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Abstract

In this project, we aim to review some aspects of Gauge Field Theory, including its path integral
description and the quantization of the Yang-Mills field, furthermore we wish to discuss some problems
concerning the non-perturbative description of Non-Abelian Gauge Theories. The motivation for this
is the known fact that the large coupling constant in the Standard Model’s QCD is an impeding factor
for the use of perturbative methods, and thus for the understanding of phenomena like asymptotic
freedom these non-perturbative methods become useful. The interesting fact we shall explore is that the
principal chiral model exhibits properties of the four dimensional Non-Abelian Yang-Mills theories. The
Problem of study then is that there haven’t yet been discovered any multi-instanton solutions for the
exact description of the bi-dimensional model which may be used in the representation of the theory.
Furthermore, we describe many other problems involving instantons and we mention related advances in
experimental physics.

1 Theoretical Introduction to Gauge Field Theory

1.1 Non-Abelian Gauge Theories

We begin with general description of the Yang-Mills fields (the simplest case corresponding to electromagnetic
interactions is given in Appendix 3). Let Ω be a compact semisimple Lie group. For us it is essential that
the generators T a of the Lie algebra of this group can be normalized by the condition tr(T aT b) = −2δab. In
this case, the structure constants are completely antisymmetric.

The Yang-Mills field can be associated with any compact semisimple Lie group. It is given by the vector
field Aµ(x). In the case of electrodynamics the gauge transformation is: Aµ(x) → Aµ(x) + i∂µλ(x). The
transformation of the fields ψ(x) analogous to the phase transformation in electrodynamics is

ψ(x)→ ψω = Γ[ω(x)]ψ(x) (1)

where ω(x) ∈ Ω. Then the derivative ∇µ = ∂µ −Aµ will be covariant with respect to the rule

Aµ(x)→ A ω
µ (x) = ω(x)Aµ(x)ω−1(x)− ω(x)∂µω

−1(x) (2)

and the change of Aµ and ψ(x) under such a transformation will be

δAµ = ∂µα− [Aµ, α] = ∇µα, δψ = Γ(α)ψ (3)

where ω(x) = 1 +α(x). Now we need to consider what is needed to make the Lagrangian invariant under
the gauge transformations of the fields. For this we consider the comutator of two covariant derivatives
acting on a matter field: [∇µ,∇ν ]ψ = −iT aF a

µνψ, a = 1, ..., n; where F γ
µν = ∂νAµ − ∂µAν + [Aµ,Aν ],

then it follows that Fµν(x) transforms according to the law

Fµν(x)→ ω(x)Fµν(x)ω−1(x). (4)

From the Jacobi identity we get that Fµν(x) obeys the Bianchi identity of the theory of gravity. Then
our gauge invariant Lagrange function in the case of non-Abelian gauge groups is the following
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L =
1

8g2
tr[FµνFµν ] + LM (ψ,∇µψ) (5)

where g = det(gµν) is the determinant of the metric of the space.

1.2 Quantum Theory in terms of Path Integrals

Now we shall deal with the general formalism of the path integral.
Let p and q be the canonical momentum and coordinate of a particle, and let P and Q be the corre-

sponding momentum and coordinate operators. The dynamics of the system is described with the help of
the Hamiltonian function h(p, q) and the corresponding Hamiltonian operator H = h(P,Q). One of the most
important concepts here is the evolution operator U(t′′, t′) = exp{−iH(t′′ − t′)}, which will be given by the
theorem:

Theorem: the matrix elements of the elvolution operator are

< q′′, t′′|q′, t′ >=

∫
exp{i

∫ t′′

t′
(pq̇ − h(p, q))dt}

∏
t

dpdq

2π
. (6)

Now we shall be interested in the evolution operator for an infinite time interval, since it is precisely this
operator which is needed for construction of the scattering matrix, defined by the formula

S = lim
t′′→∞
t′→−∞

eiH0t
′′
e−iH(t′′−t′)e−iH0t

′
, (7)

Here H0 is the energy operator for free motion.
In practice, it is often more convenient to deal with the external source η(x) dependent functional

Z(η) = exp
{
− i
∫
V
(1

i

δ

δη(x)
dx
)}

exp
{ i

2

∫
η(x)Dc(x− y)η(y)dxdy

}
, (8)

Dc(x) = −
( 1

2π

)4 ∫
e−ikx

1

k2 −m2 + i0
d4k,

Since from this functional we may derive the S-matrix through a simple procedure: we calculate its
variational derivatives to find the Green functions Gn(x1, x2, ..., xn), apply to these functions the differential
operator

∏n
i=1(2xi +m2), then we multiply the result by the product 1

n!

∏
i ϕ0(xi), and integrate over all x,

and sum over n.

1.3 Quantization of The Yang-Mills Field

Now let’s turn our attention to constructing a consistent quantization procedure for the Yang-Mills field. For
this we must find the true dynamical variables for the Yang-Mills field and verify that they change with time
according to the laws of Hamiltonian dynamics. After this, we shall be able, in constructing the evolution
operator, to use the path integral formalism developed so far. Let us consider in greater detail the structure
of the Lagrangian in the first order formalism:

L =
1

4
tr{(∂νAµ − ∂µAν + g[Aµ,Aν ]− 1

2
Fµν)Fµν}, (9)

In the 3-D notation (µ = 0, k; ν = 0, l; k, l = 1, 2, 3) we may rewrite the Lagrangian in the form

L = Eak∂0A
a
k − h(Ek, Ak) +Aa0C

a, h =
1

2
{(Eak)2 + (Gak)2}, (10)
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where Ek = Fk0, Gk = 1
2ε
ijkFji, C = ∂kEk − g[Ak, Ek]. It is clear that the pairs (Eak , A

a
k) are canonical

variables; h is the Hamiltonian, Aa0 is the Lagrangian multiplier, and Ca is the constraint on the canonical
variables. By introducing Poisson brackets {Eak(x), Abi (y)} = δkiδ

abδ(x− y), we verify that

{Ca(x), Cb(y)} = gtabcCc(x)δ(x− y), {
∫
d3xh(Ek, Ak), Cb(y)} = 0 (11)

and the subsidiary condition ∂kAk = 0, which is the Coulomb gauge, is admissible since

{∂kAak(x), ∂iA
b
i (y)} = 0, and {Ca(x), ∂kA

b
k(y)} = −∂k[∂kδ

ab − gtabcAck(x)]δ(x− y). (12)

The canonical fields may be decomposed as A = AL +AT and E = EL + ET

AL = ∂kB(x); B(x) =
1

4π

∫
1

|x− y|
∂kAk(y)dy (13)

EL(x) = ∂kQ(x) (14)

ATbl (x, t) =
1

(2π)3/2

∑∫
[eikxabi (k, t)u

i
l(k) + e−ikxa∗bi (k, t)uil(k)]

d3k√
2ω
, (15)

ETbl (x, t) =
i

(2π)3/2

∑∫
[−eikxabi (k, t)uil(k) + e−ikxa∗bi (k, t)uil(k)]

√
ωd3k√

2
(16)

and uil(k), i = 1, 2 are two polarization vectors, also the abi (k, t), a
∗b
i (k, t) are holomorphic variables (See

Faddeev and Slavnov [1991]).

This treatment of the subjects of Gauge Theories and Quantization of the Yang-Mills fields follows
from (Faddeev and Slavnov [1991]), more on these subjects may be found on (Itzykson and Zuber [2012]),
(Weinberg et al. [1995]) and (Weinberg [1995]).

2 Topology of Gauge Fields

The topic that we will discuss here is the use of instantons in solving problems related to charge confinement.
This method is valid for both Abelian and Non-Abelian systems. We shall analyse topological properties of
non-Abelian instantons and solitons in classical physics, for instance in plasma physics, and discuss associated
effects.

2.1 Instantons in D = 2, N = 3 n-Fields

Let us find minima of the classical action for the n-field in the case N = 3. In order that this action be
finite, we have to consider a boundary condition: n(x) →x→∞ n0. Therefore, since infinity can be viewed
as one point, our x-space is topologically a sphere. Each configuration n(x) defines a map of such a sphere
in x-space onto the sphere n2 = 1, which in the case N = 3 gives S2 → S2. These maps can be classified by
their winding number q which define the number of times the second sphere is covered by the first one [See
Appendix 4]. In this case we may write

q =
1

8π

∫
d2x n · [∂µn∂νn]εµν (17)

Here εµν is the standard antisymmetric tensor. The classical Action may be written as

S =
1

2e20

∫
(∂µn)2d2x =

4πq

e20
+

1

4e20

∫
(∂µn+ εµν [n× ∂νn])2d2x (18)
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From this relation it follows that in order to find an absolute minimum for the n-fields with the topological
charge q one can avoid the problem of solving classical equations of motion which are second order differential
equations, and instead consider the first order equations:

∂µn = −εµν [n× ∂νn] (19)

A solution of this equation may be found by introducing a complex field w by stereographic projection:

n1 + in2 = 2w/(1 + |w|2)

n3 = (1− |w|2)/(1 + |w|2) (20)

In this new variable, (19) reduces this equation to:

∂zw ≡ (∂1 + i∂2)w = 0 (21)

Therefore (19) are just Cauchy-Riemann equations for the function w. Since this function must be mero-
morphic (otherwise n would have brach cuts), the most general solution has the form:

w(z) =

q∏
j=1

z − aj
z − bj

(Instantons) w(z) =

|q|∏
j=1

z̄ − aj
z̄ − bj

(Anti− Instantons) (22)

where q is the topological charge (17) which we may write in terms of the complex function w(z), and is
negative for the anti-instanton solution.

In quantum field theory the partition function in the zeroth order approximation of the one instanton
contribution is proportional to e−Scl = e−4π/e

2
0 , for q = 1, but for higher order perturbations we have to

renormalize the coupling e20. The general renormalization formula is given by

e2(p) = e2(µ)/(1 +
N − 2

4π
e2(µ)log(p2/µ2)) (23)

where p and µ are values for the momentum of the particles on the configuration, respectively in the perturbed
and non-perturbed treatment. The contribution Z(1) to the partition function of a single instanton solution
is then going to have the form:

Z(1) ∼
∫

d2ad2b

|a− b|4
exp(−4π/e2(|a− b|)) = λ2

∫
d2ad2b

|a− b|2
' λ2V

∫
dρ

ρ
(24)

where λ is the Debye length of the system, ρ = |a − b| is the instanton’s effective size, V is the volume
of the system, and we used the fact e2(|a− b|) ' 2π/log(λ|a− b|)−1 for our N = 3 theory, following directly
from the general rule (23). For the multi-instanton contribuition we refer to (Polyakov [1987]):

Z(q) =
λ2q

(q!)2

∫
d2a1...d

2aqd
2b1...d

2bq
∏
i<j

|ai − aj |2
∏
i<j

|bi − bj |2
∏
i,j

|ai − bj |−2 (25)

Or, after summing over q:

ZINST =

∞∑
q=0

λ2q

(q!)2

∫ ∏
j

d2ajd
2bjexp{

∑
i<j

(log|ai − aj |2 + log|bi − bj |2)−
∑
i,j

log|ai − bj |2} (26)

This result is surprising because we see that each instanton behaves as if it is composed of a pair of
opposite Coulomb charges, placed at aj and bj . Since the two dimensional Coulomb energy is given by
(1/4π)log|a − b|2, the expression (26) is the partition function for the plasma with inverse temperature
β = 4π. This plasma has two different phases. For large β the charge form dipoles and the system is neutral,
with no mass gap. At some critical β, dissociation of the dipoles occurs and for β < βcr = 8π we have a
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plasma phase with Debye screening, and therefore a massgap. There is a very useful representation for (26)
based on the bosonization procedure. If one considers a free massless Dirac field ψ = (ψL, ψR) for D = 2

and introduces two operators σ+(x) = ψ†LψR and σ− = ψ†RψL, then it can be shown that

< σ+(a1)...σ+(aN )σ−(b1)...σ−(bM ) >=
∏
i<j

|ai − aj |2|bi − bj |2
∏
i,j

|ai − bj |−2δN,M (27)

From this it follows that

ZINST =

∫
Dψ(x)Dψ̄(x)exp{−

∫
(ψ̄iγµ∂µψ + λψ̄ψ)} (28)

where ψ̄ψ = σ+(x) + σ−(x) is a mass term. We see that in this representation, expansion in instantons
becomes a mass expansion. It is also obvious that

logZINST = V

∫
d2p

(2π)2
Tr log(γµpµ + λ) (29)

Expansion in λ leads to more and more infrared singular terms contaning
∫
d2p/pn but the sum (29) is

well behaved.
Before actually considering Non-Abelian gauge theories let us describe what kind of instanton structure

is present in some versions of chiral models. First of all, n-fields with the group O(N), N ≥ 4 do not have
any nontrivial topology; that is to say any map S2 → SN−1 for N ≥ 4 is contractible. In fact the map of S2

onto any Non-Abelian Lie group G, described by the principal chiral field g(x) is also contractible. These
theories do not have stable instantons. The chiral theories which do have them are described by the coset
spaces G/H in which H contains U(1) as a factor. In mathematical notation this means that:

π2(G/H) ' π1(H) if π2(G) = 0 (30)

The most familiar example of a chiral theory with instanton structure is the so-called

CPN−1 =
SU(N)

SU(N − 1)⊗ U(1)
(31)

2.2 Instantons in Non-Abelian Gauge Theories

Now we are ready to discuss the main physical problem of interest to this project. As opposed to the ex-
amples in Abelian theories, the problem we shall discuss here is connected to the fact that multi-instanton
solutions have not been explicitly parametrized up to now, and consequently even for one loop computations
the multi-instanton solutions, for the case of Non-Abelian gauge theories, have not yet been discovered. Let
us describe this problem more precisely.

First we require that Fµν(x) → o(1/x2) as x → ∞ in order that the Yang-Mills action be finite. From
this we deduce that Aµ(x) → g−1(x)∂µg(x) + o(1/x) as x → ∞, where g(x) ∈ G. Bounding our D = 4
Euclidean space by a large three-dimensional sphere S3, we obtain a map g(x) : S3 → G. These maps are
classified by the integers for any G. The analogue of the formula (17) in the present case has the form:

q =
1

12π2

∫
d3xεabcdεµνλ(∂µn

a∂νn
c∂λn

d) =
1

24π2

∫
d3xεµνλTr(LµLνLλ) (32)

with Lµ(x) = g−1∂µg(x). We may also write this integral in terms of the function

ρ(x) =
1

4
εµνλρTr(FµνFλρ)d

4x =
1

2
Tr(Fµν

∗Fµν), (∗Fµν =
1

2
εµνλρF

λρ) (33)

Our aim is to find an instanton solution with q = 1. As in the case of the n-field we can avoid solving
the Yang-Mills equations themselves, by considering first order equations instead. Using the identity
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S =
1

4e20

∫
TrF 2

µνd
4x

=
1

8e20

∫
Tr((Fµν − ∗Fµν)2)d4x+

1

4e20

∫
Tr(Fµν

∗Fµν)d4x

=
8π2q

e20
+

1

8e20

∫
Tr((Fµν − ∗Fµν)2)d4x (34)

We see that if we find a solution of the duality equation

Fµν = ∗Fµν (35)

then the action for a fixed q will be minimal. In fact, if (35) are satisfied, then so are the Yang-Mills
equations

∇µFµν = 0. (36)

We see that the duality equations (35) are four dimensional analogues of the Cauchy-Riemann equations.
Their most surprising property is that they possess multi-instanton solutions.

For a solution with q = 1, for example, we consider a group SU(2) ⊗ SU(2) ' O(4). Then equations
(35) will have the symmetry group O(4)S ⊗O(4)I , where the first factor is space rotations, and the second
isotopic rotations. Our solution should break this group to O(4)S,I preserving simultaneous rotations in
x-space and isotopic space. The ansatz in our case then gives

Aaµ(x) =
2ηaµν(xν − aν)

(x− a)2 + ρ2
(37)

F aµν = − 4ηaµνρ
2

((x− a)2 + ρ2)2
(38)

with arbitrary scale parameter ρ and position paramenter aµ, (ηabc = εabc, ηab0 = δab).

This Non-Abelian instanton can be viewed as a magnetic dipole of size ρ. If we consider now the
contribuition of one instanton to the partition function Z we find, just as in case of n-field, several factors.
First of all we have a factor e−Scl = e−8π

2/e20 which gets replaced, after taking account of the one loop
correction by e−8π

2/e2(ρ) where, for SU(2)

e2(ρ) =
3

11N

8π2

−log(λρ)
(39)

is an effective coupling for the size ρ. The contribuition has to be integrated over ρ and a. The measure
must be both scale and translationally invariant. The only combination with these properties is d4Rdρρ−5.
We find from this consideration:

Z
(1)
INST ∼ V

∫
dρ

ρ5
e−8π

2/e2(ρ) = V

∫
dρ

ρ5
ρ11N/3 (40)

(V being the 4-volume).
This instanton contribution has an infrared divergence. This means that in the multi-instanton picture,

individual instantons tend to grow and to overlap. In this case we expect something like dissociation of
dipole-like instantons to their elemetary constituents. However, even one loop computations on the multi-
instanton background have not yet been performed and nothing similar to the Coulomb plasma has been
discovered.
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2.3 Physical Consequences of Instantons

Another physical problem involving instantons is their interaction with massless Dirac fermions. Let us
consider the action

Sψ =

∫
d4xψ̄(iγµ(∂µ +Aµ))ψ (41)

In classical physics, this action conserves the axial current :

∂µ(iψ̄γµγ5ψ) = 0 (42)

In the presence of a non-Abelian external field Aµ, this becomes untrue because of the quantum anomaly.
This happens because this current which in terms of the partition function of fermions diverges in the
singularities of the Green function:

Jµ5 = Z−1[A]

∫
DψDψ̄exp(−

∫
ψ̄iγµ(∂µ +Aµ)ψd4x)iψ̄γµγ5ψ

= −iTrγµγ5G(x, x;A) (43)

where

Z[A] =

∫
DψDψ̄exp(−

∫
ψ̄iγµ(∂µ +Aµ)ψ)d4x (44)

and G(x, x′;A) is the Green function for the Dirac operator in the field Aµ. To avoid this problem we
express G(x, x′;A) in terms of eigenfunctions of the Dirac equation ψn(x), the standard formula for this is

G(x, x′) =
∑
n

ψn(x)ψ̄n(x′)

En
(45)

where En are the eigenvalues of the ψn(x). To regularize this expression we insert a factor of e−εE
2
n .

Then

Jµ5(x;A) =
∑
n

iψ̄nγµγ5ψn
En

e−εE
2
n (46)

Through some basic computations we arrive at

∂µJµ5(x) = lim
ε→0

∑
n

∂µ
iψ̄nγµγ5ψn

En
e−εE

2
n =

1

8π2
Tr(Fµν

∗Fµν) (47)

This implies that the change in the axial charge under the influence of Aµ, which is the 4-integral of (47):

∆Q5 =

∫
∂µJµ5d

4x = 2q, Q5 =

∫
J05d

3x = NL −NR (48)

This result means that there exists compulsory production of fermions and antifermions in topologically
nontrivial fields and that the numbers of left- and right-handed particles NL and NR necessarily change. In
the Minkowskian interpretation this means that the field strengths are such that they lead to compulsory
pair-creation. By compulsory we mean that the transition amplitude without pair creation is exactly zero.
To justify this we note that the vacuum-vacuum amplitude, given by

Z[A] =

∫
DψDψ̄exp{−

∫
iψ̄γµ(∂µ +Aµ)ψd4x}

= Det(iγµ(∂µ +Aµ)) (49)
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may be seen to be zero because the Dirac operator, has zero eigenvalues in the topological fields. The
proof of this lies in the fact that if the topological charge q = nR−nL is non-zero, then we trivially get zero
eigenmodes.

If now we consider the Green functions instead of Z:

G(xi, yi) = Z−1
∫
e−SψDψDψ̄(ψ(x1)...ψ(xN )ψ̄(y1)...ψ̄(yN )) (50)

We find that this quantity is not well defined in the instanton field because Z = 0. Thus for this field we
have to consider

Z ·G(xi, yi) =

∫
e−SψDψDψ̄(ψ(x1)...ψ(xN )ψ̄(y1)...ψ̄(yN )) (51)

Since the action is quadratic this amplitude can be computed by expansion in normal modes:

ψ(x) =
∑
α

C0αψ0α(x) +
∑
n 6=0

Cnψn(x) (52)

Here {ψ0α} are the zero modes of the Dirac operator and the other are the nonzero modes. Then we use
the Berezin rule

∫
dC = 0 and

∫
CdC = 1 for anticommuting variables. Since

DψDψ̄ =
∏
α

dC0αdC̄0α

∏
n 6=0

dCndC̄n (53)

and

S(ψ, ψ̄) =
∑
n 6=0

EnC̄nCn (54)

then the only nonzero terms in the integrand of (51) will contain a product of the C0αC̄0α. Since each
left-handed ψ0α gives a right-handed ψ̄0α the amplitude will be nonzero, only if the rule ∆Q5 = 2q is satisfied.
In this case the integral will be proportional to the product of the corresponding zero mode eigenfunctions
ψ0α(x).

This configuration if integrated over Aµ, including nontrivial topological fields, has the nonconservation
of the axial current. This effect shows that massless quarks tend to suppress instanton contribution, because
Z = 0 in the instanton field. If we consider instanton-anti-instanton configurations then their contribution
will be nonzero, due to the fact that the total topological charge is zero. But then the effective action diverges
with the increasing distance between the instantons. This means that exchange of a massless fermion pair
leads to long-range forces between instantons and anti-instantons. The most probable consequence of this
effect is that due to the strong binding force between fermions the chiral symmetry gets spontaneously
broken and as a result the fermions acquire a mass. After which the long range force between instantons and
anti-instantons disappears. The only remaining effect of anomalous non-conservation will consist of giving a
mass to the corresponding Goldstone boson.

Another curious phenomenon arising because of instantons is the loss of time reversal invariance in the the
theory of strong interactons if we insert in the Lagrangian a topological term taking account of instantons:

L = − 1

4e20
TrF 2

µν +
iθ

16π2
TrFµν

∗Fµν (55)

This loss of time reversal invariance may be seen through the fact that the term H · E in TrFµν
∗Fµν =

−2H · E is T -odd.
Due to the presence of instantons, physical transitions will depend on this topological term θ. The

vacuum to vacuum amplitude will then be
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Z =

+∞∑
q=−∞

eiθqZq (56)

Because of this loss of invariance, we expect that θ must be zero or extremely small. Though if we allow
this strong T -violation, then it can be shown that if massless fermions with broken chiral symmetry are
present in the system, due to instanton effects Goldstone’s massless particles obtain some mass (because of
nonexact conservation of Jµ5) and simultaneously the θ-term gets absorbed after redefinition of Goldstone’s
field. This consideration predicted a light isoscalar boson. Unfortunately this particle, called axion, has
not yet been found. Though efforts are being made towards a discovery of this particle, specifically the
XENON1T experiment based at the Gran Sasso National Laboratory in Italy has recently captured a hint
of a signal of axions streaming out of our sun. This experiment is further discussed on Letzter [2020].

3 Appendix: Notations and Introductory Concepts

To start our main discussion of Gauge field theory in the context of quantum field theories and their path
integral formalism, we have to start off constructing an action for the classical theory, which will then be
generalized.

We will assume that for a free particle

S = −mc
∫ b

a

ds (57)

here ds =
√
dxµdxµ (µ = 0, 1, 2, 3), where we are putting dxµdx

µ = c2dt2 − dx2 − dy2 − dz2.

For a charged particle moving in an electromagnetic field, the action function will have the form

S =

∫
(−mcds− e

c
Aµdx

µ), µ = 0, 1, 2, 3. (58)

Now from the least action principle we deduce the equations of motion:

mc
duµ
ds

=
e

c
Fµνuν , µ, ν = 0, 1, 2, 3 (59)

where Fµν = ∂Aν/∂x
µ − ∂Aµ/∂xν is the electromagnetic field tensor, and uµ = dxµ/ds.

It is obvious that the quantity FµνF
µν is an invariant quantity. This will be the last term in the action

so that the field equations are linear with respect to the fields. Thus the action now looks like

S = −
∑∫

mcds−
∑∫

e

c
Aµdx

µ − 1

16πc

∫
FµνF

µνdΩ, µ, ν = 0, 1, 2, 3 (60)

where the sums are meant to take into account systems of many particles, the factor dΩ = c dt dx dy dz,
and the term 1/16πc is convenient for experimental agreement.

More on this topic is discussed on (Landau and Lifshitz [1980]).

4 Appendix: The Topology of Soliton Solutions

In field theory we have many classical solutions to the field configurations that obey our given Lagrangians,
these we call soliton solutions and one of the classical examples of them in one spatial dimension arises in
the theory with a single scalar field φ and Lagrangian density:

L =
1

2
(∂µφ)(∂µφ)− V (φ), V (φ) =

λ

4
(φ2 − v2)2. (61)
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Here m2 and λ are both positive and v =
√
m2/λ. The classical Euler-Lagrange equation of the theory

is

d2φ

dt2
− d2φ

dx2
= −λ(φ2 − v2)φ (62)

and we are particularly interested in static solutions d2φ/dt2 = 0. By straightforward computation we
arrive at the kink solution

φ(x) = v tanh[
m√

2
(x− x0)] (63)

We notice that this configuration has two vacuum solutions at different parts of spatial infinity φ(∞) = v,
φ(−∞) = −v and with these values the configuration could not be continuously deformed into a uniform
vacuum solution over all of space. In this case it is fairly easy to see the topological stability of the soliton,
however we wish to consider theories in which the space of vacuum solutions is more complicated.

4.1 Vacuum Manifolds

The general situation that we want to consider is a field theory with n scalar fields that can be assembled
into an n−component column vector φ and a scalar potential V (φ) that has a family of degenerate minima
that form a manifold M . Let us assume that this degeneracy is a consequence of a symmetry group G that
is spontaneously broken to a subgroup H by the vacuum expectation value of φ. Given a value φ, the action
of an element g of G transforms φ to gφ. In particular, if φ0 minimizes V , then so does gφ0 for any choice
of g.

If G is completely broken then there is a one-to-one correspondence between elements of G and minima
of V . In the case it is only partially broken, there is an unbroken subgroup H that can be defined by the
requirement that it leaves φ0 invariant. We can therefore define equivalence classes of elements of G by
defining two elements g1 and g2 to be equivalent if g2 = g1h for some h ∈ H. The set of such equivalence
classes is the coset space G/H. There is a one-to-one correspondence between these equivalence classes and
the minima of V , so M = G/H.

4.2 Homotopy and the fundamental group π1(M )

Let us start by considering closed paths, or loops on a manifold M . In particular let us pick a point x0
on M and restrict our attention to paths that begin and end at x0. Any such path can be specified by a
continuous function f(t) taking values in M , with 0 ≤ t ≤ 1 and f(0) = f(1) = x0. Let f(t) and g(t) be
continuous paths beginning and ending at x0. They can be smoothly deformed into one another if and only
if there is a continuous function k(s, t) with 0 ≤ s, t ≤ 1 such that

k(0, t) = f(t), k(1, t) = g(t), k(s, 0) = k(s, 1) = x0 (64)

Thus k(s, t) can be viewed as a sequence of loops, labeled by s, that begin and end at x0 with f being the
first in the sequence and g the last. Paths f and g are said to be homotopic at x0, and the family of paths
that define the function k is a homotopy.

One can define a product on the space of paths. Given paths f and g, their product is defined in the
following way f ◦ g is the path obtained by going around f and then going around g. An inverse path f−1

can be defined as going around f as going around f in the reverse direction f−1(t) = f(1− t). The
next step is to divide the paths on M into homotopy classes, with the homotopy class [f ] denoting the set
of paths that are homotopic to f . Defining a product in this set of equivalence classes we obtain a group
structure and we denote this group π1(M , x0) and call it the fundamental group of M at x0. If the manifold
M is connected then the base point x0 loses importance since the group will be the same in any point of the
manifold.
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There is a natural generalization of the fundamental group. The latter classifies closed loops, which are
maps from a circle, S1, to a given manifold. The higher homotopy groups, πn(M ), classify maps from an
n-sphere, Sn, to the manifold. Let us first consider the second homotopy group π2(M , x0). Let f(s, t) and
g(s, t) be two maps on S2, both of which are equal to x0 everywhere on the perimeter of the square. These
are homotopic if there is a function k(s, t, u) with (s, t, u) ∈ [0, 1]3 such that the u-parameter takes k from
f to g, and k is also equal to x0 on the perimeter of the variables s,and t. Now the product of maps is
defined similarly as before but only for the t-variable. The inverse map to the map f(s, t) is also similar
being defined by f(s,−t), and under the equivalence relation it will define the inverse element of the group
by [f(s, t)]−1 = [f(s,−t)] where the equivalence class of the map f(s, t) is [f(s, t)], being the set of maps
homotopic to f(s, t).

This discussion of π2 can be carried over, with obvious generalizations, to the πn with n ≥ 3. An
important property of all these groups (with n ≥ 2) is that they are always Abelian.

4.3 Vortices and Homotopy

In two dimensions, spatial infinity can be described as a circle at r =∞. As θ varies from 0 to 2π, the values
of the field φ(r =∞, θ) on this circle trace out a loop in the vacuum manifold M . In the field theory context,
the homotopy equivalence relation between two field configurations occurs when φ1(∞, 0) = φ(∞, 0) = φ0
for some fixed φ0. A nonsigular configuration in which φ takes on different vacuum values at different points
along the circle r =∞ is a continuous family of vacuum states. With a complex scalar field φ(x) = ρ(x)eiα(x),
governed by the Lagrangian density

L =
1

2
(∂µφ)†(∂µφ)− λ

4

(
|φ|2 − µ2

λ

)2
(65)

This theory has a global U(1) symmetry. It is minimized by |φ| = v =
√
µ2/λ and the U(1) symmetry is

spontaneously broken. There is a continuous set of vacuum states, given by ρ = v and an arbitrary uniform
value for α. In this example again the field cannot be continuously deformed to a vacuum solution, this
field solution is known as a vortex. The topological formulation for this situation is the following: for some
smooth configuration of φ, we can define the line integral

N [C] =
1

2π

∮
C

dl · ∇(argφ) =
1

2π

∮
C

dl · ∇α, (66)

where the countour C is the circle at spatial infinity. If φ is nonzero everywhere on this circle, so that
its phase is well defined at each point of the curve, N [C] counts the number of full rotations that this phase
makes during one clockwise circuit around C. This must be an integer n, which may be termed the vorticity
or winding number.

We are particularly interest on some results concerning the homotopy groups of spheres for the analysis
of later field configurations. Let us begin with the higher homotopy groups of n-spheres πn(Sn), which
classifies maps from one n-sphere to another. On S1 if θ denotes the angle on the first circle, and α(θ) the
angle to which this is mapped on the second circle, the winding number can be written as

N =
1

2π

∫ 2π

0

dθ
dα

dθ
. (67)

On S2 using the standard spherical coordinates θ and φ for the first sphere and α(θ, φ) and β(θ, φ) for
the sencond, the winding number is defined by

N =
1

4π

∫
d2Ω

sinα

sinθ

(dα
dθ

dβ

dφ
− dβ

dθ

dα

dφ

)
. (68)

It is useful to rewrite in terms of Cartesian coordinates. Let us define a unit vector

ê(r) = (sinα cosβ, sinα sinβ, cosα), (69)
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Then the winding number of ê(r) on a sphere of fixed radius is

N =
1

8π
εijk

∫
dSiê · ∂j ê× ∂kê, (70)

where dSi is the surface element on the sphere. This integral is invariant under smooth variation of ê.
Furthermore, N is invariant under perturbations of the integration surface, as long as ê remains well defined.
Hence, if we have a field φ(r) that transforms as an SO(3) vector and define ê = φ/|φ|, the winding number
of ê over a surface is invariant under deformations of the surface that do not take it through a zero of φ.
Arguments analogous to those for the vortex case then show that N is equal to the total number of zeros of
φ in the region enclosed by the surface of integration, with each zero being counted with a plus or a minus
sign according to the sign of the winding on an infinitesimal sphere enclosing the zero.

This quantity may also be writen in terms of elements the group in discussion

N [G] =
1

24π2
εijk

∫
d3xtrG−1∂iGG

−1∂jGG
−1∂kG. (71)

The discussion here presented on instanton solutions is very limited and this rich subject is further
explored by (Weinberg [2012]), many related topics, such as a description of these instanton solutions in the
contex of Fibre Bundles, treatments of index theorems, homotopy theory and physical applications may also
be found on (Nakahara [1990]).
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