation Protocol

A request to a JSP page that has a request parameter with name 
"jsp_precompile" is a precompilation request.  The "jsp_precompile" parameter 
may have no value, or may have values "true" or "false".  In all cases, the request 
should not be delivered to the JSP page.

The intention of the precompilation request is that of a suggestion to the JSP 
container to precompile the JSP page into its JSP page implementation class.  The 
suggestion is conveyed by giving the parameter the value "true" or no value, but 
note that the request can be ignored.

For example:

1.  ?jsp_precompile

2. ?jsp_precompile="true"

3. ?jsp_precompile="false"

4. ?foobar="foobaz"&jsp_precompile="true"

5. ?foobar="foobaz"&jsp_precompile="false"

1, 2 and 4 are legal; the request will not be delivered to the page. 3 and 5 are 
legal; the request will not be delivered to the page.

6. ?jsp_precompile="foo"

This is illegal and will generate an HTTP error; 500 (Server error).



JSP CONTAINER

JavaServer Pages 1.2 Specification

134



135

C H A P T E R JSP.9
Core API

This chapter describes the javax.servlet.jsp package. The chapter includes 
content that is generated automatically from javadoc embedded into the actual Java 
classes and interfaces. This allows the creation of a single, authoritative, specifica-
tion document. 

The javax.servlet.jsp package contains a number of classes and interfaces that 
describe and define the contracts between a JSP page implementation class and 
the runtime environment provided for an instance of such a class by a conforming 
JSP container. 

JSP.9.1 JSP Page Implementation Object Contract

This section describes the basic contract between a JSP Page implementation 
object and its container. The main contract is defined by the classes JspPage and 
HttpJspPage. The JspFactory class describes the mechanism to portably instantiate 
all needed runtime objects, and JspEngineInfo provides basic information on the cur-
rent JSP container. 

None of the classes described here are intended to be used by JSP page 
authors; an example of how these classes may be used is included elsewhere in 
this chapter. 

JSP.9.1.1 JspPage

Syntax
public interface JspPage extends javax.servlet.Servlet

All Known Subinterfaces: HttpJspPage



CORE API

JavaServer Pages 1.2 Specification

136

All Superinterfaces: javax.servlet.Servlet

Description

The JspPage interface describes the generic interaction that a JSP Page Imple-
mentation class must satisfy; pages that use the HTTP protocol are described by
the HttpJspPage interface. 

Two plus One Methods 

The interface defines a protocol with 3 methods; only two of them: jspInit() and
jspDestroy() are part of this interface as the signature of the third method: _jsp-
Service() depends on the specific protocol used and cannot be expressed in a
generic way in Java. 

A class implementing this interface is responsible for invoking the above meth-
ods at the appropriate time based on the corresponding Servlet-based method
invocations. 

The jspInit() and jspDestroy() methods can be defined by a JSP author, but the
_jspService() method is defined automatically by the JSP processor based on the
contents of the JSP page. 

_jspService() 

The _jspService()method corresponds to the body of the JSP page. This method is
defined automatically by the JSP container and should never be defined by the
JSP page author. 

If a superclass is specified using the extends attribute, that superclass may choose
to perform some actions in its service() method before or after calling the
_jspService() method. See using the extends attribute in the JSP_Engine chapter
of the JSP specification. 

The specific signature depends on the protocol supported by the JSP page. 
public void _jspService(ServletRequestSubtype request,

ServletResponseSubtype response)
throws ServletException, IOException;

JSP.9.1.1.1 Methods

public void jspDestroy()

The jspDestroy() method is invoked when the JSP page is about to be 
destroyed. A JSP page can override this method by including a definition for 
it in a declaration element. A JSP page should redefine the destroy() method 
from Servlet.



JSP Page Implementation Object Contract 137

JavaServer Pages 1.2 Specification

public void jspInit()

The jspInit() method is invoked when the JSP page is initialized. It is the 
responsibility of the JSP implementation (and of the class mentioned by the 
extends attribute, if present) that at this point invocations to the getServlet-
Config() method will return the desired value. A JSP page can override this 
method by including a definition for it in a declaration element. A JSP page 
should redefine the init() method from Servlet.

JSP.9.1.2 HttpJspPage

Syntax
public interface HttpJspPage extends JspPage

All Superinterfaces: JspPage, javax.servlet.Servlet

Description

The HttpJspPage interface describes the interaction that a JSP Page Implementa-
tion Class must satisfy when using the HTTP protocol. 

The behaviour is identical to that of the JspPage, except for the signature of the
_jspService method, which is now expressible in the Java type system and
included explicitly in the interface.

See Also: JspPage

JSP.9.1.2.2 Methods

public void _jspService(javax.servlet.http.HttpServletRequest request, 
javax.servlet.http.HttpServletResponse response)

The _jspService()method corresponds to the body of the JSP page. This 
method is defined automatically by the JSP container and should never be 
defined by the JSP page author. 

If a superclass is specified using the extends attribute, that superclass may 
choose to perform some actions in its service() method before or after calling 
the _jspService() method. See using the extends attribute in the JSP_Engine 
chapter of the JSP specification.

Throws: 
IOException, ServletException



CORE API

JavaServer Pages 1.2 Specification

138

JSP.9.1.3 JspFactory

Syntax
public abstract class JspFactory

Description

 The JspFactory is an abstract class that defines a number of factory methods
available to a JSP page at runtime for the purposes of creating instances of vari-
ous interfaces and classes used to support the JSP implementation. 

A conformant JSP Engine implementation will, during it’s initialization instanti-
ate an implementation dependent subclass of this class, and make it globally
available for use by JSP implementation classes by registering  the instance cre-
ated with this class via the static  setDefaultFactory()  method. 

The PageContext and the JspEngineInfo classes are the only implementation-
dependent classes that can be created from the factory. 

JspFactory objects should not be used by JSP page authors.

JSP.9.1.3.3 Constructors

public JspFactory()

JSP.9.1.3.4 Methods

public static synchronized JspFactory getDefaultFactory()

Returns: the default factory for this implementation

public abstract JspEngineInfo getEngineInfo()

 called to get implementation-specific information on the current JSP engine 

Returns: a JspEngineInfo object describing the current JSP engine

public abstract PageContext getPageContext(javax.servlet.Servlet servlet, 
javax.servlet.ServletRequest request, 
javax.servlet.ServletResponse response, java.lang.String errorPageURL, 
boolean needsSession, int buffer, boolean autoflush)

 obtains an instance of an implementation dependent javax.servlet.jsp.Page-
Context abstract class for the calling Servlet and currently pending request 
and response. 

This method is typically called early in the processing of the _jspService() 
method of a JSP implementation class in order to obtain a PageContext 
object for the request being processed. 



JSP Page Implementation Object Contract 139

JavaServer Pages 1.2 Specification

Invoking this method shall result in the PageContext.initialize() method 
being invoked. The PageContext returned is properly initialized. 

All PageContext objects obtained via this method shall be released by invok-
ing releasePageContext(). 

Parameters: 
servlet - the requesting servlet

config - the ServletConfig for the requesting Servlet

request - the current request pending on the servlet

response - the current response pending on the servlet

errorPageURL - the URL of the error page for the requesting JSP, or null

needsSession - true if the JSP participates in a session

buffer - size of buffer in bytes, PageContext.NO_BUFFER if no buffer, 
PageContext.DEFAULT_BUFFER if implementation default.

autoflush - should the buffer autoflush to the output stream on buffer 
overflow, or throw an IOException?

Returns: the page context

See Also: PageContext

public abstract void releasePageContext(PageContext pc)

 called to release a previously allocated PageContext object. Results in Page-
Context.release() being invoked. This method should be invoked prior to 
returning from the _jspService() method of a JSP implementation class. 

Parameters: 
pc - A PageContext previously obtained by getPageContext()

public static synchronized void setDefaultFactory(JspFactory deflt)

 set the default factory for this implementation. It is illegal for any principal 
other than the JSP Engine runtime to call this method. 

Parameters: 
default - The default factory implementation

JSP.9.1.4 JspEngineInfo

Syntax
public abstract class JspEngineInfo



CORE API

JavaServer Pages 1.2 Specification

140

Description

The JspEngineInfo is an abstract class that provides information on the current
JSP engine.

JSP.9.1.4.5 Constructors

public JspEngineInfo()

JSP.9.1.4.6 Methods

public abstract java.lang.String getSpecificationVersion()

Return the version number of the JSP specification that is supported by this 
JSP engine. 

Specification version numbers that consists of positive decimal integers sepa-
rated by periods “.”, for example, “2.0” or “1.2.3.4.5.6.7”. This allows an 
extensible number to be used to represent major, minor, micro, etc versions. 
The version number must begin with a number.  

Returns: the specification version, null is returned if it is not known

JSP.9.2 Implicit Objects

The PageContext object and the JspWriter are available by default as implicit 
objects. 

JSP.9.2.1 PageContext

Syntax
public abstract class PageContext

Description

 A PageContext instance provides access to all the namespaces associated with a
JSP page, provides access to several page attributes, as well as a layer above the
implementation details. Implicit objects are added the pageContext automatically. 

The  PageContext  class is an abstract class, designed to be extended to provide
implementation dependent implementations thereof, by conformant JSP engine
runtime environments. A PageContext instance is obtained by a JSP implementa-
tion class by calling the JspFactory.getPageContext() method, and is released by
calling JspFactory.releasePageContext(). 



Implicit Objects 141

JavaServer Pages 1.2 Specification

An example of how PageContext, JspFactory, and other classes can be used
within a JSP Page Implementation object is given elsewhere. 

The PageContext provides a number of facilities to the page/component author
and page implementor, including: 

•a single API to manage the various scoped namespaces 
•a number of convenience API’s to access various public objects 
•a mechanism to obtain the JspWriter for output 
•a mechanism to manage session usage by the page 
•a mechanism to expose page directive attributes to the scripting environment 
•mechanisms to forward or include the current request to other active compo-
nents in the application 
•a mechanism to handle errorpage exception processing 

Methods Intended for Container Generated Code 

Some methods are intended to be used by the code generated by the container, not
by code written by JSP page authors, or JSP tag library authors. 

The methods supporting lifecycle are initialize() and release() 

The following methods enable the management of nested JspWriter streams to
implement Tag Extensions: pushBody() and popBody() 

Methods Intended for JSP authors 

Some methods provide uniform access to the diverse objects representing
scopes. The implementation must use the underlying Servlet machinery corre-
sponding to that scope, so information can be passed back and forth between
Servlets and JSP pages. The methods are: setAttribute(), getAttribute(), find-
Attribute(), removeAttribute(), getAttributesScope() and getAttributeNamesIn-
Scope() . 

The following methods provide convenient access to implicit objects: getOut(),
getException(), getPage() getRequest(), getResponse(), getSession(), getServlet-
Config() and getServletContext(). 

The following methods provide support for forwarding, inclusion and error
handling: forward(), include(), and handlePageException().

JSP.9.2.1.7 Fields

public static final java.lang.String APPLICATION

Name used to store ServletContext in PageContext name table.

public static final int APPLICATION_SCOPE



CORE API

JavaServer Pages 1.2 Specification

142

Application scope: named reference remains available in the ServletContext 
until it is reclaimed.

public static final java.lang.String CONFIG

Name used to store ServletConfig in PageContext name table.

public static final java.lang.String EXCEPTION

Name used to store uncaught exception in ServletRequest attribute list and 
PageContext name table.

public static final java.lang.String OUT

Name used to store current JspWriter in PageContext name table.

public static final java.lang.String PAGE

Name used to store the Servlet in this PageContext’s nametables.

public static final int PAGE_SCOPE

Page scope: (this is the default) the named reference remains available in this 
PageContext until the return from the current Servlet.service() invocation.

public static final java.lang.String PAGECONTEXT

Name used to store this PageContext in it’s own name table.

public static final java.lang.String REQUEST

Name used to store ServletRequest in PageContext name table.

public static final int REQUEST_SCOPE

Request scope: the named reference remains available from the Servlet-
Request associated with the Servlet until the current request is completed.

public static final java.lang.String RESPONSE

Name used to store ServletResponse in PageContext name table.

public static final java.lang.String SESSION

Name used to store HttpSession in PageContext name table.

public static final int SESSION_SCOPE

Session scope (only valid if this page participates in a session): the named 
reference remains available from the HttpSession (if any) associated with the 
Servlet until the HttpSession is invalidated.

JSP.9.2.1.8 Constructors

public PageContext()



Implicit Objects 143

JavaServer Pages 1.2 Specification

JSP.9.2.1.9 Methods

public abstract java.lang.Object findAttribute(java.lang.String name)

Searches for the named attribute in page, request, session (if valid), and 
application scope(s) in order and returns the value associated or null.

Returns: the value associated or null

public abstract void forward(java.lang.String relativeUrlPath)

 This method is used to re-direct, or “forward” the current ServletRequest and 
ServletResponse to another active component in the application. 

If the  relativeUrlPath  begins with a “/” then the URL specified is calculated 
relative to the DOCROOT of the  ServletContext  for this JSP. If the path does 
not begin with a “/” then the URL specified is calculated relative to the URL 
of the request that was mapped to the calling JSP. 

It is only valid to call this method from a  Thread  executing within a  _jsp-
Service(...)  method of a JSP. 

Once this method has been called successfully, it is illegal for the calling  
Thread  to attempt to modify the  ServletResponse  object. Any such attempt 
to do so, shall result in undefined behavior. Typically, callers immediately 
return from  _jspService(...)  after calling this method. 

Parameters: 
relativeUrlPath - specifies the relative URL path to the target resource as 
described above

Throws: 
ServletException, IOException

IllegalArgumentException - if target resource URL is unresolvable

IllegalStateException - if  ServletResponse  is not in a state where a forward 
can be performed

SecurityException - if target resource cannot be accessed by caller

public abstract java.lang.Object getAttribute(java.lang.String name)

Return the object associated with the name in the page scope or null if not 
found.

Parameters: 
name - the name of the attribute to get

Throws: 
NullPointerException - if the name is null

IllegalArgumentException - if the scope is invalid



CORE API

JavaServer Pages 1.2 Specification

144

public abstract java.lang.Object getAttribute(java.lang.String name, int scope)

Return the object associated with the name in the specified scope or null if 
not found.

Parameters: 
name - the name of the attribute to set

scope - the scope with which to associate the name/object

Throws: 
NullPointerException - if the name is null

IllegalArgumentException - if the scope is invalid

public abstract java.util.Enumeration getAttributeNamesInScope(int scope)

Enumerate all the attributes in a given scope

Returns: an enumeration of names (java.lang.String) of all the attributes 
the specified scope

public abstract int getAttributesScope(java.lang.String name)

Get the scope where a given attribute is defined.

Returns: the scope of the object associated with the name specified or 0

public abstract java.lang.Exception getException()

The current value of the exception object (an Exception).

Returns: any exception passed to this as an errorpage

public abstract JspWriter getOut()

The current value of the out object (a JspWriter).

Returns: the current JspWriter stream being used for client response

public abstract java.lang.Object getPage()

The current value of the page object (a Servlet).

Returns: the Page implementation class instance (Servlet) associated with 
this PageContext

public abstract javax.servlet.ServletRequest getRequest()

The current value of the request object (a ServletRequest).

Returns: The ServletRequest for this PageContext

public abstract javax.servlet.ServletResponse getResponse()

The current value of the response object (a ServletResponse).

Returns: the ServletResponse for this PageContext

public abstract javax.servlet.ServletConfig getServletConfig()



Implicit Objects 145

JavaServer Pages 1.2 Specification

The ServletConfig instance.

Returns: the ServletConfig for this PageContext

public abstract javax.servlet.ServletContext getServletContext()

The ServletContext instance.

Returns: the ServletContext for this PageContext

public abstract javax.servlet.http.HttpSession getSession()

The current value of the session object (an HttpSession).

Returns: the HttpSession for this PageContext or null

public abstract void handlePageException(java.lang.Exception e)

 This method is intended to process an unhandled “page” level exception by 
redirecting the exception to either the specified error page for this JSP, or if 
none was specified, to perform some implementation dependent action. 

A JSP implementation class shall typically clean up any local state prior to 
invoking this and will return immediately thereafter. It is illegal to generate 
any output to the client, or to modify any ServletResponse state after invok-
ing this call. 

This method is kept for backwards compatiblity reasons. Newly generated 
code should use PageContext.handlePageException(Throwable).

Parameters: 
e - the exception to be handled

Throws: 
ServletException, IOException

NullPointerException - if the exception is null

SecurityException - if target resource cannot be accessed by caller

See Also: public abstract void handlePageException(java.lang.Throwable t)

public abstract void handlePageException(java.lang.Throwable t)

 This method is identical to the handlePageException(Exception), except that 
it accepts a Throwable. This is the preferred method to use as it allows proper 
implementation of the errorpage semantics. 

This method is intended to process an unhandled “page” level exception by 
redirecting the exception to either the specified error page for this JSP, or if 
none was specified, to perform some implementation dependent action. 

A JSP implementation class shall typically clean up any local state prior to 
invoking this and will return immediately thereafter. It is illegal to generate 



CORE API

JavaServer Pages 1.2 Specification

146

any output to the client, or to modify any ServletResponse state after invok-
ing this call.

Parameters: 
t - the throwable to be handled

Throws: 
ServletException, IOException

NullPointerException - if the exception is null

SecurityException - if target resource cannot be accessed by caller

See Also: public abstract void handlePageException(java.lang.Exception e)

public abstract void include(java.lang.String relativeUrlPath)

 Causes the resource specified to be processed as part of the current Servlet-
Request and ServletResponse being processed by the calling Thread. The 
output of the target resources processing of the request is written directly to 
the ServletResponse output stream. 

The current JspWriter “out” for this JSP is flushed as a side-effect of this call, 
prior to processing the include. 

If the  relativeUrlPath  begins with a “/” then the URL specified is calculated 
relative to the DOCROOT of the  ServletContext  for this JSP. If the path does 
not begin with a “/” then the URL specified is calculated relative to the URL 
of the request that was mapped to the calling JSP. 

It is only valid to call this method from a  Thread  executing within a  _jsp-
Service(...)  method of a JSP. 

Parameters: 
relativeUrlPath - specifies the relative URL path to the target resource to be 
included

Throws: 
ServletException, IOException

IllegalArgumentException - if the target resource URL is unresolvable

SecurityException - if target resource cannot be accessed by caller

public abstract void initialize(javax.servlet.Servlet servlet, 
javax.servlet.ServletRequest request, 
javax.servlet.ServletResponse response, java.lang.String errorPageURL, 
boolean needsSession, int bufferSize, boolean autoFlush)

 The initialize method is called to initialize an uninitialized PageContext so 
that it may be used by a JSP Implementation class to service an incoming 
request and response within it’s _jspService() method. 



Implicit Objects 147

JavaServer Pages 1.2 Specification

This method is typically called from JspFactory.getPageContext() in order to 
initialize state. 

This method is required to create an initial JspWriter, and associate the “out” 
name in page scope with this newly created object. 

This method should not be used by page or tag library authors.

Parameters: 
servlet - The Servlet that is associated with this PageContext

request - The currently pending request for this Servlet

response - The currently pending response for this Servlet

errorPageURL - The value of the errorpage attribute from the page directive 
or null

needsSession - The value of the session attribute from the page directive

bufferSize - The value of the buffer attribute from the page directive

autoFlush - The value of the autoflush attribute from the page directive

Throws: 
IOException - during creation of JspWriter

IllegalStateException - if out not correctly initialized

IllegalArgumentException

public JspWriter popBody()

Return the previous JspWriter “out” saved by the matching pushBody(), and 
update the value of the “out” attribute in  the page scope attribute namespace 
of the PageConxtext

Returns: the saved JspWriter.

public BodyContent pushBody()

Return a new BodyContent object, save the current “out” JspWriter, and 
update the value of the “out” attribute in the page scope attribute namespace 
of the PageContext

Returns: the new BodyContent

public abstract void release()

 This method shall “reset” the internal state of a PageContext, releasing all 
internal references, and preparing the PageContext for potential reuse by a 
later invocation of initialize(). This method is typically called from Jsp-
Factory.releasePageContext(). 

Subclasses shall envelope this method. 



CORE API

JavaServer Pages 1.2 Specification

148

This method should not be used by page or tag library authors.

public abstract void removeAttribute(java.lang.String name)

Remove the object reference associated with the given name, look in all 
scopes in the scope order.

Parameters: 
name - The name of the object to remove.

public abstract void removeAttribute(java.lang.String name, int scope)

Remove the object reference associated with the specified name in the given 
scope.

Parameters: 
name - The name of the object to remove.

scope - The scope where to look.

public abstract void setAttribute(java.lang.String name, 
java.lang.Object attribute)

Register the name and object specified with page scope semantics.

Parameters: 
name - the name of the attribute to set

attribute - the object to associate with the name

Throws: 
NullPointerException - if the name or object is null

public abstract void setAttribute(java.lang.String name, java.lang.Object o, 
int scope)

register the name and object specified with appropriate scope semantics

Parameters: 
name - the name of the attribute to set

o - the object to associate with the name

scope - the scope with which to associate the name/object

Throws: 
NullPointerException - if the name or object is null

IllegalArgumentException - if the scope is invalid

JSP.9.2.2 JspWriter

Syntax
public abstract class JspWriter extends java.io.Writer



Implicit Objects 149

JavaServer Pages 1.2 Specification

Direct Known Subclasses: BodyContent

Description

 The actions and template data in a JSP page is written using the JspWriter object
that is referenced by the implicit variable out which is initialized automatically
using methods in the PageContext object. 

This abstract class emulates some of the functionality found in the
java.io.BufferedWriter and java.io.PrintWriter classes, however it differs in that it
throws java.io.IOException from the print methods while PrintWriter does not. 

Buffering 

The initial JspWriter object is associated with the PrintWriter object of the
ServletResponse in a way that depends on whether the page is or is not buffered.
If the page is not buffered, output written to this JspWriter object will be written
through to the PrintWriter directly, which will be created if necessary by invoking
the getWriter() method on the response object. But if the page is buffered, the
PrintWriter object will not be created until the buffer is flushed and operations
like setContentType() are legal. Since this flexibility simplifies programming
substantially, buffering is the default for JSP pages. 

Buffering raises the issue of what to do when the buffer is exceeded. Two
approaches can be taken: 

•Exceeding the buffer is not a fatal error; when the buffer is exceeded, just
flush the output. 
•Exceeding the buffer is a fatal error; when the buffer is exceeded, raise an
exception. 

Both approaches are valid, and thus both are supported in the JSP technology.
The behavior of a page is controlled by the autoFlush attribute, which defaults to
true. In general, JSP pages that need to be sure that correct and complete data has
been sent to their client may want to set autoFlush to false, with a typical case
being that where the client is an application itself. On the other hand, JSP pages
that send data that is meaningful even when partially constructed may want to set
autoFlush to true; such as when the data is sent for immediate display through a
browser. Each application will need to consider their specific needs. 

An alternative considered was to make the buffer size unbounded; but, this had
the disadvantage that runaway computations would consume an unbounded
amount of resources. 

The “out” implicit variable of a JSP implementation class is of this type. If the
page directive selects autoflush=“true” then all the I/O operations on this class
shall automatically flush the contents of the buffer if an overflow condition would



CORE API

JavaServer Pages 1.2 Specification

150

result if the current operation were performed without a flush. If autof-
lush=“false” then all the I/O operations on this class shall throw an IOException
if performing the current operation would result in a buffer overflow condition.

See Also: java.io.Writer, java.io.BufferedWriter, java.io.PrintWriter

JSP.9.2.2.10 Fields

protected boolean autoFlush

protected int bufferSize

public static final int DEFAULT_BUFFER

constant indicating that the Writer is buffered and is using the implementa-
tion default buffer size

public static final int NO_BUFFER

constant indicating that the Writer is not buffering output

public static final int UNBOUNDED_BUFFER

constant indicating that the Writer is buffered and is unbounded; this is used 
in BodyContent

JSP.9.2.2.11 Constructors

protected JspWriter(int bufferSize, boolean autoFlush)

protected constructor.

JSP.9.2.2.12 Methods

public abstract void clear()

Clear the contents of the buffer. If the buffer has been already been flushed 
then the clear operation shall throw an IOException to signal the fact that 
some data has already been irrevocably written to the client response stream.

Throws: 
IOException - If an I/O error occurs

public abstract void clearBuffer()

Clears the current contents of the buffer. Unlike clear(), this method will not 
throw an IOException if the buffer has already been flushed. It merely clears 
the current content of the buffer and returns.

Throws: 
IOException - If an I/O error occurs

public abstract void close()



Implicit Objects 151

JavaServer Pages 1.2 Specification

Close the stream, flushing it first 

This method needs not be invoked explicitly for the initial JspWriter as the 
code generated by the JSP container will automatically include a call to 
close(). 

Closing a previously-closed stream, unlike flush(), has no effect.

Overrides: java.io.Writer.close() in class java.io.Writer

Throws: 
IOException - If an I/O error occurs

public abstract void flush()

Flush the stream. If the stream has saved any characters from the various 
write() methods in a buffer, write them immediately to their intended destina-
tion. Then, if that destination is another character or byte stream, flush it. 
Thus one flush() invocation will flush all the buffers in a chain of Writers and 
OutputStreams. 

The method may be invoked indirectly if the buffer size is exceeded. 

Once a stream has been closed, further write() or flush() invocations will 
cause an IOException to be thrown.

Overrides: java.io.Writer.flush() in class java.io.Writer

Throws: 
IOException - If an I/O error occurs

public int getBufferSize()

This method returns the size of the buffer used by the JspWriter.

Returns: the size of the buffer in bytes, or 0 is unbuffered.

public abstract int getRemaining()

This method returns the number of unused bytes in the buffer.

Returns: the number of bytes unused in the buffer

public boolean isAutoFlush()

This method indicates whether the JspWriter is autoFlushing.

Returns: if this JspWriter is auto flushing or throwing IOExceptions on 
buffer overflow conditions

public abstract void newLine()

Write a line separator. The line separator string is defined by the system prop-
erty line.separator, and is not necessarily a single newline (’\n’) character.

Throws: 



CORE API

JavaServer Pages 1.2 Specification

152

IOException - If an I/O error occurs

public abstract void print(boolean b)

Print a boolean value. The string produced by 
java.lang.String.valueOf(boolean)  is translated into bytes according to the 
platform’s default character encoding, and these bytes are written in exactly 
the manner of the java.io.Writer.write(int)  method.

Parameters: 
b - The boolean to be printed

Throws: 
java.io.IOException

public abstract void print(char c)

Print a character. The character is translated into one or more bytes according 
to the platform’s default character encoding, and these bytes are written in 
exactly the manner of the java.io.Writer.write(int)  method.

Parameters: 
c - The char to be printed

Throws: 
java.io.IOException

public abstract void print(char[] s)

Print an array of characters. The characters are converted into bytes accord-
ing to the platform’s default character encoding, and these bytes are written 
in exactly the manner of the java.io.Writer.write(int)  method.

Parameters: 
s - The array of chars to be printed

Throws: 
NullPointerException - If s is null

java.io.IOException

public abstract void print(double d)

Print a double-precision floating-point number. The string produced by 
java.lang.String.valueOf(double)  is translated into bytes according to the plat-
form’s default character encoding, and these bytes are written in exactly the 
manner of the java.io.Writer.write(int)  method.

Parameters: 
d - The double to be printed

Throws: 
java.io.IOException

See Also: java.lang.Double



Implicit Objects 153

JavaServer Pages 1.2 Specification

public abstract void print(float f)

Print a floating-point number. The string produced by 
java.lang.String.valueOf(float)  is translated into bytes according to the plat-
form’s default character encoding, and these bytes are written in exactly the 
manner of the java.io.Writer.write(int)  method.

Parameters: 
f - The float to be printed

Throws: 
java.io.IOException

See Also: java.lang.Float

public abstract void print(int i)

Print an integer. The string produced by java.lang.String.valueOf(int)  is trans-
lated into bytes according to the platform’s default character encoding, and 
these bytes are written in exactly the manner of the java.io.Writer.write(int)  
method.

Parameters: 
i - The int to be printed

Throws: 
java.io.IOException

See Also: java.lang.Integer

public abstract void print(long l)

Print a long integer. The string produced by java.lang.String.valueOf(long)  is 
translated into bytes according to the platform’s default character encoding, 
and these bytes are written in exactly the manner of the 
java.io.Writer.write(int)  method.

Parameters: 
l - The long to be printed

Throws: 
java.io.IOException

See Also: java.lang.Long

public abstract void print(java.lang.Object obj)

Print an object. The string produced by the java.lang.String.valueOf(Object)  
method is translated into bytes according to the platform’s default character 
encoding, and these bytes are written in exactly the manner of the 
java.io.Writer.write(int)  method.

Parameters: 
obj - The Object to be printed



CORE API

JavaServer Pages 1.2 Specification

154

Throws: 
java.io.IOException

See Also: java.lang.Object.toString()

public abstract void print(java.lang.String s)

Print a string. If the argument is null then the string “null” is printed. Other-
wise, the string’s characters are converted into bytes according to the plat-
form’s default character encoding, and these bytes are written in exactly the 
manner of the java.io.Writer.write(int)  method.

Parameters: 
s - The String to be printed

Throws: 
java.io.IOException

public abstract void println()

Terminate the current line by writing the line separator string. The line sepa-
rator string is defined by the system property line.separator, and is not neces-
sarily a single newline character (’\n’).

Throws: 
java.io.IOException

public abstract void println(boolean x)

Print a boolean value and then terminate the line. This method behaves as 
though it invokes public abstract void print(boolean b)  and then public abstract 
void println() .

Throws: 
java.io.IOException

public abstract void println(char x)

Print a character and then terminate the line. This method behaves as though 
it invokes public abstract void print(char c)  and then public abstract void 
println() .

Throws: 
java.io.IOException

public abstract void println(char[] x)

Print an array of characters and then terminate the line. This method behaves 
as though it invokes print(char[]) and then println().

Throws: 
java.io.IOException

public abstract void println(double x)



Implicit Objects 155

JavaServer Pages 1.2 Specification

Print a double-precision floating-point number and then terminate the line. 
This method behaves as though it invokes public abstract void print(double d)  
and then public abstract void println() .

Throws: 
java.io.IOException

public abstract void println(float x)

Print a floating-point number and then terminate the line. This method 
behaves as though it invokes public abstract void print(float f)  and then public 
abstract void println() .

Throws: 
java.io.IOException

public abstract void println(int x)

Print an integer and then terminate the line. This method behaves as though it 
invokes public abstract void print(int i)  and then public abstract void println() .

Throws: 
java.io.IOException

public abstract void println(long x)

Print a long integer and then terminate the line. This method behaves as 
though it invokes public abstract void print(long l)  and then public abstract void 
println() .

Throws: 
java.io.IOException

public abstract void println(java.lang.Object x)

Print an Object and then terminate the line. This method behaves as though it 
invokes public abstract void print(java.lang.Object obj)  and then public abstract 
void println() .

Throws: 
java.io.IOException

public abstract void println(java.lang.String x)

Print a String and then terminate the line. This method behaves as though it 
invokes public abstract void print(java.lang.String s)  and then public abstract 
void println() .

Throws: 
java.io.IOException



CORE API

JavaServer Pages 1.2 Specification

156

JSP.9.3 An Implementation Example

An instance of an implementation dependent subclass of this abstract base class 
can be created by a JSP implementation class at the beginning of it’s  _jspService()  
method via an implementation default  JspFactory . 

Here is one example of how to use these classes 
public class foo implements Servlet {
// ...

public void _jspService(HttpServletRequest request,
HttpServletResponse response)

throws IOException, ServletException {
JspFactory factory = JspFactory.getDefaultFactory();
PageContext pageContext = factory.getPageContext(

this,
request,
response,
null, // errorPageURL
false, // needsSession
JspWriter.DEFAULT_BUFFER,
true // autoFlush

);
// initialize implicit variables for scripting env ...
HttpSession session = pageContext.getSession();
JspWriter out = pageContext.getOut();
Object page = this;
try {

// body of translated JSP here ...
} catch (Exception e) {

out.clear();
pageContext.handlePageException(e);

} finally {
out.close();

factory.releasePageContext(pageContext);
}

}

JSP.9.4 Exceptions

The JspException class is the base class for all JSP exceptions. The JspTag-

Exception is used by the tag extension mechanism. 

JSP.9.4.1 JspException

Syntax
public class JspException extends java.lang.Exception



Exceptions 157

JavaServer Pages 1.2 Specification

Direct Known Subclasses: JspTagException

All Implemented Interfaces: java.io.Serializable

Description

A generic exception known to the JSP engine; uncaught JspExceptions will result
in an invocation of the errorpage machinery.

JSP.9.4.1.13 Constructors

public JspException()

Construct a JspException

public JspException(java.lang.String msg)

Constructs a new JSP exception with the specified message. The message can 
be written to the server log and/or displayed for the user.

Parameters: 
msg - a String specifying the text of the exception message

public JspException(java.lang.String message, java.lang.Throwable rootCause)

Constructs a new JSP exception when the JSP needs to throw an exception 
and include a message about the “root cause” exception that interfered with 
its normal operation, including a description message.

Parameters: 
message - a String containing the text of the exception message

rootCause - the Throwable exception that interfered with the servlet’s normal 
operation, making this servlet exception necessary

public JspException(java.lang.Throwable rootCause)

Constructs a new JSP exception when the JSP needs to throw an exception 
and include a message about the “root cause” exception that interfered with 
its normal operation. The exception’s message is based on the localized  mes-
sage of the underlying exception. 

This method calls the getLocalizedMessage method on the Throwable excep-
tion to get a localized exception message. When subclassing JspException, 
this method can be overridden to create an exception message designed for a 
specific locale.

Parameters: 
rootCause - the Throwable exception that interfered with the JSP’s normal 
operation, making the JSP exception necessary



CORE API

JavaServer Pages 1.2 Specification

158

JSP.9.4.1.14 Methods

public java.lang.Throwable getRootCause()

Returns the exception that caused this JSP exception.

Returns: the Throwable that caused this JSP exception

JSP.9.4.2 JspTagException

Syntax
public class JspTagException extends JspException

All Implemented Interfaces: java.io.Serializable

Description

Exception to be used by a Tag Handler to indicate some unrecoverable error. This
error is to be caught by the top level of the JSP page and will result in an error
page.

JSP.9.4.2.15 Constructors

public JspTagException()

No message

public JspTagException(java.lang.String msg)

Constructor with a message.



159

C H A P T E R JSP.10
Tag Extension API

This chapter describes the details of tag handlers and other tag extension 
classes as well as methods that are available to access the Tag Library Descriptor 
files.  This complements a previous chapter that described the Tag Library Descrip-
tor files formats and their use in taglib directives. 

This chapter includes content that is generated automatically from javadoc 
embedded into the actual Java classes and interfaces. This allows the creation of a 
single, authoritative, specification document. 

Custom actions can be used by JSP authors and authoring tools to simplify 
writing JSP pages. A custom action can be either an empty or a non-empty action. 

An empty tag has no body. There are two equivalent syntaxes, one with 
separate start and an end tag, and one where the start and end tags are combined. 
The two following examples are identical: 

<x:foo att=“myObject” />
<x:foo att=“myObject” ></foo>
A non-empty tag has a start tag, a body, and an end tag. A prototypical example 

is of the form: 
<x:foo att=“myObject” >

BODY
</x:foo/>
The JavaServer Pages(tm) (JSP) 1.2 specification provides a portable mecha-

nism for the description of tag libraries containing: 
•A Tag Library Descriptor (TLD) 
•A number of Tag handler classes defining request-time behavior 
•A number of classes defining translation-time behavior 
•Additional resources used by the classes 

This chapter is organized in three sections. The first section presents the basic 
tag handler classes. The second section describes the more complex tag handlers 
that need to access their body evaluation. The last section looks at translation-time 
issues. 



TAG EXTENSION API

JavaServer Pages 1.2 Specification

160

JSP.10.1 Simple Tag Handlers

This section introduces the notion of a tag handler and describes the simplest 
types of tag handler. 

Tag Handler
A tag handler is a run-time, container-managed, object that evaluates custom 

actions during the execution of a JSP page. A tag handler supports a protocol that 
allows the JSP container to provide good integration of the server-side actions 
within a JSP page. 

A tag handler is created initially using a zero argument constructor on its 
corresponding class; the method java.beans.Beans.instantiate() is not used. 

A tag handler has some properties that are exposed to the page as attributes on 
an action; these properties are managed by the JSP container (via generated code). 
The setter methods used to set the properties are discovered using the JavaBeans 
introspector machinery. 

The protocol supported by a tag handler provides for passing of parameters, 
the evaluation and reevaluation of the body of the action, and for getting access to 
objects and other tag handlers in the JSP page. 

A tag handler instance is responsible for processing one request at a time. It is 
the responsability of the JSP container to enforce this. 

Additional translation time information associated with the action indicates 
the name of any scripting variables it may introduce, their types and their scope. 
At specific moments, the JSP container will automatically synchronize the Page-
Context information with variables in the scripting language so they can be made 
available directly through the scripting elements. 

Properties
A tag handler has some properties. All tag handlers have a pageContext prop-

erty for the JSP page where the tag is located, and a parent property for the tag han-
dler to the closest enclosing action. Specific tag handler classes may have additional 
properties. 

All attributes of a custom action must be JavaBeans component properties, 
although some properties may not be exposed as attributes. The attributes that are 
visible to the JSP translator are exactly those listed in the Tag Library Descriptor 
(TLD). 

All properties of a tag handler instance exposed as attributes will be initialized 
by the container using the appropriate setter methods before the instance can be 
used to perform the action methods. It is the responsibility of the JSP container to 



Simple Tag Handlers 161

JavaServer Pages 1.2 Specification

invoke the appropriate setter methods to initialize these properties. It is the 
responsability of user code, be it scriptlets, JavaBeans code, or code inside custom 
tags, to not invoke these setter methods, as doing otherwise would interfere with 
the container knowledge. 

The setter methods that should be used when assigning a value to an attribute 
of a custom action are determined by using the JavaBeans introspector on the tag 
handler class, then use the setter method associated with the property that has the 
same name as the attribute in question. An implication (unclear in the JavaBeans 
specification) is that there is only one setter per property. 

Unspecified attributes/properties should not be set (using a setter method). 
Once properly set, all properties are expected to be persistent, so that if the 

JSP container ascertains that a property has already been set on a given tag 
handler instance, it needs not set it again. User code can access property 
information and access and modify tag handler internal state starting with the first 
action method (doStartTag) up until the last action method (doEndTag or 
doFinally for tag handlers implementing TryCatchFinally). 

Tag Handler as a Container-Managed Object
Since a tag handler is a container managed object, the container needs to main-

tain its references; specifically, user code should not keep references to a tag handler 
except between the start of the first action method (doStartTag()) and the end of the 
last action method (doEndTag() or doFinally() for those tags that implement Try-
CatchFinally). 

The restrictions on references to tag handler objects and on modifying 
attribute properties gives the JSP container substantial freedom in effectively 
managing tag handler objects to achieve different goals. For example, a container 
may implementing different pooling strategies to minimize creation cost, or may 
hoist setting of properties to reduce cost when a tag handler is inside another 
iterative tag. 

Conversions
A tag handler implements an action; the JSP container must follow the type 

conversions described in Section 2.13.2 when assigning values to the attributes of an 
action. 

Empty and Non-Empty Actions
An empty action has no body; it may use one of two syntaxes: either <foo/> or 

<foo></foo>. Since empty actions have no body the methods related to body manip-
ulation are not invoked. There is a mechanism in the Tag Library Descriptor to indi-



TAG EXTENSION API

JavaServer Pages 1.2 Specification

162

cate that a tag can only be used to write empty actions; when used, non-empty 
actions using that tag will produce a translation error. 

A non-empty action has a body. 

The Tag Interface
A Tag handler that does not want to process its body can implement just the Tag 

interface. A tag handler may not want to process its body because it is an empty tag 
or because the body is just to be “passed through”. 

The Tag interface includes methods to provide page context information to the 
Tag Handler instance, methods to handle the life-cycle of tag handlers, and two 
main methods for performing actions on a tag: doStartTag() and doEndTag(). The 
method doStartTag() is invoked when encountering the start tag and its return value 
indicates whether the body (if there is any) should be skipped, or evaluated and 
passed through to the current response stream. The method doEndTag() is invoked 
when encountering the end tag; its return value indicates whether the rest of the 
page should continue to be evaluated or not. 

If an exception is encountered during the evaluation of the body of a tag, its 
doEndTag method will not be evaluated. See the TryCatchFinally tag for methods 
that are guaranteed to be evaluated. 

The IterationTag Interface
The IterationTag interface is used to repeatedly reevaluate the body of a custom 

action. The interface has one method: doAfterBody() which is invoked after each 
evaluation of the body to determine whether to reevaluate or not. 

Reevaluation is requested with the value 2, which in JSP 1.1 is defined to be 
BodyTag.EVAL_BODY_TAG. That constant value is still kept in JSP 1.2 (for full 
backwards compatibility) but, to improve clarity, a new name is also available: 
IterationTag.EVAL_BODY_AGAIN. To stop iterating, the returned value should 
be 0, which is Tag.SKIP_BODY. 

The TagSupport Base Class
The TagSupport class is a base class that can be used when implementing the 

Tag or IterationTag interfaces. 

JSP.10.1.1 Tag

Syntax
public interface Tag



Simple Tag Handlers 163

JavaServer Pages 1.2 Specification

All Known Subinterfaces: BodyTag, IterationTag

Description

The interface of a simple tag handler that does not want to manipulate its body.
The Tag interface defines the basic protocol between a Tag handler and JSP page
implementation class. It defines the life cycle and the methods to be invoked at
start and end tag. 

Properties 

The Tag interface specifies the setter and getter methods for the core pageContext
and parent properties. 

The JSP page implementation object invokes setPageContext and setParent, in
that order, before invoking doStartTag() or doEndTag(). 

Methods 

There are two main actions: doStartTag and doEndTag. Once all appropriate
properties have been initialized, the doStartTag and doEndTag methods can be
invoked on the tag handler. Between these invocations, the tag handler is assumed
to hold a state that must be preserved. After the doEndTag invocation, the tag
handler is available for further invocations (and it is expected to have retained its
properties). 

Lifecycle 

Lifecycle details are described by the transition diagram below, with the follow-
ing comments: 

•[1] This transition is intended to be for releasing long-term data. no guaran-
tees are assumed on whether any properties have been retained or not. 
•[2] This transition happens if and only if the tag ends normally without rais-
ing an exception 
•[3] Note that since there are no guarantees on the state of the properties, a
tag handler that had some optional properties set can only be reused if those
properties are set to a new (known) value. This means that tag handlers can
only be reused within the same “AttSet” (set of attributes that have been set). 
•Check the TryCatchFinally interface for additional details related to excep-
tion handling and resource management. 



TAG EXTENSION API

JavaServer Pages 1.2 Specification

164

Once all invocations on the tag handler are completed, the release method is
invoked on it. Once a release method is invoked all properties, including parent
and pageContext, are assumed to have been reset to an unspecified value. The
page compiler guarantees that release() will be invoked on the Tag handler before
the handler is released to the GC. 

Empty and Non-Empty Action 

If the TagLibraryDescriptor file indicates that the action must always have an
empty action, by an <body-content> entry of “empty”, then the doStartTag()
method must return SKIP_BODY. Otherwise, the doStartTag() method may
return SKIP_BODY or EVAL_BODY_INCLUDE. 

If SKIP_BODY is returned the body, if present, is not evaluated. 



Simple Tag Handlers 165

JavaServer Pages 1.2 Specification

If EVAL_BODY_INCLUDE is returned, the body is evaluated and “passed
through” to the current out.

JSP.10.1.1.1 Fields

public static final int EVAL_BODY_INCLUDE

Evaluate body into existing out stream. Valid return value for doStartTag.

public static final int EVAL_PAGE

Continue evaluating the page. Valid return value for doEndTag().

public static final int SKIP_BODY

Skip body evaluation. Valid return value for doStartTag and doAfterBody.

public static final int SKIP_PAGE

Skip the rest of the page. Valid return value for doEndTag.

JSP.10.1.1.2 Methods

public int doEndTag()

Process the end tag for this instance. This method is invoked by the JSP page 
implementation object on all Tag handlers. 

This method will be called after returning from doStartTag. The body of the 
action may or not have been evaluated, depending on the return value of 
doStartTag. 

If this method returns EVAL_PAGE, the rest of the page continues to be eval-
uated. If this method returns SKIP_PAGE, the rest of the page is not evalu-
ated and the request is completed. If this request was forwarded or included 
from another page (or Servlet), only the current page evaluation is completed. 

The JSP container will resynchronize any variable values that are indicated as 
so in TagExtraInfo after the invocation of doEndTag().

Throws: 
JspException., JspException

public int doStartTag()

Process the start tag for this instance. This method is invoked by the JSP page 
implementation object. 

The doStartTag method assumes that the properties pageContext and parent 
have been set. It also assumes that any properties exposed as attributes have 
been set too. When this method is invoked, the body has not yet been evalu-
ated. 



TAG EXTENSION API

JavaServer Pages 1.2 Specification

166

This method returns Tag.EVAL_BODY_INCLUDE or Body-
Tag.EVAL_BODY_BUFFERED to indicate that the body of the action 
should be evaluated or SKIP_BODY to indicate otherwise. 

When a Tag returns EVAL_BODY_INCLUDE the result of evaluating the 
body (if any) is included into the current “out” JspWriter as it happens and 
then doEndTag() is invoked. 

BodyTag.EVAL_BODY_BUFFERED is only valid if the tag handler imple-
ments BodyTag. 

The JSP container will resynchronize any variable values that are indicated as 
so in TagExtraInfo after the invocation of doStartTag().

Throws: 
JspException., JspException

See Also: BodyTag

public Tag getParent()

Get the parent (closest enclosing tag handler) for this tag handler. 

The getParent() method can be used to navigate the nested tag  handler struc-
ture at runtime for cooperation among custom actions; for example, the find-
AncestorWithClass() method in TagSupport provides a convenient way of 
doing this. 

The current version of the specification only provides one formal way of 
indicating the observable type of a tag handler: its tag handler implementa-
tion class, described in the tag-class subelement of the tag element. This is 
extended in an informal manner by allowing the tag library author to indicate 
in the description subelement an observable type. The type should be a sub-
type of the tag handler implementation class or void. This addititional con-
straint can be exploited by a specialized container that knows about that 
specific tag library, as in the case of the JSP standard tag library.

public void release()

Called on a Tag handler to release state. The page compiler guarantees that 
JSP page implementation objects will invoke this method on all tag handlers, 
but there may be multiple invocations on doStartTag and doEndTag in 
between.

public void setPageContext(PageContext pc)

Set the current page context. This method is invoked by the JSP page imple-
mentation object prior to doStartTag(). 

This value is *not* reset by doEndTag() and must be explicitly reset by a 
page implementation if it changes between calls to doStartTag().



Simple Tag Handlers 167

JavaServer Pages 1.2 Specification

Parameters: 
pc - The page context for this tag handler.

public void setParent(Tag t)

Set the parent (closest enclosing tag handler) of this tag handler. Invoked by 
the JSP page implementation object prior to doStartTag(). 

This value is *not* reset by doEndTag() and must be explicitly reset by a 
page implementation.

Parameters: 
t - The parent tag, or null.

JSP.10.1.2 IterationTag

Syntax
public interface IterationTag extends Tag

All Known Subinterfaces: BodyTag

All Superinterfaces: Tag

All Known Implementing Classes: TagSupport

Description

The IterationTag interface extends Tag by defining one additional method that
controls the reevaluation of its body. 

A tag handler that implements IterationTag is treated as one that implements Tag
regarding the doStartTag() and doEndTag() methods. IterationTag provides a new
method: doAfterBody(). 

The doAfterBody() method is invoked after every body evaluation to control
whether the body will be reevaluated or not. If doAfterBody() returns Iteration-
Tag.EVAL_BODY_AGAIN, then the body will be reevaluated. If doAfterBody()
returns Tag.SKIP_BODY, then the body will be skipped and doEndTag() will be
evaluated instead. 

Properties There are no new properties in addition to those in Tag. 

Methods There is one new methods: doAfterBody(). 

Lifecycle 



TAG EXTENSION API

JavaServer Pages 1.2 Specification

168

Lifecycle details are described by the transition diagram below. Exceptions that
are thrown during the computation of doStartTag(), BODY and doAfterBody()
interrupt the execution sequence and are propagated up the stack, unless the tag
handler implements the TryCatchFinally interface; see that interface for details. 

Empty and Non-Empty Action 

If the TagLibraryDescriptor file indicates that the action must always have an
empty action, by an <body-content> entry of “empty”, then the doStartTag()
method must return SKIP_BODY. Otherwise, the doStartTag() method may
return SKIP_BODY or EVAL_BODY_INCLUDE. 

If SKIP_BODY is returned the body is not evaluated, and then doEndTag() is
invoked. 

If EVAL_BODY_INCLUDE is returned, the body is evaluated and “passed
through” to the current out, then doAfterBody() is invoked and, after zero or more
iterations, doEndTag() is invoked.



Simple Tag Handlers 169

JavaServer Pages 1.2 Specification

JSP.10.1.2.3 Fields

public static final int EVAL_BODY_AGAIN

Request the reevaluation of some body. Returned from doAfterBody. For 
compatibility with JSP 1.1, the value is carefully selected to be the same as 
the, now deprecated, BodyTag.EVAL_BODY_TAG,

JSP.10.1.2.4 Methods

public int doAfterBody()

Process body (re)evaluation. This method is invoked by the JSP Page imple-
mentation object after every evaluation of the body into the BodyEvaluation 
object. The method is not invoked if there is no body evaluation. 

If doAfterBody returns EVAL_BODY_AGAIN, a new evaluation of the 
body will happen (followed by another invocation of doAfterBody). If 
doAfterBody returns SKIP_BODY no more body evaluations will occur, the 
value of out will be restored using the popBody method in pageContext, and 
then doEndTag will be invoked. 

The method re-invocations may be lead to different actions because there 
might have been some changes to shared state, or because of external compu-
tation. 

The JSP container will resynchronize any variable values that are indicated as 
so in TagExtraInfo after the invocation of doAfterBody().

Returns: whether additional evaluations of the body are desired

Throws: 
JspException

JSP.10.1.3 TryCatchFinally

Syntax
public interface TryCatchFinally

Description

The auxiliary interface of a Tag, IterationTag or BodyTag tag handler that wants
additional hooks for managing resources. 

This interface provides two new methods: doCatch(Throwable) and doFinally().
The prototypical invocation is as follows: 



TAG EXTENSION API

JavaServer Pages 1.2 Specification

170

h = get a Tag(); // get a tag handler, perhaps from pool
h.setPageContext(pc); // initialize as desired
h.setParent(null);
h.setFoo(“foo”);

// tag invocation protocol; see Tag.java
try {

doStartTag()...
....
doEndTag()...

} catch (Throwable t) {
// react to exceptional condition
h.doCatch(t);

} finally {
// restore data invariants and release per-invocation resources
h.doFinally();

}

... other invocations perhaps with some new setters

...
h.release(); // release long-term resources

JSP.10.1.3.5 Methods

public void doCatch(java.lang.Throwable t)

Invoked if a Throwable occurs while evaluating the BODY inside a tag or in 
any of the following methods: Tag.doStartTag(), Tag.doEndTag(), Iteration-
Tag.doAfterBody() and BodyTag.doInitBody(). 

This method is not invoked if the Throwable occurs during one of the setter 
methods. 

This method may throw an exception (the same or a new one) that will be 
propagated further the nest chain. If an exception is thrown, doFinally() will 
be invoked. 

This method is intended to be used to respond to an exceptional condition.

Parameters: 
t - The throwable exception navigating through this tag.

Throws: 
Throwable

public void doFinally()

Invoked in all cases after doEndTag() for any class implementing Tag, 
IterationTag or BodyTag. This method is invoked even if an exception has 
occurred in the BODY of the tag, or in any of the following methods: 



Simple Tag Handlers 171

JavaServer Pages 1.2 Specification

Tag.doStartTag(), Tag.doEndTag(), IterationTag.doAfterBody() and Body-
Tag.doInitBody(). 

This method is not invoked if the Throwable occurs during one of the setter 
methods. 

This method should not throw an Exception. 

This method is intended to maintain per-invocation data integrity and 
resource management actions.

JSP.10.1.4 TagSupport

Syntax
public class TagSupport implements IterationTag, java.io.Serializable

Direct Known Subclasses: BodyTagSupport

All Implemented Interfaces: IterationTag, java.io.Serializable, Tag

Description

A base class for defining new tag handlers implementing Tag. 

The TagSupport class is a utility class intended to be used as the base class for
new tag handlers. The TagSupport class implements the Tag and IterationTag
interfaces and adds additional convenience methods including getter methods for
the properties in Tag. TagSupport has one static method that is included to facili-
tate coordination among cooperating tags. 

Many tag handlers will extend TagSupport and only redefine a few methods.

JSP.10.1.4.6 Fields

protected java.lang.String id

protected PageContext pageContext

JSP.10.1.4.7 Constructors

public TagSupport()

Default constructor, all subclasses are required to define only a public con-
structor with the same signature, and to call the superclass constructor. This 
constructor is called by the code generated by the JSP translator.



TAG EXTENSION API

JavaServer Pages 1.2 Specification

172

JSP.10.1.4.8 Methods

public int doAfterBody()

Default processing for a body

Returns: SKIP_BODY

Throws: 
JspException

See Also: public int doAfterBody()

public int doEndTag()

Default processing of the end tag returning EVAL_PAGE.

Throws: 
JspException

See Also: public int doEndTag()

public int doStartTag()

Default processing of the start tag, returning SKIP_BODY.

Throws: 
JspException

See Also: public int doStartTag()

public static final Tag findAncestorWithClass(Tag from, java.lang.Class klass)

Find the instance of a given class type that is closest to a given instance. This 
method uses the getParent method from the Tag interface. This method is 
used for coordination among cooperating tags. 

The current version of the specification only provides one formal way of 
indicating the observable type of a tag handler: its tag handler implementa-
tion class, described in the tag-class subelement of the tag element. This is 
extended in an informal manner by allowing the tag library author to indicate 
in the description subelement an observable type. The type should be a sub-
type of the tag handler implementation class or void. This addititional con-
straint can be exploited by a specialized container that knows about that 
specific tag library, as in the case of the JSP standard tag library. 

When a tag library author provides information on the observable type of a 
tag handler, client programmatic code should adhere to that constraint. Spe-
cifically, the Class passed to findAncestorWithClass should be a subtype of 
the observable type.

Parameters: 
from - The instance from where to start looking.



Simple Tag Handlers 173

JavaServer Pages 1.2 Specification

klass - The subclass of Tag or interface to be matched

public java.lang.String getId()

The value of the id attribute of this tag; or null.

public Tag getParent()

The Tag instance most closely enclosing this tag instance.

See Also: public Tag getParent()

public java.lang.Object getValue(java.lang.String k)

Get a the value associated with a key.

Parameters: 
k - The string key.

public java.util.Enumeration getValues()

Enumerate the values kept by this tag handler.

public void release()

Release state.

See Also: public void release()

public void removeValue(java.lang.String k)

Remove a value associated with a key.

Parameters: 
k - The string key.

public void setId(java.lang.String id)

Set the id attribute for this tag.

Parameters: 
id - The String for the id.

public void setPageContext(PageContext pageContext)

Set the page context.

Parameters: 
pageContenxt - The PageContext.

See Also: public void setPageContext(PageContext pc)

public void setParent(Tag t)

Set the nesting tag of this tag.

Parameters: 
t - The parent Tag.

See Also: public void setParent(Tag t)



TAG EXTENSION API

JavaServer Pages 1.2 Specification

174

public void setValue(java.lang.String k, java.lang.Object o)

Associate a value with a String key.

Parameters: 
k - The key String.

o - The value to associate.

JSP.10.2 Tag Handlers that want Access to their Body 
Content

The evaluation of a body is delivered into a BodyContent object. This is then 
made available to tag handlers that implement the BodyTag interface. The BodyTag-

Support class provides a useful base class to simplify writing these handlers. 
If a Tag handler wants to have access to the content of its body then it must 

implement the BodyTag interface. This interface extends IterationTag, provides 
two additional methods setBodyContent(BodyContent) and doInitBody() and refers to 
an object of type BodyContent. 

A BodyContent is a subclass of JspWriter that has a few additional methods to 
convert its contents into a String, insert the contents into another JspWriter, to get 
a Reader into its contents, and to clear the contents. Its semantics also assure that 
buffer size will never be exceeded. 

The JSP page implementation will create a BodyContent if the doStartTag() 
method returns a EVAL_BODY_BUFFERED. This object will be passed to 
doInitBody(); then the body of the tag will be evaluated, and during that 
evaluation out will be bound to the BodyContent just passed to the BodyTag 
handler. Then doAfterBody() will be evaluated. If that method returns 
SKIP_BODY, no more evaluations of the body will be done; if the method returns 
EVAL_BODY_AGAIN, then the body will be evaluated, and doAfterBody() will 
be invoked again. 

The content of a BodyContent instance remains available until after the 
invocation of its associated doEndBody() method. 

A common use of the BodyContent is to extract its contents into a String and 
then use the String as a value for some operation. Another common use is to take 
its contents and push it into the out Stream that was valid when the start tag was 
encountered (that is available from the PageContext object passed to the handler 
in setPageContext). 



Tag Handlers that want Access to their Body Content 175

JavaServer Pages 1.2 Specification

JSP.10.2.1 BodyContent

Syntax
public abstract class BodyContent extends JspWriter

Description

An encapsulation of the evaluation of the body of an action so it is available to a
tag handler. BodyContent is a subclass of JspWriter. 

Note that the content of BodyContent is the result of evaluation, so it will not con-
tain actions and the like, but the result of their invocation. 

BodyContent has methods to convert its contents into a String, to read its con-
tents, and to clear the contents. 

The buffer size of a BodyContent object is unbounded. A BodyContent object
cannot be in autoFlush mode. It is not possible to invoke flush on a BodyContent
object, as there is no backing stream. 

Instances of BodyContent are created by invoking the pushBody and popBody
methods of the PageContext class. A BodyContent is enclosed within another
JspWriter (maybe another BodyContent object) following the structure of their
associated actions. 

A BodyContent is made available to a BodyTag through a setBodyContent() call.
The tag handler can use the object until after the call to doEndTag().

JSP.10.2.1.9 Constructors

protected BodyContent(JspWriter e)

Protected constructor. Unbounded buffer, no autoflushing.

JSP.10.2.1.10 Methods

public void clearBody()

Clear the body without throwing any exceptions.

public void flush()

Redefined flush() so it is not legal. 

It is not valid to flush a BodyContent because there is no backing stream 
behind it.

Overrides: public abstract void flush() in class JspWriter

Throws: 



TAG EXTENSION API

JavaServer Pages 1.2 Specification

176

IOException

public JspWriter getEnclosingWriter()

Get the enclosing JspWriter.

Returns: the enclosing JspWriter passed at construction time

public abstract java.io.Reader getReader()

Return the value of this BodyContent as a Reader.

Returns: the value of this BodyContent as a Reader

public abstract java.lang.String getString()

Return the value of the BodyContent as a String.

Returns: the value of the BodyContent as a String

public abstract void writeOut(java.io.Writer out)

Write the contents of this BodyContent into a Writer. Subclasses may opti-
mize common invocation patterns.

Parameters: 
out - The writer into which to place the contents of this body evaluation

Throws: 
IOException

JSP.10.2.2 BodyTag

Syntax
public interface BodyTag extends IterationTag

All Superinterfaces: IterationTag, Tag

All Known Implementing Classes: BodyTagSupport

Description

The BodyTag interface extends IterationTag by defining additional methods that
let a tag handler manipulate the content of evaluating its body. 

It is the responsibility of the tag handler to manipulate the body content. For
example the tag handler may take the body content, convert it into a String using
the bodyContent.getString method and then use it. Or the tag handler may take
the body content and write it out into its enclosing JspWriter using the body-
Content.writeOut method. 



Tag Handlers that want Access to their Body Content 177

JavaServer Pages 1.2 Specification

A tag handler that implements BodyTag is treated as one that implements
IterationTag, except that the doStartTag method can return SKIP_BODY,
EVAL_BODY_INCLUDE or EVAL_BODY_BUFFERED. 

If EVAL_BODY_INCLUDE is returned, then evaluation happens as in Iteration-
Tag. 

If EVAL_BODY_BUFFERED is returned, then a BodyContent object will be
created (by code generated by the JSP compiler) to capture the body evaluation.
The code generated by the JSP compiler obtains the BodyContent object by call-
ing the pushBody method of the current pageContext, which additionally has the
effect of saving the previous out value. The page compiler returns this object by
calling the popBody method of the PageContext class; the call also restores the
value of out. 

The interface provides one new property with a setter method and one new action
method. 

Properties 

There is a new property: bodyContent, to contain the BodyContent object, where
the JSP Page implementation object will place the evaluation (and reevaluation, if
appropriate) of the body. The setter method (setBodyContent) will only be
invoked if doStartTag() returns EVAL_BODY_BUFFERED. 

Methods 

In addition to the setter method for the bodyContent property, there is a new
action methods: doInitBody(), which is invoked right after setBodyContent() and
before the body evaluation. This method is only invoked if doStartTag() returns
EVAL_BODY_BUFFERED. 

Lifecycle 

Lifecycle details are described by the transition diagram below. Exceptions that
are thrown during the computation of doStartTag(), setBodyContent(), doInit-
Body(), BODY, doAfterBody() interrupt the execution sequence and are propa-
gated up the stack, unless the tag handler implements the TryCatchFinally
interface; see that interface for details. 



TAG EXTENSION API

JavaServer Pages 1.2 Specification

178

Empty and Non-Empty Action 

If the TagLibraryDescriptor file indicates that the action must always have an
empty action, by an <body-content> entry of “empty”, then the doStartTag()
method must return SKIP_BODY. Otherwise, the doStartTag() method may
return SKIP_BODY, EVAL_BODY_INCLUDE, or EVAL_BODY_BUFFERED. 

If SKIP_BODY is returned the body is not evaluated, and doEndTag() is invoked. 

If EVAL_BODY_INCLUDE is returned, setBodyContent() is not invoked,
doInitBody() is not invoked, the body is evaluated and “passed through” to the
current out, doAfterBody() is invoked and then, after zero or more iterations,
doEndTag() is invoked. 



Tag Handlers that want Access to their Body Content 179

JavaServer Pages 1.2 Specification

If EVAL_BODY_BUFFERED is returned, setBodyContent() is invoked, doInit-
Body() is invoked, the body is evaluated, doAfterBody() is invoked, and then,
after zero or more iterations, doEndTag() is invoked.

JSP.10.2.2.11 Fields

public static final int EVAL_BODY_BUFFERED

Request the creation of new buffer, a BodyContent on which to evaluate the 
body of this tag. Returned from doStartTag when it implements BodyTag. 
This is an illegal return value for doStartTag when the class does not imple-
ment BodyTag.

public static final int EVAL_BODY_TAG

Deprecated. As of Java JSP API 1.2, use 
BodyTag.EVAL_BODY_BUFFERED or 
IterationTag.EVAL_BODY_AGAIN.

Deprecated constant that has the same value as EVAL_BODY_BUFFERED 
and EVAL_BODY_AGAIN. This name has been marked as deprecated to 
encourage the use of the two different terms, which are much more descrip-
tive.

JSP.10.2.2.12 Methods

public void doInitBody()

Prepare for evaluation of the body. This method is invoked by the JSP page 
implementation object after setBodyContent and before the first time the 
body is to be evaluated. This method will not be invoked for empty tags or 
for non-empty tags whose doStartTag() method returns SKIP_BODY or 
EVAL_BODY_INCLUDE. 

The JSP container will resynchronize any variable values that are indicated as 
so in TagExtraInfo after the invocation of doInitBody().

Throws: 
JspException

public void setBodyContent(BodyContent b)

Set the bodyContent property. This method is invoked by the JSP page imple-
mentation object at most once per action invocation. This method will be 
invoked before doInitBody. This method will not be invoked for empty tags 
or for non-empty tags whose doStartTag() method returns SKIP_BODY or 
EVAL_BODY_INCLUDE. 

When setBodyContent is invoked, the value of the implicit object out has 
already been changed in the pageContext object. The BodyContent object 



TAG EXTENSION API

JavaServer Pages 1.2 Specification

180

passed will have not data on it but may have been reused (and cleared) from 
some previous invocation. 

The BodyContent object is available and with the appropriate content until 
after the invocation of the doEndTag method, at which case it may be reused.

Parameters: 
b - the BodyContent

JSP.10.2.3 BodyTagSupport

Syntax
public class BodyTagSupport extends TagSupport implements BodyTag

All Implemented Interfaces: BodyTag, IterationTag, java.io.Serializable, 
Tag

Description

A base class for defining tag handlers implementing BodyTag. 

The BodyTagSupport class implements the BodyTag interface and adds addi-
tional convenience methods including getter methods for the bodyContent prop-
erty and methods to get at the previous out JspWriter. 

Many tag handlers will extend BodyTagSupport and only redefine a few methods.

JSP.10.2.3.13 Fields

protected BodyContent bodyContent

JSP.10.2.3.14 Constructors

public BodyTagSupport()

Default constructor, all subclasses are required to only define a public con-
structor with the same signature, and to call the superclass constructor. This 
constructor is called by the code generated by the JSP translator.

JSP.10.2.3.15 Methods

public int doAfterBody()

After the body evaluation: do not reevaluate and continue with the page. By 
default nothing is done with the bodyContent data (if any).

Overrides: public int doAfterBody() in class TagSupport



Tag Handlers that want Access to their Body Content 181

JavaServer Pages 1.2 Specification

Returns: SKIP_BODY

Throws: 
JspException

public int doEndTag()

Default processing of the end tag returning EVAL_PAGE.

Overrides: public int doEndTag() in class TagSupport

Returns: EVAL_PAGE

Throws: 
JspException

public void doInitBody()

Prepare for evaluation of the body just before the first body evaluation: no 
action.

Throws: 
JspException

public int doStartTag()

Default processing of the start tag returning EVAL_BODY_BUFFERED

Overrides: public int doStartTag() in class TagSupport

Returns: EVAL_BODY_BUFFERED;

Throws: 
JspException

public BodyContent getBodyContent()

Get current bodyContent.

Returns: the body content.

public JspWriter getPreviousOut()

Get surrounding out JspWriter.

Returns: the enclosing JspWriter, from the bodyContent.

public void release()

Release state.

Overrides: public void release() in class TagSupport

public void setBodyContent(BodyContent b)

Prepare for evaluation of the body: stash the bodyContent away.

Parameters: 
b - the BodyContent



TAG EXTENSION API

JavaServer Pages 1.2 Specification

182

JSP.10.3 Annotated Tag Handler Management Example

Below is a somewhat complete example of the way one JSP container could 
choose to do some tag handler management. There are many other strategies that 
could be followed, with different pay offs. 

The example is as below. In this example, we are assuming that x:iterate is an 
iterative tag, while x:doit and x:foobar are simple tag. We will also assume that 
x:iterate and x:foobar implement the TryCatchFinally interface, while x:doit does 
not. 

<x:iterate src=“foo”>
<x:doit att1=“one” att2=“<%= 1 + 1 %>” />
<x:foobar />
<x:doit att1=“one” att2=“<%= 2 + 2 %>” />

</x:iterate>
<x:doit att1=“one” att2=“<%= 3 + 3 %>” />
The particular code shown below assumes there is some pool of tag handlers 

that are managed (details not described, although pool managing is simpler when 
there are no optional attributes), and attemps to reuse tag handlers if possible. The 
code also “hoists” setting of properties to reduce the cost when appropriate, e.g. 
inside an iteration. 



Annotated Tag Handler Management Example 183

JavaServer Pages 1.2 Specification

boolean b1, b2;
IterationTag i; // for x:iterate
Tag d; // for x:doit
Tag d; // for x:foobar
page: // label to end of page...
// initialize iteration tag
i = get tag from pool or new();
i.setPageContext(pc);
i.setParent(null);
i.setSrc(“foo”);
// x:iterate implements TryCatchFinally
try {

if ((b1 = i.doStartTag()) == EVAL_BODY_INCLUDE) {
// initialize doit tag
// code has been moved out of the loop for show
d = get tag from pool or new();
d.setPageContext(pc);
d.setParent(i);
d.setAtt1(“one”);

loop:
while (1) do {

// I'm ignoring newlines...
// two invocations, fused together
// first invocation of x:doit
d.setAtt2(1+1);
if ((b2 = d.doStartTag()) == EVAL_BODY_INCLUDE) {

// nothing
} else if (b2 != SKIP_BODY) {

// Q? protocol error ...
}
if ((b2 = d.doEndTag()) == SKIP_PAGE) {

break page; // be done with it.
} else if (b2 != EVAL_PAGE) {

// Q? protocol error
}

// x:foobar invocation
f = get tag from pool or new();
f.setPageContext(pc);
f.setParent(i);
// x:foobar implements TryCatchFinally
try {

if ((b2 = f.doStartTag()) == EVAL_BODY_INCLUDE) {
// nothing

} else if (b2 != SKIP_BODY) {
// Q? protocol error

}
if ((b2 = f.doEndTag()) == SKIP_PAGE) {

break page; // be done with it.
} else if (b2 != EVAL_PAGE) {

// Q? protocol error
}

} catch (Throwable t) {



TAG EXTENSION API

JavaServer Pages 1.2 Specification

184

f.doCatch(t); // caught, may been rethrown!
} finally {

f.doFinally();
}
// put f back to pool

// second invocation of x:doit
d.setAtt2(2+2);
if ((b2 = d.doStartTag()) == EVAL_BODY_INCLUDE) {

// nothing
} else if (b2 != SKIP_BODY) {

// Q? protocol error
}
if ((b2 = d.doEndTag()) == SKIP_PAGE) {

break page; // be done with it.
} else if (b2 != EVAL_PAGE) {

// Q? protocol error
}
if ((b2 = i.doAfterBody()) == EVAL_BODY_AGAIN) {

break loop;
} else if (b2 != SKIP_BODY) {

// Q? protocol error
}

// loop
}

} else if (b1 != SKIP_BODY) {
// Q? protocol error

}
// tail end of the IteratorTag ...
if ((b1 = i.doEndTag()) == SKIP_PAGE) {

break page; // be done with it.
} else if (b1 != EVAL_PAGE) {

// Q? protocol error
}

// third invocation
// this tag handler could be reused from the previous ones.
d = get tag from pool or new();
d.setPageContext(pc);
d.setParent(null);
d.setAtt1(“one”);
d.setAtt2(3+3);
if ((b1 = d.doStartTag()) == EVAL_BODY_INCLUDE) {

// nothing
} else if (b1 != SKIP_BODY) {

// Q? protocol error
}
if ((b1 = d.doEndTag()) == SKIP_PAGE) {

break page; // be done with it.
} else if (b1 != EVAL_PAGE) {

// Q? protocol error
}

} catch (Throwable t) {



Cooperating Actions 185

JavaServer Pages 1.2 Specification

i.doCatch(t); // caught, may been rethrown!
} finally {

i.doFinally();
}

JSP.10.4 Cooperating Actions

Actions can cooperate with other actions and with scripting code in a number of 
ways. 

PageContext
Often two actions in a JSP page will want to cooperate, perhaps by one action 

creating some server-side object that needs to be access by another. One mechanism 
for doing this is by giving the object a name within the JSP page; the first action will 
create the object and associate the name to it while the second action will use the 
name to retrieve the object. 

For example, in the following JSP fragment the foo action might create a 
server-side object and give it the name “myObject”. Then the bar action might 
access that server-side object and take some action. 

<x:foo id=“myObject” />
<x:bar ref=“myObjet” />
In a JSP implementation, the mapping “name”->value is kept by the implicit 

object pageContext. This object is passed around through the Tag handler instances 
so it can be used to communicate information: all it is needed is to know the name 
under which the information is stored into the pageContext. 

The Runtime Stack
An alternative to explicit communication of information through a named 

object is implicit coordination based on syntactic scoping. 
For example, in the following JSP fragment the foo action might create a 

server-side object; later the nested bar action might access that server-side object. 
The object is not named within the pageContext: it is found because the specific 
foo element is the closest enclosing instance of a known element type. 

<foo>
<bar/>

</foo>
This functionality is supported through the BodyTagSupport.findAncestorWith-

Class(Tag, Class), which uses a reference to parent tag kept by each Tag instance, 
which effectively provides a run-time execution stack. 



TAG EXTENSION API

JavaServer Pages 1.2 Specification

186

JSP.10.5 Translation-time Classes

The next classes are used at translation time. 

Tag mapping, Tag name
A taglib directive introduces a tag library and associates a prefix to it. The TLD 

associated with the library associates Tag handler classes (plus other information) 
with tag names. This information is used to associate a Tag class, a prefix, and a 
name with each custom action element appearing in a JSP page. 

At execution time the implementation of a JSP page will use an available Tag 
instance with the appropriate property settings and then follow the protocol 
described by the interfaces Tag, IterationTag, BodyTag, and TryCatchFinally. The 
implementation guarantees that all tag handler instances are initialized and all are 
released, but the implementation can assume that previous settings are preserved 
by a tag handler, to reduce run-time costs. 

Scripting Variables
JSP supports scripting variables that can be declared within a scriptlet and can 

be used in another. JSP actions also can be used to define scripting variables so they 
can used in scripting elements, or in other actions. This is very useful in some cases; 
for example, the jsp:useBean standard action may define an object which can later 
be used through a scripting variable. 

In some cases the information on scripting variables can be described directly 
into the TLD using elements. A special case is typical interpretation of the 
&quotid“ attribute. In other cases the logic that decides whether an action instance 
will define a scripting variable may be quite complex and the name of a TagExtra-

Info class is instead given in the TLD. The getVariableInfo method of this class is 
used at translation time to obtain information on each variable that will be created 
at request time when this action is executed. The method is passed a TagData 
instance that contains the translation-time attribute values. 

Validation
The TLD file contains several pieces of information that is used to do syntactic 

validation at translation-time. It also contains two extensible validation mecha-
nisms: a TagLibraryValidator class can be used to validate a complete JSP page, and a 
TagExtraInfo class can be used to validate a specific action. In some cases, additional 
request-time validation will be done dynamically within the methods in the Tag 
instance.  If an error is discovered, an instance of JspTagException can be thrown. If 
uncaught, this object will invoke the errorpage mechanism of JSP. 



Translation-time Classes 187

JavaServer Pages 1.2 Specification

The TagLibraryValidator is an addition to the JSP 1.2 specification and is very 
open ended, being strictly more powerful than the TagExtraInfo mechanism. A 
JSP page is presented via the PageData object, which abstracts the XML view of 
the JSP page.  

A PageData instance will provides an InputStream (read-only) on the page. 
Later specifications may add other views on the page (DOM, SAX, JDOM are all 
candidates), for now these views can be generated from the InputStream and 
perhaps can be cached for improved performance (recall the view of the page is 
just read-only). 

A JSP container may optionally support a jsp:id attribute to provide higher 
quality validation errors. When supported, the container will track the JSP pages 
as passed to the container, and will assign to each element a unique “id”, which is 
passed as the value of the jsp:id attribute. Each XML element in the XML view 
available will be extended with this attribute. The TagLibraryValidator can then 
use the attribute in one or more ValidationMessage objects. The container then, in 
turn, can use these values to provide more precise information on the location of 
an error. 

Validation Details
In detail, validation is done as follows: 
First, the JSP page is parsed using the information in the TLD. At this stage 

valid mandatory and optional attributes are checked. 
Second, for all taglib directives in the page, and in the lexical order in which 

they appear, their associated validator class (if any) is invoked. This involves 
several substeps. 

The first substep is to obtain an initialized validator instance by either: 
•construct a new instance and invoke setInitParameters() on it, or 
•obtain an existing instance that is not being used, invoke release() on it, and
then invoke setInitParameters() on it, or 
•locate an existing instance that is not being used on which the desired set-
InitParameters() has already been invoked 

The class name is as indicated in the <validator-class> element, and the Map 
passed through setInitParameters() is as described in the <init-params> element. All 
TagLibraryValidator classes are supposed to keep their initParameters until new 
ones are set, or until release() is invoked on them. 

The second substep is to perform the actual validation. This is done by 
invoking the validate() method with a prefix, uri, and PageData that correspond to 
the taglib directive instance being validated and the PageData representing the 
page. 



TAG EXTENSION API

JavaServer Pages 1.2 Specification

188

The last substep is to invoke the release() method on the validator tag when it 
is no longer needed. This method releases all resources. 

Finally, after checking all the tag library validator classes, the TagExtraInfo 
classes for all tags will be consulted by invoking their isValid method. The order of 
invocation of this methods is undefined. 

JSP.10.5.1 TagLibraryInfo

Syntax
public abstract class TagLibraryInfo

Description

Translation-time information associated with a taglib directive, and its underlying
TLD file. Most of the information is directly from the TLD, except for the prefix
and the uri values used in the taglib directive

JSP.10.5.1.16 Fields

protected java.lang.String info

protected java.lang.String jspversion

protected java.lang.String prefix

protected java.lang.String shortname

protected TagInfo[] tags

protected java.lang.String tlibversion

protected java.lang.String uri

protected java.lang.String urn

JSP.10.5.1.17 Constructors

protected TagLibraryInfo(java.lang.String prefix, java.lang.String uri)

Constructor. This will invoke the constructors for TagInfo, and TagAttribute-
Info after parsing the TLD file.

Parameters: 
prefix - the prefix actually used by the taglib directive

uri - the URI actually used by the taglib directive



Translation-time Classes 189

JavaServer Pages 1.2 Specification

JSP.10.5.1.18 Methods

public java.lang.String getInfoString()

Information (documentation) for this TLD.

public java.lang.String getPrefixString()

The prefix assigned to this taglib from the <%taglib directive

public java.lang.String getReliableURN()

The “reliable” URN indicated in the TLD. This may be used by authoring 
tools as a global identifier (the uri attribute) to use when creating a taglib 
directive for this library.

public java.lang.String getRequiredVersion()

A string describing the required version of the JSP container.

public java.lang.String getShortName()

The preferred short name (prefix) as indicated in the TLD. This may be used 
by authoring tools as the preferred prefix to use when creating an include 
directive for this library.

public TagInfo getTag(java.lang.String shortname)

Get the TagInfo for a given tag name, looking through all the tags in this tag 
library.

Parameters: 
shortname - The short name (no prefix) of the tag

public TagInfo[] getTags()

An array describing the tags that are defined in this tag library.

public java.lang.String getURI()

The value of the uri attribute from the <%@ taglib directive for this library.

JSP.10.5.2 TagInfo

Syntax
public class TagInfo

Description

Tag information for a tag in a Tag Library; This class is instantiated from the Tag
Library Descriptor file (TLD) and is available only at translation time.



TAG EXTENSION API

JavaServer Pages 1.2 Specification

190

JSP.10.5.2.19 Fields

public static final java.lang.String BODY_CONTENT_EMPTY

static constant for getBodyContent() when it is empty

public static final java.lang.String BODY_CONTENT_JSP

static constant for getBodyContent() when it is JSP

public static final java.lang.String BODY_CONTENT_TAG_DEPENDENT

static constant for getBodyContent() when it is Tag dependent

JSP.10.5.2.20 Constructors

public TagInfo(java.lang.String tagName, java.lang.String tagClassName, 
java.lang.String bodycontent, java.lang.String infoString, 
TagLibraryInfo taglib, TagExtraInfo tagExtraInfo, 
TagAttributeInfo[] attributeInfo)

Constructor for TagInfo from data in the JSP 1.1 format for TLD. This class 
is to be instantiated only from the TagLibrary code under request from some 
JSP code that is parsing a TLD (Tag Library Descriptor). Note that, since 
TagLibibraryInfo reflects both TLD information and taglib directive informa-
tion, a TagInfo instance is dependent on a taglib directive. This is probably a 
design error, which may be fixed in the future.

Parameters: 
tagName - The name of this tag

tagClassName - The name of the tag handler class

bodycontent - Information on the body content of these tags

infoString - The (optional) string information for this tag

taglib - The instance of the tag library that contains us.

tagExtraInfo - The instance providing extra Tag info. May be null

attributeInfo - An array of AttributeInfo data from descriptor. May be null;

public TagInfo(java.lang.String tagName, java.lang.String tagClassName, 
java.lang.String bodycontent, java.lang.String infoString, 
TagLibraryInfo taglib, TagExtraInfo tagExtraInfo, 
TagAttributeInfo[] attributeInfo, java.lang.String displayName, 
java.lang.String smallIcon, java.lang.String largeIcon, TagVariableInfo[] tvi)

Constructor for TagInfo from data in the JSP 1.2 format for TLD. This class 
is to be instantiated only from the TagLibrary code under request from some 
JSP code that is parsing a TLD (Tag Library Descriptor). Note that, since 
TagLibibraryInfo reflects both TLD information and taglib directive informa-



Translation-time Classes 191

JavaServer Pages 1.2 Specification

tion, a TagInfo instance is dependent on a taglib directive. This is probably a 
design error, which may be fixed in the future.

Parameters: 
tagName - The name of this tag

tagClassName - The name of the tag handler class

bodycontent - Information on the body content of these tags

infoString - The (optional) string information for this tag

taglib - The instance of the tag library that contains us.

tagExtraInfo - The instance providing extra Tag info. May be null

attributeInfo - An array of AttributeInfo data from descriptor. May be null;

displayName - A short name to be displayed by tools

smallIcon - Path to a small icon to be displayed by tools

largeIcon - Path to a large icon to be displayed by tools

tagVariableInfo - An array of a TagVariableInfo (or null)

JSP.10.5.2.21 Methods

public TagAttributeInfo[] getAttributes()

Attribute information (in the TLD) on this tag. The return is an array describ-
ing the attributes of this tag, as indicated in the TLD. A null return means no 
attributes.

Returns: The array of TagAttributeInfo for this tag.

public java.lang.String getBodyContent()

The bodycontent information for this tag.

Returns: the body content string.

public java.lang.String getDisplayName()

Get the displayName

Returns: A short name to be displayed by tools

public java.lang.String getInfoString()

The information string for the tag.

Returns: the info string

public java.lang.String getLargeIcon()

Get the path to the large icon

Returns: Path to a large icon to be displayed by tools



TAG EXTENSION API

JavaServer Pages 1.2 Specification

192

public java.lang.String getSmallIcon()

Get the path to the small icon

Returns: Path to a small icon to be displayed by tools

public java.lang.String getTagClassName()

Name of the class that provides the handler for this tag.

Returns: The name of the tag handler class.

public TagExtraInfo getTagExtraInfo()

The instance (if any) for extra tag information

Returns: The TagExtraInfo instance, if any.

public TagLibraryInfo getTagLibrary()

The instance of TabLibraryInfo we belong to.

Returns: the tab library instance we belong to.

public java.lang.String getTagName()

The name of the Tag.

Returns: The (short) name of the tag.

public TagVariableInfo[] getTagVariableInfos()

Get TagVariableInfo objects associated with this TagInfo

Returns: A TagVariableInfo object associated with this

public VariableInfo[] getVariableInfo(TagData data)

Information on the scripting objects created by this tag at runtime. This is a 
convenience method on the associated TagExtraInfo class. 

Default is null if the tag has no “id” attribute, otherwise, {“id”, Object}

Parameters: 
data - TagData describing this action.

Returns: Array of VariableInfo elements.

public boolean isValid(TagData data)

Translation-time validation of the attributes. This is a convenience method on 
the associated TagExtraInfo class.

Parameters: 
data - The translation-time TagData instance.

Returns: Whether the data is valid.

public void setTagExtraInfo(TagExtraInfo tei)



Translation-time Classes 193

JavaServer Pages 1.2 Specification

Set the instance for extra tag information

Parameters: 
tei - the TagExtraInfo instance

public void setTagLibrary(TagLibraryInfo tl)

Set the TagLibraryInfo property. Note that a TagLibraryInfo element is 
dependent not just on the TLD information but also on the specific taglib 
instance used. This means that a fair amount of work needs to be done to con-
struct and initialize TagLib objects. If used carefully, this setter can be used to 
avoid having to create new TagInfo elements for each taglib directive.

Parameters: 
tl - the TagLibraryInfo to assign

public java.lang.String toString()

Stringify for debug purposes...

Overrides: java.lang.Object.toString() in class java.lang.Object

JSP.10.5.3 TagAttributeInfo

Syntax
public class TagAttributeInfo

Description

Information on the attributes of a Tag, available at translation time. This class is
instantiated from the Tag Library Descriptor file (TLD). 

Only the information needed to generate code is included here. Other information
like SCHEMA for validation belongs elsewhere.

JSP.10.5.3.22 Fields

public static final java.lang.String ID

“id” is wired in to be ID. There is no real benefit in having it be something 
else IDREFs are not handled any differently.

JSP.10.5.3.23 Constructors

public TagAttributeInfo(java.lang.String name, boolean required, 
java.lang.String type, boolean reqTime)



TAG EXTENSION API

JavaServer Pages 1.2 Specification

194

Constructor for TagAttributeInfo. This class is to be instantiated only from 
the TagLibrary code under request from some JSP code that is parsing a TLD 
(Tag Library Descriptor).

Parameters: 
name - The name of the attribute.

required - If this attribute is required in tag instances.

type - The name of the type of the attribute.

reqTime - Whether this attribute holds a request-time Attribute.

JSP.10.5.3.24 Methods

public boolean canBeRequestTime()

Whether this attribute can hold a request-time value.

Returns: if the attribute can hold a request-time value.

public static TagAttributeInfo getIdAttribute(TagAttributeInfo[] a)

Convenience static method that goes through an array of TagAttributeInfo 
objects and looks for “id”.

Parameters: 
a - An array of TagAttributeInfo

Returns: The TagAttributeInfo reference with name “id”

public java.lang.String getName()

The name of this attribute.

Returns: the name of the attribute

public java.lang.String getTypeName()

The type (as a String) of this attribute.

Returns: the type of the attribute

public boolean isRequired()

Whether this attribute is required.

Returns: if the attribute is required.

public java.lang.String toString()

Overrides: java.lang.Object.toString() in class java.lang.Object



Translation-time Classes 195

JavaServer Pages 1.2 Specification

JSP.10.5.4 PageData

Syntax
public abstract class PageData

Description

Translation-time information on a JSP page. The information corresponds to the
XML view of the JSP page. 

Objects of this type are generated by the JSP translator, e.g. when being pased to
a TagLibraryValidator instance.

JSP.10.5.4.25 Constructors

public PageData()

JSP.10.5.4.26 Methods

public abstract java.io.InputStream getInputStream()

Returns an input stream on the XML view of a JSP page.  Recall tht the XML 
view of a JSP page has the include  directives expanded.

Returns: An input stream on the document.

JSP.10.5.5 TagLibraryValidator

Syntax
public abstract class TagLibraryValidator

Description

Translation-time validator class for a JSP page. A validator operates on the XML
document associated with the JSP page. 

The TLD file associates a TagLibraryValidator class and some init arguments
with a tag library. 

The JSP container is reponsible for locating an appropriate instance of the appro-
priate subclass by 

•new a fresh instance, or reuse an available one 
•invoke the setInitParams(Map) method on the instance 



TAG EXTENSION API

JavaServer Pages 1.2 Specification

196

once initialized, the validate(String, String, PageData) method will be invoked,
where the first two arguments are the prefix and uri arguments used in the taglib
directive. 

A TagLibraryValidator instance may create auxiliary objects internally to perform
the validation (e.g. an XSchema validator) and may reuse it for all the pages in a
given translation run. 

The JSP container is not guaranteed to serialize invocations of validate() method,
and TagLibraryValidators should perform any synchronization they may require. 

A JSP container may optionally support a jsp:id attribute to provide higher qual-
ity validation errors. When supported, the container will track the JSP pages as
passed to the container, and will assign to each element a unique “id”, which is
passed as the value of the jsp:id attribute. Each XML element in the XML view
available will be extended with this attribute. The TagLibraryValidator can then
use the attribute in one or more ValidationMessage objects. The container then, in
turn, can use these values to provide more precise information on the location of
an error.

JSP.10.5.5.27 Constructors

public TagLibraryValidator()

JSP.10.5.5.28 Methods

public java.util.Map getInitParameters()

Get the init parameters data as an immutable Map. Parameter names are keys, 
and parameter values are the values.

Returns: The init parameters as an immutable map.

public void release()

Release any data kept by this instance for validation purposes

public void setInitParameters(java.util.Map map)

Set the init data in the TLD for this validator. Parameter names are keys, and 
parameter values are the values.

Parameters: 
initMap - A Map describing the init parameters

public ValidationMessage[] validate(java.lang.String prefix, java.lang.String uri, 
PageData page)

Validate a JSP page. This will get invoked once per directive in the JSP page. 
This method will return null if the page is valid; otherwise the method should 



Translation-time Classes 197

JavaServer Pages 1.2 Specification

return an array of ValidationMessage objects. An array of length zero is also 
interpreted as no errors.

Parameters: 
prefix - the value of the prefix argument in the directive

uri - the value of the uri argument in the directive

thePage - the JspData page object

Returns: A null object, or zero length array if no errors, an array of 
ValidationMessages otherwise.

JSP.10.5.6 ValidationMessage

Syntax
public class ValidationMessage

Description

A validation message from a TagLibraryValidator. 

A JSP container may (optionally) support a jsp:id attribute to provide higher qual-
ity validation errors. When supported, the container will track the JSP pages as
passed to the container, and will assign to each element  a unique “id”, which is
passed as the value of the jsp:id attribute. Each XML element in the XML view
available will be extended with this attribute. The TagLibraryValidator can then
use the attribute in one or more ValidationMessage objects. The container then, in
turn, can use these values to provide more precise information on the location of
an error.

JSP.10.5.6.29 Constructors

public ValidationMessage(java.lang.String id, java.lang.String message)

Create a ValidationMessage. The message String should be non-null. The 
value of id may be null, if the message is not specific to any XML element, or 
if no jsp:id attributes were passed on. If non-null, the value of id must be the 
value of a jsp:id attribute for the PageData passed into the validate() method.

Parameters: 
id - Either null, or the value of a jsp:id attribute.

message - A localized validation message.

JSP.10.5.6.30 Methods

public java.lang.String getId()



TAG EXTENSION API

JavaServer Pages 1.2 Specification

198

Get the jsp:id. Null means that there is no information available.

Returns: The jsp:id information.

public java.lang.String getMessage()

Get the localized validation message.

Returns: A validation message

JSP.10.5.7 TagExtraInfo

Syntax
public abstract class TagExtraInfo

Description

Optional class provided by the tag library author to describe additional transla-
tion-time information not described in the TLD. The TagExtraInfo class is men-
tioned in the Tag Library Descriptor file (TLD). 

This class can be used: 
•to indicate that the tag defines scripting variables 
•to perform translation-time validation of the tag attributes. 

It is the responsibility of the JSP translator that the initial value to be returned by
calls to getTagInfo() corresponds to a TagInfo object for the tag being translated.
If an explicit call to setTagInfo() is done, then the object passed will be returned
in subsequent calls to getTagInfo(). 

The only way to affect the value returned by getTagInfo() is through a setTag-
Info() call, and thus, TagExtraInfo.setTagInfo() is to be called by the JSP transla-
tor, with a TagInfo object that corresponds to the tag being translated. The call
should happen before any invocation on isValid() and before any invocation on
getVariableInfo().

JSP.10.5.7.31 Constructors

public TagExtraInfo()

JSP.10.5.7.32 Methods

public final TagInfo getTagInfo()

Get the TagInfo for this class.

Returns: the taginfo instance this instance is extending

public VariableInfo[] getVariableInfo(TagData data)



Translation-time Classes 199

JavaServer Pages 1.2 Specification

information on scripting variables defined by the tag associated with this 
TagExtraInfo instance. Request-time attributes are indicated as such in the 
TagData parameter.

Parameters: 
data - The TagData instance.

Returns: An array of VariableInfo data.

public boolean isValid(TagData data)

Translation-time validation of the attributes. Request-time attributes are indi-
cated as such in the TagData parameter.

Parameters: 
data - The TagData instance.

Returns: Whether this tag instance is valid.

public final void setTagInfo(TagInfo tagInfo)

Set the TagInfo for this class.

Parameters: 
tagInfo - The TagInfo this instance is extending

JSP.10.5.8 TagData

Syntax
public class TagData implements java.lang.Cloneable

All Implemented Interfaces: java.lang.Cloneable

Description

The (translation-time only) attribute/value information for a tag instance. 

TagData is only used as an argument to the isValid and getVariableInfo methods
of TagExtraInfo, which are invoked at translation time.

JSP.10.5.8.33 Fields

public static final java.lang.Object REQUEST_TIME_VALUE

Distinguished value for an attribute to indicate its value is a request-time 
expression (which is not yet available because TagData instances are used at 
translation-time).



TAG EXTENSION API

JavaServer Pages 1.2 Specification

200

JSP.10.5.8.34 Constructors

public TagData(java.util.Hashtable attrs)

Constructor for a TagData. If you already have the attributes in a hashtable, 
use this constructor.

Parameters: 
attrs - A hashtable to get the values from.

public TagData(java.lang.Object[][] atts)

Constructor for TagData. 

A typical constructor may be 

static final Object[][] att = {{“connection”, “conn0”},
{“id”, “query0”}};
static final TagData td = new TagData(att);

All values must be Strings except for those holding the distinguished object 
REQUEST_TIME_VALUE.

Parameters: 
atts - the static attribute and values. May be null.

JSP.10.5.8.35 Methods

public java.lang.Object getAttribute(java.lang.String attName)

The value of the attribute. Returns the distinguished object 
REQUEST_TIME_VALUE if the value is request time. Returns null if the 
attribute is not set.

Returns: the attribute’s value object

public java.util.Enumeration getAttributes()

Enumerates the attributes.

Returns: An enumeration of the attributes in a TagData

public java.lang.String getAttributeString(java.lang.String attName)

Get the value for a given attribute.

Returns: the attribute value string

public java.lang.String getId()

The value of the id attribute, if available.

Returns: the value of the id attribute or null

public void setAttribute(java.lang.String attName, java.lang.Object value)

Set the value of an attribute.



Translation-time Classes 201

JavaServer Pages 1.2 Specification

Parameters: 
attName - the name of the attribute

value - the value.

JSP.10.5.9 VariableInfo

Syntax
public class VariableInfo

Description

Information on the scripting variables that are created/modified by a tag (at run-
time). This information is provided by TagExtraInfo classes and it is used by the
translation phase of JSP. 

Scripting variables generated by a custom action may have scope values of page,
request, session, and application. 

The class name (VariableInfo.getClassName) in the returned objects are used to
determine the types of the scripting variables. Because of this, a custom action
cannot create a scripting variable of a primitive type. The workaround is to use
“boxed” types. 

The class name may be a Fully Qualified Class Name, or a short class name. 

If a Fully Qualified Class Name is provided, it should refer to a class that should
be in the CLASSPATH for the Web Application (see Servlet 2.3 specification -
essentially it is WEB-INF/lib and WEB-INF/classes). Failure to be so will lead to
a translation-time error. 

If a short class name is given in the VariableInfo objects, then the class name must
be that of a public class in the context of the import directives of the page where
the custom action appears (will check if there is a JLS verbiage to refer to). The
class must also be in the CLASSPATH for the Web Application (see Servlet 2.3
specification - essentially it is WEB-INF/lib and WEB-INF/classes). Failure to be
so will lead to a translation-time error. 

Usage Comments 

Frequently a fully qualified class name will refer to a class that is known to the
tag library and thus, delivered in the same JAR file as the tag handlers. In most
other remaining cases it will refer to a class that is in the platform on which the
JSP processor is built (like J2EE). Using fully qualified class names in this man-
ner makes the usage relatively resistant to configuration errors. 



TAG EXTENSION API

JavaServer Pages 1.2 Specification

202

A short name is usually generated by the tag library based on some attributes
passed through from the custom action user (the author), and it is thus less robust:
for instance a missing import directive in the referring JSP page will lead to an
invalid short name class and a translation error. 

Synchronization Protocol 

The result of the invocation on getVariableInfo is an array of VariableInfo objects.
Each such object describes a scripting variable by providing its name, its type,
whether the variable is new or not, and what its scope is. Scope is best described
through a picture: 

The JSP 1.2 specification defines the interpretation of 3 values: 
•NESTED, if the scripting variable is available between  the start tag and the
end tag of the action that defines it. 
•AT_BEGIN, if the scripting variable is available from the start tag of the
action that defines it until the end of the scope. 
•AT_END, if the scripting variable is available after the end tag of the action
that defines it until the end of the scope. 

The scope value for a variable implies what methods may affect its value and thus
where synchronization is needed: 

•for NESTED, after doInitBody and doAfterBody for a tag handler imple-
menting BodyTag, and after doStartTag otherwise. 
•for AT_BEGIN, after doInitBody, doAfterBody, and doEndTag for a tag
handler implementing BodyTag, and doStartTag and doEndTag otherwise. 
•for AT_END, after doEndTag method. 

Variable Information in the TLD 

Scripting variable information can also be encoded directly for most cases into
the Tag Library Descriptor using the <variable> subelement of the <tag> element.
See the JSP specification.



Translation-time Classes 203

JavaServer Pages 1.2 Specification

JSP.10.5.9.36 Fields

public static final int AT_BEGIN

Scope information that scripting variable is visible after start tag

public static final int AT_END

Scope information that scripting variable is visible after end tag

public static final int NESTED

Scope information that scripting variable is visible only within the start/end 
tags

JSP.10.5.9.37 Constructors

public VariableInfo(java.lang.String varName, java.lang.String className, 
boolean declare, int scope)

Constructor These objects can be created (at translation time) by the Tag-
ExtraInfo instances.

Parameters: 
id - The name of the scripting variable

className - The name of the scripting variable

declare - If true, it is a new variable (in some languages this will require a 
declaration)

scope - Indication on the lexical scope of the variable

JSP.10.5.9.38 Methods

public java.lang.String getClassName()

public boolean getDeclare()

public int getScope()

public java.lang.String getVarName()

JSP.10.5.10 TagVariableInfo

Syntax
public class TagVariableInfo



TAG EXTENSION API

JavaServer Pages 1.2 Specification

204

Description

Variable information for a tag in a Tag Library; This class is instantiated from the
Tag Library Descriptor file (TLD) and is available only at translation time. This
object should be immutable. This information is only available in JSP 1.2 format

JSP.10.5.10.39 Constructors

public TagVariableInfo(java.lang.String nameGiven, 
java.lang.String nameFromAttribute, java.lang.String className, 
boolean declare, int scope)

Constructor for TagVariableInfo

Parameters: 
nameGiven - value of <name-given>

nameFromAttribute - value of <name-from-attribute>

className - value of <variable-class>

declare - value of <declare>

scope - value of <scope>

JSP.10.5.10.40 Methods

public java.lang.String getClassName()

The body of the <variable-class> element.

Returns: The name of the class of the variable

public boolean getDeclare()

The body of the <declare> element

Returns: Whether the variable is to be declared or not

public java.lang.String getNameFromAttribute()

The body of the <name-from-attribute> element. This is the name of an 
attribute whose (translation-time) value will give the name of the variable. 
One of <name-given> or <name-from-attribute> is required.

Returns: The attribute whose value defines the variable name

public java.lang.String getNameGiven()

The body of the <name-given> element

Returns: The variable name as a constant

public int getScope()

The body of the <scope> element



Translation-time Classes 205

JavaServer Pages 1.2 Specification

Returns: The scope to give the variable.



TAG EXTENSION API

JavaServer Pages 1.2 Specification

206



207

A P P E N D I X JSP.A
Packaging JSP Pages

This appendix shows two simple examples of packaging a JSP page into a 
WAR for delivery into a Web container. In the first example, the JSP page is deliv-
ered in source form.  This is likely to be the most common example.  In the second 
example the JSP page is compiled into a Servlet that uses only Servlet 2.3 and JSP 
1.2 API calls; the Servlet is then packaged into a WAR with a deployment descriptor 
such that it looks as the original JSP page to any client.

This appendix is non normative.  Actually, strictly speaking, the appendix 
relates more to the Servlet 2.3 capabilities than to the JSP 1.2 capabilities.  The 
appendix is included here as this is a feature that JSP page authors and JSP page 
authoring tools are interested in.

A.1 A very simple JSP page

We start with a very simple JSP page HelloWorld.jsp.

<%@ page info="Example JSP pre-compiled" %>
<p>
Hello World
</p>

A.2 The JSP page packaged as source in a WAR file

The JSP page can be packaged into a WAR file by just placing it at location "/
HelloWorld.jsp" the default JSP page extension mapping will pick it up.  The 
web.xml is trivial:



PACKAGING JSP PAGES

JavaServer Pages 1.2 Specification

208

<!DOCTYPE webapp
SYSTEM "http://java.sun.com/j2ee/dtds/web-app_2_3.dtd">

<webapp>
<session-config>

<session-timeout> 1 </session-timeout>
</session-config>

</webapp>

A.3 The Servlet for the compiled JSP page

As an alternative, we will show how one can compile the JSP page into a Serv-
let class to run in a JSP container.

The JSP page is compiled into a Servlet with some implementation dependent 
name _jsp_HelloWorld_XXX_Impl. The Servlet code only depends on the JSP 1.2 
and Servlet 2.3 APIs, as follows:

imports javax.servlet.*;
imports javax.servlet.http.*;
imports javax.servlet.jsp.*;

class _jsp_HelloWorld_XXX_Impl 
extends_PlatformDependent_Jsp_Super_Impl {

public void _jspInit() {
// ...

}

public void jspDestroy() {
// ...

}
static JspFactory_factory= JspFactory.getDefaultFactory();

public void _jspService(HttpServletRequest  request, 
HttpServletResponse response)

throws IOException, ServletException



209

JavaServer Pages 1.2 Specification

{
Object page= this;
HttpSessionsession= request.getSession();
ServletConfigconfig= getServletConfig();
ServletContextapplication = config.getServletContext();

PageContextpageContext
= _factory.getPageContext(this,

request,
response,
(String)NULL,
true,
JspWriter.DEFAULT_BUFFER,
true
);

JspWriterout= pageContext.getOut();
// page context creates initial JspWriter "out"

try {
out.println("<p>");
out.println("Hello World");
out.println("</p>");

} catch (Exception e) {
pageContext.handlePageException(e);

} finally {
_factory.releasePageContext(pageContext);

}
}

}

A.4 The Web Application Descriptor

The Servlet is made to look as a JSP page with the following web.xml:



PACKAGING JSP PAGES

JavaServer Pages 1.2 Specification

210

<!DOCTYPE webapp
SYSTEM "http://java.sun.com/j2ee/dtds/web-app_2_3.dtd">

<webapp>
<servlet>

<servlet-name> HelloWorld </servlet-name>
<servlet-class> _jsp_HelloWorld_XXX_Impl.class </servlet-class>

</servlet>

<servlet-mapping>
<servlet-name> HelloWorld </servlet-name>
<url-pattern> /HelloWorld.jsp </url-pattern>

</servlet-mapping>

<session-config>
<session-timeout> 1 </session-timeout>

</session-config>
</webapp>

A.5 The WAR for the compiled JSP page

Finally everything is packaged together into a WAR:

/WEB-INF/web.xml

/WEB-INF/classes/_jsp_HelloWorld_XXX_Impl.class

Note that if the Servlet class generated for the JSP page had depended on 
some support classes, they would have to be included in the WAR.



207

A P P E N D I X JSP.B
DTD and Schemas for XML

Syntax

This appendix includes the DTD and XSchema for JSP pages in XML syntax. 
This appendix is non-normative.

As indicated in Section JSP.5.4, a DTD is not a good description to be used 
for validating a document that is using namespaces like a JSP page in XML 
syntax, but its familiarity with many readers makes it nevertheless useful.

B.1 DTD for JSP documents

The following is a DTD for JSP documents. Since a JSP document is a 
namespace-aware document, this DTD is included here just for documentation pur-
poses.

<!-- DTD for JSP 1.2 -->

<!-- 
This DTD is not conditional on any parameter entities in the
internal subset and does not export any general entities.

-->

<!-- Constrained Names -->



JavaServer Pages 1.2 Specification

208

<!ENTITY % URI “CDATA”>
    <!-- a Uniform Resource Identifier, see [RFC2396] -->

<!ENTITY % UriList “CDATA”>

    <!-- a space separated list of Uniform Resource Identifiers -->

<!ENTITY % URL “CDATA”>
    <!-- a relative urlSpec is as in Section 2.10.2. -->

<!ENTITY % BeanID “IDREF”>
    <!-- a previously declared bean ID in the current scope. -->

<!ENTITY % Prefix “CDATA”>
    <!-- a Name that contains no : characters. -->

<!ENTITY % ClassName “CDATA”>

    <!-- a fully qualified class name. -->

<!ENTITY % TypeName “CDATA”>
    <!-- a fully qualified class or interface name. -->

<!ENTITY % BeanName “CDATA”>
    <!-- a bean name as expected by java.beans.Beans instantiate(). -->

<!ENTITY % Content “CDATA”>
    <!-- a MIME type followed by an IANA charset, as “ type [; S? [‘charset=’] char-
set] “ -->

<!ENTITY % Length “CDATA”>
    <!-- nn for pixels or nn% for percentage length -->

<!ENTITY % Pixels “CDATA”>

    <!-- integer representing length in pixels -->

<!ENTITY % Bool “(true|false|yes|no)”>
    <!-- boolean -->

<!-- used for object, applet, img, input and iframe -->
<!ENTITY % ImgAlign “(top|middle|bottom|left|right)”>

<!-- Element Groups -->



209

JavaServer Pages 1.2 Specification

<!ENTITY % Directives “jsp:directive.page|jsp:directive.include”>

<!ENTITY % Scripts “jsp:scriptlet|jsp:declaration|jsp:expression”>

<!ENTITY % Actions
    “jsp:useBean
    |jsp:setProperty

    |jsp:getProperty
    |jsp:include
    |jsp:forward
    |jsp:plugin”

>

<!ENTITY % Body “(jsp:text|%Directives;|%Scripts;|%Actions;)*”>

<!-- Elements  -->

<!--    Root element of a JSP page.

-->
<!ELEMENT jsp:root %Body;>
<!ATTLIST jsp:root
    xmlns:jsp       CDATA           “http://java.sun.com/JSP/Page”

version CDATA #REQUIRED
>

<!ELEMENT jsp:directive.page EMPTY>

<!ATTLIST jsp:directive.page
    language        CDATA           “java”
    extends         %ClassName;     #IMPLIED
    contentType     %Content;       “text/html; ISO-8859-1”

    import          CDATA           #IMPLIED
    session         %Bool;          “true”
    buffer          CDATA           “8kb”
    autoFlush       %Bool;          “true”

    isThreadSafe    %Bool;          “true”
    info            CDATA           #IMPLIED
    errorPage       %URL;           #IMPLIED
    isErrorPage     %Bool;          “false”

>



JavaServer Pages 1.2 Specification

210

<!-- the jsp:directive.include element only appears in JSP documents and does 
not appear in XML views of JSP pages -->

<!ELEMENT jsp:directive.include EMPTY>
<!ATTLIST jsp:directive.include
    file            %URI;           #REQUIRED
>

<!ELEMENT jsp:scriptlet (#PCDATA)>

<!ELEMENT jsp:declaration (#PCDATA)>

<!ELEMENT jsp:expression (#PCDATA)>

<!ELEMENT jsp:useBean %Body;>

<!ATTLIST jsp:useBean
    id              ID              #REQUIRED
    class           %ClassName;     #IMPLIED
    type            %TypeName;      #IMPLIED

    beanName        %BeanName;      #IMPLIED
    scope           (page
                    |session
                    |request

                    |application)   “page”
>

<!ELEMENT jsp:setProperty EMPTY>

<!ATTLIST jsp:setProperty
    name            %BeanID;        #REQUIRED
    property        CDATA           #REQUIRED
    value           CDATA           #IMPLIED

    param           CDATA           #IMPLIED
>

<!ELEMENT jsp:getProperty EMPTY>

<!ATTLIST jsp:getProperty
    name            %BeanID;        #REQUIRED
    property        CDATA           #REQUIRED
>



211

JavaServer Pages 1.2 Specification

<!ELEMENT jsp:include (jsp:param*)>
<!ATTLIST jsp:include
    flush           %Bool;          “false”
    page            %URL;           #REQUIRED

>

<!ELEMENT jsp:forward (jsp:param*)>
<!ATTLIST jsp:forward

    page            %URL;           #REQUIRED
>

<!ELEMENT jsp:plugin (jsp:params?, jsp:fallback?)>

<!ATTLIST jsp:plugin
    type            (bean|applet)   #REQUIRED
    code            %URI;           #IMPLIED
    codebase        %URI;           #IMPLIED

    align           %ImgAlign;      #IMPLIED
    archive         %UriList;       #IMPLIED
    height          %Length;        #IMPLIED
    hspace          %Pixels;        #IMPLIED

    jreversion      CDATA           “1.2”
    name            NMTOKEN         #IMPLIED
    vspace          %Pixels;        #IMPLIED
    width           %Length;        #IMPLIED

    nspluginurl     %URI;           #IMPLIED
    iepluginurl     %URI;           #IMPLIED
>

<!ELEMENT jsp:params (jsp:param+)>

<!ELEMENT jsp:param EMPTY>
<!ATTLIST jsp:param

    name            CDATA           #REQUIRED
    value           CDATA           #REQUIRED
>

<!ELEMENT jsp:text #PCDATA>



JavaServer Pages 1.2 Specification

212

B.2 XSchema Description of JSP documents

The following is a description using XML Schema:
<?xml version ="1.0"?>
<!DOCTYPE schema [
<!-- Patterns -->
<!ENTITY Identifier   "(\p{L}|_|$)(\p{N}|\p{L}|_|$)*">
<!ENTITY TypeName     "&Identifier;(\.&Identifier;)*">
<!ENTITY WS       "\s*">
<!ENTITY Import     "&TypeName;(\.\*)?">
<!ENTITY ImportList   "&Import;(&WS;,&WS;&Import;)*">
<!ENTITY SetProp    "(&Identifier;|\*)">
<!ENTITY RelativeURL  "[^:#/\?]*(:{0,0}|[#/\?].*)">
<!ENTITY Length     "[0-9]*&#x25;?">
<!ENTITY AsciiName    "[A-Za-z0-9_-]*">
<!ENTITY ValidContentType

"&AsciiName;/&AsciiName;(;&WS;(charset=)?&AsciiName;)?">
<!ENTITY ValidPageEncoding  "&AsciiName;/&AsciiName;">
<!ENTITY Buffer     "[0-9]+kb">
<!ENTITY RTexpr     "&#x25;=.*&#x25;">
]>

<!--Conforms to w3c http://www.w3.org/2001/XMLSchema -->

<xsd:schema
    xmlns = "http://java.sun.com/JSP/Page"
    xmlns:xsd = "http://www.w3.org/2001/XMLSchema"
    xmlns:jsp = "http://java.sun.com/JSP/Page"
    targetNamespace = "http://java.sun.com/JSP/Page"
    elementFormDefault = "qualified"
    attributeFormDefault = "unqualified">

  <xsd:annotation>
    <xsd:documentation>
      XML Schema for JSP 1.2.

      This schema is based upon the recent (May 5th, 2001)
      W3C recommendation for XML Schema.

      A JSP translator should reject an XML-format file that is
      not strictly valid according to this schema or does not observe
      the constraints documented here. A translator is not required
      to use this schema for validation or to use a validating parser.
    </xsd:documentation>
  </xsd:annotation>



213

JavaServer Pages 1.2 Specification

  <!-- Complex Types -->

  <xsd:complexType name = "Body">
    <xsd:annotation>
      <xsd:documentation>
        Body defines the "top-level" elements in root and beanInfo.
        There are probably other elements that should use it.
      </xsd:documentation>
    </xsd:annotation>
    <xsd:group ref = "Bodygroup" minOccurs = "0" maxOccurs = "unbounded"/>
  </xsd:complexType>

  <xsd:complexType name = "BasicType">
    <xsd:simpleContent>
      <xsd:extension base = "xsd:string">
          <xsd:attribute ref = "jsp:id"/>
      </xsd:extension>
    </xsd:simpleContent>
  </xsd:complexType>

  <!-- groups -->

  <xsd:group name = "Bodygroup">
    <xsd:choice>
      <xsd:element ref = "directive.page"/>
      <xsd:element ref = "directive.include"/>
      <xsd:element ref = "scriptlet"/>
      <xsd:element ref = "declaration"/>
      <xsd:element ref = "expression"/>
      <xsd:element ref = "useBean"/>
      <xsd:element ref = "setProperty"/>
      <xsd:element ref = "getProperty"/>
      <xsd:element ref = "include"/>
      <xsd:element ref = "forward"/>
      <xsd:element ref = "plugin"/>
      <xsd:element ref = "text"/>
      <xsd:any namespace="##other" processContents = "lax"/>
    </xsd:choice>
  </xsd:group>

  <!-- jsp:id attribute -->

  <xsd:attribute name = "id" type = "xsd:string"/>

<!--
There should be a constraint for jsp:id to be unique within all elements



JavaServer Pages 1.2 Specification

214

in the document.
-->

  <!-- Simple types are next -->

  <xsd:simpleType name = "RTE">
    <xsd:annotation>
      <xsd:documentation>
        A request-time expression value
      </xsd:documentation>
    </xsd:annotation>
    <xsd:restriction base = "xsd:string">
      <xsd:pattern value = "&RTexpr;"/>
    </xsd:restriction>
  </xsd:simpleType>

  <xsd:simpleType name = "Bool">
    <xsd:annotation>
      <xsd:documentation>
        Bool would be boolean except it does not accept 1 and 0.
      </xsd:documentation>
    </xsd:annotation>
    <xsd:restriction base = "xsd:NMTOKEN" >
      <xsd:enumeration value = "true"/>
      <xsd:enumeration value = "false"/>
      <xsd:enumeration value = "yes"/>
      <xsd:enumeration value = "no"/>
    </xsd:restriction>     
  </xsd:simpleType>

  <xsd:simpleType name = "Identifier">
    <xsd:annotation>
      <xsd:documentation>
        Identifier is an unqualified Java identifier.
      </xsd:documentation>
    </xsd:annotation>
    <xsd:restriction base = "xsd:string">
      <xsd:pattern value = "&Identifier;"/>
    </xsd:restriction>
  </xsd:simpleType>
  
  <xsd:simpleType name = "TypeName">
    <xsd:annotation>
      <xsd:documentation>
        TypeName is one or more Java identifiers separated by dots
        with no whitespace.
      </xsd:documentation>
    </xsd:annotation>



215

JavaServer Pages 1.2 Specification

    <xsd:restriction base = "xsd:string">
      <xsd:pattern value = "&TypeName;"/>
    </xsd:restriction>
  </xsd:simpleType>
  
  <xsd:simpleType name = "ImportList">
    <xsd:annotation>
      <xsd:documentation>
        ImportList is one or more typeNames separated by commas.
        Whitespace is allowed before and after the comma.
      </xsd:documentation>
    </xsd:annotation>
    <xsd:restriction base = "xsd:string">
      <xsd:pattern value = "&ImportList;"/>
    </xsd:restriction>
  </xsd:simpleType>
  
  <xsd:simpleType name = "SetProp">
    <xsd:annotation>
      <xsd:documentation>
        SetProp is an Identifier or *.
      </xsd:documentation>
    </xsd:annotation>
    <xsd:restriction base = "xsd:string">
      <xsd:pattern value = "&SetProp;"/>
    </xsd:restriction>
  </xsd:simpleType>
  
  <xsd:simpleType name = "RelativeURL">
    <xsd:annotation>
      <xsd:documentation>
        RelativeURL is a uriReference with no colon character
        before the first /, ? or #, if any (RFC2396).
      </xsd:documentation>
    </xsd:annotation>

<xsd:restriction base = "xsd:anyURI">
      <xsd:pattern value = "&RelativeURL;"/>
    </xsd:restriction>
  </xsd:simpleType>

  <xsd:simpleType name = "RTERelativeURL">
    <xsd:union memberTypes = "RelativeURL RTE"/>
  </xsd:simpleType>

  <xsd:simpleType name = "Length">
    <xsd:annotation>
      <xsd:documentation>
        Length is nn or nn%.



JavaServer Pages 1.2 Specification

216

      </xsd:documentation>
    </xsd:annotation>
    <xsd:restriction base = "xsd:string">
      <xsd:pattern value = "&Length;"/>
    </xsd:restriction>
  </xsd:simpleType>
  

  <xsd:simpleType name = "ExplicitBufferSize">
    <xsd:annotation>
      <xsd:documentation>
         Buffer Size with an explicit value
      </xsd:documentation>
    </xsd:annotation> 
    <xsd:restriction base = "xsd:string">
      <xsd:pattern value = "&Buffer;"/>
    </xsd:restriction>
  </xsd:simpleType>

  <xsd:simpleType name = "NoneBufferSize">
    <xsd:annotation>
      <xsd:documentation>
         Buffer Size with a "none" value
      </xsd:documentation>
    </xsd:annotation> 
       <xsd:restriction base = "xsd:string">
         <xsd:enumeration value = "none"/>
       </xsd:restriction>
  </xsd:simpleType>

  <xsd:simpleType name = "BufferSize">
    <xsd:annotation>
      <xsd:documentation>
        Buffer size is xkb or none.
      </xsd:documentation>
    </xsd:annotation>
    <xsd:union memberTypes = "ExplicitBufferSize NoneBufferSize"/>
  </xsd:simpleType>
  
  <xsd:simpleType name = "ContentType">
    <xsd:annotation>
      <xsd:documentation>
        Contetn Type for this page
      </xsd:documentation>
    </xsd:annotation>
    <xsd:restriction base = "xsd:string">
      <xsd:pattern value = "&ValidContentType;"/>
    </xsd:restriction>



217

JavaServer Pages 1.2 Specification

  </xsd:simpleType>

  <xsd:simpleType name = "PageEncoding">
    <xsd:annotation>
      <xsd:documentation>
        Page Encoding for this page.  Default is that of ContentType.
      </xsd:documentation>
    </xsd:annotation>
    <xsd:restriction base = "xsd:string">
      <xsd:pattern value = "&ValidPageEncoding;"/>
    </xsd:restriction>
  </xsd:simpleType>

  <xsd:simpleType name = "Scope">
    <xsd:annotation>
      <xsd:documentation>
        valid scope values
      </xsd:documentation>
    </xsd:annotation>
    <xsd:restriction base = "xsd:NMTOKEN">
      <xsd:enumeration value = "page"/>
      <xsd:enumeration value = "session"/>
      <xsd:enumeration value = "request"/>
      <xsd:enumeration value = "application"/>
    </xsd:restriction>
  </xsd:simpleType>

  <xsd:simpleType name = "PlugInType">
    <xsd:annotation>
      <xsd:documentation>
        valid values for a plugin type
      </xsd:documentation>
    </xsd:annotation>
    <xsd:restriction base = "xsd:NMTOKEN">
      <xsd:enumeration value = "bean"/>
      <xsd:enumeration value = "applet"/>
    </xsd:restriction>
  </xsd:simpleType>

  <xsd:simpleType name = "AlignType">
    <xsd:annotation>
      <xsd:documentation>
        Buffer size is xkb.
      </xsd:documentation>
    </xsd:annotation>
    <xsd:restriction base = "xsd:NMTOKEN">
      <xsd:enumeration value = "top"/>
      <xsd:enumeration value = "middle"/>



JavaServer Pages 1.2 Specification

218

      <xsd:enumeration value = "bottom"/>
      <xsd:enumeration value = "left"/>
      <xsd:enumeration value = "right"/>
    </xsd:restriction>
  </xsd:simpleType>

  <!-- Elements follow -->

  <xsd:element name = "root">
    <xsd:annotation>
      <xsd:documentation>
        The root element of all JSP documents is named root.
        
        Authors may, if they wish, include schema location information.
        If specified, the information may appear as attributes of
        the root element as follows:

        xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
        xsi:schemaLocation="http://java.sun.com/JSP/Page xsd-file-location"

        Documents should not specify the system identifier of a DTD
        in a DOCTYPE declaration.
      </xsd:documentation>
    </xsd:annotation>
    <xsd:complexType>
      <xsd:complexContent>
        <xsd:extension base = "Body">
          <xsd:attribute name = "version" fixed = "1.2" type = "xsd:string"/>
        </xsd:extension>
      </xsd:complexContent>
    </xsd:complexType>
  </xsd:element>
  
  <xsd:element name = "directive.page">
    <xsd:annotation>
      <xsd:documentation>
        directive.page is the "page directive".
      </xsd:documentation>
    </xsd:annotation>
    <xsd:complexType>
      <xsd:attribute ref = "jsp:id"/>
      <xsd:attribute name = "language" default = "java" type = "xsd:string"/>
      <xsd:attribute name = "extends" type = "TypeName"/>
      <xsd:attribute name = "contentType"

default = "text/html; ISO-8859-1" type = "ContentType"/>
      <xsd:attribute name = "pageEncoding"

use = "optional" type = "PageEncoding"/>
      <xsd:attribute name = "import" type = "ImportList"/>



219

JavaServer Pages 1.2 Specification

      <xsd:attribute name = "session" default = "true" type = "Bool"/>
      <xsd:attribute name = "buffer" default = "8kb" type = "BufferSize"/>
      <xsd:attribute name = "autoFlush" default = "true" type = "Bool"/>
      <xsd:attribute name = "isThreadSafe" default = "true" type = "Bool"/>
      <xsd:attribute name = "info" type = "xsd:string"/>
      <xsd:attribute name = "errorPage" type = "RelativeURL"/>
      <xsd:attribute name = "isErrorPage" default = "false" type = "Bool"/>
    </xsd:complexType>
  </xsd:element>
  
  <xsd:element name = "directive.include">
    <xsd:annotation>
      <xsd:documentation>
        directive.include is the "include directive".

This element does not appear on XML views of JSP pages.
      </xsd:documentation>
    </xsd:annotation>
    <xsd:complexType>
      <xsd:attribute ref = "jsp:id"/>
      <xsd:attribute name = "file" use = "required" type = "RelativeURL"/>
    </xsd:complexType>
  </xsd:element>

  <xsd:element name = "scriptlet" type = "BasicType">
    <xsd:annotation>
      <xsd:documentation>
        The representation of a scriplet.
      </xsd:documentation>
    </xsd:annotation>
  </xsd:element>
  
  <xsd:element name = "declaration" type = "BasicType">
    <xsd:annotation>
      <xsd:documentation>
        The reprsentation of a declaration.
      </xsd:documentation>
    </xsd:annotation>
  </xsd:element>
  
  <xsd:element name = "expression" type = "BasicType">
    <xsd:annotation>
      <xsd:documentation>
        The representation of an expression.
      </xsd:documentation>
    </xsd:annotation>
  </xsd:element>
 
  <xsd:element name = "text" type = "BasicType">



JavaServer Pages 1.2 Specification

220

    <xsd:annotation>
      <xsd:documentation>
        Verbatim template text.
      </xsd:documentation>
    </xsd:annotation>
  </xsd:element>

  <xsd:element name = "useBean">
    <xsd:annotation>
      <xsd:documentation>
        useBean instantiates or accesses a bean in the specified scope.
        
        Constraint: The allowed combinations of attributes are:
        
          class [type] | type [( class | beanName)]
        
      </xsd:documentation>
    </xsd:annotation>
    <xsd:complexType>
      <xsd:complexContent>
        <xsd:extension base="Body">
          <xsd:attribute ref = "jsp:id"/>
          <xsd:attribute name = "id" use = "required" type = "Identifier"/>
          <xsd:attribute name = "class" type = "TypeName"/>
          <xsd:attribute name = "type" type = "TypeName"/>
          <xsd:attribute name = "beanName" type = "TypeName"/>
          <xsd:attribute name = "scope" default = "page" type = "Scope"/>
        </xsd:extension>
      </xsd:complexContent>
    </xsd:complexType>
  </xsd:element>
  
  <xsd:element name = "setProperty">
    <xsd:annotation>
      <xsd:documentation>
        setProperty changes the value of an object property.
        
        Constraint: The object named by the name must have been
        "introduced" to the JSP processor using either the
        jsp:useBean action or a custom action with an associated
        VariableInfo entry for this name.

        Exact valid combinations are not expressable in XML Schema.
        They are:

        name="Identifier" property="*"
        name="Identifier" property="Identfiier" param="string"
        name="Identifier" property="Identifier" value="string"



221

JavaServer Pages 1.2 Specification

                
      </xsd:documentation>
    </xsd:annotation>
    <xsd:complexType>
      <xsd:attribute ref = "jsp:id"/>
      <xsd:attribute name = "name" use = "required" type = "Identifier"/>
      <xsd:attribute name = "property" use = "required" type = "SetProp"/>
      <xsd:attribute name = "param" type = "xsd:string"/>
      <xsd:attribute name = "value" type = "xsd:string"/>
    </xsd:complexType>
  </xsd:element>

  <xsd:element name = "getProperty">
    <xsd:annotation>
      <xsd:documentation>
        getProperty obtains the value of an object property.
        
        Constraint: The object named by the name must have been
        "introduced" to the JSP processor using either the
        jsp:useBean action or a custom action with an associated
        VariableInfo entry for this name.

      </xsd:documentation>
    </xsd:annotation>
    <xsd:complexType>
      <xsd:attribute ref = "jsp:id"/>
      <xsd:attribute name = "name" use = "required" type = "Identifier"/>
      <xsd:attribute name = "property" use = "required" type = "Identifier"/>
    </xsd:complexType>
  </xsd:element>
  
  <xsd:element name = "include">
    <xsd:complexType>
      <xsd:sequence>
        <xsd:element ref = "param" minOccurs = "0" maxOccurs = "unbounded"/>
      </xsd:sequence>
      <xsd:attribute ref = "jsp:id"/>
      <xsd:attribute name = "flush" default = "false" type = "Bool"/>
      <xsd:attribute name = "page" use = "required" type = "RTERelativeURL"/>
    </xsd:complexType>
  </xsd:element>

  <xsd:element name = "forward">
    <xsd:complexType>
      <xsd:sequence>
        <xsd:element ref = "param" minOccurs = "0" maxOccurs = "unbounded"/>
      </xsd:sequence>
      <xsd:attribute ref = "jsp:id"/>



JavaServer Pages 1.2 Specification

222

      <xsd:attribute name = "page" use = "required" type = "RTERelativeURL"/>
     </xsd:complexType>
  </xsd:element>
  
  <xsd:element name = "plugin">
    <xsd:complexType> <!-- content only! -->
      <xsd:sequence>
        <xsd:element ref = "params" minOccurs = "0" maxOccurs = "1"/>
        <xsd:element name = "fallback"

minOccurs = "0" maxOccurs = "1" type = "Body"/>
      </xsd:sequence>
      <xsd:attribute ref = "jsp:id"/>
      <xsd:attribute name = "type" use = "required" type = "PlugInType"/>
      <xsd:attribute name = "code" type = "xsd:anyURI"/>
      <xsd:attribute name = "codebase" type = "xsd:anyURI"/>
      <xsd:attribute name = "align" type = "AlignType"/>
      <xsd:attribute name = "archive">
        <xsd:simpleType>
           <xsd:list itemType="xsd:anyURI"/>
        </xsd:simpleType>
      </xsd:attribute>
      <xsd:attribute name = "height" type = "Length"/>
      <xsd:attribute name = "hspace" type = "xsd:int"/>
      <xsd:attribute name = "jreversion" default = "1.2" type = "xsd:string"/>
      <xsd:attribute name = "name" type = "xsd:NMTOKEN"/>
      <xsd:attribute name = "vspace" type = "xsd:int"/>
      <xsd:attribute name = "width" type = "Length"/>
      <xsd:attribute name = "nspluginurl" type = "xsd:anyURI"/>
      <xsd:attribute name = "iepluginurl" type = "xsd:anyURI"/>
    </xsd:complexType>
  </xsd:element>
  
  <xsd:element name = "params">
    <xsd:complexType>
       <xsd:sequence>
         <xsd:element ref = "param" minOccurs = "1" maxOccurs = "unbounded"/>
       </xsd:sequence>
      <xsd:attribute ref = "jsp:id"/>
    </xsd:complexType>
  </xsd:element>

  <xsd:element name = "param">
    <xsd:complexType>
      <xsd:attribute ref = "jsp:id"/>
      <xsd:attribute name = "name" use = "required" type = "xsd:NMTOKEN"/>
      <xsd:attribute name = "value" use = "required" type = "xsd:string"/>
    </xsd:complexType>
  </xsd:element>



223

JavaServer Pages 1.2 Specification

  
</xsd:schema>



JavaServer Pages 1.2 Specification

224



225

A P P E N D I X JSP.C

DTD for TagLibrary
Descriptor, JSP 1.2

This appendix includes the DTD for a tag library descriptor using JSP 1.2.  
All JSP 1.2 containers are required to accept such a TLD.

This is the same DTD as "http://java.sun.com/dtd/web-jsptaglibrary_1_2.dtd", 
except for some formatting changes to extract comments and make them more 
readable.

C.1 DTD for TagLibrary Descriptor Files

The following is a DTD describing a Tag Library Descriptor file in JSP 1.2 format.

<!--

This is the DTD defining the JavaServer Pages 1.2 Tag Library descriptor (.tld) 
(XML) file format/syntax.
A Tag Library is a JAR file containing a valid instance of a Tag Library Descriptor 
(taglib.tld) file in the META-INF subdirectory, along with the appropriate imple-

mentation classes and other resources required to implement the actions defined 
therein.
Use is subject to license terms.
-->

<!NOTATION WEB-JSPTAGLIB.1_2 PUBLIC “-//Sun Microsystems, Inc.//DTD 
JSP Tag Library 1.2//EN”>



DTD FOR TAGLIBRARY DESCRIPTOR, JSP 1.2

JavaServer Pages 1.2 Specification

226

<!--
All JSP 1.2 tag library descriptors must include a DOCTYPE of the following form:
  <!DOCTYPE taglib PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 
1.2//EN" "http://java.sun.com/dtd/web-jsptaglibrary_1_2.dtd">

-->

<!--
The taglib element is the document root, it defines:

tlib-version the version of the tag library implementation

jsp-version the version of JSP the tag library depends upon

short-name a simple default name that could be used by a JSP authoring 

tool to create names with a mnemonicvalue; for example, the it 

may be used as the preferedprefix value in taglib directives

uri a uri uniquely identifying this taglib

display-name the display-name element contains a short name that is intend-

ed to be displayed by tools

small-icon optional small-icon that can be used by tools

large-icon optional large-icon that can be used by tools

description a simple string describing the “use” of this taglib, should be user 

discernable

validator optional TagLibraryValidator information

listener optional event listener specification

-->

<!ELEMENT taglib (tlib-version, jsp-version, short-name, uri?, display-name?, 
small-icon?, large-icon?, description?, validator?, listener*, tag+) >

<!ATTLIST taglib
id ID #IMPLIED
xmlns CDATA #FIXED “http://java.sun.com/JSP/TagLibraryDescriptor”>

<!--
The value of the tlib-version element describes this version (number) of the tagl-

ibrary. This element is mandatory.



227

JavaServer Pages 1.2 Specification

#PCDATA ::= [0-9]*{ “.”[0-9] }0..3
-->

<!ELEMENT tlib-version (#PCDATA) 

<!--
The value of the jsp-version element describes the JSP version (number) this 

taglibrary requires in order to function. This element is mandatory. The value that 
should be used for JSP 1.2 is "1.2" (no quotes).

#PCDATA ::= [0-9]*{ “.”[0-9] }0..3

-->

<!ELEMENT jsp-version (#PCDATA) >

<!--
The value of the short-name element is a name that could be used by a JSP au-
thoring tool to create names with a mnemonic value; for example, it may be used 
as the prefered prefix value in taglib directives. 

Do not use white space, and do not start with digits or underscore.

#PCDATA ::= NMTOKEN
-->

<!ELEMENT short-name (#PCDATA) >

<!--

The value of the uri element is a public URI that uniquely identifies the exact se-
mantics of this taglibrary. 
-->

<!ELEMENT uri (#PCDATA) >

<!--
The value of the description element is an arbitrary text string describing the tag 

library.
-->

<!ELEMENT description(#PCDATA) >



DTD FOR TAGLIBRARY DESCRIPTOR, JSP 1.2

JavaServer Pages 1.2 Specification

228

<!--
The validator element provides information on an optional validator that can be 
used to validate the conformance of a JSP page to using this tag library.
-->

<!ELEMENT validator (validator-class, init-param*, description?) >

<!--
The validator-class element defines the TagLibraryValidator class that can be 
used to validate the conformance of a JSP page to using this tag library.
-->

<!ELEMENT validator-class (#PCDATA) >

<!--
The init-param element contains a name/value pair as an
initialization param.
-->

<!ELEMENT init-param (param-name, param-value, description?)>

<!--

The param-name element contains the name of a parameter.
-->

<!ELEMENT param-name (#PCDATA)>

<!--
The param-value element contains the value of a parameter.
-->

<!ELEMENT param-value (#PCDATA)>

<!--

The listener element defines an optional event listener object to be instantiated 
and
registered automatically.
-->

<!ELEMENT listener (listener-class) >



229

JavaServer Pages 1.2 Specification

<!--
The listener-class element declares a class in the application that must be regis-
tered as a web application listener bean. 
See the Servlet 2.3 specification for details.

-->

<!ELEMENT listener-class (#PCDATA) >

<!--
The tag element defines an action in this tag library. The tag element has one at-
tribute, id.
The tag element may have several subelements defining:

name The unique action name

tag-class  The tag handler class implementing javax.servlet.jsp.tagext.Tag

tei-class An optional subclass of javax.servlet.jsp.tagext.TagExtraInfo

body-content The body content type

display-name A short name that is intended to be displayed by tools

small-icon Optional small-icon that can be used by tools

large-icon Optional large-icon that can be used by tools

description Optional tag-specific information

variable Optional scripting variable information

attribute All attributes of this action

example Optional informal description of an example of a use of this ac-

tion.

-->

<!ELEMENT tag (name, tag-class, tei-class?, body-content?, display-name?, 
small-icon?, large-icon?, description?, variable*, attribute*, example?) >

<!--
The tag-class element indicates the subclass of javax.serlvet.jsp.tagext.Tag that 

implements the request time semantics for this tag. This element is required.

#PCDATA ::= fully qualified Java class name
-->



DTD FOR TAGLIBRARY DESCRIPTOR, JSP 1.2

JavaServer Pages 1.2 Specification

230

<!ELEMENT tag-class (#PCDATA) >

<!--
The tei-class element indicates the subclass of javax.servlet.jsp.tagext.TagEx-

traInfo for this tag. The class is instantiated at translation time. This element is 
optional.

#PCDATA ::= fully qualified Java class name

-->

<!ELEMENT tei-class (#PCDATA) >

<!--
The body-content element provides provides information on the content of the 
body of this tag. This element is primarily intended for use by page composition 

tools.
There are currently three values specified:

tagdependent The body of the tag is interpreted by the tag implementation it-

self, and is most likely in a different “langage”, e.g embedded 

SQL statements.

JSP The body of the tag contains nested JSP syntax

empty The body must be empty

This element is optional; the default value is JSP

#PCDATA ::=  tagdependent | JSP | empty
-->

<!ELEMENT body-content (#PCDATA) >

<!--

The display-name element contains a short name that is intended to be displayed 
by tools.
-->

<!ELEMENT display-name (#PCDATA) >



231

JavaServer Pages 1.2 Specification

<!--
The large-icon element contains the name of a file containing a large (32 x 32) 
icon image. The icon can be used by tools. The file name is a relative path within 
the tag library. 

The image must be either in the JPEG or GIF format, and the file name must end 
with the suffix “.jpg” or “.gif” respectively.
-->

<!ELEMENT large-icon (#PCDATA) >

<!--

The small-icon element contains the name of a file containing a small (16 x 16) 
icon image. The icon can be used by tools. The file name is a relative path within 
the tag library.  
The image must be either in the JPEG or GIF format, and the file name must end 

with the suffix “.jpg” or “.gif” respectively.
-->

<!ELEMENT small-icon (#PCDATA) >

<!--
The example element provides an informal description of an example of the use 
of a tag.

-->

<!ELEMENT example (#PCDATA) >

<!--
The variable element provides information on the scripting variables defined by 
this tag.  
It is a (translation time) error for an action that has one or more variable subele-

ments to have a TagExtraInfo class that returns a non-null object.
The subelements of variable are of the form:

name-given The variable name as a constant

name-from-attribute The name of an attribute whose (translation time) value will 

give the name of the variable.  One of name-given or name-

from-attribute is required.

variable-class Name of the class of the variable. java.lang.String is default.



DTD FOR TAGLIBRARY DESCRIPTOR, JSP 1.2

JavaServer Pages 1.2 Specification

232

declare  Whether the variable is declared or not. True is the default.

scope The scope of the scripting variable defined.  NESTED is de-

fault.

-->

<!ELEMENT variable ( (name-given | name-from-attribute), variable-class?, de-

clare?, scope?, description?) >

<!--

The name-given element provides the name for the scripting variable.  
One of name-given or name-from-attribute is required.
-->

<!ELEMENT name-given (#PCDATA) >

<!--

The value of the name-from-attribute element is the name of an attribute whose 
(translation-time) value will give the name of the variable.  
One of name-given or name-from-attribute is required.
-->

<!ELEMENT name-from-attribute (#PCDATA) >

<!--

The variable-class element is the name of the class for the scripting variable.
This element is optional; the default is java.lang.String.
-->

<!ELEMENT variable-class (#PCDATA) >

<!--

The value of the declare element indicates whether the scripting variable is to be 
defined or not. See TagExtraInfo for details.  
This element is optional and is the default is true.
-->

<!ELEMENT declare (#PCDATA) >

<!--
The value of the scope element describes the scope of the scripting variable.  



233

JavaServer Pages 1.2 Specification

See TagExtraInfo for details.
This element is optional and the default value is the string “NESTED”. The other 
legal values are “AT_BEGIN” and “AT_END”.
-->

<!ELEMENT scope (#PCDATA) >

<!--
The attribute element defines an attribute for the nesting tag.
The attributre element may have several subelements defining:

name the name of the attribute

attribute whether the attribute is required or optional

rtexpravaluewhether the attribute is a runtime attribute

type the type of the attributes

description a description of the attribute

-->

<!ELEMENT attribute (name, required? , rtexprvalue?, type?, description?) >

<!--
The name element defines the canonical name of a tag or attribute being defined

#PCDATA ::= NMTOKEN

-->

<!ELEMENT name(#PCDATA) >

<!--
The value of the required element indicates if the nesting attribute is required or 
optional. This attribute is optional and its default value is false.

#PCDATA ::= true | false | yes | no
-->

<!ELEMENT required    (#PCDATA) >



DTD FOR TAGLIBRARY DESCRIPTOR, JSP 1.2

JavaServer Pages 1.2 Specification

234

<!--
The value of the rtexpvalue element indicates if the value of the attribute may be 
dynamically calculated at request time, as opposed to a static value determined 
at translation time. This attribute is optional and its default value is false

#PCDATA ::= true | false | yes | no
-->

<!ELEMENT rtexprvalue (#PCDATA) >

<!--

The value of the type element describes the Java type of the attributes value.  
For static values (those determined at translation time) the type is always ja-
va.lang.String.
-->

<!ELEMENT type (#PCDATA) >

<!-- ID attributes -->

<!ATTLIST tlib-version id ID #IMPLIED>
<!ATTLIST jsp-version id ID #IMPLIED>
<!ATTLIST short-name id ID #IMPLIED>

<!ATTLIST uri id ID #IMPLIED>
<!ATTLIST description id ID #IMPLIED>
<!ATTLIST example id ID #IMPLIED>
<!ATTLIST tag id ID #IMPLIED>

<!ATTLIST tag-class id ID #IMPLIED>
<!ATTLIST tei-class id ID #IMPLIED>
<!ATTLIST body-content id ID #IMPLIED>
<!ATTLIST attribute id ID #IMPLIED>

<!ATTLIST name id ID #IMPLIED>
<!ATTLIST required id ID #IMPLIED>
<!ATTLIST rtexprvalue id ID #IMPLIED>
<!ATTLIST param-name id ID #IMPLIED>

<!ATTLIST param-value id ID #IMPLIED>
<!ATTLIST listener id ID #IMPLIED>
<!ATTLIST listener-class id ID #IMPLIED>



237

A P P E N D I X JSP.D
DTD for TagLibrary

Descriptor, JSP 1.1

This appendix includes the DTD for a tag library descriptor using JSP 1.1.  
All JSP 1.2 containers are required to accept such a TLD.

This is the same DTD as "http://java.sun.com/dtd/web-jsptaglibrary_1_1.dtd", 
except for some formatting changes to extract comments and make them more 
readable.

D.1 DTD for TagLibrary Descriptor Files

The following is a DTD describing a Tag Library Descriptor file in JSP 1.1 format.

<!--

This is the DTD defining the JavaServer Pages 1.1 Tag Library descriptor (.tld) 
(XML) file format/syntax.

A Tag Library is a JAR file containing a valid instance of a Tag Library Descriptor 

(taglib.tld) file in the META-INF subdirectory, along with the appropriate imple-
menting classes, and other resources required toimplement the tags defined 
therein.

Use is subject to license terms.
  -->

<!--
The taglib tag is the document root, it defines: 



JavaServer Pages 1.2 Specification

238

tlibversion the version of the tag library implementation 
jspversion the version of JSP the tag library depends upon 
shortname a simple default short name that could be used by a JSP authoring 

tool to create names with a mnemonic value; for example, the it may be used 

as the prefered prefix value in taglib directives
uri a uri uniquely identifying this taglib
info a simple string describing the “use” of this taglib, should be user 

discernable

-->

<!ELEMENT taglib (tlibversion, jspversion?, shortname, uri?, info?, tag+) >
<!ATTLIST taglib id ID #IMPLIED

 xmlns CDATA #FIXED 
“http://java.sun.com/dtd/web-jsptaglibrary_1_1.dtd”

>

<!--
Describes this version (number) of the taglibrary (dewey decimal)
#PCDATA ::= [0-9]*{ “.”[0-9] }0..3

-->

<!ELEMENT tlibversion (#PCDATA) >

<!--
Describes the JSP version (number) this taglibrary requires in order to function 
(dewey decimal)

The default is 1.1

#PCDATA ::= [0-9]*{ “.”[0-9] }0..3
-->

<!ELEMENT jspversion  (#PCDATA) >

<!--

Defines a short (default) shortname to be used for tags and variable names used/
created by this tag library.  Do not use white space, and do not start with digits or 
underscore.

#PCDATA ::= NMTOKEN
-->



239

JavaServer Pages 1.2 Specification

<!ELEMENT shortname      (#PCDATA) >

<!--
Defines a public URI that uniquely identifies this version of the taglibrary Leave it 

empty if it does not apply.
-->

<!ELEMENT uri (#PCDATA) >

<!--
Defines an arbitrary text string descirbing the tag library

-->

<!ELEMENT info(#PCDATA) >

<!--
The tag defines a unique tag in this tag library, defining:
- the unique tag/element name

- the subclass of javax.servlet.jsp.tagext.Tag implementation class
- an optional subclass of javax.servlet.jsp.tagext.TagExtraInfo
- the body content type (hint)
- optional tag-specific information

- any attributes
-->

<!ELEMENT tag (name, tagclass, teiclass?, bodycontent?, info?, attribute*) >

<!--
Defines the subclass of javax.serlvet.jsp.tagext.Tag that implements the request 
time semantics for this tag. (required)

#PCDATA ::= fully qualified Java class name
-->

<!ELEMENT tagclass (#PCDATA) >

<!--

Defines the subclass of javax.servlet.jsp.tagext.TagExtraInfo for this tag. (option-
al)
If this is not given, the class is not consulted at translation time.



JavaServer Pages 1.2 Specification

240

#PCDATA ::= fully qualified Java class name
-->

<!ELEMENT teiclass (#PCDATA) >

<!--
Provides a hint as to the content of the body of this tag. Primarily intended for use 

by page composition tools.
There are currently three values specified:
tagdependent The body of the tag is interpreted by the tag implementation 

itself, and is most likely in a different “langage”, e.g embedded SQL 

statements.
JSP The body of the tag contains nested JSP syntax
empty The body must be empty. The default (if not defined) is JSP

#PCDATA ::=  tagdependent | JSP | empty
-->

<!ELEMENT bodycontent (#PCDATA) >

<!--
The attribute tag defines an attribute for the nesting tag

An attribute definition is composed of:
- the attributes name (required)
- if the attribute is required or optional (optional)
- if the attributes value may be dynamically calculated at runtime

  by a scriptlet expression (optional)
-->

<!ELEMENT attribute (name, required? , rtexprvalue?) >

<!--
Defines the canonical name of a tag or attribute being defined

#PCDATA ::= NMTOKEN
-->

<!ELEMENT name(#PCDATA) >

<!--
Defines if the nesting attribute is required or optional.



241

JavaServer Pages 1.2 Specification

#PCDATA ::= true | false | yes | no

If not present then the default is “false”, i.e the attribute is optional.

-->

<!ELEMENT required    (#PCDATA) >

<!--
Defines if the nesting attribute can have scriptlet expressions as a value, i.e the 
value of the attribute may be dynamically calculated at request time, as opposed 

to a static value determined at translation time.

#PCDATA ::= true | false | yes | no

If not present then the default is “false”, i.e the attribute has a static value
-->

<!ELEMENT rtexprvalue (#PCDATA) >

<!ATTLIST tlibversion id ID #IMPLIED>
<!ATTLIST jspversion id ID #IMPLIED>
<!ATTLIST shortname id ID #IMPLIED>

<!ATTLIST uri id ID #IMPLIED>
<!ATTLIST info id ID #IMPLIED>
<!ATTLIST tag id ID #IMPLIED>
<!ATTLIST tagclass id ID #IMPLIED>

<!ATTLIST teiclass id ID #IMPLIED>
<!ATTLIST bodycontent id ID #IMPLIED>
<!ATTLIST attribute id ID #IMPLIED>
<!ATTLIST name id ID #IMPLIED>

<!ATTLIST required id ID #IMPLIED>
<!ATTLIST rtexprvalue id ID #IMPLIED>



JavaServer Pages 1.2 Specification

242



243

A P P E N D I X JSP.E
Changes

This appendix lists the changes in the JavaServer Pages specification. This 
appendix is non-normative.

E.1 Changes Between PFD 2 and Final Draft

This is the final version approved by JCP Executive Comittee; the document 
was updated to reflect that status. All change bars were reset.

E.1.1 Added jsp:id mechanism

A new mechanism was added to allow willing JSP containers to provide 
improved translation-time error information from TagLibraryValidator classes. The 
signature of TagLibraryValidator.validate() was modified slightly, and a new Valida-
tionMessage class was added. These objects act through a new attribute, jsp:id, 
which is optionally supported by a JSP container and exposed only through the 
XML view of a JSP page. Chapter JSP.5 (mostly Section JSP.5.3.13), Chapter JSP.7 
(Section JSP.7.5.1.2) and Chapter JSP.10 (Section JSP.10.5.5) were affected.

E.1.2 Other Small Changes

• Made height & width be rtexprs. Section JSP.4.7 was affected.

• Added attribute value conversion from String literal to short and Short, and 
corrected conversion for char and Character in Table JSP.2-2.

• Corrected a statement on the allowed return values for doStartTag() for Tag, 
IterationTag and BodyTag.. PFD2 incorrectly indicated that "emtpy" tags 



JavaServer Pages 1.2 Specification

244

could only return SKIP_BODY; the correct statement is that tags whose body-
content is "empty" can only return SKIP_BODY.

E.1.3 Clarification of role of id

The mandated interpretations of the "id" attribute in Section JSP 2.13.3 (that id 
represents page-wide unique ids) and the "scope" attribute in Section JSP 2.13.4 
(regarding the scope for the introduced variable) were not enforced by most (per-
haps all?) containers, and were inconsistent with prevalent practices in custom tag 
library development. Essentially these sections were being interpreted as localized 
statements about the jsp:useBean standard action. This has been made explicit and 
the sections were moved to Chapter 4 to reflect that.

Sections JSP.2.13.3 and JSP.2.13.4, and Chapter 4 were affected.

E.1.4 Clarifications on Multiple Requests and Threading

• Clarify that TLV instances need be thread safe. This affected 
Section JSP.10.5.5.

• Clarify that a tag handler instance is actively processing only one request at a 
time; this happens naturally if the tag handler is instantiated afresh through 
new() invocations, but it requires spelling once tag handler pooling is intro-
duced. This clarification affected Section JSP.10.1.

E.1.5 Clarifications on JSP Documents

Several clarifications in Chapter 5.

• Reafirmed that, in a JSP page in XML syntax, the URI for jsp core actions is 
important, not the prefix.

• Clarify that <?xml ... ?> is not required (as indicated by the XML spec).

• Clarified further the interpretation of whitespace on JSP documents.

E.1.6 Clarifications on Well Know Tag Libraries

Clarified that a tag library author may indicate, through the description 
comment, that a tag handler may expose at runtime only some subset of the 
information described through the tag handler implementation class. This is useful 
for specialized implementations of well-known tag libraries like the JSP standard 
tag library. This clarification affected the description of the tag element in 



245

JavaServer Pages 1.2 Specification

Section JSP.7.4 and the description of Tag.setParent() and TagSupport.findAnces-

torWithClass().
Removed the last paragraph on Section JSP.7.3.9; we don’t have any plans to 

remove the well-know URI mechanism.
In general cleaned up the presentation of the computation of the taglib map 

between a URI and a TLD resource path; the previous version was clunky.

E.1.7 Clarified Impact of Blocks

Clarified further the legal uses and the role of block constructs within scriptlets 
and nested actions. This affected small portions of Sections JSP.2.3.3, JSP.6.4, 
JSP.6.4.4 and JSP.10.5.9.

E.1.8 Other Small Clarifications

• Reafirmed more explicitly that the location of icons is relative to TLD file. 
Section JSP.7.4 was affected.

• Removed non-normative comment about JSR-045 in Section JSP.2.1.6.

• Removed the comment on errorPages needing to be JSP pages, they can also 
be static objects. This affects Table JSP.2-1.

• Reaffirmed that event listeners in a tag library are registered before the appli-
cation is started. This affects Section JSP.7.1.2.2.

• Clarify when the use of quoting conventions is required for attribute values. 
Clarified that request-time attribute values follow the same rules. This affects 
Section JSP.2.3.5, Section JSP.2.6 and Section JSP.2.13.1.

• Clarified the interpretation of relative specifications for include directives and 
jsp:include and jsp:forward actions. This affected Section JSP.2.2.1, 
Section JSP.2.10.4, Section JSP.4.4 and Section JSP.4.5

• Corrected the inconsistency on the precompilation protocol in 
Section JSP.8.4.2 regarding whether the requests are delivered to the page or 
not; they are not.

• Clarified that the <type> subelement of <attribute> in the TLD file should 
match that of the underlying JavaBean component property.

• Spelled out the use of ClassLoader.getResource() to get at data from a TagLi-
braryValidator class.



JavaServer Pages 1.2 Specification

246

E.2 Changes Between 1.2 PFD 1b and PFD 2

Change bars are used in almost all chapters to indicate changes between PFD 1b 
and PFD 2. The exception are Chapters 9 and 10 which are generated automatically 
from the Java sources and have no change bars. Most changes are semantical, but 
some of them are editorial.

E.2.1 Added elements to Tag Library Descriptor

The Tag Library Descriptor (TLD) was extended with descriptive information 
that is useful to users of the tag library. In particular, a TLD can now be massaged 
directly (e.g. using an XSLT stylesheet) into an end-user document.

A new <example> element was added, as an optional subelement of <tag>. 
The existing <description> element was made a valid optional subelement of 
<variable>, <attribute> and <validator>. 

Section JSP.7.4 and Appendix JSP.C were affected. The TLD 1.2 DTD and 
Schemas were also affected.

E.2.2 Changed the way version information is encoded into TLD

The mechanism used to provide version information on the TLD was changed. 
In the PFD the version was encoded into the namespace. In PFD2 the namespace is 
not intended to change unless there are non-compatible changes, and the version is 
encoded into the <jsp-version> element, which is now mandatory. The new URI for 
the namespace is "http://java.sun.com/JSP/TagLibraryDescriptor".

Chapter JSP.7 and Appendix JSP.C were affected.

E.2.3 Assigning String literals to Object attributes

It is now possible to assign string literals to an attribute that is defined as having 
type Object, as well as to a property of type Object. The valid type conversions are 
now all described in Section JSP.2.13.2, and used by reference in the semantics of 
<jsp:setProperty>.

E.2.4 Clarification on valid names for prefix, action and attributes

We clarified the valid names for prefixes used in taglib directives, element 
names used in actions, and attribute names.



247

JavaServer Pages 1.2 Specification

E.2.5 Clarification of details of empty actions

The JSP 1.1 specification distinguishes empty from non-empty actions, 
although the description could be better. Unfortunately, the JSP 1.2 PFD1 draft did 
not improve the description. This draft improves the description by making it clear 
what methods are invoked when.

Chapters 2, 7 and 10 were affected.

E.2.6 Corrections related to XML syntax

We clarified several issues related to the XML syntax for JSP pages and to the 
XML view of a JSP page. Most changes are in Chapter 5.

• Removed an inexistant flush attribute in the include directive at 
Section JSP.5.2.4().

• Changed the name of jsp:cdata to jsp:text, since its semantics are very similar 
to the text element in XSLT.

• Changed the way the version information is encoded into the XML syntax; 
the URI used now is not version-specific and instead there is a required ver-
sion attribute of jsp:root.

• Clarified that JSP comments in a JSP page in JSP syntax are not preserved on 
the XML view of the page.

• Clarified that JSP pages in XML syntax should have no DOCTYPE.

• Clarified the treatment of include directives in the XML view of a JSP page.

• Clarified the format of the URIs to use in xmlns attributes for taglib directives, 
and corrected Appendix JSP.B.

E.2.7 Other changes

We clarified several other inconsistencies or mistakes



JavaServer Pages 1.2 Specification

248

• Explicitly indicated which attributes are reserved (Section JSP.2.3.5) and 
which prefixes are reserved (Section JSP.2.10.2).

• Add a comment to the DTD for the TLD indicating that a DOCTYPE is needed 
and what its value is.  No changes to the value.

• Removed the paragraph at the end of Section JSP.7.3.9 that used to contain 
non-normative comments on the future of "well kwown URIs".

• Corrected the description of the valid values that can be passed to the flush at-
tribute of the include action in Section JSP.4.4.

• Clarified that <jsp:param> can only appear within <jsp:forward>, <jsp:in-
clude>, and <jsp:params>.

• Clarified that <jsp:params> and <jsp:fallback> can only appear within 
<jsp:plugin>.

• Resolved a conflict in Section JSP.4.4 between the Servlet and the JSP speci-
fication regarding how to treat modifications to headers in included actions.

• Section 10.1.1 in PFD1 incorrectly described the valid return values for 
doStartTag() in tag handlers that implement the BodyTag interface. The cor-
rect valid values are SKIP_BODY, EVAL_BODY_INCLUDE and 
EVAL_BODY_BUFFER. Section now indicates this.

E.3 Changes Between 1.2 PFD and 1.2 PFD 1b

PFD 1b is a draft that has mostly formating and a few editorial changes. This 
draft is shown only to make it simpler to correlate changes between later drafts and 
the previous drafts.

Change bars are used to indicate changes between PFD 1 and PFD 1b.

E.4 Changes Between 1.2 PD1 and 1.2 PFD

The following changes ocurred between the Public Draft 1 and the Proposed 
Final Draft versions of the JSP 1.2 specification.



249

JavaServer Pages 1.2 Specification

E.4.1 Deletions

• Removed the resetCustomAttributes() method.

E.4.2 Additions

• Added constructors and methods to JspException to support a rootCause (par-
alleling the ServletException).

• Added a PageContext.handleException(Throwable) method.

• Added references to JSR-045 regarding debugging support.

• Added new TryCatchFinally interface to provide better control over excep-
tions in tag handlers.

• Added an implicit URI to TLD map for packaged tag libraries.  This also pro-
vides support for multiple TLDs inside a single JAR file.

• Added pageEncoding attribute to page directive.

• Added material to Chapter JSP.3.

• Added TagValidatorInfo class.

• Added Section JSP.2.1.7 with a suggestion on extension convention for top 
and included JSP files.

E.4.3 Clarifications

• A tag handler object can be created with a simple “new()”; it needs not be a 
fully fledged Beans, supporting the complete behavior of the ja-
va.beans.Beans.instantiate() method.

• Removed the “recommendation” that the <uri> element in a TLD be a URL to 
anything.

• Clarified that extension dependency information in packaged tag libraries 
should be honored.

• Clarified invocation and lifecycle of TagLibraryValidator.

• Clarified where TLDs may appear in a packaged JAR file.

• Clarified when are response.getWriter().



JavaServer Pages 1.2 Specification

250

E.4.4 Changes

• Moved a couple of chapters around

• Improved and clarified Chapter JSP.5.

• Moved the include directive back into Chapter JSP.2.

• Renamed javax.servlet.jsp.tagext.PageInfo to javax.servlet.jsp.tagext.Page-
Data (for consistency with existing TagData).

• Added initialization parameters to TagLibraryInformation validation in TLD, 
adding a new <validator> element, renaming <validatorclass> to <validator-
class> for consistency, and adding <init-param> as in the Servlet web.xml de-
scriptor.

• Added method to pass the initialization parameters to the validator class and 
removed the use of TagLibraryInfo.  Added prefix and uri String arguments to 
validate() method.

• Changed element names in TLD to consistently follow convention.  New 
names are <tag-class>. <tei-class>, <tlib-version, <jsp-version>, <short-
name> and <body-content>. <info> was renamed <description>.

E.5 Changes Between 1.1 and 1.2 PD1

The following changes ocurred between the JSP 1.1 and JSP 1.2 Public Draft 1.

E.5.1 Organizational Changes

• Chapter 8 and 10 are now generated automatically from the javadoc sources.

• Created a new document to allow longer descriptions of uses of the technolo-
gy.

• Created a new I18N chapter to capture Servlet 2.3 implications and others 
(mostly empty for PD1).

• Removed Implementation Notes and Future appendices, as they have not been 
updated yet.



251

JavaServer Pages 1.2 Specification

E.5.2 New Document

We created a new, non-normative document, “Using JSP Technology”.  The 
document is still being updated to JSP 1.2 and Servlet 2.3.  We moved to this docu-
ment the following:

• Some of the non-normative Overview material.

• All of the appendix on tag library examples.

• Some of the material on the Tag Extensions chapter.

E.5.3 Additions to API

• jsp:include can now indicate “flush=’false’”.

• Made the XML view of a JSP page available for input, and for validation.

• PropertyEditor.setAsText() can now be used to convert from a literal string at-
tribute value.

• New ValidatorClass and JspPage classes for validation against tag libraries.

• New IteratorTag interface to support iteration without BodyContent.  Added 
two new constants (EVAL_BODY_BUFFERED and 
EVAL_BODY_AGAIN) to help document better how the tag protocol works; 
they are carefully designed so that old tag handlers will still work unchanged, 
but the old name for the constant EVAL_BODY_TAG is now deprecated.

• Added listener classes to the TLD.

• Added elements to the TLD to avoid having to write TagExtraInfo classes in 
the most common cases.

• Added a resetCustomAttributes() method to Tag interface.

• Added elements to the TLD for delivering icons and descriptions to use in au-
thoring tools.



JavaServer Pages 1.2 Specification

252

E.5.4 Clarifications

• Incorporated errata 1.1_a and (in progress) 1.1_b.

E.5.5 Changes

• JSP 1.2 is based on Servlet 2.3, in particular:

• JSP 1.2 is based on the Java 2 platform.

E.6 Changes Between 1.0 and 1.1

The JSP 1.1 specification builds on the JSP 1.0 specification.  The following 
changes ocurred between the JSP 1.0 final specification and the JSP 1.1 final speci-
fication.

E.6.1 Additions

• Added a portable tag extension mechanism with an XML-based Tag Library 
Descriptor, and a run-time stack of tag handlers.  Tag handers are based on the 
JavaBeans component model. Adjusted the semantics of the uri attribute in 
taglib directives.

• Flush is now a mandatory attribute of jsp:include, and the only valid value is 
“true”.

• Added parameters to jsp:include and jsp:forward.

• Enabled the compilation of JSP pages into Servlet classes that can be trans-
ported from one JSP container to another.  Added appendix with an example 
of this.

• Added a precompilation protocol.

• Added pushBody() and popBody() to PageContext.

• Added JspException and JspTagException classes.

• Consistent use of the JSP page, JSP container, and similar terms.

• Added a Glossary as Appendix JSP.F.

• Expanded Chapter 1 so as to cover 0.92’s "model 1" and "model 2".

• Clarified a number of JSP 1.0 details.



253

JavaServer Pages 1.2 Specification

E.6.2 Changes

• Use Servlet 2.2 instead of Servlet 2.1 (as clarified in Appendix B), including 
distributable JSP pages.

• jsp:plugin no longer can be implemented by just sending the contents of 
jsp:fallback to the client.

• Reserved all request parameters starting with "jsp".



JavaServer Pages 1.2 Specification

254



249

A P P E N D I X JSP.F
Glossary

This appendix is a glossary of the main concepts mentioned in this specifica-
tion. This appendix is non-normative.

action An element in a JSP page that can act on implicit objects and other 
server-side objects or can define new scripting variables. Actions follow the 
XML syntax for elements with a start tag, a body and an end tag; if the body is 
empty it can also use the empty tag syntax. The tag must use a prefix.

action, standard An action that is defined in the JSP specification and is always 
available to a JSP file without being imported.

action, custom An action described in a portable manner by a tag library descrip-
tor and a collection of Java classes and imported into a JSP page by a taglib 
directive.

Application Assembler A person that combines JSP pages, servlet classes, 
HTML content, tag libraries, and other Web content into a deployable Web 
application.

component contract The contract between a component and its container, 
including life cycle management of the component and the APIs and proto-
cols that the container must support.

Component Provider A vendor that provides a component either as Java classes 
or as JSP page source.

distributed container A JSP container that can run a Web application that is 
tagged as distributable and is spread across multiple Java virtual machines 
that might be running on different hosts.



JavaServer Pages 1.2 Specification

250

declaration A scripting element that declares methods, variables, or both in a 
JSP page. Syntactically it is delimited by the <%! and %> characters.

directive An element in a JSP page that gives an instruction to the JSP container 
and is interpreted at translation time. Syntactically it is delimited by the <%@ 
and %> characters.

element A portion of a JSP page that is recognized by the JSP translator. An ele-
ment can be a directive, an action, or a scripting element.

expression A scripting element that contains a valid scripting language expres-
sion that is evaluated, converted to a String, and placed into the implicit out 
object. Syntactically it is delimited by the <%= and %> characters.

fixed template data Any portions of a JSP file that are not described in the JSP 
specification, such as HTML tags, XML tags, and text. The template data is 
returned to the client in the response or is processed by a component.

implicit object A server-side object that is defined by the JSP container and is 
always available in a JSP file without being declared. The implicit objects are 
request, response, pageContext, session, application, out, config, page, and 
exception.

JavaServer Pages technology An extensible Web technology that uses template 
data, custom elements, scripting languages, and server-side Java objects to 
return dynamic content to a client.  Typically the template data is HTML or 
XML elements, and in many cases the client is a Web browser.

JSP container A system-level entity that provides life cycle management and 
runtime support for JSP and Servlet components.

JSP file A text file that contains a JSP page. In the current version of the specifi-
cation, the JSP file must have a .jsp extension.

JSP page A text-based document that uses fixed template data and JSP elements 
and describes how to process a request to create a response. The semantics of 
a JSP page are realized at runtime by a JSP page implementation class.

JSP page, frontA JSP page that receives an HTTP request directly from the cli-
ent. It creates, updates, and/or accesses some server-side data and then for-
wards the request to a presentation JSP page.

JSP page, presentation A JSP page that is intended for presentation purposes 
only. It accesses and/or updates some server-side data and incorporates fixed 
template data to create content that is sent to the client.



251

JavaServer Pages 1.2 Specification

JSP page implementation class The Java programming language class, a Serv-
let, that is the runtime representation of a JSP page and which receives the 
request object and updates the response object. The page implementation 
class can use  the services provided by the JSP container, including both the 
Servlet and the JSP APIs.

JSP page implementation object The instance of the JSP page implementation 
class that receives the request object and updates the response object.

scripting element A declaration, scriptlet, or expression, whose tag syntax is 
defined by the JSP specification, and whose content is written according to 
the scripting language used in the JSP page. The JSP specification describes 
the syntax and semantics for the case where the language page attribute is 
"java".

scriptlet An scripting element containing any code fragment that is valid in the 
scripting language used in the JSP page.  The JSP specification describes what 
is a valid scriptlet for the case where the language page attribute is "java".  
Syntactically a scriptlet is delimited by the <% and %> characters.

tag A piece of text between a left angle bracket and a right angle bracket that has 
a name, can have attributes, and is part of an element in a JSP page. Tag 
names are known to the JSP translator, either because the name is part of the 
JSP specification (in the case of a standard action), or because it has been 
introduced using a Tag Library (in the case of custom action).

tag handler A Java class that implements the Tag or the BodyTag interfaces and 
that is the run-time representation of a custom action.

tag handler A JavaBean component that implements the Tag or BodyTag inter-
faces and is the run-time representation of a custom action.

tag library A collection of custom actions described by a tag library descriptor 
and Java classes.

tag library descriptor An XML document describing a tag library.

Tag Library Provider A vendor that provides a tag library. Typical examples 
may be a JSP container vendor, a development group within a corporation, a 
component vendor, or a service vendor that wants to provide easier use of 
their services.

web application An application built for the Internet, an intranet, or an extranet.



JavaServer Pages 1.2 Specification

252

web application, distributable A Web application that is written so that it can be 
deployed in a Web container distributed across multiple Java virtual machines 
running on the same host or different hosts. The deployment descriptor for 
such an application uses the distributable element.

Web Application Deployer A person who deploys a Web application in a Web 
container, specifying at least the root prefix for the Web application, and in a 
J2EE environment, the security and resource mappings.

web component A servlet class or JSP page that runs in a JSP container and pro-
vides services in response to requests.

Web Container Provider A vendor that provides a servlet and JSP container that 
support the corresponding component contracts.


	Contents
	JSP.1 Overview 23
	JSP.2 Core Syntax and Semantics 29
	JSP.3 Localization Issues 63
	JSP.4 Standard Actions 67
	JSP.5 JSP Documents 81
	JSP.6 Scripting 93
	JSP.7 Tag Extensions 97
	JSP.8 JSP Container 123
	JSP.9 Core API 135
	JSP.10 Tag Extension API 159
	JSP.A Packaging JSP Pages 207
	JSP.B DTD and Schemas for XML Syntax 207
	JSP.C DTD for TagLibrary Descriptor, JSP 1.2 225
	JSP.D DTD for TagLibrary Descriptor, JSP 1.1 237
	JSP.E Changes 243
	JSP.F Glossary 249

	Status
	Preface
	JSP.P.1 Relation To JSP 1.1
	JSP.P.2 Licensing of Specification
	JSP.P.3 Who should read this document
	JSP.P.4 Related Documents
	JSP.P.5 Historical Note
	JSP.P.6 Acknowledgments

	Overview
	JSP.1.1 The JavaServer Pages™ Technology
	JSP.1.1.1 General Concepts
	JSP.1.1.2 Benefits of the JavaServer Pages Technology

	JSP.1.2 Basic Concepts
	JSP.1.2.1 What is a JSP Page?
	JSP.1.2.2 Web Applications
	JSP.1.2.3 Components and Containers
	JSP.1.2.4 Translation and Execution Steps
	JSP.1.2.5 Role in the Java 2 Platform, Enterprise Edition


	Core Syntax and Semantics
	JSP.2.1 What is a JSP Page
	JSP.2.1.1 Web Containers and Web Components
	JSP.2.1.2 XML Document for a JSP Page
	JSP.2.1.3 Translation and Execution Phases
	JSP.2.1.4 Events in JSP Pages
	JSP.2.1.5 Compiling JSP Pages
	JSP.2.1.5.1 JSP Page Packaging

	JSP.2.1.6 Debugging JSP Pages
	JSP.2.1.7 Naming Conventions for JSP Files

	JSP.2.2 Web Applications
	JSP.2.2.1 Relative URL Specifications

	JSP.2.3 Syntactic Elements of a JSP Page
	JSP.2.3.1 Elements and Template Data
	JSP.2.3.2 Element Syntax
	JSP.2.3.3 Start and End Tags
	JSP.2.3.4 Empty Elements
	JSP.2.3.5 Attribute Values
	JSP.2.3.6 Valid Names for Actions and Attributes
	JSP.2.3.7 White Space

	JSP.2.4 Error Handling
	JSP.2.4.1 Translation Time Processing Errors
	JSP.2.4.2 Request Time Processing Errors

	JSP.2.5 Comments
	JSP.2.5.1 Generating Comments in Output to Client
	JSP.2.5.2 JSP Comments

	JSP.2.6 Quoting and Escape Conventions
	JSP.2.7 Overall Semantics of a JSP Page
	JSP.2.8 Objects
	JSP.2.8.1 Objects and Variables
	JSP.2.8.2 Objects and Scopes
	JSP.2.8.3 Implicit Objects
	JSP.2.8.4 The pageContext Object

	JSP.2.9 Template Text Semantics
	JSP.2.10 Directives
	JSP.2.10.1 The page Directive
	JSP.2.10.2 The taglib Directive
	JSP.2.10.3 The include Directive
	JSP.2.10.4 Including Data in JSP Pages

	JSP.2.11 Scripting Elements
	JSP.2.11.1 Declarations
	JSP.2.11.2 Scriptlets
	JSP.2.11.3 Expressions

	JSP.2.12 Actions
	JSP.2.13 Tag Attribute Interpretation Semantics
	JSP.2.13.1 Request Time Attribute Values
	JSP.2.13.2 Type Conversions
	JSP.2.13.2.1 Conversions from String values
	JSP.2.13.2.3 Conversions from request-time expressions



	Localization Issues
	JSP.3.1 Page Character Encoding
	JSP.3.2 Static Content Type
	JSP.3.3 Dynamic Content Type
	JSP.3.4 Delivering Localized Content

	Standard Actions
	JSP.4.1 <jsp:useBean>
	JSP.4.2 <jsp:setProperty>
	JSP.4.3 <jsp:getProperty>
	JSP.4.4 <jsp:include>
	JSP.4.5 <jsp:forward>
	JSP.4.6 <jsp:param>
	JSP.4.6.1 Syntax

	JSP.4.7 <jsp:plugin>
	JSP.4.8 <jsp:params>
	JSP.4.9 <jsp:fallback>

	JSP Documents
	JSP.5.1 Uses for XML Syntax for JSP Pages
	JSP.5.2 JSP Documents
	JSP.5.2.1 Semantic Model
	JSP.5.2.2 The jsp:root element
	JSP.5.2.3 The jsp:directive.page element
	JSP.5.2.4 The jsp:directive.include element
	JSP.5.2.5 The jsp:declaration element
	JSP.5.2.6 The jsp:scriptlet element
	JSP.5.2.7 The jsp:expression element
	JSP.5.2.8 Standard and custom action elements
	JSP.5.2.9 Request-Time Attributes
	JSP.5.2.10 The jsp:text element
	JSP.5.2.11 Other XML elements

	JSP.5.3 XML View of a JSP Page
	JSP.5.3.1 JSP Documents
	JSP.5.3.2 JSP pages in JSP syntax
	JSP.5.3.3 JSP comments
	JSP.5.3.4 The page directive
	JSP.5.3.5 The taglib directive
	JSP.5.3.6 The include directive
	JSP.5.3.7 Declarations
	JSP.5.3.8 Scriptlets
	JSP.5.3.9 Expressions
	JSP.5.3.10 Standard and Custom Actions
	JSP.5.3.11 Request-Time Attribute Expressions
	JSP.5.3.12 Template Text and XML Elements
	JSP.5.3.13 The jsp:id Attribute

	JSP.5.4 Validating an XML View of a JSP page
	JSP.5.5 Examples
	JSP.5.5.1 A JSP page and its corresponding JSP document
	JSP.5.5.2 A JSP document


	Scripting
	JSP.6.1 Overall Structure
	JSP.6.1.1 Valid JSP Page
	JSP.6.1.2 Reserved Names
	JSP.6.1.3 Implementation Flexibility

	JSP.6.2 Declarations Section
	JSP.6.3 Initialization Section
	JSP.6.4 Main Section
	JSP.6.4.1 Template Data
	JSP.6.4.2 Scriptlets
	JSP.6.4.3 Expressions
	JSP.6.4.4 Actions


	Tag Extensions
	JSP.7.1 Introduction
	JSP.7.1.1 Goals
	JSP.7.1.2 Overview
	JSP.7.1.2.1 Tag Handlers
	JSP.7.1.2.2 Event Listeners

	JSP.7.1.3 Simple Examples
	JSP.7.1.3.1 Simple Actions
	JSP.7.1.3.2 Actions with a Body
	JSP.7.1.3.3 Conditionals
	JSP.7.1.3.4 Iterations
	JSP.7.1.3.5 Actions that Process their Body
	JSP.7.1.3.6 Cooperating Actions
	JSP.7.1.3.7 Actions Defining Scripting Variables


	JSP.7.2 Tag Libraries
	JSP.7.2.1 Packaged Tag Libraries
	JSP.7.2.2 Location of Java Classes
	JSP.7.2.3 Tag Library directive

	JSP.7.3 The Tag Library Descriptor
	JSP.7.3.1 Identifying Tag Library Descriptors
	JSP.7.3.2 TLD resource path
	JSP.7.3.3 Taglib map in web.xml
	JSP.7.3.4 Implicit Map entries from TLDs
	JSP.7.3.5 Implicit Map entries from the Container
	JSP.7.3.6 Determining the TLD Resource Path
	JSP.7.3.6.1 Computing TLD Locations
	JSP.7.3.6.2 Computing the TLD Resource Path
	JSP.7.3.6.3 Usage Considerations

	JSP.7.3.7 Translation-Time Class Loader
	JSP.7.3.8 Assembling a Web Application
	JSP.7.3.9 Well-Known URIs

	JSP.7.4 The Tag Library Descriptor Format
	JSP.7.5 Validation
	JSP.7.5.1 Translation-Time Mechanisms
	JSP.7.5.1.1 Attribute Information
	JSP.7.5.1.2 Validator Classes
	JSP.7.5.1.3 TagExtraInfo Class Validation

	JSP.7.5.2 Request-Time Errors

	JSP.7.6 Conventions and Other Issues
	JSP.7.6.1 How to Define New Implicit Objects
	JSP.7.6.2 Access to Vendor-Specific information
	JSP.7.6.3 Customizing a Tag Library


	JSP Container
	JSP.8.1 JSP Page Model
	JSP.8.1.1 Protocol Seen by the Web Server
	JSP.8.1.1.1 Protocol Seen by the JSP Page Author
	JSP.8.1.1.2 The HttpJspPage Interface


	JSP.8.2 JSP Page Implementation Class
	JSP.8.2.1 API Contracts
	JSP.8.2.2 Request and Response Parameters
	JSP.8.2.3 Omitting the extends Attribute
	JSP.8.2.4 Using the extends Attribute

	JSP.8.3 Buffering
	JSP.8.4 Precompilation
	JSP.8.4.1 Request Parameter Names
	JSP.8.4.2 Precompilation Protocol


	Core API
	JSP.9.1 JSP Page Implementation Object Contract
	JSP.9.1.1 JspPage
	JSP.9.1.1.1 Methods

	JSP.9.1.2 HttpJspPage
	JSP.9.1.2.2 Methods

	JSP.9.1.3 JspFactory
	JSP.9.1.3.3 Constructors
	JSP.9.1.3.4 Methods

	JSP.9.1.4 JspEngineInfo
	JSP.9.1.4.5 Constructors
	JSP.9.1.4.6 Methods


	JSP.9.2 Implicit Objects
	JSP.9.2.1 PageContext
	JSP.9.2.1.7 Fields
	JSP.9.2.1.8 Constructors
	JSP.9.2.1.9 Methods

	JSP.9.2.2 JspWriter
	JSP.9.2.2.10 Fields
	JSP.9.2.2.11 Constructors
	JSP.9.2.2.12 Methods


	JSP.9.3 An Implementation Example
	JSP.9.4 Exceptions
	JSP.9.4.1 JspException
	JSP.9.4.1.13 Constructors
	JSP.9.4.1.14 Methods

	JSP.9.4.2 JspTagException
	JSP.9.4.2.15 Constructors



	Tag Extension API
	JSP.10.1 Simple Tag Handlers
	JSP.10.1.1 Tag
	JSP.10.1.1.1 Fields
	JSP.10.1.1.2 Methods

	JSP.10.1.2 IterationTag
	JSP.10.1.2.3 Fields
	JSP.10.1.2.4 Methods

	JSP.10.1.3 TryCatchFinally
	JSP.10.1.3.5 Methods

	JSP.10.1.4 TagSupport
	JSP.10.1.4.6 Fields
	JSP.10.1.4.7 Constructors
	JSP.10.1.4.8 Methods


	JSP.10.2 Tag Handlers that want Access to their Body Content
	JSP.10.2.1 BodyContent
	JSP.10.2.1.9 Constructors
	JSP.10.2.1.10 Methods

	JSP.10.2.2 BodyTag
	JSP.10.2.2.11 Fields
	JSP.10.2.2.12 Methods

	JSP.10.2.3 BodyTagSupport
	JSP.10.2.3.13 Fields
	JSP.10.2.3.14 Constructors
	JSP.10.2.3.15 Methods


	JSP.10.3 Annotated Tag Handler Management Example
	JSP.10.4 Cooperating Actions
	JSP.10.5 Translation-time Classes
	JSP.10.5.1 TagLibraryInfo
	JSP.10.5.1.16 Fields
	JSP.10.5.1.17 Constructors
	JSP.10.5.1.18 Methods

	JSP.10.5.2 TagInfo
	JSP.10.5.2.19 Fields
	JSP.10.5.2.20 Constructors
	JSP.10.5.2.21 Methods

	JSP.10.5.3 TagAttributeInfo
	JSP.10.5.3.22 Fields
	JSP.10.5.3.23 Constructors
	JSP.10.5.3.24 Methods

	JSP.10.5.4 PageData
	JSP.10.5.4.25 Constructors
	JSP.10.5.4.26 Methods

	JSP.10.5.5 TagLibraryValidator
	JSP.10.5.5.27 Constructors
	JSP.10.5.5.28 Methods

	JSP.10.5.6 ValidationMessage
	JSP.10.5.6.29 Constructors
	JSP.10.5.6.30 Methods

	JSP.10.5.7 TagExtraInfo
	JSP.10.5.7.31 Constructors
	JSP.10.5.7.32 Methods

	JSP.10.5.8 TagData
	JSP.10.5.8.33 Fields
	JSP.10.5.8.34 Constructors
	JSP.10.5.8.35 Methods

	JSP.10.5.9 VariableInfo
	JSP.10.5.9.36 Fields
	JSP.10.5.9.37 Constructors
	JSP.10.5.9.38 Methods

	JSP.10.5.10 TagVariableInfo
	JSP.10.5.10.39 Constructors
	JSP.10.5.10.40 Methods



	Packaging JSP Pages
	A.1 A very simple JSP page
	A.2 The JSP page packaged as source in a WAR file
	A.3 The Servlet for the compiled JSP page
	A.4 The Web Application Descriptor
	A.5 The WAR for the compiled JSP page

	DTD and Schemas for XML Syntax
	B.1 DTD for JSP documents
	B.2 XSchema Description of JSP documents

	DTD for TagLibrary Descriptor, JSP 1.2
	C.1 DTD for TagLibrary Descriptor Files

	DTD for TagLibrary Descriptor, JSP 1.1
	D.1 DTD for TagLibrary Descriptor Files

	Changes
	E.1 Changes Between PFD 2 and Final Draft
	E.1.1 Added jsp:id mechanism
	E.1.2 Other Small Changes
	E.1.3 Clarification of role of id
	E.1.4 Clarifications on Multiple Requests and Threading
	E.1.5 Clarifications on JSP Documents
	E.1.6 Clarifications on Well Know Tag Libraries
	E.1.7 Clarified Impact of Blocks
	E.1.8 Other Small Clarifications

	E.2 Changes Between 1.2 PFD 1b and PFD 2
	E.2.1 Added elements to Tag Library Descriptor
	E.2.2 Changed the way version information is encoded into TLD
	E.2.3 Assigning String literals to Object attributes
	E.2.4 Clarification on valid names for prefix, action and attributes
	E.2.5 Clarification of details of empty actions
	E.2.6 Corrections related to XML syntax
	E.2.7 Other changes

	E.3 Changes Between 1.2 PFD and 1.2 PFD 1b
	E.4 Changes Between 1.2 PD1 and 1.2 PFD
	E.4.1 Deletions
	E.4.2 Additions
	E.4.3 Clarifications
	E.4.4 Changes

	E.5 Changes Between 1.1 and 1.2 PD1
	E.5.1 Organizational Changes
	E.5.2 New Document
	E.5.3 Additions to API
	E.5.4 Clarifications
	E.5.5 Changes

	E.6 Changes Between 1.0 and 1.1
	E.6.1 Additions
	E.6.2 Changes


	Glossary

