"Vibrant portrait painting of Salvador Dalí with a robotic half face."

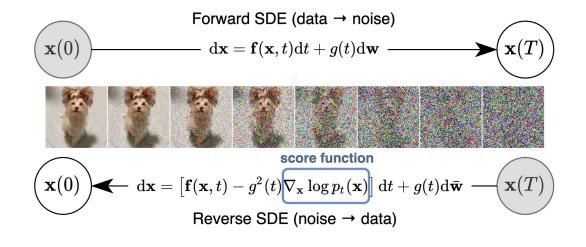
Ours (512px, 0.13s / img)

Scaling up GANs for Text-to-Image Synthesis (GigaGAN)

Minguk Kang, Jun-Yan Zhu, Richard Zhang, Jaesik Park, Eli Shechtman, Sylvain Paris, Taesung Park

GAN vs Diffussion Models

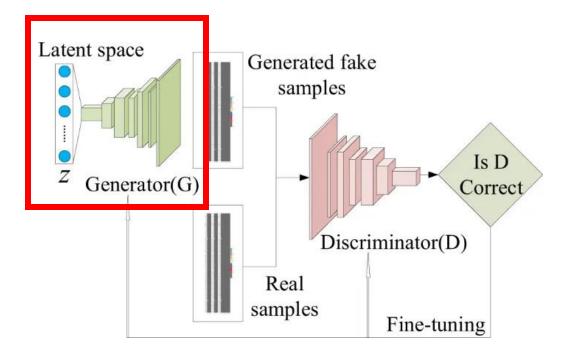
- Diffusion models are great.
- But... They rely on iterative inference.
 - Iterative methods enable stable training
 - And have a high computational cost during inference.



https://theaisummer.com/diffusion-models/

GAN vs Diffusion Models

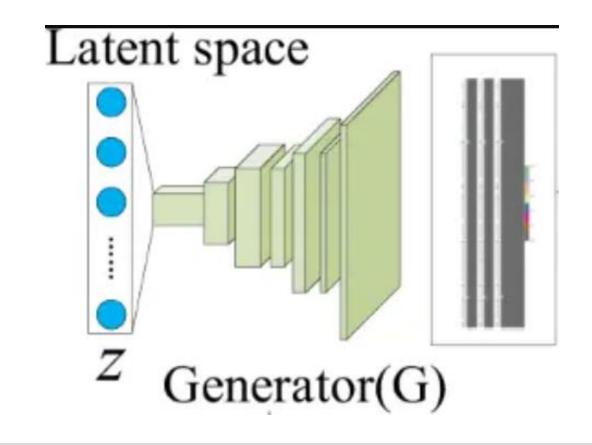
- GANs generate images through a single forward pass.
 - Not as visually accurate for diverse domains.
 - Great at modeling single (few) classes.



https://theaisummer.com/diffusion-models/

GigaGAN vs Diffusion Models

- Generating a 512px image in 0.13 seconds.
- It can synthesize ultra high-res images at 4k resolution in 3.66 seconds.
- It still contains a "controllable",
 latent vector space.
 - Many of he know tricks to tailor image synthesis by modifying the latent space should work.



The "Giga" Part

• Everything works better at scale.

The "Giga" Part

- Everything works better at scale.
- Some of the larger GANs:
 - StyleGAN 70K-200K.
 - BigGAN 1M.
 - StyleGAN2 50M-100M.
- GigaGAN is one billion parameter GAN
- In context,1B parameter is still lower than:
 - Imagen (3.0B).
 - DALL-E 2 (5.5B).
 - Parti (20B).

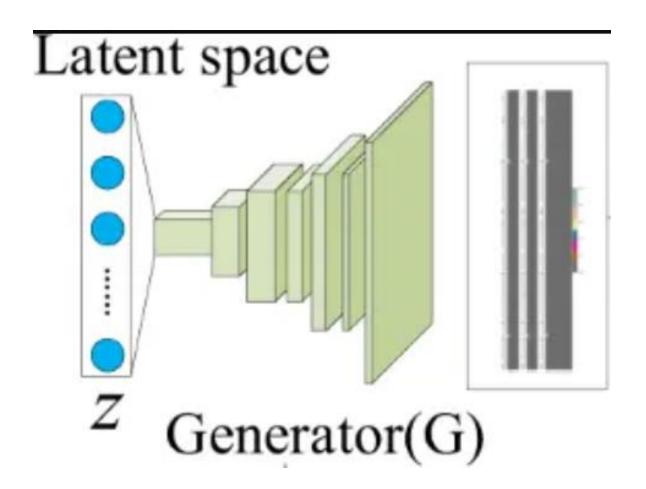
GigaGan - Training Data Size

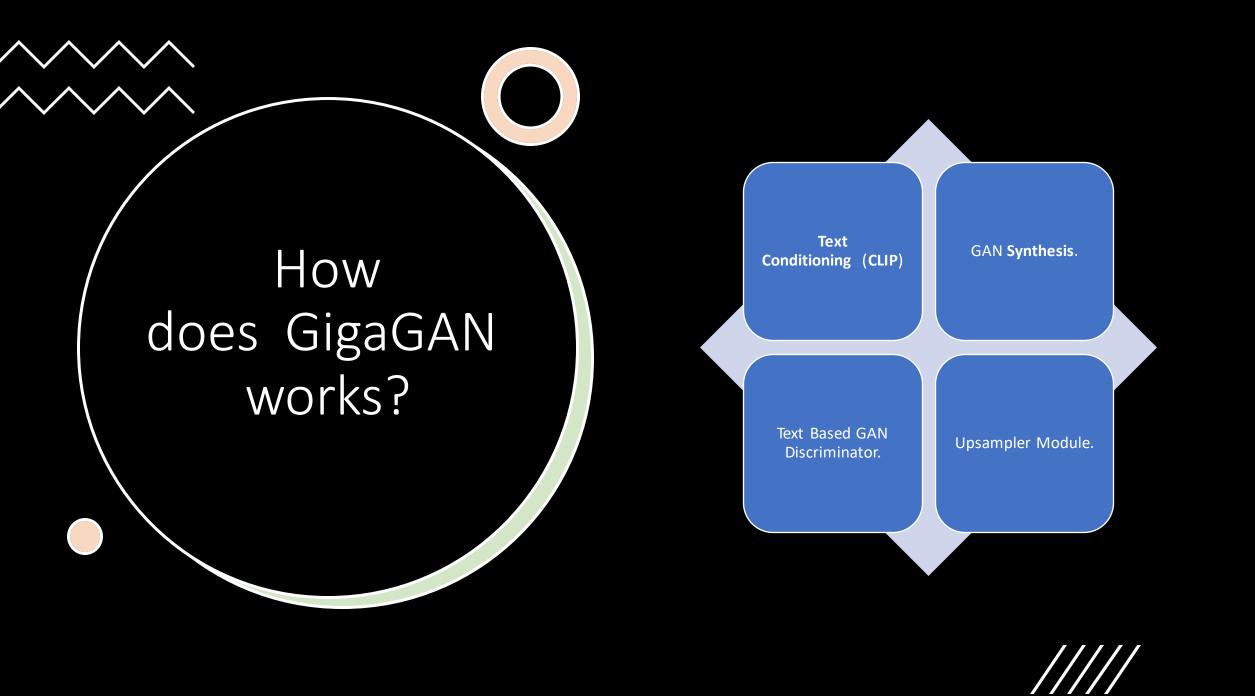
- Trained on LAION5B-en.
 - 2.32 billion images.
 - Each image is paired with text in the English language.
 - Also trained on ImageNet (upsampler).

Dataset	# English Img-Txt Pairs
Public Datasets	
MS-COCO	330K
CC3M	3M
Visual Genome	5.4M
WIT	5.5M
CC12M	12M
RedCaps	12M
YFCC100M	$100M^{2}$
LAION-5B (Ours)	2.3B
Private Datasets	
CLIP WIT (OpenAI)	400M
ALIGN	1.8B
BASIC	6.6B

GigaGAN – Two Standalone Models

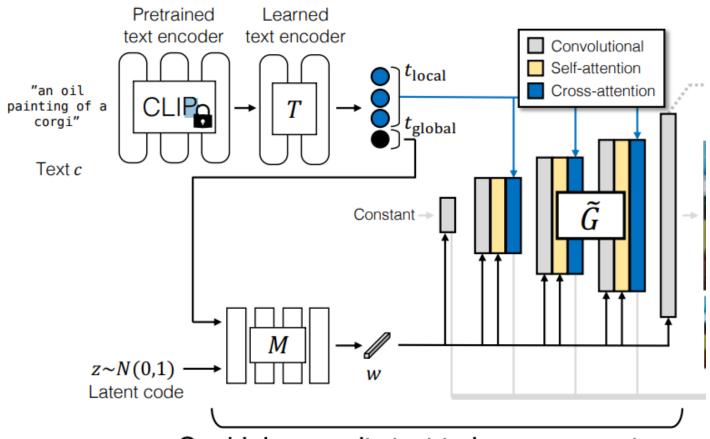
- GAN Synthesis Network up to 64x64.
 - First generates images at 64 × 64.
- Upsampler 512x512.





GigaGAN – Text Encoder

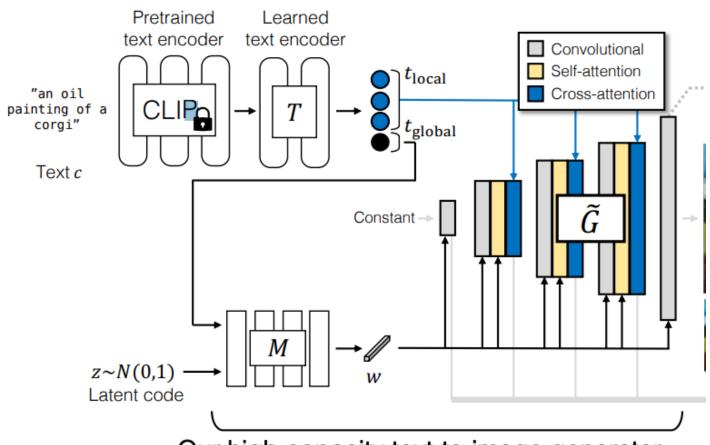
- Clip Text encoder
 - Original CLIP
 - And extra Transformer layers.



Our high-capacity text-to-image generator

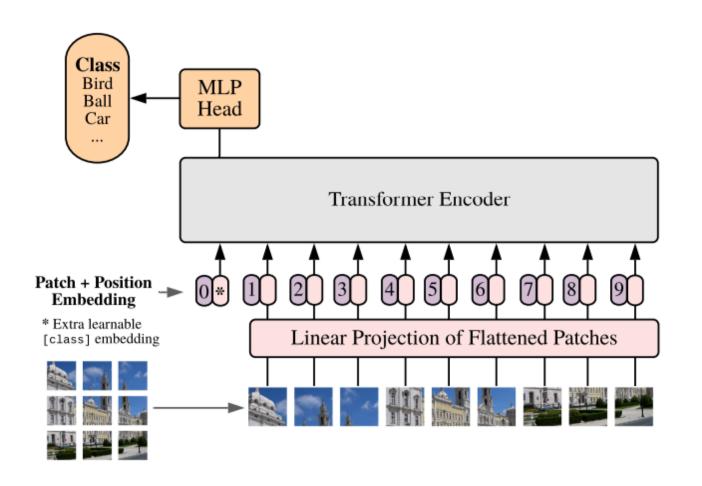
GigaGAN – Text Encoder

- Two outputs
 - Local Encoding
 - Global Encoding
- Global encoding conditions L atent Vector.
- Local Encoder conditions the Synthesis network.

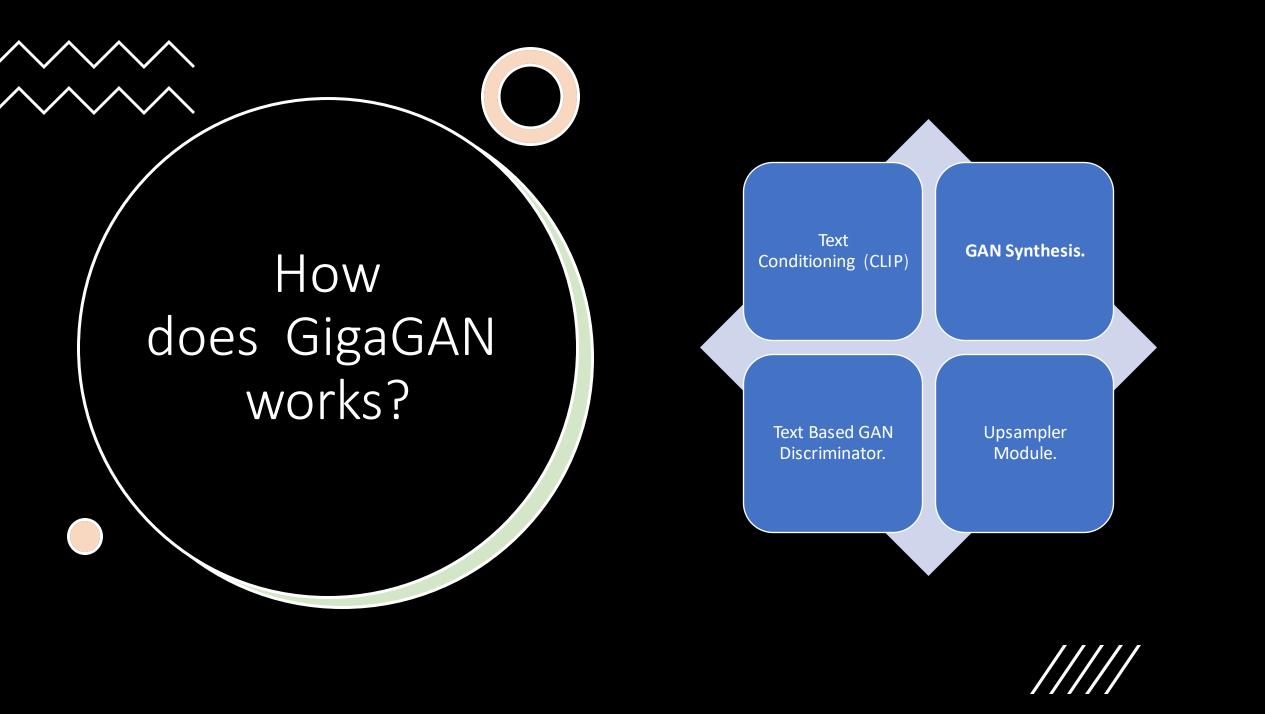


Our high-capacity text-to-image generator

Local and Global Features

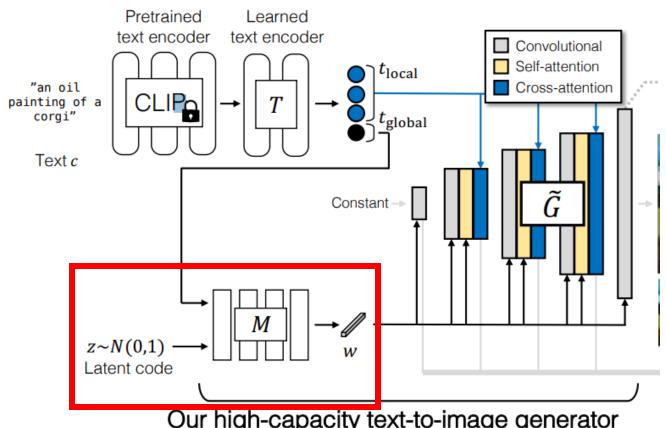


Dosovitski et al.



GigaGAN - Mapping Network

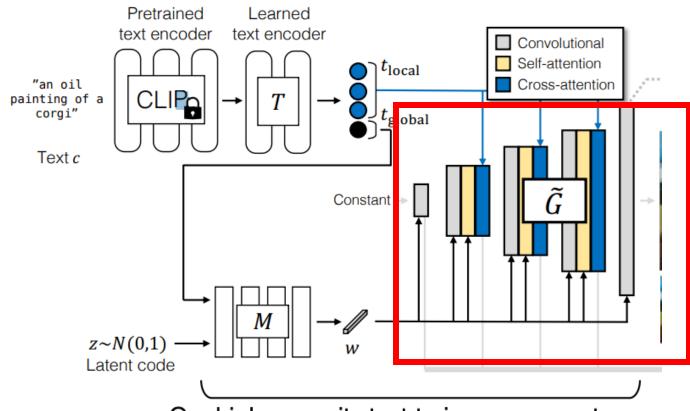
- Mapping Network
 - It mixes the latent code (z) and learned text encoding (t).
- **Key idea**, now we have joint space (w) with the latent code and the text encoding.



Our high-capacity text-to-image generator

GigaGAN – Syntesis Network

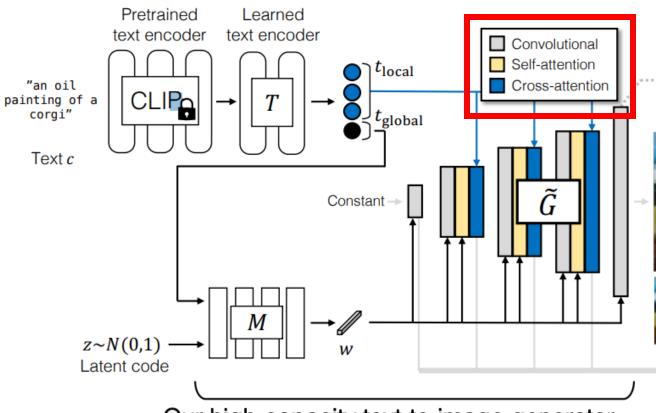
- G maps a learned constant tensor to an output image x.
- Convolution and attention are the main tools to generate all output pixels.



Our high-capacity text-to-image generator

GigaGAN – Syntesis Network

- Why would you even care about attention?
 - Trendy sure, but what could be the actual benefit?
 - We are already conditioning the latent vector.



Our high-capacity text-to-image generator

GigaGAN – Training Issues

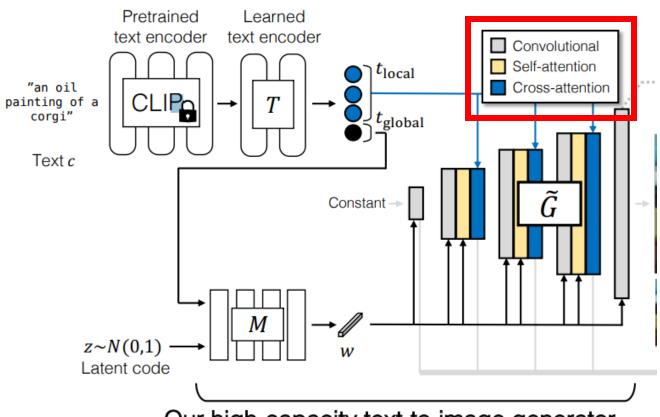
- There are issues in training very large GANs over a set of diverse data.
- Increasing data allows to increase the width of the convolution layers or the network depth, but becomes too computationally demanding.
- If we rely on convolutions: The same operation is repeated across all locations.

Conditioning the Sythesis Network

- We dont want to use the very same filter across all locations.
- We also dont want to use the very same filter for all the classes.
- Key Insight: The filter should be conditioned spatially conditioned on the text.

This is why:

- We need local features.
- We need extra layers over CLIP.
- We include attention layers on the synthesis network.
- Self-Attention vs Cross Attention.



Our high-capacity text-to-image generator

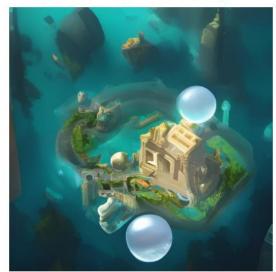
A living room with a fireplace at a wood cabin. Interior design.



a blue Porsche 356 parked in front of a yellow brick wall.

Eiffel Tower, landscape photography

A painting of a majestic royal tall ship in Age of Discovery.



Isometric underwater Atlantis city with a Greek temple in a bubble.

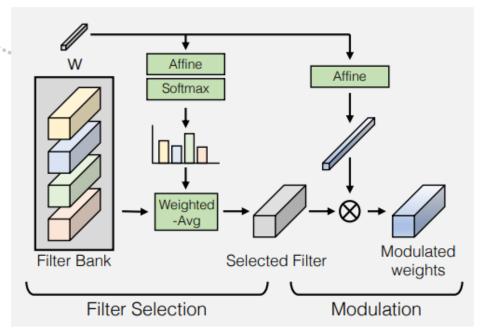
A hot air balloon in shape of a heart. Grand Canyon

low poly bunny with cute eyes

A cube made of denim on a wooden table

Sample-adaptive Kernel Selection.

- GigaGAN proposes to create kern els on-the-fly based on the text conditioning.
- The softmax-based weighting can be viewed as a differentiable filter selection process based on input conditioning.

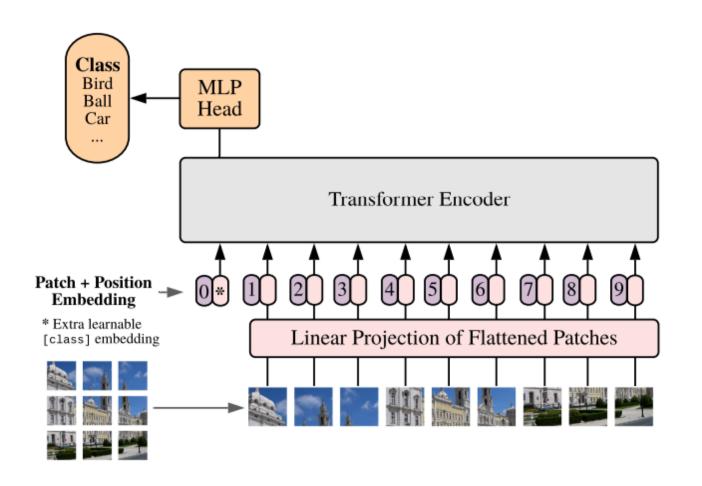


Sample-adaptive kernel selection

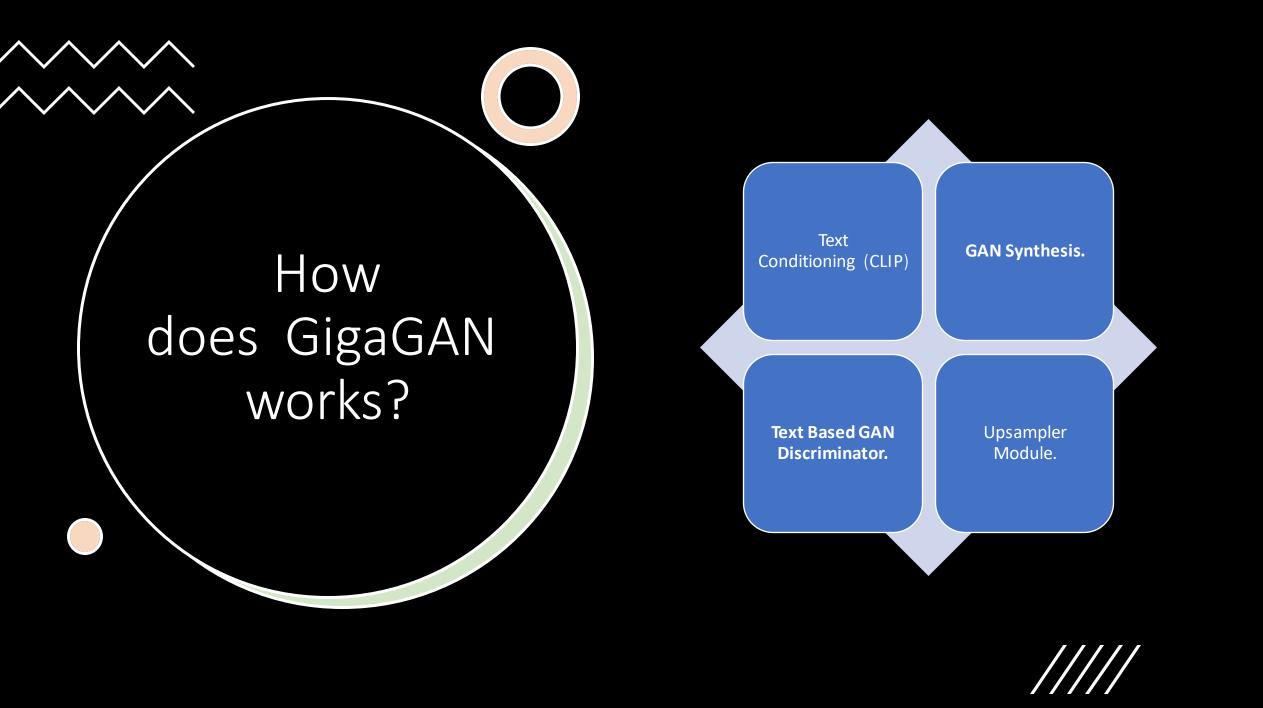
Some Extra Details on the Clip Text Head

- Apply additional attention layers T on top to process the word embeddings before passing them to the MLP-based mapping network.
- The **EOT** ("end of text") component aggregates global information, and is called global.

Local and Global Features



Dosovitski et al.

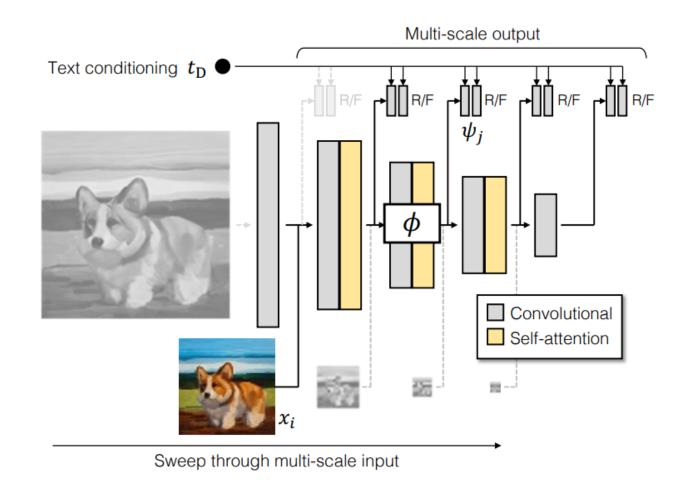


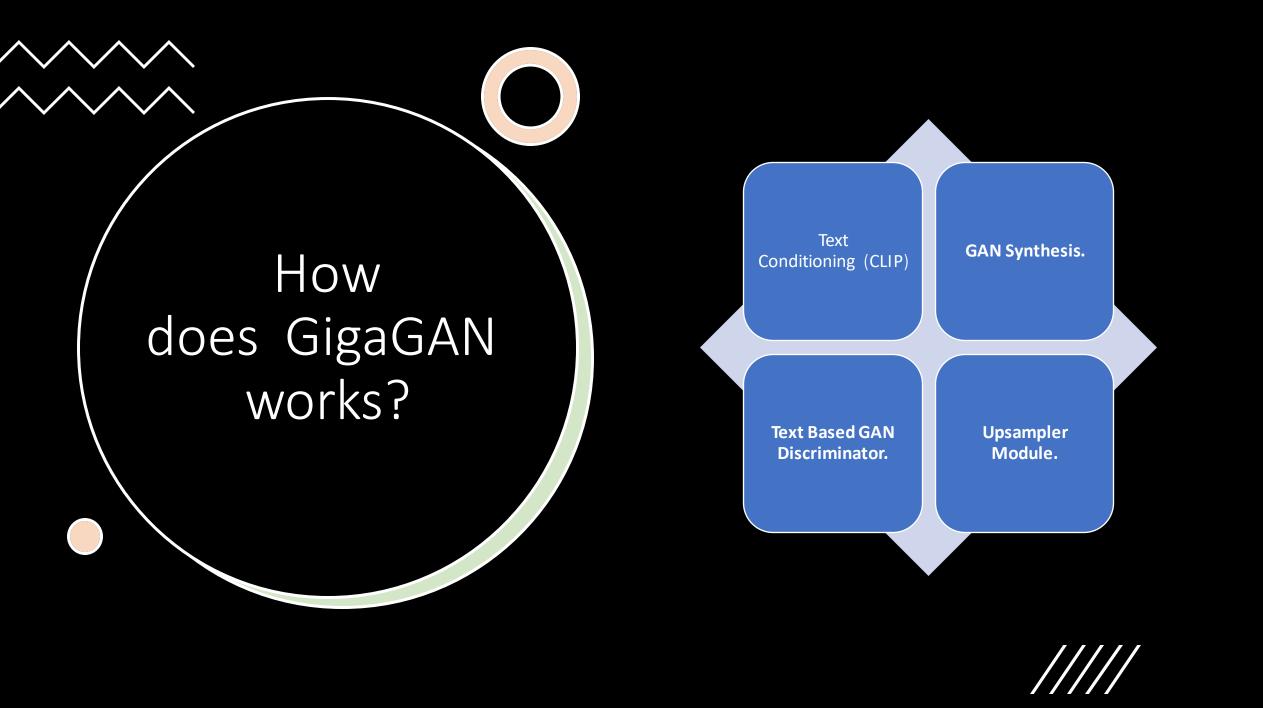
Multi-scale Synthesis Network

- G generator outputs a multi-scale image pyramid with L = 5 levels, instead of a single image at the highest resolution.
- Spatial resolutions: {64, 32, 16, 8, 4}
- Each image of the pyramid is independently used to compute the GAN loss.

GigaGAN Discriminator

- Two branches for processing the image and the text conditioning to
- The text branch processes the text similar to the generator (I'm not sure exactlyhow).
- The image branch receives an image pyramid and makes independent predictions for each image scale.

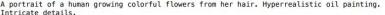




GAN Upsampler

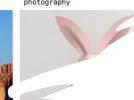
- GigaGAN can be extended to train a text-conditioned super-resolution model.
- Upsampling the outputs of the base GigaGAN generator to obtain high-resolution images at 512px or 2k resolution.

A portrait of a human growing colorful flowers from her hair. Hyperrealistic oil painting.



A living room with a fireplace at a blue Porsche 356 parked in

a cute magical ' speed, fantas



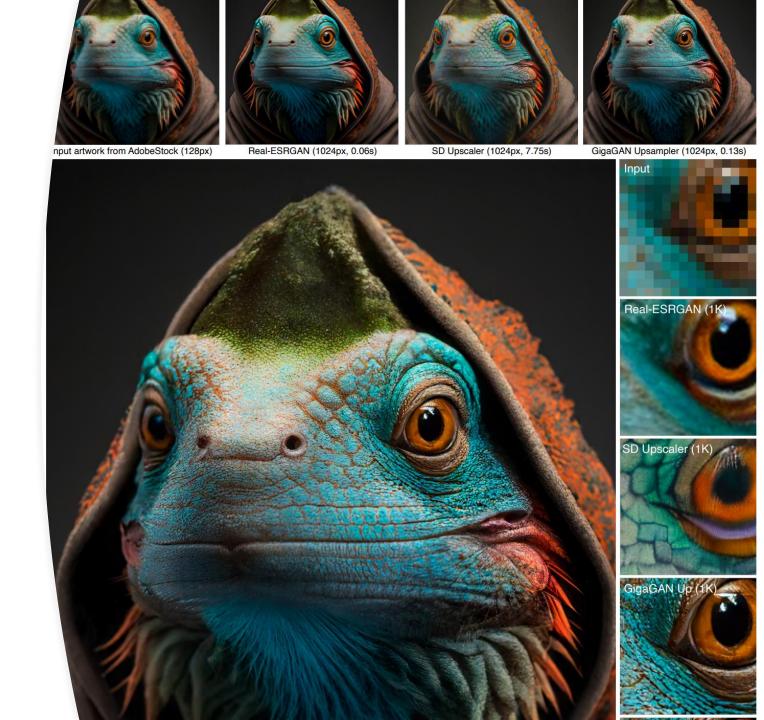
Training Data

- For text-to-image synthesis, we train our models on the union of LAION2B-en and COYO-700M [8] datasets,
- The 128-to1024 upsampler model trained on Adobe's internal Stock images & imagenet.
- Use CLIP ViT-L/14 [71] for the pre-trained text encoder

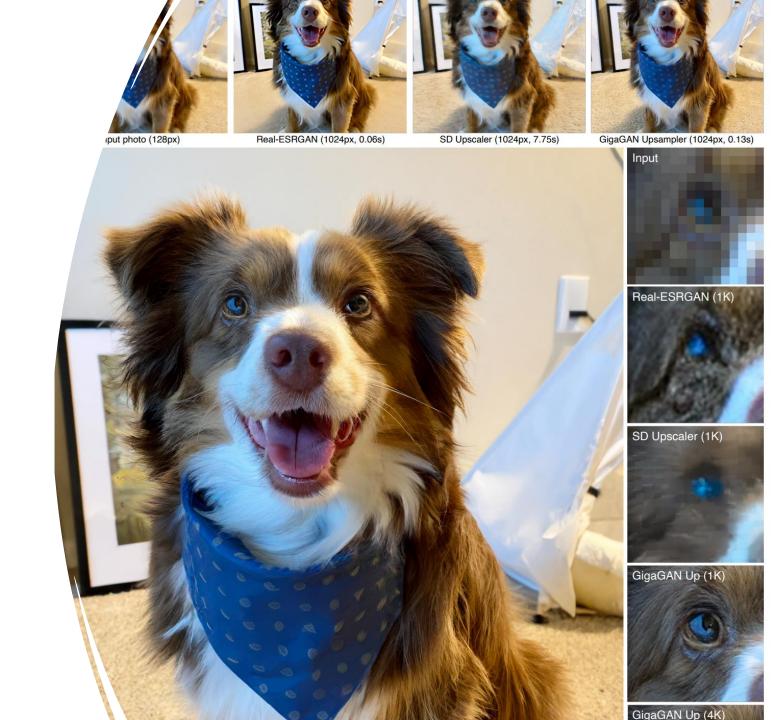
Latent Space Interpolation

Coarse and Fine Style Control

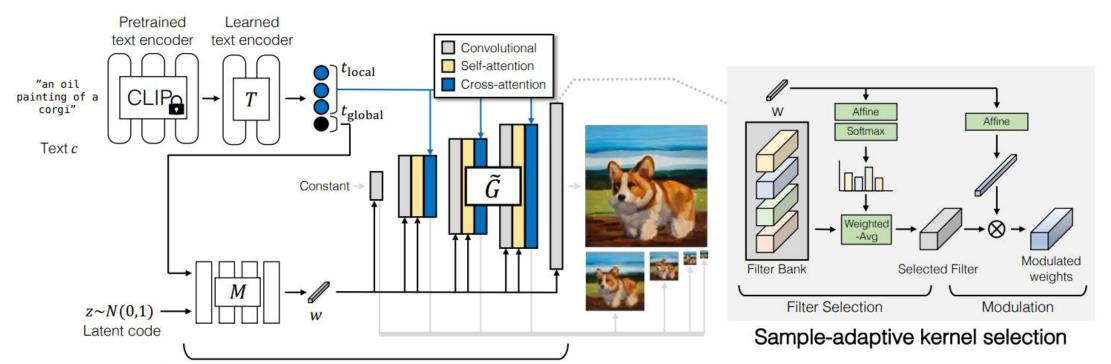
Upsampler Results



Upsampler Results



Questions?



Our high-capacity text-to-image generator