
901 San Antonio Road
Palo Alto, CA 94303
1 (800) 786.7638

Sun Microsystems, Inc.

1.512.434.1511

JavaServer Pages
™

White Paper

Dynamic Generation for the Web



Please

Recycle

Copyright 1999 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.

No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors,

if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark

in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Java, Java Blend, JavaBeans, Enterprise JavaBeans, JavaServer Pages, JDBC, JDK, and Write Once, Run

Anywhere are trademarks, registered trademarks, or service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC

trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries.

Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges

the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun

holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN

LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and

FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,

INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-

INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 1999 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, Californie 94303 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et

la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans

l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie

relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque

déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, Java, Java Blend, JavaBeans, Enterprise JavaBeans, JavaServer Pages, JDBC, JDK, et Write Once, Run

Anywhere sont des marques de fabrique ou des marques déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans

d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC

International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée

par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun

reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique

pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence

couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux

licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS

DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION

PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE

S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.



1

Introduction

JavaServer Pages
™

(JSP) technology provides a simplified and quick method for

creating Web pages that display dynamically-generated content. JSP technology was

designed to make it easier and faster to build Web-based applications that work with

a wide variety of Web servers, application servers, browsers, and development tools.

This paper provides an overview of JSP technology, describing how it was

developed and the overall goals for the technology. It also describes the key

components of a Java
™

technology-based page, through a simple example.

Developing Web-based Applications:
A Background

In its short history, the World Wide Web has evolved from a network of basically

static information displays to a mechanism for trading stocks, buying books, etc.

— in other words, e-commerce. There is virtually no limit to the possible uses

for Web-based clients in diverse applications.

Applications that can make use of browser-based clients have several advantages

over traditional, client/server-based applications, such as nearly unlimited client

access and greatly simplified application deployment and management. To update

an application, a developer only needs to change one server-based program, not

thousands of client-installed applications. As a result, the software industry is

quickly moving toward building multi-tiered applications using browser-based

clients.



2 JavaServer Pages White Paper

These increasingly sophisticated Web-based applications require changes in

development technology. Standard HTML is fine for displaying relatively static

content; the challenge has been creating interactive, Web-based applications in

which the content of the page is based on a user request or system status and

not pre-defined text.

An early solution to this problem was the CGI-bin interface. Developers wrote

individual programs to this interface, and Web-based applications called the

programs through a Web server. This solution has significant scalability problems —

each new CGI request launches a new process on the server. If multiple users access

the program concurrently, these processes consume all of the Web server’s available

resources, and performance slows to a grind.

Individual Web server vendors have tried to simplify Web application development

by providing “plug-ins” and APIs for their servers. These solutions are Web server-

specific and don’t address the problem across multiple vendor solutions. For

example, Microsoft’s Active Server Pages (ASP) technology makes it easier to create

dynamic content on a Web page, but only works with Microsoft IIS or Personal Web

Server.

Other solutions exist, but they are not necessarily easy for the average page designer

to deploy. Technologies such as Java Servlets, for example, make it easier to write

server-based code using the Java programming language for interactive applications.

A Java Servlet is a Java technology-based program that runs on the server (as

opposed to an applet, which runs on the browser). Developers can write Servlets

that take an HTTP request from the Web browser, generate the response dynamically

(possibly querying databases to fulfill the request), and then send a response

containing an HTML or XML document to the browser.

Using this approach, the entire page must be composed in the Java Servlet. If a

developer or Web master wants to tune the appearance of the page, they must

edit and recompile the Java Servlet, even if the logic is already working. With

this approach, generating pages with dynamic content still requires application

development expertise. Clearly, what is needed is an industry-wide solution for

creating pages with dynamically-generated content. This solution should address

the limitations of current alternatives by:

■ Working on any Web or application server

■ Separating the application logic from the appearance of the page

■ Allowing fast development and testing

■ Simplifying the process of developing interactive, Web-based applications



Dynamic Generation for the Web 3

JavaServer Pages (JSP) technology was designed to fit this need. The JSP

specification is the result of extensive industry cooperation between vendors of Web

servers, application servers, transactional systems, and development tools. Sun

Microsystems developed the specification to integrate with and leverage existing

expertise and tools support for the Java programming environment, such as Java

Servlets and JavaBeans
™

components. The result is a new approach to developing

Web-based applications that extends powerful capabilities to page designers using

component-based application logic.

The JavaServer Pages Technology
Approach to Web Application
Development

In developing the JavaServer Pages specification, Sun Microsystems worked with

a number of leading Web server, application server, and development tool vendors,

as well as a diverse and experienced development community. The result is an

approach that balances portability with ease of use for application and page

developers.

JSP technology speeds the development of dynamic Web pages in a number of ways:

■ Separating Content Generation from Presentation

Using JSP technology, Web page developers use HTML or XML tags to design and

format the results page. JSP tags or scriptlets are used to generate the dynamic

content on the page (the content that changes according to the request, such as

requested account information or the price of a specific bottle of wine). The logic

that generates the content is encapsulated in tags and JavaBeans components and

is tied together in scriptlets, all of which are executed on the server side. If the

core logic is encapsulated in tags and beans, then other individuals, such as Web

masters and page designers, can edit and work with the JSP page without

affecting the generation of the content.

On the server, a JSP engine interprets JSP tags and scriptlets, generates the content

required (for example, by accessing JavaBeans components, a database with

JDBC
™

technology, or including files), and sends the results back in the form of an

HTML or XML page to the browser. This helps authors protect their proprietary

code while ensuring complete portability for any HTML-based Web browser.



4 JavaServer Pages White Paper

■ Emphasizing Reusable Components

Most JSP pages rely on reusable, cross-platform components — JavaBeans or

Enterprise JavaBeans
™

components — to perform the more complex processing

required of the application. Developers can share and exchange components that

perform common operations, or make them available to larger user or customer

communities. The component-based approach speeds overall development and

lets organizations leverage their existing expertise and development efforts for

optimal results.

■ Simplifying Page Development with Tags

Web page developers are not always programmers familiar with scripting

languages. JSP technology encapsulates much of the functionality required for

dynamic content generation in easy-to-use, JSP technology-specific XML tags.

Standard JSP tags can access and instantiate JavaBeans components, set or

retrieve bean attributes, download applets, and perform other functions that

are otherwise more difficult and time-consuming to code.

JSP technology is extensible through the development of customized tag libraries.

Over time, third-party developers and others will create their own tag libraries

for common functions. This lets Web page developers work with familiar tools

and constructs, such as tags, to perform sophisticated functions.

JSP technology integrates easily into a variety of application architectures,

leveraging existing tools and skills, and scaling to support enterprise-wide

distributed applications. As part of the Java technology-enabled family, and an

integral part of the Java 2 Platform, Enterprise Edition architecture, JSP technology

can support highly complex Web-based applications.

JSP pages have all of the benefits of Java technology, including robust memory

management and security, because the native scripting language for JSP pages is

based on the Java programming language, and because all JSP pages are compiled

into Java Servlets.

As part of the Java platform, JSP technology shares the Write Once, Run Anywhere
™

characteristics of the Java programming language. As more vendors add JSP support

to their products, more servers and tools will become available, and these servers

and tools will be able to be changed without affecting current applications.

When integrated with the Java 2 Platform, Enterprise Edition and Enterprise

JavaBeans technology, JSP pages will provide the enterprise-class scalability and

performance necessary for deploying Web-based applications across the virtual

enterprise.



Dynamic Generation for the Web 5

What Does a JSP Page Look Like?

A JSP page looks like a standard HTML or XML page, with additional elements that

the JSP engine processes and strips out. Typically, the JSP elements create text that is

inserted into the results page.

JavaServer Pages technology is best described using an example. The following JSP

page is very simple; it prints the day of the month and the year, and welcomes the

user with either “Good Morning” or “Good Afternoon”, depending on the time of

day.

The page combines ordinary HTML with a number of JSP elements:

■ Calls to a clock JavaBeans component

■ Inclusion of an external file (for copyright information)

■ JSP expressions and scriptlets

<HTML>
<%@ page language=="java" imports=="com.wombat.JSP.*" %>
<H1>Welcome</H1>
<P>Today is </P>
<jsp:useBean id=="clock" class=="calendar.jspCalendar" />
<UL>
<LI>Day: <%==clock.getDayOfMonth() %>
<LI>Year: <%==clock.getYear() %>
</UL>

<% if (Calendar.getInstance().get(Calendar.AM_PM) ====
Calendar.AM) { %>
Good Morning
<% } else { %>
Good Afternoon
<% } %>
<%@ include file=="copyright.html" %>

</HTML>

The page includes the following components:

■ JSP directive: Passes information to the JSP engine. In this case, the first line

indicates the location of some Java programming language extensions to be

accessible from this page. Directives are enclosed in <%@ and %> markers.

■ Fixed template data: Any tags that the JSP engine does not recognize are passed on

with the results page. Typically, these will be HTML or XML tags. This includes

the Unordered List and H1 tags in the example above.



6 JavaServer Pages White Paper

■ JSP actions or tags: These are typically implemented as standard or customized

tags, and have an XML tag syntax. In the example, the jsp:useBean tag

instantiates the clock JavaBeans component on the server.

■ Expression: The JSP engine evaluates anything between <%== and %> markers.

In the List Items above, the values of the day and year attributes of the clock

JavaBeans component are returned as a string and inserted as output in the JSP

file. In the previous example, the first list item will be the day of the year and the

second item will be the year.

■ Scriptlet: A small script that performs functions not supported by tags or ties

everything together. The native scripting language for JSP 1.0 software is based

on the Java programming language. The scriptlet in the sample determines

whether it is a.m. or p.m. and greets the user accordingly (for daytime users,

at any rate).

The example may be trivial, but the technology is not. Businesses can encapsulate

critical processing in server-side beans, and Web developers can easily access that

information using familiar syntax and tools. Java technology-based scriptlets

provide a flexible way to perform other functions without requiring extensive

scripting. The page as a whole is legible and comprehensible, making it easier

to spot or prevent problems and share work.

Following are a few of these components described in more detail.

JSP Directives

JSP pages use JSP directives to pass instructions to the JSP engine. These may

include the following:

■ JSP page directives communicate page-specific information, such as buffer and

thread information or error handling.

■ Language directives specify the scripting language, along with any extensions.

■ The include directive (shown in the example) can be used to include an external

document in the page. Files such as copyright files or company information files

are easier to maintain in one central location and include in several pages rather

than to update in each JSP page. However, the included file can also be another

JSP file.

■ A taglib directive indicates a library of custom tags that the page can invoke.



Dynamic Generation for the Web 7

JSP Tags

Most JSP processing will be implemented through JSP technology-specific XML-

based tags. JSP 1.0 technology includes a number of standard tags, referred to as

the core tags. These include:

jsp:useBean

This tag declares the usage of an instance of a JavaBeans component. If the

Bean does not already exist, then the JavaBeans component instantiates and

registers the tag.

jsp:setProperty

This sets the value of a property in a Bean.

jsp:getProperty

This tag gets the value of a Bean instance property, converts it to a string,

and puts it in the implicit object “out”.

jsp:include

jsp:forward

The 1.1 release will include additional standard tags.

The advantage of tags is that they are easy to use and share between applications.

The real power of a tag-based syntax comes with the development of custom tag

libraries in which tool vendors or others can create and distribute tags for specific

purposes.

Scripting Elements

JSP pages can include small scripts, called scriptlets, in a page. A scriptlet is a code

fragment, executed at request time processing that may be combined with static

elements on the page (as in the example presented) to create a dynamically-

generated page.

Scripts are delineated within <% and %> markers. Anything contained within those

markers will be evaluated by the scripting language engine,. In the example, this is

the Java virtual machine on the host.

The JavaServer Pages specification supports all of the usual script elements,

including expressions and declarations.



8 JavaServer Pages White Paper

Application Models for JSP Pages

A JSP page is executed by a JSP engine, which is installed on a Web server or a JSP

technology-enabled application server. The JSP engine receives requests from a client

to a JSP page, and generates responses from the JSP page to the client.

JSP pages are typically compiled into Java Servlets. Java Servlets are a standard Java

extension, described in more detail at www.java.sun.com. The page developer has

access to the complete Java application environment, with all of the scalability and

portability of the Java technology-enabled family.

When a JSP page is first called, if it does not yet exist, it is compiled into a Java

Servlet class and stored in the server memory. This enables very fast responses for

subsequent calls to that page, and avoids the CGI-bin problem of spawning a new

process for each HTTP request, or the runtime parsing required by server-side

includes.

JSP pages may be included in a number of different application architectures or

models and may be used in combination with different protocols, components,

and formats. The following sections describe a few of the possibilities.

A Simple Application

In a simple implementation, the browser directly invokes a JSP page, which in turn

generates the requested content (perhaps invoking JDBC to get information directly

from a database). The JSP page can call JDBC or Java Blend
™

components to generate

results, and creates standard HTML that it sends back to the browser as a result.

This model basically replaces the CGI-bin concept with a JSP page (compiled as a

Java Servlet), and delivers the following advantages:

■ It is simple and fast to program.

■ The page author can easily generate dynamic content based on the request and

state of the resources.

HTTP/HTML/XML
Java Invocation
Method (JDBC)

Database
Browser JSP



Dynamic Generation for the Web 9

This architecture works well for many applications, but does not scale for a large

number of Web-based clients simultaneously accessing scarce enterprise resources.

Each client must establish or share a connection to the content resource in question.

For example, if the JSP page accesses a database, it may generate many connections

to the database, which can affect the database performance.

A Flexible Application with Java Servlets

In another possible configuration, the Web-based client may make a request directly

to a Java Servlet, which actually generates the dynamic content, wraps the results

into a result bean, and invokes the JSP page. The JSP page accesses the dynamic

content from the bean and sends the results (as HTML data) to the browser.

This approach creates more reusable components that can be shared between

applications, and may be implemented as part of a larger application. There are

still scalability issues in terms of handling connections to enterprise resources,

such as databases.

Scalable Processing with Enterprise JavaBeans

Technology

The JSP page can also act as a middle tier within an Enterprise JavaBeans

architecture. In this case, the JSP page interacts with back-end resources via

an Enterprise JavaBeans component.

JSP

Servlet
Request

Response

Client

HTTP/HTML/XML RMI/IIOP
Browser JSP

Enterprise
JavaBeans



10 JavaServer Pages White Paper

The Enterprise JavaBeans component manages access to the back-end resources,

providing scalable performance for high numbers of concurrent users. For

e-commerce or other applications, the Enterprise JavaBeans manages transactions

and underlying security. This simplifies the JSP page itself. This model will be

supported by the Java 2 Platform, Enterprise Edition.

Integrating XML Technology in JSP
Pages

JSP pages can be used to generate both XML and HTML pages.

For simple XML generation, developers can include XML tags and static template

portions of the JSP page. For dynamic XML generation, server-based beans and

customized tags are used to generate XML output.

JSP pages are not incompatible with XML tools. Although Sun designed the

JavaServer Pages specification so that JSP pages would be easy to author, even by

hand, the JSP specification also provides a mechanism for creating an XML version

of any JSP page. In this way, XML tools can author and manipulate JSP pages.

JSP pages may be used with XML-based tools by converting JSP tags and elements

to their XML-compatible equivalents. For example, a scriptlet can be included within

<% and %>, or within the XML-based tags <jsp:scriptlet> and </jsp:scriptlet>. In

fact, it is possible to convert a JSP page into an XML page by following a few simple

steps, including:

■ Add a JSP root element

■ Convert elements and directives into XML-compatible equivalents

■ Create CDATA elements for all other (typically non-JSP) elements on the page

With this XML-compatible alternative approach, page designers creating HTML

pages still have an easy-to-use environment for quickly creating dynamic Web

pages, while XML-based tools and services can integrate JSP pages and work

with JSP technology-compliant servers.



Dynamic Generation for the Web 11

The Future for JSP Technology

JavaServer Pages technology is designed to be an open, extensible standard for

building dynamic Web pages. Developers will use JSP pages to create portable Web

applications that can run with different Web and application servers for a variety of

markets, using whatever authoring tools fit their market and their needs.

By working with a consortium of industry leaders, Sun has ensured that the JSP

specification is open and portable. JSP pages may be authored anywhere and

deployed them anywhere, using any client and server platforms. Over time, tool

vendors and others will extend the functionality of the platform by providing

customized tag libraries for specialized functions.

The 1.0 release of the JSP specification is the first step toward this vision of an open,

industry-standard method for dynamic Web page generation. The 1.0 release lays the

groundwork, with a core set of tags and implicit objects and the basic functionality

required to start creating dynamic Web pages. Several Web server, application server,

and development tool vendors are adding JSP 1.0 support to their products, so that

JSP technology has initial and immediate support within the industry at large.

The 1.1 release, to be completed later in 1999, extends this vision with more

extensive XML support, customizable tags, and integration with Java 2 Platform,

Enterprise Edition. Vendors may choose to extend and expand the basic, required

functionality in the JSP specification. The JSP engine can potentially support

multiple scripting languages and object models. As the industry expands and

leverages the power of JavaServer Pages technology, Sun is committed to ensuring

that JSP technology remains inherently portable across platforms and servers.



Sun Microsystems, Inc.

901 San Antonio Road

Palo Alto, CA 94303

1 (800) 786.7638

1.512.434.1511

http://java.sun.com

September 1999


