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GAN vs Diffussion Models

• Diffusion models are great.

• But... They rely on iterative 
inference.

• Iterative methods enable 
stable training

• And have a high 
computational cost during 
inference.

https://theaisummer.com/diffusion-models/



GAN vs Diffusion Models

• GANs generate images through a 
single forward pass.

• Not as visually accurate for 
diverse domains.

• Great at modeling single 
(few) classes.

https://theaisummer.com/diffusion-models/



GigaGAN vs Diffusion Models

• Generating a 512px image in 0.13 
seconds.

• It can synthesize ultra high-res 
images at 4k resolution in 
3.66 seconds.

• It still contains a "controllable", 
latent vector space.

• Many of he know tricks  to 
tailor image synthesis by 
modifying the latent space 
should work.



The "Giga" 
Part

• Everything works better at scale.



The "Giga" 
Part

• Everything works better at scale.

• Some of the larger GANs:

• StyleGAN 70K-200K.

• BigGAN 1M.

• StyleGAN2 50M-100M.

• GigaGAN is one billion parameter GAN

• In context,1B parameter is still lower than:

• Imagen (3.0B).

• DALL-E 2 (5.5B).

• Parti (20B).



GigaGan - Training 
Data Size

• Trained on LAION5B-en.

• 2.32 billion images.

• Each image is paired with 
text in the English language.

• Also trained on ImageNet 
(upsampler).



GigaGAN – Two 
Standalone 
Models

• GAN Synthesis Network 
up to 64x64.

• First generates images 
at 64 × 64.

• Upsampler 512x512.



How 
does  GigaGAN

works?

Text 
Conditioning  (CLIP)

GAN Synthesis.

Text Based GAN 
Discriminator.

Upsampler Module.



GigaGAN – Text 
Encoder

• Clip Text encoder

• Original CLIP

• And extra Transformer 
layers.



GigaGAN – Text 
Encoder

• Two outputs

• Local Encoding

• Global Encoding

• Global encoding conditions L
atent Vector.

• Local Encoder conditions the
Synthesis network.



Local and Global 
Features

Dosovitski et al.
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GigaGAN - Mapping 
Network

• Mapping Network

• It mixes the latent code (z) 
and learned text encoding (t).

• Key idea, now we have joint 
space (w) with the latent code and the 
text encoding.



GigaGAN –
Syntesis Network

• G maps a learned constant tensor to 
an output image x.

• Convolution and attention 
are the main tools to generate all 
output pixels.



GigaGAN –
Syntesis Network

• Why would you even care about 
attention?

• Trendy sure, but what could be the actual 
benefit?

• We are already conditioning the latent 
vector.



GigaGAN – Training Issues

• There are issues in training  very large GANs over a set of diverse 
data.

• Increasing data allows to increase the width of the convolution 
layers or the network depth, but becomes too computationally 
demanding.

• If we rely on convolutions: The same operation is repeated across 
all locations.



Conditioning the Sythesis Network

• We dont want to use the very same filter across all locations.

• We also dont want to use the very same filter for all the classes.

• Key Insight: The filter should be conditioned spatially conditioned on 
the text.



This is why:

• We need local features.

• We need extra layers over CLIP.

• We include attention layers on the 
synthesis network.

• Self-Attention vs Cross Attention.





Sample-adaptive 
Kernel Selection.

• GigaGAN proposes to create kern
els on-the-fly based on the text 
conditioning.

• The softmax-based weighting can 
be viewed as a differentiable 
filter selection process based on 
input conditioning.



Some Extra 
Details on the 
Clip Text Head

• Apply additional attention layers T on top to 
process the word embeddings before 
passing them to the MLP-based mapping 
network.

• The EOT (“end of text”) component 
aggregates global information, and is called 
global.



Local and Global 
Features

Dosovitski et al.
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Multi-scale 
Synthesis 
Network

• G generator outputs a multi-scale image 
pyramid with L = 5 levels, instead of a single 
image at the highest resolution.

• Spatial resolutions: {64, 32, 16, 8, 4}

• Each image of the pyramid is independently 
used to compute the GAN loss.



GigaGAN Discriminator

• Two branches for processing the image 
and the text conditioning tD

• The text branch processes the text similar 
to the generator (I'm not sure 
exactlyhow).

• The image branch receives an image 
pyramid and makes independent 
predictions for each image scale.



How 
does  GigaGAN

works?

Text 
Conditioning  (CLIP)

GAN Synthesis.

Text Based GAN 
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GAN Upsampler

• GigaGAN can be extended to train a text-conditioned super-resolution 
model.

• Upsampling the outputs of the base GigaGAN generator to obtain 
high-resolution images at 512px or 2k resolution.



Training Data

• For text-to-image synthesis, we train our 
models on the union of LAION2B-en and 
COYO-700M [8] datasets, 

• The 128-to1024 upsampler model trained 
on Adobe’s internal Stock images & 
imagenet.

• Use CLIP ViT-L/14 [71] for the pre-trained 
text encoder



Latent Space Interpolation



Coarse and Fine Style Control



Upsampler Results



Upsampler 
Results



Questions?
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